Analysis and Control of Cyber-Physical Systems

Homework 2 — 24 March 2021

Problem 1. Consider the nondeterministic finite automaton shown in figure.

- (a) Write the algebraic description of this NFA. Which are the nondeterministic structures in this model?
- (b) Determine the following set of states:

(a)
$$\Delta(x_2,\varepsilon)$$
; (b) $\Delta^*(x_2,\varepsilon)$; (c) $\Delta^*(x_3,b)$.

where for $e' \in E_{\varepsilon}$ we define $\Delta(x, e') = \{x' \in X \mid (x, e', x') \in \Delta\}$ and for $w \in E^*$ we define $\Delta^*(x, w) = \{x' \in X \mid (x, w, x') \in \Delta^*\}$.

(c) Determine if the following words belong to the language L(G) and to the language $L_m(G)$. You must also write all runs that generate these words if applicable.

$$w_1 = bba;$$
 $w_2 = bb;$ $w_3 = baab.$

- (d) Determine a DFA G' equivalent to G, i.e., the observer Obs(G).
- (e) A bookmaker accepts bets 1/3 on what the current state of system is. Can you make money guessing the current state? What would you bet and when?

Problem 2. Consider the DFA G shown in the following figure which represents a system subject to failures. The set of observable events is $E_o = \{a, b, c\}$, the set of unobservable events is $E_{uo} = \{\varepsilon_1, \varepsilon_f\}$ and the set of fault events is $E_f = \{\varepsilon_f\}$.

- (a) Determine by direct computations the sets of words $\mathcal{S}(w)$ and of states $\mathcal{X}(w)$ consistent with all words of length up to 3.
- (b) Determine the diagnoser Diag(G). What is the diagnosis state $\varphi(w)$ for word w = acaa?
- (c) Is this fault diagnosable?

Problem 3. Discuss if the following statement is correct:

Any language $L \in \mathcal{L}_{DFA}$ can be accepted by some NFA G' with a unique final state.

If the statement is correct, provide an algorithm that given in input an automaton G produces in output an NFA G' with a unique final state accepting language $L_m(G') = L_m(G)$. Apply this construction to the NFA in Problem 1.

The first two problems can be solved with software UMDES https://wiki.eecs.umich.edu/desuma/index.php/UMDES_Software_Library