Analysis and Control of Cyber-Physical Systems

Homework 6 — 28 May 2020

Problem 1. Consider the nonlinear systems described by $\dot{x}(t) = f(x(t))$, with state $x(t) \in \mathbb{R}$ and activity

$$f(x) = \begin{cases} -x & \text{if } x \le 1\\ -x+1 & \text{if } x > 1 \end{cases}$$

- (a) What are its equilibrium point(s)?
- (b) Discuss if $V(x) = x^2$ is a Lyapunov function.
- (c) Are the equilibrium point(s) stable? Asymptotically stable? Globally asymptotically stable?
- (d) Simulate the evolution of the system with initial condition $x'_0 = 3$ and $x''_0 = -1$. Discuss if these results are consistent with the previous analysis.

Problem 2. Consider the switched system $\{A_1, A_2\}$ with

$$A_1 = \begin{bmatrix} -2 & -1 \\ 1 & -1 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} -1 & 1 \\ -1 & -2 \end{bmatrix}$.

- (a) Show that the systems is stable under arbitrary switching laws by determining a quadratic common Lyapunov function $V(x) = x^T P x$ where matrix $P \succ 0$ is diagonal.
- (b) Show that the given Lyapunov function ensures that during a continuous step

$$\frac{d}{dt}V(x(t)) \le -\varrho \ V(x(t)), \qquad \text{with } \varrho > 0$$

What is the value of parameter ρ ?

Problem 3. Consider the switched system $\{A_1, A_2\}$ with

$$A_1 = \begin{bmatrix} 0 & 2\\ 1 & -2 \end{bmatrix} \quad \text{and} \quad A_2 = \begin{bmatrix} -2 & -3\\ -3 & 2 \end{bmatrix}.$$

- (a) Show that the system is quadratically stabilizable finding an equivalent stable dynamics A_{eq} and its corresponding state feedback switching law $\ell(x(t))$ that stabilizes the system (a chattering free law is required).
- (b) Draw the regions of the state space where each dynamics is active and show the system evolution for three different initial conditions.