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Foreword

This work is based on fractals. Since Barnsely destiated how to use these strange non-
linear functions to encode images and Jaquin dpedl@an automated fractal image compression
algorithm, in just 14 years over 600 papers hayeeaped. This huge amount of study is due to
the immense world of possibilities fractals giveeésearchers.

Fractals founded place in several fields of stuuht, only compression of images or video
sequences or mathematics: economics, biology, ggosmcials, and even politics.

The studies presented here, which derive from tlgeses of research in this area, try to
focus on the extremely promising property of implicterpolation fractals gave us.

Since images, or more in general signals, are nehagh the powerful concept of function
instead of a collection of pixels, we can easilyadb interpolation between nodes of these
functions.

This assumption leads to discover some amazingngalyes that fractal encoding has

compared to classical interpolation techniques.



Introduction

This work is divided in four chapters. The firstagier introduces the classical tecniques used to
interpolate pictures, videos or signals in gendraé problems of these interpolators are studied an
confronted each other. The analisys of quality lassl errors introduced using the classical
approach are the motivation that pushed us to wworkthe field of fractal to improve the
interpolation quality.

Each of the following chapter focus on an aspecfraftal encoding and try to prove the
improvement made using that tecnique.

The chapter two introduces the fractal theory dreduse of fractals for encoding and decoding
image. The decoding stage is extremely importanalige is at this stage that the actual zoom or
interpolation is performed.

Since the image is decomposed at encoding time antet of mathematical functions and
correlations, at decoding time the interpolatioraisnere multiplication by a scalar factor, i.e. a
really simple step.

The simplicity of this step actually leads to adbguality loss. In fact using justandard fractal
zoom leads to artifacts, blurring and a lot of otlxors that masks the potentiality of the zoom.

To override these problems some we improved somstirex tecniques and theories and our
work was repaid by a great quality enhancement.

Third chapter analizes the key problem of this wavkich is the interpolation using fractals of
video sequences.

Since video sequences usually are huge amountafttie analisys of video streams takes, even
with fast machines, hours of working and are exglgrmmomplex.

To decrease the complexity while preserving quaity developed a framework for encode

videos based on a combination of tecniques sucleltdecomposition, motion detection and



overlapping fractal encoding, prior to the integiadn phase, and then all the necessary operations
needed to recombine the stream(s) during the Zioam.

The last chapter introduces our recent study abmaitics and a new way to use a non-standard
metric, known as EMD, to increase the quality attal encoding of color images.

Further study will be made on this last tecniquéesd the validity of such interesting metric on

the video fractal encoding.



Chapter |

.1 Zooming tecniques

Currently, oversampling is often needed in sevieelds. In aerial or satellite imaging zoom is
used in order to facilitate the image interpretatiar just to obtain a more comfortable visualizati
environment,

Available software realizes zooms using often sclassical interpolators, which we briefly
describe here.

These interpolators are particular oversamplersinferpolator (or interpolation function) is a
function which is equal to another function for sogiven points (interpolation nodes) [1]. That is
the main differences between fractal oversamptigsgribed in the following sections, which do
not necessarily keep the original luminance val&@gh interpolator used in this work is a
polynomial function.

The simplest oversampling is the Nearest-Neighbtarpolation (N.N.1.). It consists in
duplicating the original pixel's values. For exampthen zooming by a factor two, each original
pixel is duplicated four times. So the degree efggblynomial function of interpolation is zero.

In practice the most frequently used oversamplnpe Linear Interpolation (L.1.). This
interpolator is based on a local hypothesis of hance signal continuity and cylates by averaging
[1] a value at a subpixel position.

The last interpolator we used as a reference iedifrad version of the cubic one, the Cubic

Convolution Interpolation (C.C.1) [3].



Nearest neighbor, linear and cubic convolutionrpaéators, which are approximation of the
firs, second and third orders respectively, aretdas local continuity hypothesis of the luminance
signal and use a set of pixels located in a neigtdma (of resp. 1,4 and 16 pixels) around the

position to be interpolated.

[.2  Slow motion tecniques

Among all possible interactive applications, wideked in classic analogic video reproduction,
slow motion replay is one of the most expectedet@xtended to the digital formats.

Slow motion is a commercial feature of home vid&ygxs, but also, a special effect used in the
video production field. Its aim is usually to repeat a slower replica of a fast sequence, making
possible for the user to observe all the detaithefscene which at regular speed could be lost.

In an analog framework, given a video sequence avitked frame rate , the slow motion effect
is obtained reducing the frame ratef te f , so that a frame remains visible for a time prépoal
to slow motion factor. This kind of slow motion, igh does not involve any special technique, is
usually the method that analog video players, MKHR equipment for example, use.

At present commercial digital video players allogers to browse a video sequence frame by
frame or by chapter selection with prefixed index&sw motion replay is classically achieved by
reducing the frame rate display, just like anallogvanotion, or keeping the frame rate constant and
inserting within the sequence additional intermedfeames.

In a digital environment those frame can be gerdrby means of linear or cubic interpolation or
simply repeating copies of frames along the time.

Interpolation along frames derives from classin&tfipolation of pixels within an image, and can
be considered as oversampler. An interpolatiorafomterpolating function) is a function which is

equal to another function in some particular potatiéed interpolation nodes.
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The simplest oversampling function is the Nearesighbour Interpolator (N.N.I). It consists in
duplicating the original pixels’ values. For examphhen zooming an image by a factor of 2
(zooming factor = 2X) each original pixel is duplied four times.

The N.N.I. is the base for digital frame replicavgimotion. Every single pixel is duplicated along
the time axis, of a factor equal to the desiredstootion factor.

One of the most frequently used interpolator incpica is the Linear Interpolator (L.l.). This
interpolator is based on a local hypothesis of hance signal continuity and calculates, by
averaging, [2] a value at subpixel position. Anotimaportant interpolator, which we used as a
reference, is the Cubic Convolution InterpolatiGnG.1.)[3].

All of these interpolations, N.N.I, L.I. and C.C.&re approximation of the first, second and third
orders respectively and are based on the concepbrdginuity of luminance signal of the pixels
located on the neighbourhood around the positidretmterpolated.

Concerning the video domain, the concept of L. &nC.l. can easily be extended considering

the values of pixel at the same position in adjaframes as interpolating nodes.
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Fig. 1: Fading effect on interpolation

A major drawbacks of these approaches are thapwitdgion for slow motion replay yields to a
“fading” effect between frames, whereas frame ogpion creates a “jerky” distortion, both resulting
in low motion quality for the human visual syste®6]. Similar issues arise in image plane if pixel
replication or interpolation is used to performtsdaoom.

These factors decrease the visual quality of tbevesl sequence and, especially jibrdiness is
considered by the Human Vision System (HVS) as ramowng distortion even for minor slow
motion factors.

Both the termgerkiness andfading will be completely addressed later on this worlewhve will
introduce the quality metrics deployed by I.T.U][&% the video quality assessment.

There are different kinds of interpolation that ¢enused for this purpose. In literature we found
examples of classical interpolators as linear, cfimctions or more sophisticated tecniques such as

splines or motion vector interpolation and motiompensation.
12



Some of those are used in this work as referencquality measures, and could be found in the
guality assessment chapter.

An intuitive definition of jerkiness is given asethliscontinuity along the temporal axis of objects
or group of pixels that move along the scene.

The Human Vision System (HVS) is particularly setesito this kind of effects. This means that
the quality of a slowed sequence is deeply degréddld overall jerkiness is not kept under control

A simply measure of jerkiness can be obtained densig the average square error between

consecutive frames(fé k.1 :

P4

—1M =

[N

(Fk,i,j - Fk—l,i,j )2

_ i=0 j=0 —
S = fork=1...n
kL M [N .

1l
o

WhereM andN are the width and height of frames &d the jerkiness value between the couple
of frames. This value is computer on the entireusaqe. The graph below considers the value of
jerkiness along 64 frames cdrphone test sequence.

The graph shows the inner jerkiness of the origiegluence, i.e. traéfference, between adjacent
frames. The aim of slow motion tecniques is to oedilne speed of the sequence without increasing

the natural jerkiness of the video.
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Fig. 2 Jerkiness values (RMS values) between frametCarphone

Several works were published in the past on thpgctddne of most interesting algorithm, based
on motion estimation techniques, was developetdeaBtB.C. labs by G.A. Thomas[4] and H.Y.K.
Lau [5]: the frame was divided into partially o\aggped blocks.

By means of Fourier analysis, a phase correlatias performed between corresponding blocks
belonging to adjacent frames. Moving vectors weemniified and interpolated to generate missing
frames.

The main weakness of this technique is the inghitt deal with the case of motion detection
failure. This could occur due to the presence ghlipeed movement in the scene, so that the motion
estimation algorithm was unable to find a good epination of the movement for each block of the
scene. Therefore, in presence of high speed mouaméme sequence the effectiveness of the latter

method decreases.
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Frame # 8 Frame # 9

Interpolated Frame # 8.5

Boundaries & Motion Vectt
identification

Motion vector interpolation

Fig. 3: Example of motion vector interpolation.
After defining the motion vectors between
blocks of different frames, an interpolation
function is applied to find intermediate
positions.

Fig. 4. Errors due to wrong interpolation.

Sometime, especially on high ratio video
sequences, motion vector leads to wrong
positioning. This must be taken in
consideration and a motion compensation
algorithm for interpolated vectors should be

adopted.
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Other interpolation techniques were developed esie framework of MPEG coding system.
Some video coders in fact, drop frames from origundeo when the stream is coded with very low
bitrates. To avoid enormous quality loss some teclas called Motion Compensated Interpolation
(MCI) [6][7][8] were developed.

They try to exploit motion-compensated algorithmd abtain an interpolation of missing frames.
These methods require no additional bandwidth aedusually integrated in MPEG or H.263
decoders.

In [9] the motion field already present in the ethed video is exploited to reduce redundant
motion estimation usually needed as an extra coatipatby interpolators.

Comparisons between these methods will be shown lat
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Chapter I

Fractals

1.1 Introduction

The namefractal was invented by Mandelbrot [10] and derives frdme tatin wordfractus,
which means broken in pieces.

In fact one of the most intuitive properties ofstkind of objects is that can be thought as aflot o
similar parts that make the whole object. Alsoriaene refers to the important mathematical quality
of this kind offunctions. the dimension of fractals is not an integer valaghe classical topological
dimension. Actually the dimension of a fractal slkdonot be computed using original Euclidian
dimensionD; but introducing a new concept of dimension caliedisdroff-Besicovitch dimension
[11].

Usually we think about fractals as complicated issag@nd forms, perceiving them as static
objects. Besides the fact that usually fractal iesagreactually complicated images, this point of
view can hide the focal points of generations awmdlwtion of fractal object, i.e. theynamic
properties of fractals.

There are some different definitions of how an obgan be considered a fractal or not.

These include the properties of self-similaritypefiresolution, dense objects and so on.

Among these, the one that mostly can describe titbematical properties of fractal can be the

one that define a fractal by its dimension, basethe Hausdroff-Besicovitch definition.
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In fact the mathematical definition of fractal tihdaéndelbrot introduces is of an object which its

Hausdroff-Besicovitch dimensioD. is (not strictly) greater than its Euclidian dinsem:

D, =D,

Instead, the mosntuitive definition of fractal is of a figure, or better abject, composed by a
motif that repeats itself scaled or rotated at gvesolution. This leads to a fractal adease and
fine function, as mentioned above.

Given that, a zoomed part of a fractal will alway@ntain infinite points at every grade of
zooming factor. More, the position of this pointimposed by the motif pattern defined by the
equation that creates theactal. This last point gives us the intuition on how ongant is the
evolution and thedynamic properties of a fractal.

The theory was defined mathematically by Mandellomahe XX century but the first step and
discoveries of these strange functions go backria.t

Classicalpre-fractals (as they are called since the definition of fraatas not yet given) are the
ones invented by Cantor, Sierpinski and many others

But the inner properties and use of fractals cduddachieved only when the computational
power of computer appears.

Joined with thechaos theory, fractals could be then used to create modelgrfany natural
events like clouds geometry, metereological evéhtsentz [12]), terrain and natural object’s
geometry, lighting distributions and so on.

In fact fractal geometry creates approximationsatural objects closer than approximations

created using the classical Euclidian geometry.
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This will lead, as we will see later, to a bettealism of zoomed images with fractals functions
compared to classical interpolators based on tloéidtan geometry.

Fractals also appeared to be a good mathematirakfrork for image and, as we will explain in
this work, video compression and processing explpithe fact that those images have a lot of
inner redundancy.

A lot of works have been done to create image cessgurs like the famous JPEG and JPEG2K
as for video (MPEG1, MPEG2, MPEG4 and others..).

Fractal image compression born in the 80s of the c&dtury, mostly by studies leaded by
Barnsley [13], Jaquin [14] and Fisher[15].

As we will see on the following part of this wouk lot of properties besides compression can be

obtained using fractals for image and video codimgfjead of common techniques as the ones

mentioned above.
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[I.2 Fractal coding

Since fractals can be intended as collection ofilainparts defined by a common motif (or
pattern) derived by some mathematical functions, the &laehcoding can be thought as the search
for this motif inside a natural image.

For being a fractal, an obje& must satisfy some properties:

1. Sdf-similarity: F must be composed by copies of itself at different scale rate
2. Finestructure: F must have details at every resolution

3. Recursivity: the functionZ from which F derives has to be recursively defined:
F={z1z=1(f(f ()}

4. Dimension: D, > D;

A classical example of how to create a fractalyisrteans of a simply algorithm that copies and
scales an initial image given as input. This altponi, known as the Barnsley copy machine (or the

Multiple Reduction Copy Machine MRCM), takes artialiimage £, and creates as output three
copies of it displaced on the vertexes of an etpridd triangle and reduced by a facto%f.

After this step the output is taken as the newtifiputhe algorithm and the process starts again.

If we call this functiorr,, and TA(,UO) the result we obtain, the first step the outputhaf

algorithm leads to the image shown in Fig. 5.

20



= f = ;Q

Ho [N ,uo

Fig. 5: Application of algorithm 7, to the initial image L4, using the MRCM

If the process is taken again indefinitely, thepotiimage starts to converge to a precise image,

totally different from the starting one. We callstfending image thattractor of the functiorr, .

Mathematically we say that the attracigr=lim 7x (1) -

The first five steps of the transformatigpare shown in Fig. 6.

@ &H &L

Ho )N :uo TA :uo

75 (14) 7 (14) 75 (14)

Fig. 6: five iterations of T, for the starting image //,

As we see, the attractor for this function is ther@nski’s triangle, and is completely defined by

the rules contained in the functipn A focal point of this example is how the finalage (the

Sierpinski’s triangle) is completely independeminfrthe initial image (the ball), as demonstrated in
Fig. 7.
This means that instead of storing every singlentpat every resolution, of the Sierpinski’s

Triangle, only 7, can be stored and the triangle can be re-obtair@d finy other image just

21



applying ther, to it. This last sentence gives some hints abloatrelation that can exist with

fractals and compression.

MRCM

MRCM  MRCM

Fig. 7: six iterations of MRCM starting from the word “mrcm”

If we inspectr, we can observe that it is composed by simpler fanst like scalingl (%) of

the original) and translationis (on the vertex of a triangle) so that:
T, =10l
Changing these functions, that means altarjndeads to change the attractor.
So we can say that the attractor is completelyngefias we define the functions that iderjfy
The issue now at this point is to define the sdtinttions that can be used to create a gengral

The fractal theory states that any transformatiam lse used to composergbut it has to be a

contractive function.
Being contractive is the only limitation we have:i$ necessary as the iterations of the

r, converge. If the functions chosen to build up thare not contractive the iterations can diverge

and will not lead to a stable attractor.

22



Mathematically a transformatiom is said to be contractive if, given a distance rioetl

andsO0:0<s<1, we prove that:
d(r(a),7(b)) < std(a,b); OabOC
With C being the space of points we consider.

Back to the example shown above, the contractsasyassured by the scaling fac% of I, (can

be proved that the contractivity of a translatigns s=1).

The number of functions that respect the propeefynedd is huge, so for our purposes we can
limit our functions to a class, calledfine transforms, that is enough for create a sufficient sets of

attractors.
An affine transform is a bijective transform thaams a pointP(xl,xz,...,xn)I]EIn onto a point
P (Y., Yor-0Y, )00, 50 thatY = AX +B with A, BOO, anddet(A)# O.

Usually in literature the class of affine functiamsed to build up fractals, for image compression

purposes are isometries, eight of which are shavexample in Fig. 8 and described in Table 1.

e) f) 9) h)

Fig. 8: Isometries used for fractal compression agjed to test imagel.ena

23



Identity (a) Tl(lui,j ) =H

Horizontal reflection (b) Tz(lui,j): Hin-j
Vertical reflection (c) Iy i,j)z Hooi

First diagonal reflection (d) r, i,,-)= M
Second diagonal reflection (e) Ts(lui,j): Moz n-i
90° rotation (f) TG(IUi,j): Ha-ji
180° rotation (g) T7(/Ji,,- ) = Hosin-

270° rotation (h) Ts(/Ji,j)= Hi i

Table 1: description of isometries shown in Fig. 8

In O?, the equation can be expressed as

sefrle e

Where A is a scaling and rotation matrix whereas 8 translation vector.
Being a pointP = (X, y) we can define a scaling operati®nyielding a new poir®’ =(x,y'). In

formulas:

{x’=sD<
y =sly

Withs>0. A scale reduction occurssk1, while an enlargement will be produced ¥1; using

the matrix notation we have that a scaling willhbade using:

e

24




Next, a rotationR is applied toP' =(x,y') yielding P" =(x", y")

X' =cosf X - sidly
y' =sin@X + cob Ly

The rotation is counter-clockwise, rotating theembjof an angle equals to teta. The matrix natatio
is:

A= cosf - sind
sind co¥

Finally a translationT of P" can be obtained using a displacenﬁ@pﬂ'y):

{Xm — X" +-|-X
y'=y'+T,

That is a translation vector:

25



1.3 Iterated Function Systems for Image Encoding

The technique that leads fractal theory to imagapression for general purposes derives from
the concept of Iterated Function Systems (I.F.$3]).[As mentioned before, IFS are fractals
generated by means of affine transforms.

To code an image using fractal, the IFS methodseg backward.

Given the imageu that we want to code, we state that this imagés the attractor of some

transformationr generated by combinations of elementary functitalen by the affine set
described above (i.e.: isometries, scaling factgrs...

The issue is to find these functions so that agpt® any arbitrary imagey, for k - o
iterations 7" (,uo) converge to the given initial image This is called thénverse problem.

The theory, proven by Barnsley, states that if wg&uee that the functions used are contractive
the solution of the problem exists (collage thegresnd the final image is actually composed by
tiny copies of the initial image.

The Barnsley method of encoding an image is natadigtapplicable. We can instead use a sub-
part of the method, discovered by Jaquin, usingtwhecalled Partitioned Iterated Function
Systems.

Instead of considering the whole image itself, wastder subparts of it and look for similarities
inside the image. The starting imageis partitioned into subsets (usually squared Epeind a
matching process is started to find which subsatshe approximated by other subsets transformed
by the affine set chosen.

After the matching process, only the transformatiare stored, achieving a compression factor

for image storing. An example of similarities pnelsm a test image is given in Fig. 9.
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Fig. 9: some similarities in test imagéena

The set of transform stored is used at the decosliage. These transforms are applied to an

initial imagezy, , usually blank, and iterated forsteps depending, as we will see, on PSNR ratio.

This encoding method islassy technique. In fact the matching process is notepeand also
iterations will not go forever.

Basically, fractal coding of an image consists inilding a coder (i.e.. a particular

transformation) such that, ifz is the original image, them= T(,u), that is, i/ is approximately

self-transforming under.

The Collage Theorem states thatrif is a contractive transformationp; is approximately the
attractor of , that is ¢/ =1lim,_, 7*(14,) for the some initial image, .

The coder is built on a partition of the original image. Baalock R of this partition is called
range block and is coded independently of the others by a mrajc(local code; ) with another
block D; of the image, calledomain block. If R and D are the range and domain block’s sizes (in

case of squared blocks) respectively, ther p[R with p>1 scaled factor used for the local self-

similarity search.
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Classical 7; transforms are isometries (i.e.: rotations fligc.)eand massive transform (i.e.,
contrast scaling and grey shifting).

If L is the number of range blocks, the fractal codéhefinitial image is then

7 (Hoig) = U 7
Where7;:D; - R and7; =M, ol or, , with M;(x)=a X+h an affine operator with a scale
a and a shifty on the luminance pixel,; a transformation selected from eight discrete Esties
andr; , areduction by a factop using an averaging.

In other words, the task of the fractal encodeoind for each range block a larger domain
block such that, after an opportune transformattbrg constitutes a good approximation of the

present range block. An example is shown in Fig. 10

i
i
i
|l

-ml,,_amuughwuu i s |

i =

Fig. 10: Example of domain to range block mappingdr Lena
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The fractal code for the original image is a cdl@t of so extracted local codes. This
approach implemented by Jaquin gives a representafi the image as composed by copies of
parts of the image itself. The classical fractatatBng stage consists in an iterated processrggarti

from an arbitrary initial imagg,. In fact, if 7 is a contractive transformation thes attractor

r” (,uo) gives an approximation of the original imageindependently from the initial image.

1.4 Decoding stage

At decoding, starting from anyy,initial image, the fractal code is reversely apgljg, is
partitioned in the same number of range and doilaicks of the encoded image.

For every (4, range block, the correspondirgcoded for thei-esim range block of the
original image is applied.

This means that the right domain block gfis taken, the right isometry in applied and then
mapped to the range block.

This process is made for every range block,ofThe outpurl(,uo), made of the collage of

the entire range block transformed, is then uset ba the input of the algorithm and the process
starts again.

After niterations the imager" (/,lo)converges to a close representation of the original
image.

Usually the niterations are chosen using PSNR threshold. WhenR8NR difference

betweenr"™ (1,) and 7" (14,) is less than 0.1 dB iterations are stopped.
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An example of different quality obtained for diféet iterations of the algorithm is given in

Fig. 11 while PSNR difference is given in Fig. 12.

e) Te( o)

Fig. 11: example of different iterations forLena
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1.5 Fractal zoom

One of the most important features of fractal emopdis hidden into its mathematical
representation.

Since the image fractally coded can be thought amathematical function, given by the
. . L . . .
collection of 7 of every block, |.e.T(,uorig) :Uizlri , and these are isometries, we can obtain

easily a larger scale of the original image.

In fact, if Y = AX + B is a chosen isometry that maps the pofifi1"to Y 00" we can obtain a

zoom simply by a scalar multiplication so that
Y, o = SCAX +S[B

With sbeing the zoom factor.

Pratically the fractal code extracted from the imiad) image has itself everything necessary to
obtain a zoomed replica of the image.

Usually this property is called implicit interpadlah, because no explicit formulas are used to
obtain interpolation between pixel, and all theomfiation required is taken during encoding time.

To use this property of fractals with our technighased on P.I.LF.S. encoding, we decode the
image using range blocks and domain blocks gréladerthe ones used on encoding stage.

More, the fractal code itself does not give anyinfation about the range or domain block size
used during the encoding, so we can apply the $aol code to different sizes of blocks.

If for example we star encoding an image with rahipeks of sizenxn pixels but during the

encoding we apply the extracted fractal code tgedslocks of sizenxm, withm>n, we obtain a

zoom factor of% .
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Literature has proven that overall quality of imagemomed using fractal encoding is better
compared to techniques like common interpolatiochne&ues as linear, cubic or spline
interpolation.

Usually quality of zoomed image is extremely dificto evaluate, since standard metrics as
PSNR are objective metrics, whereas the quality @oomed image is a perceived feature. An

example is given in Fig. 13.

rg U
e '1
) b)

"f .,

a

Fig. 13: example of different zoom tecniques applitto aLena subpart: a) Nearest Neighbour, b) linear
interpolation, c) Fractal zoom

(a) (b) (e) B

Fig. 14: a closed view of zoomed images: a) Near&&tighbour, b) linear interpolation, c) Fractal zoan
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1.6 State of the art for fractal zooming

The main problem of fractal zoom is that for bigpgong factor, blockness distortion decreases
the overall quality of the output image.

This is due to the fact that fractal encoding ascdbed above involve a block partition exactly
at the first stage of the process.

These artefacts are responsible of high frequemcighe decoded image that were not present in
the original image.

A method that improves the quality of the fractabm was developed by Reusen [18] and
Polidori [25].

Since the inner problem is partitioning into rarecks, the blockness effect can avoided just
using an overlapped range block partitioning (O)R.B

The original image is partitioned in four differemays so that range blocks of a partition overlap
the other partitions’ range blocks.

The classical method was intended by means of ralggks of sizeR and domain blocks of

sizeD = p[R. This means that a range block is dist&htfrom another one. Given the original

image uto be encoded, we can identify four other partgioconsidering different parts af.
* 4| is the originaj;
. /J|2 is obtained taking off two strips of pixe% wide at the left and at the right of;

. /,1|3is obtained taking off two strips of pixei?s/2 wide at the top and at the bottom of

. ,u|4ls obtained taking off four strips of pixe% wide both at the left and at the right and

at the top and at the bottom of
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Every ;1|i .1 =1,...,4is then again partitioned using blocks of $ze

This method assures us that every range blockeodtiginal partition is covered several times with

the blocks of the other three partitions. An exagdlthese four partitions is shown in Fig. 15.

H, H, Hl, H,

Fig. 15: different partitions for Lena
These four partitions are than coded independentiis leads to four different fractal

4
codes] ,7], 7|,and 7], for one initial imageu so that the global fractal coderis » 7], *.
i=1

At decoding time every]|. will be used to obtain a target imatgd 4 ) .

The four target images then are melted togethebtain the final image using a filtering
operatotV o, . Usually this O.S.0O. (Ordered Square Overlappapgrator is a classical median
filter.

The decoding stage with O.S.O. filtering and zoopa@sion is shown in Fig. 16 while the

complete process is shown in Fig. 17.

! Here the operator z is intended as a concatenation of fractal codes.
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This technique improves greatly the quality of zeohimages with the fractal method.

The overall gain of quality using fractal theory fmooming is good. Usually the quality gap
between classical interpolators as linear, bicabisplines and fractal zoom increases in favour of
the latter when high zoom factor are used.

The table below shows different PSNR values fornzdor different techniques and zoom

factors.

37



Chapter Il

Fractals and video sequences

[11.1 Introduction

This chapter describes the work done to extendldmsic theory of fractal encoding and fractal
interpolation from the image field to the video seqce area.

The purpose of this research was intended to extenthl interpolation to cover the problem of
slow motion of video sequence.

The enormous amount of data in a sequence leagsobdems like complexity reduction and
algorithm optimizations. This chapter will introduthe wavelet transform of signals and how its
use, joined with some other technique, gave updssibility of overwhelming the issues described
above.

Slow motion is a special effect used also in thevision broadcasting production field. It is a
filmmaking technique in which the action on screeslower than normal. Already consolidated as a
feature within analog TV production studios, toddgw motion is likely to be extended to the
Digital Video Broadcasting (DVB) technology. At gent, slow motion is performed during the pre-
production stage by means of fast-shuttered canadnasto capture the scene at a frame rate higher
than the standard rate that is 25 Frame/sec fo/ PBCAM systems and 30 Frame/sec for NTSC
systems. Slow motion is achieved by filming at &exp faster than the standard rate and then
projecting the film at the standard speed. In ttase an optical zoom is executed and the slow

motion factor achievable is limited to shutter spaad fixed during the pre-production stage. In a
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digital video production higher slow motion factocan be achieved by means of video post
processing techniques aiming at enhancing the imeaioce of the fast-shuttered cameras by
inserting intermediate frames within the capturequence. This process is normally referred as
digital zoom. Intermediate frames can be a repbtéhe previous frame, or can be generated by
means of interpolation. In the latter case, eitlrexar or cubic spline functions can be used. Both
frame replication and interpolation have some dikb: interpolation for slow motion replay bears
to vanishing effects, as well as frame replicatyoelds to jerky motion, both resulting in low

perceived quality to human vision system. An omdjisolution to these problems based on motion
detection techniques was proposed at the BBC IghS.BA. Thomas [4] and H.Y.K. Lau [5] the

frames were divided into partially overlapped bkiclkby means of Fourier analysis, a phase
correlation was performed between correspondingksidelonging to adjacent frames. Moving

vectors were identified and interpolated to gemeraissing frames. The main weakness of this
technique was the inability to deal with the camotion detection failure. This could occur due to
the presence of high speed movement in the scenthas the motion estimation algorithm was

unable to find a good approximation of the movenfenteach block of the scene. Therefore, in
presence of high speed movement within the sequémeeffectiveness of the method significantly
decreased. In this work, we propose an alterngibs processing scheme which combines the
properties of expansion, given by fractal represtésn of a video sequence, with motion detection
techniques and wavelet subband analysis to overtioenanitations of the state of the art solutions.

In literature, fractals on image applications wer@posed to achieve data compression exploiting
self-similarity inside natural images.

But the potentiality of fractals is not limited tmmpression. The properties of fractal coding
allow expanding a multi-dimensional signal (e.nage and video sequences) along its dimensions.
One of the major weaknesses of the fractal reptasen of a signal is the high computational
complexity of the encoding process. The computatitad, and so the processing time, increases

for signals of higher dimension (1D, 2D, 3D...).
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This is due to the fact that the main idea of fthehcoding is to look for similarities of blocks
using affine transforms, therefore a best matcbratgn leads to a great time consuming process for
multi-dimensional data sets. Several methods haee pbroposed in literature to speed up the fractal
coding process [16]. A class of proposed solutisimsed on wavelet subband analysis. Due to their
orthogonal and localization properties, wavelets arll suited (and extensively adopted) for
subband data analysis and processing.

The proposed algorithm exploits these featuresopmrhg the fractal coding of each subband
with particular attention to the frequency disttiba of the coefficients. To further reduce thehig
computational cost of fractal encoding, active scéetection is used so as to perform fractal coding
only in high information areas (moving areas). Agjgested in [18], to improve overall visual
quality overlapped block coding and post procdssriing, extended to the three dimensional case,
are used.

Results show that with the proposed approach tladitg@achieved is higher if compared to the

state of the art techniques.

1.2 Fractal coding of video signals

The theory described in Chapter Il for encodingraage by means of fractals, can be extended
straightforward to video signals.

In fact, a video signals can be thought as a oddeo#lection of images, called now frames, that
give information about changes along time.

There are different ways of how to encode videagifiactals.

We can think of the frames as an independent stodatata and encode them independently.

So if a video sequence is composedidsames:

S:_U,ui Eqg. 1
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We can obtain the encoded stream just searchingdpropriate transformationgon every

single frame, so that the output video is:

S':LnJri (1) Eq. 2

i=1

sopn.s

Being 14, an initial arbitrary frame. Coding a video sequemtahis way does not introduce

anything new, besides is not capable of reduceadtandancy between frames which in a video

sequence is extremely high (Fig. 18),. In fact nodshe frames are correlated each other along time

Fig. 18: correlation along time in test sequence “obile”
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To exploit these redundancy, another techniquebmamised to encode fractally a video. For
every framei +1the domain blocks are searched using the framag the searching pool.

The video sequence is first analyzed to find wtirelmes are highly correlated each other. We
used a MSE ratio to divide the sequence into gadypctures (GOP) and then use the first frame as
a domain pool for the rest of the GOP frames.

Being the GOP composed lyyframes, we can encode a sub-sequence stating:

Sm'=0ri(ﬂo)

i=1

4 :Dl - R
t
The complete sequence will &= U S, ' wheretthe overall amount of GOPs is.
me1
Every frame in the packet is partitioned in ranggeks, and a transformation of a domain block
obtained by the first frame of the packet is chaseme the best approximation of every range block
on the current frame.
At decoding time the process is inverted and stgufiom a blank frame, all of the others frame
of a packet are reconstructed using the transfaomaet obtained during the encoding stage.
Even if this method is able to find some of therelations that exist between frames of a
sequence, does not represent an actual extenstbe bio-dimensional fractal encoding described

in the previous chapter. To extend that technigfugl ghree-dimensional approach must be used.

The direct extension of the two-dimensional fraatoding is to consider the sequence of
frames, i.e. the overall sequence, as a three-dilmesl object with the third axis represented lgy th

timing.
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In fractal video coding using the three-dimensioseension range and domain blocks become
three dimensional objects: range and domain cubles. process is straight-forward: the video
sequence is partitioned into range and domain cudes for every range cube a transformed

domain cube is searched to minimize the error nreamd to be the best approximation of it.

Range == i .o /

o

OO N ¢
L0 ¢

|/ L~ Domam Cubes

v | —

Range Cube X

Fig. 19: example of identification of range cube itest Fig. 20: three dimensional matching process

sequence “coastguard”

Since now we work in a three-dimensional space, nbenber of isometries and affine
transformation increase, and a great effort shdg@ldnade to find some method to speed up the
process. This subject will be the focal point oé thext section using, as we will see, wavelets

decomposition and motion detection.
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1.3  Slow motion with fractal expansion

As for image encoding, fractals have some pectikarivhen applied on video signals. We
saw in chapter 2 that a fractal code extracted @mornmmage can be decoded with a zoom factor.
This quality pushed our study towards the possybdf “zooming” an entire video sequence or a
subpart of it.

The problem relies on understanding what an “expan®f a video signal really means.
Considering the video sequence as a three dimeadgbrect, being X and Y the image plane and T
the time axis, we can see that an expansion omrthge plane leads to a classical zooming of a
frame while the expansion along the time axis iaseecthe “length” of the sequence, meaning that
we “add” frames to the sequence.

Keeping the frame rate constant the result istti@sequence is “slowed” down by a factor
equal to the expansion factor (i.e. the “zoomiregtor).

This means that a fractal expansion applied talao/sequence leads to an “implicit” interpolation
between frames and to a “slow motion” effect.
This effect is widely used in commercial deviceasma special FX for media production.

As for image zooming using fractal we prove that gjuality of this expansion along time is
better than other classical method as polynomiaérpolation, spline and motion vector
interpolation.

More, since all the information about zooming agptkinside the fractal code, we can obtain
several zooming factor during the decoding stagbaui complicated computation or algorithms.
In fact, as for images, a fractal zoom consist m@idtically just in a scalar multiplication.

Depending on which fractal encoding technique isdysve can have different ways of

expand a sequence using fractals.

44



One of the methods consists in considering theslaf a sequence along different planes.
Considering a sequence Bf frames of siz& xM , we have these series of slices (Fig. 21):
* P image planes XY of sizeNxM
* M slices XT of sizeNxP

e N slices YT of sizeM xP

D>

Fig. 22: example of slice (YT) expansion along
time axis only

c)

Fig. 21: slices of a video sequence: a) image plaihg XT; c)
YT

Those slices can be encoded as separate images.tneslices are encoded a decoding

stage with a zooming factde is applied (Fig. 22). This zooming factor can peleed only along a
certain direction (e.g.: the time axis) dependimgtie fact the final zoom will be only a slow
motion or a frame zoom too.

The zoomed slices are then joined together to thierexpanded version of the sequence.

The joining function (Fig. Fig. 23) we used betweée different expanded slices is a simple

average value between the pixels on the same @usiti

SR A LA R

Eq. 3
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Where:
« F'isthe expanded sequence.
«  Fn (I,m) is the point with coordinated, m) of the n-esim element of the series of slices
along ZW O{ XY, XT,YT}

And1l< j<N, 1<i<M, 1< p<P.
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Fig. 24: Sketch of the fractal expansion method usg slices
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This method leads to good quality for expanded widequencés but has a lot of
redundancy: in fact most of the information on esdicon a plane is highly correlated with
information on other planes.

The full three-dimensional fractal encoding expéainin the previous section, leads to the
obvious extension of the image zooming obtainethétwo-dimensional encoding.

In fact using a full three-dimensional fractal edeobeingD and Rthe size respectively of
domain and range cubes, at decoding stage we ¢am @n expanded replica (by a factoy of the
original sequence using domain and range cubegeksD andk[R.

The process is shown in Fig. 25 and Fig. 26.

Sequenza di parter

Sequenza origing Codice frattalet

codifice »

Espansior Decodifice

frattale

Range block Range block espanso

Fig. 25: range cubes example on encoding stage and
decoding stage

Fig. 26: sketch of full three-dimensional fractal
expansion

? Quality measures will be shown on section 111.4 of this chapter
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Using the full three-dimensional encoding and espam to obtain zoomed replicas of sequence
leads to some problems. We can divide these prabiertwo main groups:

- Visual quality loss

- Computational cost

We developed some technigues to overcome bothesétlssues.

[11.3.A Visual quality improving techniques

Using fractal zoom leads to blockness distortionirduthe decoding step along both the
time and spatial dimensions (image plane). Thidlera derives from partitioning the original
sequence into non overlapping range cubes duriagetitoding process. When high zoom (i.e.
above 8x factor) is performed these artefacts becamsible and the overall visual quality
decreases.

Even if the origin of this distortion is the santige effects are different on image plane and time
axis.

While on the image plane the effect is the appeara artefacts on the frame, along the time
axis of a “slow motion” sequence the blockness pcedan annoying effect known in literature as
“jerky motion”.

This jerky motion results in rapid and not naturedvements of blocks (i.e.: range blocks in our
case) or entire frames along the scene of a vidgqoesce.

We saw in the previous chapter how the problemlatkmess distortion could be solved using

the O.R.B. and O.S.0O. technique for the image zograsing fractals.

48



In that sense, to enhance the fractal coding visuallity performance, Overlapped Range
Blocks (O.R.B.) technique has been extended tdahitee dimensional case and called Overlapped
Range Cube (O.R.C.) partitioning.

Extending [25], eight different partition of thet@e object and four partitions for the static
background are computed. Four different fractalesofbr the background and eight for the active
object are extracted and coded independently. Thad&ions correspond to 2D (Fig. 2.3) and 3D

(Fig. 2.4) overlapping partition of range blockslamubes respectively.

& & & &

Table 2: ORC intersections

At decoding time, the inverse process is applied, tae fractal zoom is performed. An Ordered
Cube Overlapping (O.C.0.) post-process, definedrasextension of Ordered Square Overlapping
(0.S.0.), merges the parts created by the overthjppetition of three-dimensional fractal code.
The O.S.0. presented in [25] is a windowed mediker fthat computes the median value from
each partition generated by O.R.B. The techniquepdied in the three-dimensional case and the
0.C.0. computes the median among the eight parsitimm the O.R.C.

A drawback of using O.R.C. and O.C.O. is the growftthe computational cost of the fractal

coding process.
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[11.3.BComputational cost reduction

The increasing amount of process time derives nbt for the bigger number of isometries but
also because of the enormous dimension of the ingtsipace.

In fact a video sequence is usually composed bysdnad of frames, and the partitions of range
and domain cubes contain a huge amount of items.

For sake of explanation if we have a CIF video seqd composed by 1024 frames
(approximately 20 sec. of video @50Hz), using a-awerlapping (to simplify the computation)
partition of domain cubes of size 4x4x4 and rangees of size 2x2x2, this leads to:

- 1.640.448 Domain Cubes
- 13.123.584 Range Cubes

Using a close set of 16 isometries on the threeedsional space, without considering massive
transforms, we have640.44& 13.123.584 16 27 '1 as the upper limit of matches’ amount.

This number leads to the pratical impossibility usfing a raw fractal encoding of a whole
sequence, which usually is larger than a CIF framgelonger than just 20 seconds.

To limit the number of matches we decided firsute the same approach defined above, and
frames are grouped into packets that are goingetdrdated as single units. The packet size is
chosen according to the temporal activity withie #equence, so that bigger sizes can be selected
for slowly changing scenes without a significaméei processing increase. This due to the fact that
using a threshold to identify one of the combinatad domain and transformation that leads to a
close representation of a range block, slowly cirangcenes usually have a big percentage of exact
copies of blocks in the same position (or in thigimeour of the searching area) along time.

Packets are selected considering the temporalngaiaf the sequence, estimated by means of

the Minimum Square Error (MSE) metric between frame

® The size of a CIF (Common Interchange Format) frame is 352x288 pixels
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MSE(h, k) = =2 1=° M'DN | Eq. 4

h,kO[1,2,..0]
where R} is the pixel(i, j) of the frame andp is the frame position within the sequenté/IN

the frame size and the number of frames of the entire sequence.
Among the totality of frames composing the sequeaazrtain number of key-frames are
selected. A packet is defined as composed by af setjacent frames temporally located between

two consecutives key-frames, as shown in Fig. 27.

/\ keyframes

sequence
- packet

Fig. 27: packetization process

At the beginning of the division process the ffraime of the sequence to be expanded is chosen
as initial Key-frame.
More in general, once a framle has been identified as the first key frame foraaket, a

successive fram& is marked as the ending key-frame for the padket i

MSE (h,k) >Th Eq.5

51



whereTh is a threshold selected so that

MSE(1,n)
2

Th= Eq. 6

In other words, for each packet the temporal vaeamust be lower than the 50% of the
temporal variance of the whole sequence. Equation EqQ. 6 assures at least a two packet
subdivision of the sequence to be expanded.

According to Eqg. 5 and Eq. 6, each packet cacdmposed by a variable number of
frames. At the end of the packetization procesesh gmcket is considered for coding as a single
unit: in this manner the computational load andjsththe time consumed for the coding are
significantly reduced.

However, this packet based coding leads to discoiyi problems when the sequence is
zoomed, if each packet is independently codedadh &ince the expansion is applied within each
packet, the successive packet merging processajesex temporal discontinuity between adjacent
“zoomed” packets.

To solve this problem, each packet is coded ugiagriotion information of the previous packet
as a boundary condition. Owing to this, the presesfca buffer is necessary to assure the process
being causal.

A more general constraint is that the packet smeast be a multiple d®, size of the range

block, and not smaller thdd, size of the domain block. This guarantees thekgtabeing
partitioned into range and domain blocks, and nim portions of them.

An example of right and wrong packetization is showFig. 28.
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1 2 3 4 5 & 7 8 8 10 Frames 1 2 3 4 5 & 7 2 910 Frarmes 1 2 3 4 5 &8 7 8 810 Frames
I | g Packets | 1 o Packets 1 1 a Packets

| | pCiomain Cubes | I I - Domain Cubes | | | . Comain_ Cubes
1 | | | 1 Iy Range Cubes | | 1 | 1 Iy Range Cubes I | 1 | 1 I g Range Cubes

a) b) c)

Fig. 28: example of packetization boundaries: a) ght packetization; b) wrong packetization: the numier of
frames is not multiple of domain or range cube sizec) wrong packetization: the number of frames is maltiple
only of range cube size but not of domain cube size

In order to further reduce the computational load eonsequently speed-up the coding process,
within each packet an active scene detector is.us€dnoving object” is defined as a group of
three dimensional blocks that have higher tempagaance than the rest of the packet.

To extract the moving object, each frame is divided tiles of RxR size to form a partition of
range blocks. The MSE among corresponding tilesrigghg to different frames is evaluated. If the
MSE is higher than a prefixed threshold, tiles lateelled as “motion tiles” and grouped to form a
three dimensional moving block.

i

JL}, 5 &)
JLJ; 5 &)
1 L]z
7 | 3 1 [z
7 [ L 2
) ),
= 3 f x
-
a) b)

Fig. 29: Motion detection on a range cube. a) no mement found. b) couples (1,5) — (2,6) — (4,8) déchange
while on pixels (1,5) and (4,8) there is a colomviation along time.
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The set of the so extracted blocks identifies tlwving object. Remaining tiles are marked as
“static” and form a two-dimensional static blockeneed as “background”. The threshold is selected
adaptively averaging the MSE for all tiles compgsihe packet. The moving object is suited to be
encoded with a three-dimensional fractal coder ed&®ithe background is processed with a two-
dimensional code. During expansion only the mowbgect is expanded along the time axis while
the static blocks are considered as backgroundnreon are expanded only on the image plane
and displayed unchanged for the whole duratiomefiacket.

A sketch of the process is shown in Fig. 30.
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Fig. 30: Hybrid fractal encoder
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[11.3.CComputational cost reduction using wavelet decomposition

A drawback of using ORB and OCO is the growth & domputational cost of the fractal
coding process. To speed up the process, a wavasetd approach [20] is used. For the active
object a three dimensional wavelet subband analgsisomputed. For the entire low pass
component a fractal code is then extracted using @&titioning. For the high-pass components,

the following coefficients classification proceduseperformed [21]: letS,, be the m-th subband;
we denote by x"} the wavelet coefficients of, and by p"(x) the histogram ofx"} . In p™(x),

starting from the maximunx,,, and moving to the tails of the distribution (seg.R1); two

t
thresholds are identified, thatifsty' : [ p™(x)dx=K, KD(0,4].
4

P"(¥)

S%Z coefficients

Xy

Fig. 31: Waveletcoefficient classification process.

55



Background Data

Input Video " I'| Replication| ! Output Video
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Packing Detector ' H Merge Merge
- 3D Fractal _i_ 3D Fractal | |
bwt ORB Encoding || Decoding | !

Moving Object

Fig. 32: Flowchart of the proposed method.

These thresholds identify the wavelet coefficientsistituting the active zone fgyf, that
ISS% :{DxD{x{“},xD [tlm,t;“}} . In other words, an active zone is composed bgdtwefficients

located on the distribution's tails identified I tabove thresholds.
After the classification process, a binary-valueskjandicating the position of active zone
coefficients within the subband, is extracted. Ehosefficients that do not belong to an active zone

are discarded, while thg? coefficients are ORB partitioned and then fraetatoded.

The K parameter is unique for all the subbands and alsniine speed up, and on the other hand,
the accuracy of the fractal coding process; higheues of K correspond to higher speed up
factors, but also turn out in lower final visualadjty achieved.

At decoding stage OSO filtering is applied indepantly to each subband.

An additional advantage in terms of time savingvaivelet analysis is the “parallelization” of
the entire process that increases the speed irtéhreaded environment.

A flowchart of the whole process is depicted in.F38.
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1.4 Performance Analysis and Comparison

We tested ([26]) the effectiveness of the propasethod by comparing the result achieved to
those obtained, under the same constraint (i.ealejow motion factors) by frame replication and
classical interpolation techniques.

Test sequences weflent, Miss America, Stefan, Carphone, Coastguard and Mobile in CIF
format. In a framework of broadcasting digital Ttd,measure the quality achieved we refer to the
video quality assessment described on [22] and dbrzed in [23]. As to this, the perception of
continuous motion by human vision faculties is a nifestation of complex functions,
representative of the characteristics of the eykehaain.

When presented with a sequence of images at abbuifeequent update rate, the brain
interpolates intermediate images, and the obseswjectively appears to see continuous motion
that in reality does not exist. In a video displpykiness is defined as the perception, by human
vision faculties, of originally continuous motios a sequence of distinct "snapshots” [23]. Usually,
jerkiness occurs when the position of a moving abyéthin the video scene is not updated rapidly
enough.

This can be a primary index of a poor performamme & slow motion algorithm. More in
general, the total error generated by an incoweding of a moving object on a video sequence is
representative of spatial distortion and incorpgasitioning of the object. In [23] a class of full
reference quality metrics to measure end-to—endovjgerformance features and parameters was
presented.

In particular, [23] defines a framework for measgrisuch parameters that are sensitive to
distortions introduced by the coder, the digitahrhel, or the decoder. Ref. [23] is based on a
special model, called th&radient Model. Main concept of the model is the quantificatioh o

distortions using spatial and temporal gradients|apes, of the input and output video sequences.
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These gradients represent instantaneous changies pixel value over time and space. We can
classify gradients into three different types tlndlve proven to be useful for video quality

measurement:

» The spatial information in the horizontal direction S,
» Thespatial information in the vertical direction S,

» Thetemporal informationTI .

Features, or specific characteristics associateld individual video frames, are extracted in
quantity from the spatial and temporal informatidime extracted features quantify fundamental
perceptual attributes of the video signals suckpagial and temporal detail. A scalar feature is a
single quantity of information, evaluated per videsome.

The ITU recommendation [23] divides the scalar desg into two main groups: based on
statistics of spatial gradients in the vicinityiofage pixels and based on the statistics of tenhpora
changes to the image pixels.

The former features are indicators of the amoudttgpe of spatial information, or edges, in the
video scene, whereas the latter are indicatorhi@famount and type of temporal information, or
motion, in the video scene from one frame to thet.n8patial and temporal gradients are useful
because they produce measures of the amount oégieed information, or change in the video
scene.

Surprisingly parameters based on scalar featurs & single quantity of information per video
frame) have produced significant good correlatmsubjective quality measurement (producing

coefficients of correlation to subjective mean o@mnscore from 0.85 to 0.95) [22].

This demonstrates that the amount of referencgndtion that is required from the video input

to perform meaningful quality measurements is nmash than the entire video frame.
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A complete description of all the features and peters in [23] is beyond the scope of this

work.

In the following a brief summary of the above featwwill be given, a mathematical

determination of the above features is providej@8j:

Blurring: A global distortion over the entire image, chéeazed by reduced sharpness of edges

and spatial detail.

The [23] defines a Lost Edge Energy Parameter fessuring the blurring-effect, which causes

a loss of edge sharpness and a loss of fine detdit& output image. This loss is easily percéptib

by comparing the Spatial Information (Sl) of thepmu image with the Sl of the input image.

The lost edge energy parameter compares the edggyeaf the input image with the edge

energy of the output image to quantify how mucheeeigergy has been lost.
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Fig. 33: Measured blurring for “Silent” sequence.
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Fig. 34: Measured tiling for “Silent” sequence..
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Fig. 36: Measured jerkiness for “Silent” sequence.
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Tiling: Distortion of the image characterised by the apgece of an underlying block encoding
structure The [23] paper defines a HV to non-HV edge eneliffgrence parameter for quantifying
the tiling impairment.

In contrast to blurring which results in lost edgeergy, tiling creates false horizontal and
vertical edges. By examining the spatial informat{&Il) as a function of angle, the tiling effects

can be separated from the blurring effects.

Error Block: A form of block distortion where one or more Iiecin the image bear no
resemblance to the current or previous scene atah aontrast greatly with adjacent blocks.
Reference [23] defines an Added Motion Energy Patamfor detecting and quantifying the
perceptual effects of error blocks.

The sudden occurrence of error blocks producedasiviely large amount of added temporal
information. So the Added Motion Energy Parametngares the temporal information (TI) of

successive input frames to the Tl of the correspmndutput frames.

Jerkiness: Motion that was originally smooth and continuasiperceived as a series of distinct
snapshots. Reference [23] paper defines a LostaovoEinergy and Percent Repeated Frames
Parameter for measuring the jerkiness impairmehé fercent repeated frames parameter counts
the percentage of Tl samples that are repeatedeat¢he average lost motion energy parameter
integrates the fraction of lost motion (i.e., suims vertical distances from the input samples & th
corresponding repeated output samples, where thisgances are normalised by the input before
summing).

To extract the performance metrics we deployed\Mltieo Quality Metric (VQM) software
developed by the ITS-Video Quality Research projed and compliant with [23]. All tests
performed on the different test sequences prodsoaidar outcomes that have been proven to be

dependent to the natural temporal activity of thguences.
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Therefore, for the shake of concision, we reponex only a subset of results that were relevant
to the Slent and Mobile sequences. Th&lent sequence presents a limited temporal activity
compared tiMobile.

We considered 64 frames for the sequeBibant at 15 frame/s rate and 128 frames for the
sequenceMobile at 30 frame/s rate, both corresponding to apprateiy 4 seconds of the video
scene. Fig. 33 to Fig. 40 show the results of theeva mentioned features for the proposed method,
the frame replica and the spline cubic interpotatechniques, in case of 2x, 4x and 8x slow motion
factors. A general overview of the outcomes shdwvesadvantage in using the proposed technique
for higher slow motion factors. An in-depth anatysif the results demonstrates the sensitivity of
the method to the natural temporal activity of sleguences. Fig. 33, Fig. 34, Fig. 35, and Fig. 36

show how blurring and tiling distortion fddobile at 2x slow motion factors is lower for frame
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Fig. 37: Measured blurring for “Mobile” sequence.

Fig. 38: Measured tiling for “Mobile” sequence.
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Fig. 39: Measured error blocks for “Mobile” sequene.

Fig. 40: Measured jerkiness for “Mobile” sequence.

interpolation that for fractal expansion and franeplica, whereas, foSlent better spatial

distortion performance is obtained by the proposelteme. For higher slow motion factors the
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predominance of the proposed method is more evidadtis due to the joint use of motion
estimation and ORB/OSO fractal coding that allowsgating the presence of spatial artifacts.

Fig. 35 shows how foSlent the error block feature measured for the propcsesdem is
considerably lower than for frame replica and iptdation for high slow motion factors, whereas is
comparable for 2x temporal expansion.

For Mobile (Fig. 37) the error block is comparable for 2x @mxdslow motion factors for fractal
zooming and interpolation and only for higher slowstion factors the prevalence of the proposed
system is noticeable.

This outcome is mainly due to the intrinsic bloa&sbd nature of fractal coding that, in presence
of high temporal activity within the scene, reduties efficacy of the proposed approach.

The results shown in Fig. 36 and Fig. 40 are releva jerkiness and confirm the above
statement: the effectiveness of the proposed mdthraithis feature is evident faviobile (Fig. 40)
only for 8x slow motion factor.

For lower temporal expansions the proposed scheches\es performance comparable to
classical interpolation technique.

For Slent the predominance of fractal expansion in termekipess is evident for slow motion
factors higher than 2x.

The use of a combined motion and subband anatysisg the fractal coding and again the
smoothing properties of the OSO filtering allow thethod achieving high performance in terms of

fluent motion flow during the presentation in slawetion of video sequences.
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Chapter IV

Fractals and color image compression

IV.1 Introduction

This chapter proposes a fractal coding technigqeedan Iterated Function Systems (IFS) to
encode color image signals. IFS aim to exploitrdgtundancy given by thelf-similarity always
contained in natural images.

Exhaustive studies have been conducted on ISFeabfii grey level image coding but, on the
other hand, even if fractal coding of color imagjas been investigated, still remain an open issue.
The need for color image compression is gainingoirgmce in recent time due to large scale
multimedia applications.

Conventional fractal compression schemes canyelasilextended to color image compression
as a color image is usually represented in multinks such as Red, Green and Blue (RGB)
components.

Thus each channel in color image can be compressedgrey-level image. Hurtgen, Mols and
Simon proposed a fractal transform coding of cotltages in [27]

This kind of encoding lacks the possibility of cmesing similarities between the three color
planes, thus not achieving a good compression regither a fair population on the domain pool
needed to obtain a high quality interpolation fooming purposes.

To exploit the spectral redundancy in RGB compasietite root mean square error (RMS)

measure in gray-scale space can be extended tmehdional color space for fractal-based color
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image coding [28]Experimental results show that a 1.5 compressitio ramprovement can be
obtained using vector distortion measure in fractaling with fixed image partition as compared to
separate fractal coding in RGB images.

However, since RGB space is not perceptually umfove decided to use another color space,
called CIE-L*a*b*.

Also RMS metrics, as deeply discussed on the athapters, demonstred to not be a good
guality measure, so we introduced a different roetever use for fractal encoding purpouses,
called Earth Mover’s Distance Metric.

We then will propose a novel approach for codinigiconages based on the joint use of the Lab
color space and Earth Mover’s Distance (EMD) mea§B0]

EMD has been suitably deployed for color imageieeal applications and can be thought as a
vector metric that combines spatial and color imfation to resolve similarities among color
images. This definition clearly gave us some horishow this metric was extremely suitable for
fractal encoding, which is, after allsearch of similarities amongarts of an image.

In this work we implement a fractal coding approdabhat relies on EMD for finding self-
similarities within color images represented in tiad color space and later we show some results

of this technique.
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IV.2 The CieLAB color space

A color space is a mathematical representation étaof colors. The three most popular
color models are RGB (used in computer graphics®Q, YYUV or YCbCr (used in video
systems) and CMYK (used in color printing).

However, none of these color spaces are directhte@ to the intuitive notions of hue,
saturation and brightness, which are the basisio€olor perception.

This resulted in the temporary pursuit of other mlsdsuch as HSI and HSV, to simplify
programming, processing and end-user manipulation ttying to get closer to the actual
representation of colors in our brain.

Indeed, mathematically, all of the color spaces loarderived from the RGB information
supplied by devices such as cameras and scanners.

The red, green and blue (RGB) color space is widskd throughout computer graphics,
since Red, green and blue are three primary aédaolors (individual components are added
together to form a desired color) and are represerity a three-dimensional, Cartesian

coordinate system.
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Fig. 41: The RGB color space representation. Theitngle, called Maxwell triangle has been drawn beteen the
three primaries. The intersection point of a colowector with the triangle gives an indication of thehue and
saturation of the color in terms of the distancesfahe point from the vertices of the triangle.
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The RGB color space is the most prevalent choicecémputer graphics because color
displays use red, green and blue to create theedesolor. Therefore, the choice of the RGB
color space simplifies the architecture and desighe system.

Also, in a system that is designed using the RGBrapace can take advantage of a large
number of existing software routines, since thikbcgpace has been around for a number of
years.

However, RGB is not very efficient when dealingwiteal-world” images. All three RGB
components need to be of equal band width to gemaray color within the RGB color cube.
The result of this is a frame buffer that has thee pixel depth and display resolution for each
RGB component.

Also, processing an image in the RGB color spaassislly not the most efficient method.
For example, to modify the intensity or color ajigen pixel, the three RGB values must be read
from the frame buffer, the intensity or color cditad, the desired modifications performed and
the new RGB values calculated and written backéoftame buffer. If the system had access to
an image stored directly in the intensity and cébomat, the processing steps would be faster.

For these and other reasons, many video standanided to use luminancy and two color
difference signals. The most common systems ar&théand YCbCr color spaces.

The YUV color space is used by the PAL (Phase A#gon Line), NTSC (National
Television System Committee), and SECAM (Sequer@ielleur Avec Mémoire) composite
color video standards. The black-white system wsdygl luminancy (Y) information;

This system was ideated mainly for backward corbpdyi with old monocromatic
television, since U and V where easily be discataedld equipment.

Color receivers decoded the additional color infation to display a color picture. The

equations that describe the direct transformatiGBR> YUV are:
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Y =0.29R+ 0.586G+ 0.118
U=-0.14R+ 0.286+ 0.43B= 0.49B(Y
V =0.61R- 0.516- 0.10B= 0.87R-Y

and for the inverse transformation:

R=Y +1.140/
G=Y-0.39%) -0.58V
B=Y + 2034

For digital RGB values with a range of 0-255, Y lsasange of 0-255, U a range of 0 to £112
and V a range of 0 to £157.

As the RGB color space, the YUV space is not umfeoncerning the HVS.

A system is said to be not uniform if a little pelation of a value is perceived linearly
along the possible variation of that value. Thisamsethat a color space is perceptually uniform
if a distance from a colom and another colobh=a+Ac will be perceived as constant
independently fromaorb. Using a non perceptually uniform space as RGBthasdrawback
that the Human Vision System will be affected bympaiter measures for digital video
processing, since the distance from RGB valuematlbe uniform in respect of the HVS.

Starting from these considerations, the Commiskitarnationale d’Eclairage (CIE) defined
a uniform color model, called L*a*b* that represenll the color humans is able to resolve.

Danciu and Hart [29]presented a comparative stddyagtal color image compression in
the L*a*b* color space with that of Jacquin's itexé transform technique for 3-dimensional
color. It has been shown that the use of uniforhorcepace yield compressed images to have

less noticeable color distortion than other methods
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Since there are three types of color photorecepbme cells in the retina, each with a
different spectral response curve, all colors cancbmpletely described by three numbers,
corresponding to the outputs of the cone cells.

The CIE workgroup then defined XYZ tristimulus vedy where all visible colors can be
represented using only positive values of X, Y @nd

For applications where it is important to be alolerteasure differences between colors in a
way that matches perceptual similarity as goodassiple the perceptually uniform color spaces
find their best field of use.

The CIE-L*a*b* (CIE-Lab) color space was designedls that the perceived differences
between single, nearby colors correspond to théidaan distance of the color coordinates.

The (nonlinear) conversions from RGB to CIE-Lab gireen by:

X 0.412453 0357580 0.180423 | R
Y |=10.212671 0.715160 0.072169 G
Z 0.019334 0.119193 0.950227| | B

1
3
11{1J -16 if AS > 0.008856
Y, Y,

n

9033 YLJ otherwise
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where,

Wl

if % >0.00885¢

f(t)= n
7.787+1—6 otherwise
116

and, following ITU-R Recommendation BT. 709 [31)65 was used as the reference white
point, so that:

[X, Y, z,]=[095045 1 1.088754

L=100

.L=0

Fig. 42: The CIE-Lab color space representation. Lminance varies from 0 (black) to 100 (white) and and b
components vary from -50 to 50 and represent the twr variation along the red-green and blue-yellow ais.

LK ] aa ¥ 14

Fig. 43: The CIE-Lab color space.
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IV.3 Clustering

An image block signature is a set of features eitchby means of a clustering process.

The Clustering tecnique is a branch of Image (da)dsegmentation field. A segmentation of an
image entails the division or separation of thegemanto regions of similar attribute. The most
basic attribute for segmentation is image luminaaoglitude for a monochrome image and color
components for a color image. Image edges andreeate also useful attributes for segmentation.
Clustering aiming at partitioning the image blooka set of sub regions, (i.e., clusters) formed by
pixels gathered according to some distance ruléghwis the “segmentation” similar attribute. To
each cluster is associated a feature representdtihe cluster.

The clustering segmentation concept is simple badally computationally intensive.
Considering a vectorx=[x1,x2,---,xN]T of measurements at each pixel coordinate (j,k}hef

image. The measurements could be point multisdeafaes, point color components and derived
color components or neighborhood feature measuramisnthe measurement set is to be effective
for image segmentation, data collected at variouelp within a segment of common attribute

should be similar. That is, the data should betlygtiustered in an N-dimensional measurement
space. If this condition holds, the segmenter desask becomes one of subdividing the N-
dimensional measurement space into mutually exausompartments, each of which envelops
typical data clusters for each image segment. #gllustrates the concept for two features. In the
segmentation process, if a measurement vector fpixal falls within a measurement space

compartment, the pixel is assigned the segment maadel of that compartment.
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Fig. 44: Data clustering for two feature measuremets

The K-Means algorithm is one of the simplest unsuped learning algorithms that solve
the clustering problem. The procedure follows ap@rand easy way to classify a given data set
through a certain number of clusters (k clustersgdd a priori. The main idea is to define k
centroids, one for each cluster. These centroidslldhbe placed in a cunning way because the
result of the algorithm depends largely on thelahitentroid positions. The better, immediate
choice would be to place them as much as possablaway from each other. The next step is to
take each point belonging to a given data set asdcaate it to the nearest centroid. When no
point is pending, the first step is completed am@arly grouping is done. At this point, the new
k centroids need to be recalculated as baryceotéh® clusters resulted form the previous step.

After the new centroids are obtained, a new bidliag to be done between the same data set
points and the nearest new centroid. A loop has lgeaerated this way; as result of this loop,

the k centroids change their location step by stép no more changes occur.
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The aim of the algorithm is that of minimizing abjective function, such as a squared error

function:

1=YI o

j=1i=1
; 2, . i)
where H)g‘” —C H is a chosen distance measure between a data xj8irand the cluster centre

¢, and is an indication of the distance of the n gatats from their respective cluster centres.

The algorithm can be synthesised as follows:

1. Place K points into the space represented by the objects that are being clustered. These
points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recal culate the values of the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer change. This produces a separation of

the objects into groups from which the metric to be minimized can be cal culated.
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IV.4 Clustering process applied to fractal encoding

The aim of our study was pratically to use clusigriecniques as hint on similarities between
range and domain blocks.

Instead of using one-to-one pixel distance of tiemnsed domain, we wanted to compute
distance, i.e. similarity, of blocks using a higherel concept.

To apply clustering to fractal encoding we alsodeektwo other steps: find a way to catalog
clusters on domain and range blocks, and an efeegtay to compute the distance between these
objects.

While the second problem is addressed in the nexpter, we define here the concept of the
“signature” of an image.

After the clustering properties we use the infoioragained to create a “signature” of blocks,
and compare them each other to find the best appabon of transformed domains for every

range block, as usual in the fractal encoding.

Formally, given an image block of sizen, we define its signature &¢C) :{(cj,wj )}:_1, with

T number of clustersy, weight andc; centroid (i.e., the representative element) ofcthster; .

We have now to measure the distance among pixétsibahe spatial and color domains. As to

n
i=

the spatial domain, for every pixéy;} , We limit the search area to a circle centered;inwith

radiusr. The length of is computed considering the medium spatial digtdretweeny, and the

initial distribution of centroids.
The initial set of 12 centroids for&<8 size image block is shown in Fig. 45 while anregpke

of circle bounded search is given in image Fig. 46.
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Fig. 45: Initial displacement of centroids.
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Fig. 46: Circle containing centroids that can be idntifyed by element (5,4)

The color distance is also upper bounded by thelutsn of the HVS in the uniform color

L*a*b* space (HVSey, that is the minimum distance in the L*a*b* colspace that allows the

HVS discriminating two different colors.

Formally, we define the distance between the gemexiel y; and a centroidt; as:
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wheredisg(y; ,c;) anddisc(y; ,c;) are their normalized Euclidean distances in théi@pdomain

and in the L*a*b* color space, respectively. linsrth noticing thatd(CI) is hon negative,
symmetric and satisfies the triangle inequalityustwe really work with a metric space.

The clustering process associatgdo c; according to:
d(yi.cj) = mjind(yi Cj)

The initial position of the centroids is choserb&invariant to the possible affine transformation

r performed by the fractal coding. This assures tjigen a block signatur§(C) and a
transfornr , T[S(C)] = S[T(Q)]

The number of centroids is chosen as to satisfy two constraints: maximuaifoumity in the
distance among centroids; invariance to the geoca¢affine transformations (i.e., isometries).

This positioning is spatially homogenous while th&tance between centroids as well as the
distance between pixel and surrounding centroigssentially constant. This displacement is
invariant as to the 8 possible isometries. At the ef the clustering process a signature is asdigne

to each range and domain block.

Fig. 47: Block extraction for clustering segmentatin
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Fig. 48: First segmentation step using CieLab spadeolors have been enhanced to clearly identify ddrent
clusters)

Fig. 49: Initial clustering Fig. 50: Searching fo centroids of element (0,0)
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IV.5 Earth mover's distance for IFS

Now that we have defined a signature of a blockneed a tool to objectively compare them.
The matching process we deployed uses the Earthe®MoDistance (EMD) [33] .EMD is a
useful and extendible metric distance, developethbyStanford Vision Laboratory (SLV), based

on the minimal cost that must be paid to transforma signature into another.

The EMD is based on theansportation problem from linear optimization, also knows as the
Monge-Kantorovich problem [34]. Suppose that sdveuppliers, each with a given amount of
goods, are required to supply severahsumers, each with a given limited capacity. For each
supplier-consumer pair, the cost of transportisgngle unit of goods is given.

The transportation problem is then to find a leagiensive flow of goods from the suppliers to
the consumers that satisfy the consumers demand.

Signature matching can be naturally cast as apgaategion problem by defining one signature as
the supplier and the other as the consumer, argktiyng the cost for a supplier-consumer pair to
equal theground distance between an element in the first signature andeanent in the second.

The ground distance is defined as the distancedsetthe basic features that are aggregated into
the signatures. Intuitively, the solution is thelne tminimum amount of “work" required
transforming one signature into the other.

Formally the EMD is defined as a linear programmpmgblem: letP,Q be two image blocks
and S(P) ={(ph,wh)}::1, S(Q) ={(qk,wk)}r:1 their signatures wittN and M clusters respectively; let
d, be the ground distance between two centrgidand g, and let f,, the flow betweenp, and

q. , defined as the amount of weight pf matched tag, , we want to find a flow that minimizes the

overall cost:
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with the following constraints:

1)

N M N M
>3 f=min S 3w
h=1 k=1 h=1 k=1

The first constraint assures for unidirectional digs transportation frons(P) tos(Q). With
the second we limit the amount of supplies thatmasent by the clusters 8(P) to their weights.
The third constraint allows the clusters $(Q) to receive no more supplies than their weights,

while the last constraint forces to move as mugipkes as possible.

We call this amount the total flow. Once the tranggtion problem is solved, and we have found

the optimal flowf,, , the EMD is defined as the work normalized bytttal flow:

N M
Z Z O e

EMD[S(P), S(Q)] = "={=r—— (2)

TN M
Z Frk
h=1 k

HMZ

The normalization is needed when the two signatoaee different total weight, to avoid giving

more importance to smaller signatures. In genénalground distance,, can be any distance and

will be chosen according to the problem at hand.
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We need then to define a ground distance that reatohr purposes. For the extraction of range
and domain blocks signatures we deploy a clustgiongess based on a metric distance as defined
in eq. (1).

Such a distance was a Euclidean based metric aldempare pixels and centroids both in the
spatial color domains. The comparison is restriatettie spatial domain by, which is the medium
spatial distance between pixels and the initidrithgtion of centroids.

In the color space the search is limited to thdrogs that differ less than the resolution of the

human visual system (i.e., the H¥$p To define the ground distandg, we use a similar, but

slight different approach. Although we still kedye tooundary for the color component, and we use
the HVSes value to normalize the Euclidean metric, we do mte elements to limit the search
area in the spatial domain.

Therefore, in the spatial domain, we do not set @rnystraint; we just normalize the distance
component to the maximum measured Euclidean distdr&tween centroids. Moreover, in a
matching process based on signatures as abovedefmthe success of the search, the importance
of the spatial component is not the same as teearte the color component. In fact, in two image
blocks having a similar color distribution, the @oposition can be very different and this can lead
to a weak best match algorithm. As to the abovesidenations, we propose the following measure

for the ground distance:

i =/ AdisZ Py, 6 + (L= A)dis? (P, ) @)
A00, 0<A<1

where disg(CIy and dis.((I) are the same as in eq. (1), but for the formene,he

r= rﬂilﬁph _qk"spatial . In fact, the parametet in eq. (3) weights the importance given to theocol

distance respect to the spatial distance and ithigssen as to maximize the quality in the
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reconstructed image. It is worth remarking thaodls, as well asd(CI)of eq. (2), is non-negative,

symmetric and satisfies the triangle inequality)deeit is a true metric.

To extract the fractal code, IFS look for simile® between range and domain blocks by
comparing their signatures. IFS work with contnaettransformations reducing the size of the
domain blocks to the one of the range blocks.

Therefore, the matching process compares signadfisesme total weight. In this case, since the

ground distancel,, is a true metric, also the EMD as to eq. (2) defin metric space. Moreover, it

can be shown that in this particular case,

EMD[S(P), Q)] <d,,
_1d
—VthIWh Pn

1 N
q—v—ka:;Wka

W= W, = W,

(4)

where w is the total weight of the two signatures apdy their average centroids. In other
words, the ground distance between the averageot#spf two signatures of same total weight is
a lower bound for the EMD between the two signature

This property is used by the IFS process to redbheecomplexity of the similarities search
algorithm. Using the EMD for the IFS best matchisgarch has several advantages. In fact,
comparing summary information of image blocks ectd by a clustering process leads to an
increased robustness of the search process tdfdet errors. This is not true for the pixel based
RMS approach. Moreover, it is less sensitive tongjeation errors due to the intrinsic “averaging”

nature of the clustering process.
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IV.6 Experimental Results

We tested the effectiveness of the proposed approgdractal coding several test RGB color
images of512x 51z size, coded at 24 bpp.

We compared the achieved results with those oltayea classic IFS coding, as defined by
Jaquin, that implements the similarity search usaanBMS measure. Such as benchmark coder
performs the coding of the three RGB color plaregsagately, thus producing three different fractal

codes.

Fig. 51: Lena 512x512 coded with RMS-based coder Fig. 52: Lena 512x512 coded with EMD-based coder
(CR=53, PSNR=29.4 dB). (CR=53, PSNR=31.1 dB).

At decoding stage, each so extracted codebooknaton is independently used to recompose
the corresponding color plane. Finally, the colanps are rearranged to form the output image.

In this experimentation we selected8 size range blocks antiéx16 size domain blocks.
Therefore, due to the IFS contractive transfornmatibe block signatures deployed by the search
algorithm are composed by clusters of 12 elements.

The initial displacement of the centroids is tine @bove shown in Fig. 45.
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Several tests have been carried out on differesttiteages. We assessed reconstructed image
quality in terms of the Mean Squared Error (MSEt the expressed in terms of the Peak Signal to
Noise Ratio (PSNR).

We will comment here results obtained for “Lenahil some other result are showed in the
graph below and not commented.

Due to the choice made for range and domain blstdes both the compared coding schemes
achieved a compression ratio (CR) of about 53.

Fig. 51 and Fig. 52 show the reconstructed imageted with the classic RMS based as
described by Jaquin, and with the proposed methdd. noticeable gain of 1.7dB in the PSNR
when the EMD based coding is performed.

Fig. 53a) and Fig. 53b) show a detail of the tesage displayed in Fig. 51 and Fig. 52,
respectively. Some errors due to misinterpretabbrcolor differences during encoding can be
noticed. In fig. 5a the border of Lena’s hat istalited and false colors can be observed. This
problem is almost imperceptible in Fig. 53b) whtre proposed method based on EMD metric is
applied. Colors are, in fact, correctly interpreted the overall quality is superior.

This outcome is mainly due to the averaging progerof the EMD. In fact, EMD compares

clusters and is more resilient to isolated errdryigel level compared to classic pixel based

A

comparison methods such as RMS.

a) b)

Fig. 53: Detail of “lena” coded with a classic MSHEhased coder (a) and with the proposed method (b).
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The good interpretation of colors when EMD is ussambls also to increase the probability of
right interpretation of edges on the images. Bélgicaith the benchmark RMS-based coder, if an
edge is present in one or two color planes, theesponding detection on the remaining plane will
be low, and the block, in that plane, will be colesed as a shade area.

Therefore, the overall recognition of the edge Malllt and the quality will decrease on the
output image. Due to a more precise color and bidektification, the EMD-based codec allows
overcoming this issue.

Some other results obtained are shown on table 3.

Quality
70.00
60.00 ]
50.00 ]
40.00 1
O Proposed method
B MSE based
30.00
20.00
10.00 1
0.00 —
F16 Baboon | Peppers Lena Splash Earth Face Tree Face 2 House Pills
O Proposedmethod 56.33 38.63 52.55 55.43 62.69 57.69 5171 45.54 60.23 53.93 52.88
B MSEbased 48.37 2743 50.92 52.10 54.25 46.10 44.23 36.98 53.21 49.69 5158

Table 3: PSNR results of proposed method compared tlassical MSE (RMS) method.
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Chapter V

Conclusions

In this work we proposed two different way of usingctal on different fields, image and
videos, but with a lot of points in common.

Fractal theory is a powerful tool we have not dftlly compressing these signals, but because it
opens a wide range of interesting features.

The possibility of using fractal coding more on thecoding” side, i.e. after a video or an
image is downloaded, demonstrated how this tecnigjiextremely good to interpolating data
available and obtain zoom, slow motion sequencésore rate conversions.

There are two main innovations we made on the Wanoode signals using fractals.

The first one, related to video sequences, is @it juse of several instruments that made
possible obtain high quality versions of interpethsequences. The combination of fractal with
wavelet decomposition and moving estimation wascessfull, and push us to continue
exploring this path.

A great problem when considering interpolated ogdi of data is how to measure the
guality. The problem is in a certain way a phildsicpl issue since we want to measure how
good is data we obtain compared to data we doan hefore.

Some escamotages as first subsample video sequamdesfter the decoding obtain a full
scale video to be compared with the original ome, as we said just escamotages, especially
when using objective measures as RMS, that madevddvel simple computation between
pixel values instead of measuring the overall héylel quality as our brain make.

In this scenario we adopted brand new metrics adTh)-R BT-1683 [23] metric, which

gave us a more powerful amount of measures thaaddress our needs.
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The other main innovation we made was in the emgpdf images.

By always focusing on high level quality and oumajusing fractals to interpolate data), we
introduced a different approach on the usual wdyaaftally encode images.

The use of Earth Mover’s Distance on fractal enegds original, and the joint use of EMD
with clustering and signature extraction made fmdsgb obtain good results for color images.

As we said at the beginning of this work, fractadse innumerable way of use. The results
obtained in our research demonstrated that a lmn@ivation can still be done in this field.

In fact future works can include the use of EMD amdistering also on encoding video
sequences, while instead the use of ORB and OSearsed for enhance the quality of an
EMD encoded image.

Also all of these tecniques reveal interesting @pfpibns on the audio and music field as for
example frame rate conversion or as digital autfects.

We, in fact, will pursuit this aim and continueew®plore the amazing world of fractals.
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Appendix A

Algorithms for fractal encoding

Introduction

In charter 2 we saw the principles and conceptsi¢aa to apply fractal theory to the image and
video processing fields.

In this appendix we will see the implementation made for a fractal encoder and decoder,
based on the concepts we developed in the thesis.

We will discuss an algorithmic point of view insteaf an actual implementation, like in C or
Java, since it is more general and more intuitive.

The entire actual framework made for this study emasrely developed in ANSI C, and some

parts of the algorithms we will discuss here wilhtain same of this code.
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Bidimensional fractal encode

The two-dimensional fractal encoder works on geael images, or with one layer of color
decomposition. To encode a color image, it shoudd decomposed in three color layer
decomposition as separated RGB or YIQ layers.

Every image will be partitioned in squared domaid eange blocks. We assume that:

* Range blocks have a constant size equal to R
* Domain blocks have a constant size equal to D, visitwo times the size of a range
block.

* The Domain Pool is a “Non Overlapped Domain Block”

The last restriction will be removed in a secondletion of the coder, in order to exploit the

ORB and ORC method for zooming images.

Given a starting imagé’Orig the encoder process will be:

for ever Range Block R on the partition obtained from the starting image /£,

1) extract I'i-esim Range Block R ;

2) find the fractal transform of this block;

3) save the fractal code T,

end

The core of the fractal encoder is the second siepe the first and the last steps are simply

memory acCcess:

87



2.a) from the input Range Block R compute its luminance IR and its contrast Cr
2.b) compute |R| with the norm of the Range Block using the luminance and the contrast.
For every Domain Block Dj inside the Domain Pool:
2.c) subsample Dj to match Range Block’s size
2.d) compute its luminance IDi and its contrast C,
2.e) compute ‘Dj‘ with the norm of D, using IDi and ¢,
For every isometry K from the isometry set:

2.f) compute the k-esim isometry ‘Dj‘k starting from ‘Dj‘

2.g) compute the error between |R| and ‘Dj‘k

2.h) if the error is a local minimum, save 7. composed by information on isometry and

I
domain used.
end “isometry” loop

end “Domain Block” loop

Now we will take a closer look on each of thesenfmi

2.a) The luminancel, and the contrast; del of the range blockk is computed the

following way :
* Luminancel is the minimum value of luminance among all pixéist composg :

lg = min|pg (x, )]
1<y<R

where pg (x, Y) is a generic pixel oR whereaR is the size of the Range Block

88



« Contrastc;, is obtained by the overall sum of pixels inside RengeR . Before the
addition, the previous luminandg is subtracted to every pixel’s value.

Cr :ZR:ZR:[pR (x,y)—IR]

y=1 x=1

2.b) The normalizatiorR| of the range blociR is obtained:
1) From the pixels that belong to the Range BloRk the Iuminancel is

subtracted (luminance shift)
2) Every pixel is then divided by the contrasf (contrast scaling)

Luminatza
Luminatiza
LuminanTa
x
¥ o .
¥ x i x
) b) )

a C d)

Fig. 54: An example of normalization: a) the range block; b) a three-dimensional representation of the range block;
¢) luminance shift; d) contrast.

We can explain the overall process using the graege block as an example.

10 7

It is easy to notice tht = .4To obtain the contrast we subtract the luminaralee to

every pixel, and then we sum all the pixels togethe

G =(10-4)+(7-4)+(5-4)+(4-4)=10
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2.c) The generic domain bloclD; is subsampled by a factor of two (as we statedh as
condition) to have the same dimension of the rdoigek R

2.d) The same procedure of 2.a) is now execute®pn

2.e) The same procedure of 2.b) is now executedpn

2.f) A k isometry is chosen

|dentity 7, i,j)= 1|
Horizontal reflection | i,j)= H o
Vertical reflection )= s
First diagonal reflection . )=u,
Second diagonal reflection To i,j)= Mo i
90° counter-clockwise rotation Ty i,j)zlun—j,i
180° counter-clockwise rotation T7(,Ui,j): i e
270° counter-clockwise rotation AMBEN

Allowed isometries

2.g) To compare ranges and transformed domain we neegtrac. As a first approximation we

can use the simple MSE between pixelﬁf and‘Dj‘k:

SEQRHDj\k) %ii[%(x,y)_%k(x,y)r

y=1x=1

2.h) Finally the fractal code, of the Range BloclR is obtained considering:
* The coordinateixDj Yo, ) that identify the Domain Bloclo; (founded as in 2.9 that
minimize the MSE error measure) on the encodingyeana

* The isometryk that minimize the error measure.

* Luminancely , I, and the contrast ratio:
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i)
1
o‘o

X

D.

All these steps are mandatory, to obtain an efficreatching between Range Blocks and all

the isometries of the subsampled Domain B¢k This can be proved with a simple example.

Given the following Range Block and Domain BlockgtDomain Block is already subsampled to

match the Range Block size):

10

19

13

We can notice that they seem completely differemnfeach other for every isometry applied

toDj.

The luminances of the blocks aIr,g:z

luminance to their respective blocks:

Now we can compute the contrast of the blocks gpdlyehe ratio as in 2.h:

ahd, =7. As stated in 2.b.1 we can subtract the

D, -Ip

12 6
2 0
l, =7
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Cr Co,

0.6 0.3 0.6 0.3
0.1 0 0.1 0
I, =4 lp =7
c; =10 Cp, =20

As we can see now, the initials blocks that seediféerent are now identical.

All the operations made are reversible.

Bidimensional Fractal Decoder

Once we have the fractal codecomputed with the method described above, we eabtain a

fractal approximation of its initial attractor (ti@tial image) 4, - We assume that:

Range Blocks have a constant sizeRbf SR
Domain Blocks have a constant siBé which is two times the size of the Range Blocks

The starting image of the decoding progesdas a size that ig times the size of the

initial encoded imagg,,;, -

The factor S is the zooming factor used at the decoding stag#btain variable different sizes

of decode image.
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Given the fractal codg and a starting imagegs, the decoding stage is composed by the

following steps:

1) for m< @ iterations

2) forevery T; of T

3) read from 7; the domain block coordinates (XDJ_ ,yDj)

4) extract the Domain Block D; situated at the position (,[)’D(Dj ,,BB/Dj) of U,
b
5) Compute a subsample approximation Dj‘su of Dj to match the size of R

b b
6) apply the k isometry extracted from 7, to Djr“ obtaining Dj‘?

7) extract I, |y and G from 7,

b
8) apply luminance values and contrast to Dj‘? obtaining R|decoded

9) write R|decoded on [ .,
End 7;loop

End iteration loop

The previous steps mean:

1) This loop cycles the whole decoding procedardimes: this is the cycle that generate the
sequence of images that will converge toward thraabor (i,
it)

2) This loop decode all the fractal transform related to the Range Bldgk

or an expanded version of

3) Reads fromr; the coordinates{xDj,yDj) of Domain BlockD;. This domain is the best

transformed domain that the encoder found in thgiral imagey,;, for R

4) Since all the image is zoomed by a fagiorall the coordinates must be shifted of the same

amount.

93



5)

6)
7

8)

9)
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a) b)

Fig. 55: Shifting values of domain blocks for a zaoed replica of /4,

It is a simple subsampling operation that leadssthe of D; to matchR’s size
The isometryk that minimized the error during the encoding iplegal to the domain block.

Read / write operations

The luminance IDj is subtracted tD, :Jb and all the pixels are then multiplied by the

contrast factoc, . After this step, we sum the luminamge Now the rang® is correctly

reconstructed.

All the pixel of R| are now copied intg,. The actual position of the block is obtained

decoded

implicitly, since along the encoding the range kkare ordered, for example by rows.

RsRsR Ry Ry R,

. ——+( Encoder Frattaie —

['Decoder Frczfmie] -+t Ty T Ty Ty T —————
L |
T

BRs fBRs PRy BR; FR, BR;

DU

5 @ . Inmagine [ |

RI i R‘? Originale BR; | SR,
3 4 - I
R ox; [N <,

Emm—
Immagine BR s | BR
Ricostriita __ M

Fig. 56: Fractal decoding



As an example, given the following fractal code:

T, :{xDj =20y, =4k=Llg =41, =3¢ :0.5}

We extract from the decoding starting image the Domain BlockD; at the positimbxDj Yo, )

We can suppose that, after the subsampling opartit®@Domain Block is:

sub

19 13

We apply the isometdy=.1From the table 1 we find that this is an identgyD, ** does not

change. We now subtract from the Domain Block tmeihance valuk, :

Dy, - IDj
16 10
6 4
And multiply by a contrast factor af
sub

(Dj ‘k a |D1 )lj;'
8 5
3 2
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Now we can add the luminance vallye and obtaining the decoded Range blcﬁqgecoded

R |decoded

12 9

7 6

Now the Range Block is copied intg and the decoding process continues to the nexgdRan

Block.

Three-dimensional fractal CODEC

Basically the concept of a three-dimensional cadetbe same of the bi-dimensional one. The
difference is that now we have to work with threeehsional blocks (or, better, cubes) , being the
time axis the third dimension. Range and Domairchdoare now Cubes, and instead of an image
we work with a sequence.

The concepts of luminanck, and,, , contrast; , ¢, and their ratig;, do not change, but

instead of being computed on blocks, they are caeapon cubes.
Being in a three-dimensional space we need anoffsat coordinate for the domain block to be
stored in the fractal code, and the set of isom&tmust be changed to include three dimensional

affine transforms.
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