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Introduction

Financial markets belong to the class of things that sound to be simple, but

that are indeed very complicated. They are dynamic systems made up of a

large number of economic elements engaged in continuous interactions, which

give rise to intricate aggregate regularities and to complex phenomena at the

macro level. The main result of the trading activity is price time series, that

exhibit many well known empirical properties also known as stylized facts.

In recent years, the large availability of �nancial data allowed to deepen the

knowledge about price processes and, together with the new developments in

mathematics, physics and computer science, contributed to transform �nance

in a quantitative science.

Researchers faced with the analysis and modeling of �nancial markets

for tens of years. But classical theories, based on a single fully rational

representative agent, failed to reproduce all the properties of real markets.

Also, they have been able to make only limited progress in resolving many

important practical and policy relevant open issues, like those related to the

instability of �nancial markets. In contrast, new behavioural approaches,

characterized by markets populated with bounded rational, heterogeneous

agents emerged. In recent years, this research �eld has been combined with

the realm of agent-based simulation models, and a number of computer-

simulated, arti�cial �nancial markets have been built.



This thesis presents an agent-based computer simulation framework for

building theoretical models in economics and �nance. In an arti�cial �nancial

market each microscopic element of the overall system, and each kind of

interaction among them, has to be modeled and individually represented.

The computer simulation approach allows to track the evolution of each

component of the system, and to investigate on the aggregate behaviour and

to look for emergent phenomena. This approach has been already applied

in other sciences to study complex systems, and its main advantage is that

it allows to deal with issues where analytic solutions would be impossible.

The proposed model includes many realistic trading features, and has

been validated by showing that the simulated time series exhibit the main

empirical properties of real �nancial markets. This arti�cial market has been

developed using object-oriented software techniques, and is aimed to be easily

extended and composed, yielding multi-asset and multi-market simulations.

The thesis is organized as follows. Chapter 1 gives the historical back-

ground on the models in economics and �nance. It also provides a brief guid-

ance in the development of an arti�cial market, and it presents an overview

of the major statistical properties of real economic time series.

The current version of the simulation framework is the result of an in-

cremental and iteractive process: Chapter 2 summarizes its evolution, from

the original system, built on the basic ideas of the �Genoa Arti�cial Stock

Market� model, until now. It also provides some details on the simulation

software, and on the veri�cation and validation methodology.

The subsequent Chapters run through again the system evolution, and

deeply analyse the di�erent versions. Each chapter introduces one major

open issue in economics and �nance, then provides details on the speci�c

model that has been developed to study that problem, including the de-



scription of its extensions and modi�cations in comparison with the previ-

ous version, and �nally discusses the results. In particular, Chapter 3 faces

the problem of understanding the potential impact of the Tobin tax on a

multi-asset �nancial market. Chapter 4 analyses the impact of margin re-

quirements and of short-sale constraints on prices and volatility, and their

connections with stock market crashes. Chapter 5 is about the interaction

between two stock markets located into two di�erent countries, and their

in�uence on the Foreign Exchange Market. Chapter 6 concludes the thesis

and suggests questions for the future work.



Chapter 1

Modeling and Analysis of

Financial Markets

Financial markets are at the heart of each modern economy. They can be

described as evolving complex systems, characterized by the interaction of

many simple interacting units. Today, �nancial markets are continuously

monitored, and an enormous amount of electronically stored �nancial data

is available. The result is an explosion of interest in this �eld, that attracts

a large number of researchers attempting to model and forecast �nancial

markets. It is well known that economists and mathematicians have a long

tradition in studying �nancial system, but a growing number of physicists

is trying to compete with them in explaining economic phenomena. This

fact is con�rmed by the emerging Econophysics research �eld, which applies

theories and methods originally developed by physicists in order to solve

problems in economics. Also, the large availability of �nancial data allowed

to deepen the knowledge about price processes, and many so-called styl-

ized facts have been discovered in price series, e.g., the fat tails of return

distributions, the absence of autocorrelation of returns, the autocorrelation
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of volatility, the peculiar distributions of trading volumes and of intervals

of trading and so on. The interest in these complex system leaded to an

unprecedented cooperation among researchers in economics, physics, math-

ematics and engineering. In recent past, people with advanced degrees in

these sciences have been employed in Wall Street to developed new �nan-

cial products and new quantitative models. The result was the beginning

of a new multidisciplinary �eld, called Financial Engineering, which relies

on mathematical �nance, numerical methods and computer simulations to

exploit �nancial opportunities, to make trading, hedging and investment de-

cisions, as well as facilitating the risk management of those decisions.

The traditional economic theory is based on simple and analytically

tractable models with a representative, fully rational agent, but this clas-

sical approach fail to reproduce all the features described above. Financial

markets are systems populated with a large number of heterogeneous agents

that interact one other using various strategies and that react to external

information trying to forecast the best price for a given asset. In recent

years, a new approach, based on heterogeneous boundedly-rational agents,

has appeared. The new approach goes beyond the limits of the classical

models, and �t much better with the characteristics of real markets. The

heterogeneous agent models are usually more complex than those with a

representative rational agent, and they can be analytically untractable. So,

in the recent literature, a number of agent-based simulation models have

been developed, and computational and numerical methods have become an

important tool of analysis. In particular, over the last �fteen years many

computer-simulated, arti�cial �nancial markets have been built. The arti�-

cial �nancial markets usually model a subset of the real macro economy or

a very speci�c �nancial market, and they are made up of di�erent ingredi-
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ents such as agent preferences, one or more price determination processes,

mechanisms of evolution and learning, and methods to present information

to the agents.

Arti�cial �nancial markets allow the researchers to conduct experiments,

in terms of computer simulations, to test hypotheses and to validate ideas

and conjectures. They can be employed to model the complex features of

real markets that cannot be studied analytically, and they are an important

tool for understanding how real markets works: they can help to analyse the

price dynamics, the interactions and the performances of numerous trad-

ing strategies, the relationship among various the price clearing mechanisms

and the market dynamics, but also the reactions of �nancial markets to the

imposition of taxes and trading restrictions, or the economic links among

di�erent markets. This work will provide answers to some of these issues.

1.1 Historical background

Economists have faced the problem of studying and modeling economic sys-

tems for hundred of years, but in the second part of the 20th century, �nance

has witnessed an important revolution. The classical representative rational

agent paradigm has been replaced by a large number of agents characterized

by heterogeneous behaviours. Also, the increasing power of computers has

favored a shift from analytically tractable models with a representative agent

to complex systems, that require the implementation of simulation models

and use numerical methods as an important tool of analysis. Finally, full

rationality has been replaced by bounded rationality (see Hommes; 2002).
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1.1.1 Classical Models

The study of economic systems has a very long history, and some concepts

and ideas behind the models developed in recent times �nd their fundamen-

tals in classical economics and �nance. In the traditional approach, many

simple analytically tractable models have been developed, and the math-

ematics has been the main tool of analysis. These models makes many

assumptions regarding the economy and the individuals in order to keep

the analytical tractability, but they are often unrealistic. They are based

on the rational expectations theory and on the notion of the representative,

perfectly rational agent.

The rationality of agents is one key concepts of economics and �nance.

In a full rational expectations framework, all agents make use of all available

information in determining how to best meet their objectives. The Rational

Expectation Hypothesis (REH) is a theory in economics originally proposed

by Muth (1961) and later developed by Lucas (1972). If the agents try to

forecast future variables taking into account all available information, they

will not make systematic errors, and the value of the observed variables will

be equal to the values predicted by the model, plus a random error.

The rational expectation theory provides the ground to build models

based on the notion of representative agent, having rational expectations.

A representative agent model is such that the cumulative behaviour of all

agents might as well be the actions of one agent maximizing her expected

utility function. Its origins can be traced to the 19th century, but it was

Lucas (1972) in the 1970s who really popularized the representative agent.

The only trace of heterogeneity in the rational expectations framework

resides in the fact that the agents may have di�erent utility functions, but

it is not heterogeneity of beliefs, because the agents are given all relevant in-
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formation. Rational expectations provides an elegant and parsimonious way

to exclude �ad hoc� forecasting rules and market psychology from economic

modeling (Hommes; 2005).

The REH is closely linked with the �nancial concept of market e�ciency.

The E�cient Market Hypothesis (EMH) was formulated in 1960's by Samuel-

son (1965) and Fama (1970). The EMH states that �nancial markets asset

prices re�ect all available and relevant information useful for predicting the

future value of the assets themselves. In a e�cient market, a fully rational

agent can process all available information and take optimal positions on the

markets. Under the rational behaviour and the market e�ciency, Samuelson

showed that the price series prior to period t are not useful to predict the

prices for periods t + 1 and beyond, because the price in period t already

re�ects the fundamental information of all past prices. Most of the empiri-

cal studies of the 1960s and 1970s found negligible time correlation between

price changes, so corroborating the EMH. Under the EMH, the attempt to

beat the market is a game of chance rather then skill, and if markets were not

e�cient, the rational traders would exploit the arbitrage opportunity, and

any foreseeable structure would therefore disappear (see Hommes; 2005). In

other words, if investors are perfectly rational and markets are e�cient, it

follows that strategies using past prices to forecast future prices, such as

technical trading, cannot be pro�table, except by luck. It was also generally

accepted that temporary price overreactions are due to adjustments to mar-

ket news, that spread quickly through the market and are incorporated into

prices without delay. In a such context, notions like �investor sentiment� or

�market psychology� do not make sense. Finally, in a world populated only

by rational agents that share all relevant market knowledge, the trading vol-

ume has to be low or zero, because no one can exploit for pro�t private
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positive (or negative) information in advance of everyone else.

1.1.2 Heterogeneous Agent Models

The EMH, the representative agent and rational expectations have provided

the theoretical basis for economics and �nance during the seventies and large

part of the eighties. But during the eighties new �ndings shook the classical

theories to their foundations (for a good review of these developments refer

to Hommes (2005)).

In that years, many empirical studies appeared showing evidence against

the EMH. One of the most important �ndings was that price volatility of

many �nancial time series is clustered. It means that price �uctuations are

strongly temporally correlated, and that periods of low volatility are inter-

spersed with high volatility periods (see, e.g. Mandelbrot; 1963; Engle; 1982).

Moreover, the largest prices movements often happened even though little or

no news about economic fundamentals occurred (Cutler et al.; 1989). Sev-

eral authors claimed that �uctuations in stock prices are too large compared

to those due to the underlying economic fundamentals (Shiller; 1981, 1989;

LeRoy and Porter; 1981), and that bubbles can be originated by the di�er-

ence between real prices and fundamentals values (Summers; 1986; Campbell

and Shiller; 1988).

As said in Section 1.1.1, the EMH leads to a no trade equilibrium, and

many no trade theorems have been obtained. For instance, Milgrom and

Stokey (1982) stated that if markets are perfectly e�cient, then even though

some traders may possess private information, none of them will be in a po-

sition to pro�t from it. The no trade assumption is clearly in sharp contrast

with the high trading volume of real markets, and represents a point against

the e�cient market hypothesis.
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A large number of laboratory experiments rejected the hypothesis that

market participants are fully rational (Kahneman and Tversky; 1973). In

a famous paper, Smith et al. (1988) report results from several laboratory

�nancial markets. They showed the occurrence of bubbles in experiments

despite the fact that information is made public, so that agents can derive

the fundamental values of the assets by backward induction.

These empirical �ndings pointed out the limits of the classical theories,

and a new heterogeneous agents approach was born in order to go beyond

these limits and to explain the new observed facts in �nancial time series.

Maybe one of the �rst attempt to develop an heterogeneous agent model

(HAM) is the one by Zeeman (1974), which includes two kinds of traders:

fundamentalists and chartists. The model is very simple and try to explain

the temporary bulls and bears in �nancial markets as a special case of the

catastrophe theory. The model is very stylized and is lacking in structural

foundations, but some basic ideas can be found also in recent models.

One of the most important models is the one proposed by Grossman and

Stiglitz, also known as the noisy rational expectations model (see Grossman;

1976; Grossman and Stiglitz; 1980). The model try to extend the EMH by

addressing the problem of costly information, by allowing the agents to know

pieces of information that are not immediately absorbed into the market.

Who obtain or analyse information faster can earn positive returns, and the

pro�ts obtained can be used to cover the costs related to the acquisition and

the analysis of information itself.

The subsequent models departed from the EMH more and more, and

new models characterized by groups of heterogeneous agents with bounded

rationality and di�erent beliefs appeared.

Beja and Goldman (1980) proposed a model with fundamentalist and
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trend follower (chartist) traders. They were among the �rst to develop a

market maker who adjusts prices with respect of the aggregate excess de-

mand. The excess demand both of fundamentalists and chartists is computed

using linear rules. They found that if the percentage of chartist is too high

the market can become unstable, and concluded that the interaction of dif-

ferent agents with di�erent behaviour could explain some features of the

dynamics of prices. Chiarella (1992) considered a non-linear extension of the

model, and showed that the non-linear system is characterized by a stable

equilibrium, but if the number of chartists is too high the price trend tends

to destabilize the system and prices exhibit periodic limit cycles.

The models introduced above represent just some examples of a huge

number of studies that analyse the interaction between chartists and funda-

mentalists, and that can be considered as a branch of the HAM also known

as the fundamentalist and chartist approach. The reported models are not

fully rational, because each group of agents does not know anything about

the other. But what happens if there are fully rational agents too? Friedman

(1953) has been the �rst to argue that non rational investors cannot survive

the market competition because they will be driven out of the market by

rational investors eventually in the process of natural selection. There are

many HAM that try to test the so called Friedman's hypothesis, for instance

those that include two further kinds of traders: rational traders and noise

traders.

The notion of noise trader was introduced by Black (1986): noise traders

are individual who trade on what they think is information, but is in fact

merely noise. This idea allowed Black to justify the large volumes of trading

activity that occurs in real markets. The activity of noise traders makes

it di�cult to understand what is noise and what is good information, so
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rational traders are obliged to look for more information without a break.

This behaviour favors large volumes and gives traders the opportunity to

earn pro�ts by exploiting their information.

More recently, De Long et al. (1990a,b) provided evidence that noise

traders may survive in the long run, and that they may gain more money than

rational ones. They found that rational traders perceive the risk introduced

by the presence of the other traders and, under certain conditions, they

are not able to get control over the dynamics generated by the non-rational

traders. It follows that the presence of many categories of agents cannot

be considered only a temporary condition, so contradicting the Friedman's

hypothesis.

The Wall Street stock market crash in October 1987 fed the interest

in �nancial market models and reinforced the idea that the classical models

based on a representative rational agent cannot explain the behaviour of real

markets. Also, new empirical studies showed that there is not direct relation

between fundamental news and stock price movements (Cutler et al.; 1989),

and that the strange behaviour of the US dollar during the mid eighties was

absolutely unrelated to economic fundamentals (Frankel and Froot; 1986).

During the seventies and the eighties there were many developments in

mathematics and physics, such as chaos theory and complex systems. These

concepts stimulated many HAM works of the eighties and of the nineties,

because they can be used to model the unpredictable price paths by using

simple laws. For instance, the models by Beja and Goldman (1980) and

Chiarella (1992) exhibit chaotic dynamics. One in�uential paper is that by

Day and Huang (1990), who proposed a discrete time model with a funda-

mentalist and a noise representative agent. The model shows complicated

deviations from the equilibrium price, that are similar to real stock market
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�uctuations with chaotic switchings between bull markets and bear market

regimes.

During the nineties an impressive number of HAMs have been devel-

oped. They explored a wide set of assumptions and proposed new kinds of

heterogeneity, in terms of new kinds of trading strategies, learning capabili-

ties, adaptive techniques, and interactions among individuals. However, the

most part of these models concentrated on behavioural assumptions while

neglecting the market structural assumptions. Structural assumptions are

those related to the �structure� of the market, for instance the trading proce-

dures which de�ne the rules of the market and the price clearing mechanisms.

Behavioural assumptions are the trading strategies and the roles by which

the traders take their decisions LiCalzi and Pellizzari (2002). Raberto (2003)

and the survey by Hommes (2005) covers the more analytic ones and those

that can be handled by means of simple numerical simulations. Some of them

are signi�cative and deserve a special mention because of their role in HAM

advancement. Challet and Zhang (1997) proposed a minority game model

with N agents who have to choose between two alternatives: the goal is to

be in the smallest group, that is the winner one. The model is interesting

because it is quite simple and is accompanied by a numerical description and

is suitable for analytical solutions. The minority game models share some

characteristics with �nancial markets: The agents have limited resources and

rationality, they learn from the performance of past choices, a good strategy

today may become bad when others' behaviour changes, and these models

can reproduce stylized facts (Challet et al.; 2001). The model by Lux (1997,

1999) and by Lux and Marchesi (1999, 2000) succeeded in explaining four

stylized facts simultaneously: prices follow a near unit root process, there

are fat tails in the distribution of short term returns, volatility clustering
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and no autocorrelation of raw returns. The model is based in three popula-

tions of agents that can switch strategy in consequence of contagion e�ects.

They stressed the role of the market maker, that adjusts prices according to

aggregate excess demand. They addressed the issue of herding behaviour in

�nancial markets, that has been also recently studied by Cont and Bouchaud

(2000) by means of random graphs and lattices.

Summing up, it is clear that the new heterogeneous paradigm is a growing

�eld, that is providing answers to many issues of �nancial markets, and

that goes beyond the limits of the fully rational representative agent. In a

heterogeneous world the rational agent cannot survive because, as observed

byArthur (1995) and Hommes (2001), if the world is heterogeneous, the

rational agents have to know perfectly the beliefs of all other traders, but it

seems quite unrealistic.

1.1.3 Arti�cial Financial Markets

The heterogeneous models discussed in Section 1.1.2 either are analytically

tractable, or can by handled be means of a combination of analytical tools

and simple numerical simulations. In order to derive tractable solutions,

these models make use of many simplifying assumptions. For instance, they

do not track the behaviour of each agent individually, but they group them

into populations that can vary in size and behaviour. On the other hand,

these simpli�cations lead to models that are not able to reproduce all the sta-

tistical features of �nancial time series, and the results cannot be convincing

and lack of robustness.

The point is that the dynamics of �nancial markets are not simple, and

they go beyond what can be handled analytically. In fact, the �nancial

markets can be described as very large complex systems, whose dynamics
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depend on the behaviour and the interaction of a large ensemble of au-

tonomous traders, on the market structure and organization. There systems

exhibit emergent properties, that is, properties arising from the interactions

of the components that are not properties of the individual units themselves

(Tesfatsion; 2006).

In this context, the heterogeneity introduced in the previous section laid

the basis for studying and explaining the complex characteristics of �nancial

markets, but it is not enough. The heterogeneity of agents can be expressed

in terms of wealth, strategies, learning capabilities, distribution of agents,

interactions and so on, and it unavoidably leads to produce analytically

intractable models that must be investigated numerically. Also the need to

model the market microstructure and to develop realistic price formation

mechanism contribute to add complexity to the models.

In order to address these issues, starting from the second half of the

nineties some researchers started to develop heterogeneous agent models

based on a fully computational approach. Since then, a number of computer-

simulated market models have been built (LeBaron; 2006, presents a review

of recent work in this �eld).

Fortunately, the power of computers has increased enormously during

the last two decades, and this stimulated the study, the development and

the analysis of complex heterogeneous agent models with boundedly ratio-

nal agents that are based on a complete computational approach. It is worth

noting that the new behavioural approaches, characterized by markets pop-

ulated with bounded rational, heterogeneous agents using rule of thumb

strategies, �t much better with agent-based simulation models, and compu-

tational and numerical methods have become an important tool of analysis.

The fully computational approach expands the realm of investigation in �-
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nance, and proposes a methodology to face the various sources of complexity

of �nancial markets. Microscopic simulation allows researchers to study mod-

els which take into account the heterogeneity of the agents, and to include

the distinguishing features of each investor. As said by Levy et al. (2000),

the strength of the microscopic simulation is that one is able to model any

imaginable investor behaviour and market structure.

The research literature often refers to agent-based models to indicate the

subset of heterogeneous agent models that make extensive use of computer

simulations. The agent-based models consider �nancial markets as the re-

sult of boundedly-rational micro agents that interact and learn within the

microstructure provided by the market rules. Generally speaking, the agent-

based approach try to capture the emergence of phenomena from the micro

level to the higher macro level represented by the aggregated whole system.

For the sake of simplicity, we will use both the terms HAM and agent-based

models interchangeably, making no distinction between them.

The Santa Fe Arti�cial Stock Market (SF-ASM) (Palmer et al.; 1994;

Arthur et al.; 1997), is one of the earliest and most in�uential projects in

this set of models. The original idea was to build a �nancial market with

an ecology of trading strategies, and to determine which strategies will sur-

vive, and which will fail. The market was to be an evolving system, and

new strategies could emerge from a soup of starting strategies, reinforce

themselves and maybe survive. The SF-ASM agents are endowed with lim-

ited capabilities: they have a collection of rules that guide their behaviour

on the basis of the market conditions. They have to test alternatives and

to anticipate other agents' expectations, and are obliged to continually form

individual, hypothetical, expectational models, test them, and trade trusting

the ones that predict best. In other words, the SF-ASM includes a learning
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and a forecasting system, and agents build their behaviour on prices and

dividends by matching speci�c forecasting rules and knowledge to current

market conditions. One of the main goals was to proof that market com-

plexity may be induced by the endogenous evolution of the system, rather

than exogenous phenomena. In particular, one objective was to understand

if the market converges to a tractable rational expectation equilibrium, and

to understand what happens when the market does not converge. Another

goal was to analyse the dynamics of learning and the e�ects on the market

equilibrium. Arthur et al. (1997) showed that if the rate of exploration of

alternative forecasts is high, the market exhibits a complex regime and a

rich psychological behaviour emerges. Periods of technical trading regime

appear, where fundamental strategies tend to be punished by the market.

The SF-ASM platform has been also extended by other researchers, such as

Joshi et al. (1998) who studied the interaction between technical and funda-

mental trading, and Tay and Linn (2001) who extended the set of classi�ers

of the SF-ASM by adding a fuzzy logic system. The SF-ASM is a pioneer-

ing work that has shown the way forward the creation of arti�cial �nancial

markets with heterogeneous agent. Also, it suggested that simulated price

series can be analysed to check for consistency with the stylized facts of real

data. It is worth noting that, though the SF-ASM is able to replicate these

facts qualitatively, no attempt is made to quantitatively line them up with

results from real �nancial data.

The experience of the Santa Fe Arti�cial Stock Market stimulated the

development of several other projects. For instance, Basu et al. (1998), at

Sandia National Laboratories (SNL), developed an agent-based microeco-

nomic simulation model of the US economy.

Recently, a project for developing an arti�cial �nancial market started at
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the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Tech-

nology (Chan; 2001). The project faces three key issues: the construction

of arti�cial �nancial markets with adaptive trading and the analysis of the

behaviour of market-making agents, the study of equilibrium conditions, and

the development of an arti�cial market with web access. The Oxford Cen-

tre for Computational Finance (OCCF) is a recently funded research centre

which has been investigating if and how game theory can be applied in arti-

�cial markets to help �nancial engineers better understanding and managing

operational risk. For example, Johnson et al. (2001) developed an interesting

application of the minority game to real �nancial time series.

Izumi and Ueda (1999a,b, 2001) proposed an exchange market model

with arti�cial adaptive agents called A GEnetic-algorithm Double Auction

SImulator of TOkyo Foreign exchange market (AGEDASI TOF). The model

implements an interesting community of agents able to adapt their beliefs

with time, on the basis of information coming from various sources of news.

For each agent, the AGEDASI TOF iteratively execute �ve main steps: per-

ception of prices, prediction of the future rate, submission of orders, rate de-

termination and genetic adaptation of the prediction methods. The results

show some interesting features about the emergence of clusters of strategies

and of opinion trends.

There exists an impressive mass of scienti�c literature on the subject of

agent-based computational economics: there are books (Levy et al.; 2000;

Tesfatsion and Judd; 2006), editorials (Lux and Marchesi; 2002) and a num-

ber of works by Hommes (2005), by LeBaron (2000, 2006) and by Tesfatsion

(2001a,b, 2002), among the others. This e�ort supports the idea that het-

erogeneous agent models, and the microsimulations approach, are a key tool

to model �nancial markets and to reproduce the main statistical properties
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of �nancial time series.

1.2 How to develop an arti�cial �nancial market

Of course, developing an agent-based arti�cial �nancial market requires spe-

cialized knowledge and e�ort. One of the biggest challenges is to answer to

a large number of design questions: what types of �nancial products will be

traded? What kind of agents will be used? How agents will interact with

each other? What kind of price clearing mechanism will be adopted? And

what kind of simplifying assumptions will be necessary? The list could be

long and, as observed by LeBaron (2006), there is no or little guidance in

this matter. However, the design requirements can be grouped into some

macro categories in order to make the decision process easier:

• Assets. Modern �nance o�ers an huge number of �nancial products.

Each of these has some peculiar characteristics, and they can be mod-

eled in di�erent ways. The dynamics of �nancial markets depend not

only on the players who buy and sell, or on the market structure, but

also on the assets that are exchanged. The main part of the literature

focuses on some major products, such as stocks, bonds, some deriva-

tives and currencies. A detailed description of these products can be

found in Bouchaud and Potters (2004).

• Agents. Three typical trader types arising in many heterogeneous

agent �nancial market models are fundamentalists, chartist or techni-

cal traders, and noisy traders. Fundamentalists base their investment

decisions upon market fundamentals such as dividends, earnings, in-

terest rates or growth indicators. In contrast, technical traders pay

no attention to economic fundamentals but look for regular patterns
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in past prices and base their investment decision upon simple trend

following trading rules. Noise traders act randomly, regardless any

speci�c information of the security. Their presence is sometimes nec-

essary in order to provide liquidity to the market. The majority of the

models proposed in the literature are less or more complex variants of

these basic ideas.

• Evolution and learning mechanisms. Traders can organize their

behaviour in many di�erent ways, not only in terms of kinds of strategy

but also in terms of learning processes and adaptive behaviour. For

instance, they can share strategies and information, they can learn

or imitate, or they can build a network of relationships with other

participants of the market. The behaviour of traders is an example of

the di�erent sources of complexity of �nancial markets, as pointed out

in the stimulating paper by Pellizzari (2005).

• Price determination. One of the most critical issues is the de�-

nition of the method for determining prices. Many methods exist in

real markets, and most of them fall into one of four main categories:

order book, market clearing, price adjustment and random matching

(LeBaron; 2006). The fact that stock exchange markets use di�erent

price clearing mechanisms raises the question whether the market ar-

chitecture signi�cantly a�ects the price behaviour or not. Using an

agent-based arti�cial exchange, LiCalzi and Pellizzari (2006) showed

that di�erent market protocols (batch auction, continuous double auc-

tion and dealership) lead to di�erent results in terms of price stability

and execution quality.

• Environment. As said by Pellizzari (2005), agents are not living in
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a vacuum, but they act in a market environment. The environment

establishes the rules of the game not only because it de�nes a price

clearing mechanism, but also because it could levy taxes, regulate the

kinds of allowable exchange orders and might have a major role in the

process that produces the �nal aggregate results.

These remarks point out that there are many decisions that have to be

taken in order to develop an arti�cial �nancial market model. Also, each

component adds a degree of complexity to the overall result. The are some

guidelines that could help to do the right choices. The �rst one is: think big,

start small and scale fast. A good arti�cial �nancial market may become a

framework that allows to study complex and large system, with many kinds

of agents playing simultaneously in more than one market with di�erent as-

sets. However, the development of such a model is not an easy task, and one

could easily get lost in it. The best solution is to outline the general architec-

ture of the system, and then develop the simplest solution that could work, in

agreement with the agile philosophy. For instance, one could start producing

a model with one kind of assets only, one kind of agents and a simple price

clearing mechanism. Then, it is possible to iteratively add complexity to

the model. The second suggestion is to make use of a suitable programming

language. The agent-based models �t perfectly with the object-oriented pro-

gramming languages (Tveit; 2001; Gilbert and Bankes; 2002), which allow

to model each agent as an instance of a particular class. Also, in order to

scale fast is useful to adopt a proper software development process, such as

an agile methodology (the most famous one is eXtreme Programming (XP)

Beck; 1999; Beck and Andres; 2004), but also a powerful Integrated Develop-

ment Environment (IDE), capable to assist the developers during the whole

of software implementation. Finally, the price time series produced by the
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arti�cial market have to exhibit the same statistical features of real markets,

the so called stylized facts. But this is not a suggestion, it is the necessary

condition that allows to validate the model: it is a must.

1.3 Stylized Facts

It is by now well known that the economic time series of almost all �nancial

assets exhibit a number of non trivial statistical properties called stylized

empirical facts. No completely satisfactory explanation of such features has

yet been found in standard theories of �nancial markets, but more than �fty

years of empirical studies con�rm their presence. For a complete discussion

about stylized facts and statistical issues see Pagan (1996); Cont (1997);

Cont et al. (1997); Farmer (1999); Mantegna and Stanley (1999); Bouchaud

(2000) and the interesting paper by Cont (2001). There is a set of stylized

facts which appear to be the most important and common to a wide set of

�nancial assets: unit root property, fat tails and volatility clustering.

1.3.1 Unit Root Property

A �rst order autoregressive process is a stochastic process of the form:

x(t) = ρ · x(t − 1) + ε(t), where ρ is a coe�cient, and ε(t) is a station-

ary stochastic increment. The term autoregressive indicates that the process

de�nes a regression of x on its own past values. If ρ = 1 the process is called a

unit root process. Although the term unit root process covers a wide range of

processes, the most elementary form is the random walk with iid increments1

In particular, if ε(t) ∼ iid(0, σ2), that is, ε is independently and identically
1Here the terms random walk and unit root will be used interchangeably. With random

walk I mean a non stationary process with a unit root.
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distributed with mean zero and variance σ2, the process is a random walk2.

Several statistical procedures have been proposed to test for the presence

of unit roots, such as the original Dickey and Fuller (1979) test and the

subsequent augmented Dickey-Fuller (ADF) test statistic (Dickey and Fuller;

1981). If x(t) = log [p(t)], where p(t) is the price of an asset at time t,

one is usually unable to reject the null hypothesis H0 : ρ = 1 against the

alternative hypothesis H1 : ρ < 1. If the logarithm of prices follows a random

walk process, the future asset prices are unpredictable based on historical

observations. Also, the volatility of prices can grow without limits in the

long run. These �ndings �t very well with the e�cient market view of asset

price determination.

1.3.2 Fat Tails

Logarithmic returns are a measure of the relative �uctuations of prices. They

are de�ned as r(t) = log [p(t)] − log [p(t− 1)], and are one of the most im-

portant variables in �nance.

In recent years, considerable attention has been given to the distribu-

tion of asset returns. A lot of empirical data on prices and trading volumes

is available since the 1990s, and the increased calculation power of modern

computer technology has allowed researchers to conduct deep empirical anal-

ysis on �nancial data. The most important �nding is that the distribution

of returns is non Gaussian and heavy tailed. This result is at the odds with

the e�cient market hypothesis, that implies that the probability distribution

of price returns follows a Gaussian distribution.In particular, the empirical

studies generally concur that at weekly, daily and higher frequencies, re-

turn distributions consistently exhibit non Gaussian features. On the other
2If the distribution is a Normal one, then you have the simplest stochastic process:

Gaussian white noise
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hand, the distribution is usually normally distributed at monthly and longer

horizons.

In the early literature, the fat tail phenomenon has been quanti�ed by

measuring the fourth moments (kurtosis) of the distribution. Kurtosis is the

degree of �peakedness� of a distribution, and is de�ned such that its value

is equal to zero for a Gaussian distribution. A distribution with positive

kurtosis is called leptokurtic and shows a more acute peak around the mean

and a fat tail. The distribution of the increments of asset prices is clearly

leptokurtic, but this measure is not useful for identifying the distribution of

price returns. Fortunately, recent literature established that the distribution

of returns follows a power-law or Pareto-like tail, with a tail index which is

�nite, and in the range (2, 5) (often around 3).

1.3.3 Volatility Clustering

Volatility measures the amplitude of price �uctuation of a �nancial instru-

ment within a speci�c time horizon. More broadly, it refers to the degree of

(typically short-term) unpredictable change over time of a certain variable.

Volatility is often estimated by calculating the standard deviation of the

price values in a certain time window. In the time series of real stock prices,

it is observed that the variance of returns or log-prices is high for extended

periods and then low for subsequent extended periods: this phenomenon is

called volatility clustering. This fact was observed by Mandelbrot (1963),

who claimed that large changes tend to be followed by large changes, of either

sign, and small changes tend to be followed by small changes. The clustering

of volatility is also proved by the power-law decay of the autocorrelation

function of the daily volatility, typically with a small exponent in the range

γ ∈ [0.1, 0.3] (Mantegna and Stanley; 1999; Liu et al.; 1999).
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Volatility clustering is strictly correlated with two more dependence prop-

erties of returns �nancial time series: the absence of linear autocorrelation

and the presence of non linear autocorrelation.

Absence of autocorrelation in raw returns

The autocorrelation of raw returns is often insigni�cant, except for very small

intraday time scales. It is well known that the autocorrelation decays to zero

in less then �fteen minutes for all real price time series (Cont; 2001). It seems

that this property could give support to the EMH, because one can consider

returns as independent variables. However, the absence of linear autocorre-

lation is not su�cient to exclude that there is some time dependence in price

returns.

Slow decay of autocorrelation in absolute returns

The autocorrelation of absolute returns and of their square, display a positive

and slowly decaying autocorrelation, ranging from a few minutes to a several

weeks (Cont; 2001). This phenomenon can be considered as a quantitative

manifestation of the volatility clustering itself, and suggests that burst of

volatility can persist for periods that range from hours to days, weeks or

even months.



Chapter 2

A Framework for Financial

Market Simulation

2.1 GASM Early History

The GASM was born in the early 2000's at the University of Genoa. The

original project is described in Raberto et al. (2001), and the acronym means

�Genoa Arti�cial Stock Market�. The name was devoted to the project's

birthplace, that in the Middle Ages was a major �nancial centre, where

I.o.u. and the derivatives were invented (Briys and de Varenne; 2000).

The �rst release of GASM was an arti�cial �nancial market with hetero-

geneous agents that traded on a single asset. The agents had only limited

�nancial resources and adopted a simple trading strategy: they were zero

intelligence traders and issued random orders, constrained by their resources

and past price volatility. The price formation process was a clearing house,

a mechanism that determines the clearing price by crossing the demand and

the supply curves given by the current limit orders. These ingredients were

su�cient to build an arti�cial market able to reproduce the main stylized
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facts of �nancial markets: volatility clustering and fat tails in the distribution

of price returns.

Since then, the GASM has been extended and a number of works has

been published (see, e.g. Marchesi et al.; 2003; Raberto; 2003; Raberto et al.;

2003; Cincotti et al.; 2003, 2005). The project is being jointly developed

by Genoa and Cagliari Universities since 2005, and the ultimate goal of our

work is to develop a general framework for �nancial market simulation. First,

we re-engineered the original model and the software system, and then we

extended its features and functionalities in order to address some open issues

in �nancial markets.

2.2 The Original Model

This section presents the main characteristics of the original GASM we used

to develop the present release of the simulation framework. In the basic

model, only one risky asset was traded in exchange for cash. The agents had

limited resources and there were four di�erent trading strategies. The price

formation process was based on the intersection of the supply and demand

curves. Note that the original GASM includes many more features than

those described in this Section, but here are discussed only those that we

used to lay the foundations of the new model.

2.2.1 Agents

Traders were segmented into four groups: random, fundamentalists, momen-

tum and contrarian traders. At each simulation step t, the generic i − th

trader issues an order with probability po = 0.02. The orders are limit orders,

whose limit price and size depend on the speci�c trader's strategy.
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Random Traders

Random traders are characterized by the simplest trading strategy. They

are traders with zero intelligence, and issue random orders. Random traders

represent the bulk of traders who trade for reasons associated with their

needs and not with market behaviour. Zero intelligence traders are described

in many papers, following the pioneering work by Gode and Sunder (1993). If

a random trader decides to issue an order, it may be a buy or sell order with

probability 50%. The order amount is computed at random, but cannot

exceed the trader's actual cash and stock availability. In particular, the

limit price lbi (t) of a generic buy limit order bi(t) issued by the i− th agent

at step t, is computed multiplying the current price p(t) of the stock by a

random number drawn from a Gaussian distribution N(µ, si), as shown by

equation 2.1a. The limit price lsi (t) of a sell order si(t) is computed fairly

symmetrically, as shown by equation 2.1b.

lbi (t) = p(t) ·N(µ, si) (2.1a)

lsi (t) = p(t)/N(µ, si) (2.1b)

The mean µ is set at a value equal to 1.01 in order to have a spread be-

tween the limit prices of sell/buy orders (Raberto et al.; 2003). The standard

deviation of this distribution, si depends on the historical market standard

deviation, σi(τi), computed on a past price series whose length, τi, depends

on each trader memory, according to equation 2.2:

si = k ∗ σ(τi), (2.2)

where k is a constant that is usually set in the range between 3 and 4 and

τi is randomly drawn for each trader from a uniform distribution of integers

from 10 to 100 (Raberto et al.; 2003).
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Fundamentalist traders

Fundamentalists strongly believe that each asset has got a fundamental price,

pf , related to factors external to the market and, sooner or later, the price

will revert to that fundamental value. The fundamental price is the same for

all fundamentalists. If a fundamentalist decides to trade, she places a buy

(sell) order if the last price p(t − 1) is lower (higher) than the fundamental

price pf . Fundamentalists' order limits are set exactly equal to pf , and their

size (in stocks for sell orders and in cash for buy orders) equals a random

fraction of the current amount of stocks or cash owned by the trader.

Momentum Traders

Momentum traders are trend followers. They play the market following past

price trends, and strictly rely on price information. Momentum traders buy

(sell) when the price goes up (down). They represent, in a simpli�ed way,

traders following technical analysis rules and traders following a herd be-

haviour. A time window τi is assigned to each momentum trader at the

beginning of the simulation through a random draw from a uniform distri-

bution of integers in the range 10 to 50 days. If the momentum trader issues

a limit order, the limit price li(t) is set at the stock's price of the previous

time step plus an increment (decrement) proportional to the price di�erence

computed in the time window τi, as shown in equation 2.3.

li(t) = p(t) ·
[
1 +

p(t)− p(t− τ)
τp(t− τ)

]
(2.3)

If the momentum trader issues a sell order, the order size is a random

fraction of the number of shares owned by the trader herself. In the case

of a buy order, the trader employs a random fraction of her cash, and the

number of demanded stocks is the ratio between that fraction and the limit
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price li(t).

Contrarian traders

Contrarian traders are trend-followers too, but they speculate that, if the

stock price is rising, it will stop rising soon and fall, so it is better to sell

near the maximum, and vice versa. A time window (τi) is assigned to each

contrarian trader at the beginning of the simulation in the same way as for

momentum traders. The contrarian trader's order limit price and quantity

are computed in the same fashion as the momentum traders, but in the

opposite direction.

2.2.2 The Price Clearing Mechanism

The price formation process is based on the intersection of the demand and

supply curves. The limit orders are all collected after each simulation step,

and the market is cleared by crossing the supply and demand curves given

by the current limit orders. The orders that are compatible with the new

price are executed, while the ones that do not match the clearing price are

discarded. The original algorithm, described in Raberto et al. (2001), is very

simple and direct and can be summarized as following.

Let be U the number of buy orders and V the number of sell orders issued

by the traders at a certain time step t = th. Also, let
{
ab

u(th), bu(th)
}
, u =

1, ..., U , be the data associated to the U buy orders. In each pair, the quantity

of stock to buy, ab
u(th), is associated with its limit price, bu(th). As regards

the V selling orders, they are represented by the pairs: {as
v(th), sv(th)},

v = 1, ..., V . Here the quantity to sell is as
v(th), while its associated limit

price is sv(th). The cleared price, p∗, is determined by intersecting the two

functions:
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fth(p) =
∑

u|bu(th)≥p

ab
u(th) (Demand curve) (2.4)

gth(p) =
∑

v|sv(th)≤p

as
v(th) (Supply curve) (2.5)

The orders matching the new price p∗, i.e. buy orders with maximum price

lower than or equal to p∗, and selling orders with minimum price higher than

or equal to p∗, are executed. Subsequently, the amount of cash and assets

owned by each trader are updated.

Figure 2.1 shows the shape of the demand and of the supply curves in

a case derived from a simulation. The resulting clearing price p∗ is deter-

mined by the x-axis coordinate of the intersection point between the two

curves. Note that in this example the unbalance towards buy orders causes

an increase of price.

Figure 2.1: Price Clearing Mechanism. The new price p∗ is determined by the

intersection between the demand and supply curve. The �gure is drawn from a

simulation.
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It is worth noting that in a closed market the number of shares sold

must be equal to the number of shares bought. If fth(p∗) < gth(p∗), only

fth(p∗) stocks will be traded. In order to equilibrate the number of stocks

exchanged, gth(p∗) − fth(p∗) stocks o�ered for sale at a limit price p∗ or

more are randomly chosen and discarded from the corresponding sell orders.

Symmetrically, if fth(p∗) > gth(p∗), then fth(p∗)− gth(p∗) stocks demanded

for buying by traders at a limit price less or equal to p∗ will be randomly

discarded.

2.3 The Reengineering Process

The main goal of this research has been the development of a general frame-

work for �nancial market simulation. The project made use of the experience

gained with the original model, and improved its architecture and extended

its functionalities in order to build a �exible and easily modi�able system,

that could be rapidly adapted and extended to study, model and analyse the

plenty of open issues of real �nancial markets.

The current version of the model includes both structural and behavioural

assumptions. Structural assumptions are indicative of those trading mecha-

nisms which de�ne the market rules, while behavioural assumptions refer to

trading strategies and the rules used by traders for making their decisions

(LiCalzi and Pellizzari; 2002). The software system obtained is �exible and

easily modi�able. The software framework is able to model the impact of

transaction taxes on traders' behaviour and wealth, the e�ects of short selling

and margin trading, the interplay of stock and option market, the interplay

between stock markets in di�erent currencies, with an exchange market in

between. In fact, this framework has been developed in subsequent steps,

each one aimed to extend and generalize the previous one:
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1. Its �rst version was able to model and simulate a stock market pop-

ulated by di�erent kinds of autonomous heterogeneous agents. The

agents have �nite cash and stock amounts; they issue buy/sell limit

orders basing on their behaviour and their constrained budget; both

cash and asset initial endowments are obtained applying a given law,

which can be uniform (all agents have the same initial endowment),

or can be a Zipf's law (agent's initial endowments are distributed ac-

cording to a power law, thus with big di�erences among traders). In

this version of the arti�cial stock market there was one stock, traded

in exchange for cash; the stock pays no dividend, and there are no

transaction costs or taxes. The kinds of trader behaviour implemented

in this version are: (i) random traders, who trade at random; (ii) fun-

damentalist traders, who pursue a fundamental value of the stock; (iii)

chartist traders, who �follow the market�, speculating that if prices are

increasing they will continue to go up, and that if prices are decreasing,

they will continue to drop; (iv) contrarian traders, who act in the oppo-

site way than chartists. In this case, the proposed model exhibited the

key stylized facts of �nancial time series and was able to simulate the

long-run wealth distribution of the di�erent population of the agents.

2. A second version of the framework added the possibility to introduce

taxes on transactions, and to open the market, adding or subtracting

cash to or from traders at given simulation steps, and with various

possible strategies. It was used to study the introduction of transac-

tion taxes both in a closed and in an open market (with cash in�ow).

Market dynamics and the traders' behaviour were studied, and in par-

ticular the distribution of wealth among di�erent kinds of traders.

3. In the third version we added to traders the possibility to go short, both
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in stock and cash. Also, both trade margin requirements and short sale

restrictions were added. We used this version to study the e�ects of

this kind of trading on daily price volatility and on traders'long-run

wealth distribution.

4. A subsequent version of the framework had the ability to simulate the

interactions between stock markets and a foreign exchange market.

We enabled the framework to simulate two stock markets with di�er-

ent currencies, giving traders the option to operate in one stock market

at a time, and to switch to another one if they chose to do so. A third

FOREX market was also simulated, to manage currency exchange. In

this case, the main purpose of the simulation was to analyse the inter-

action between two stock markets located in two di�erent countries,

and their in�uence on the FOREX market.

5. The last version of the framework was made able to simulate a stock

option market, and the underlying stock market. The main goal is

to analyse the impact of the stock option trading on the market of

the underlying security. In this case the software system has been ex-

tended introducing a new kind of trades security, the option, and two

new kinds of traders, one representing traders operating in the option

market, and the other representing the issuer of options (a bank). The

option we model is an European option, which gives the right to buy or

sell another �nancial asset (underlying security) at a speci�ed expira-

tion date for a strike price. There are two types of options, call option

and put option. The software framework allows the owner to exercise

an option at its expiration date, of course only if it is in the money.

The option trader can buy/sell stocks in the stock market, and can

buy stock options in the option market. The bank issues options, and
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cover itself in the stock market when option traders exercise their in

the money options when they expire. The main goal of this version of

the framework is to analyse whether the introduction of options have

an impact on underlying asset volatility, and on wealth distribution of

traders.

The �rst version of the model includes the main characteristics of the

original GASM described in section 2.2. It was a proactive work, because we

deeply analysed each component of the simulation model and we improved it

by modifying some equations, by updating the trading process and re-tuning

all the parameters. This work has been necessary to make the whole system

more �exible and easily modi�able. The resulting model is more robust than

the original one both in terms of changes in the parameters and in terms of

changes in the composition of the population of traders. We validated the

new model by showing that it exhibits the main stylized facts of �nancial

markets, as found by using the original one. The second and the third version

of the model can be seen as improvements devoted to analyse the e�ects of

the imposition of di�erent rules and regulations on markets. The fourth and

the �fth versions explore new kinds of �nancial markets, beyond the common

case of the stock markets, and their mutual interaction.

Since that the current version of the framework is the result of an incre-

mental and iterative process, we will introduce its features following the same

approach. In particular, our research originated from some policy-oriented

questions that require models with realistic behaviour, with agents capable

of reacting to institutional changes, such as the imposition of a Tobin tax on

the market. As said above, this topic leaded us to the development of the

second version of the framework. In chapter 3 we introduce the details of

the model and the results obtained with that version of the framework. For
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the sake of brevity, it will include the results we found with the �rst version

of the model. Chapter 4 describes the improvements made to the model in

order to explore another critical question in �nancial literature: the impact

of margin requirements and of short-sale constraints on prices and volatility,

and their relationship with stock market crashes. Finally, Chapter 5 is about

a further extension of the model which allowed us to analyse the interaction

between two stock markets located into two di�erent countries, and their

in�uence on the FOREX.

This structure has to main advantages: the �rst one is that we introduce

the model details gradually, simplifying the treatment and the exposition of

the results. The second one is that each Chapter could be read separately as

a case study, without knowing anything of the details of the other Chapters.

Each one of these three Chapters is structured following the same pattern:

the �rst section describes the historical background and the motivations

that leaded to each version of the framework. Then there are details about

the model itself, and the description of its extensions and modi�cations in

comparison with the previous version. Finally, we discuss the simulation

process and the results we found.

Note that this thesis describes the results we found with versions from

one to four, while the last one will be skipped because it is in progress and is

the result of a joint work with other researchers from our group. Details on

the �fth version of the model have been presented in 2006 MDEF Conference

(Ecca et al.; 2006), and then summarized in a paper submitted to a special

issue of the Computational Economics Journal.
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2.4 Simulation Software

In this section we give a brief account of the software engineering approach

used to design and develop the simulator that implements the market model

presented here. The framework is conceived to be a system in evolution,

easy to modify and to extend. In order to achieve this goal, we used an

Object Oriented language and adopted some practices from the Extreme

Programming (XP) (Beck; 1999; Beck and Andres; 2004) software develop-

ment methodology. XP is probably the most famous Agile Methodology for

software development. It can be shortly described as a set of practices and

values which encourage people to do the simplest things that could work,

rejecting the complexity and ceremony of traditional approaches. XP is an

incremental and iterative software development process, which enables to

build the software system step by step and to release new features, when

required, as soon possible. XP does not try to plan the development in

advance, but is able to adapt to requirement changing. It is based mainly

on coding, testing and refactoring, not on up-front analysis and design. A

detailed description of XP lies outside the objective of this report, but you

can �nd a broad literature on this topic.

A key feature of the software framework we developed is that all its

modules are provided of automatic tests (Unit Tests), so each system class

has a corresponding test class. All unit tests are grouped in a �test suite�,

and this is run very frequently and in an automatic fashion. In this way,

every change made to the software, in order to extend its features, to �x

a bug or to improve its structure (refactoring), is followed by running the

tests. If the change introduced a bug, or undesired side e�ects, it is very

likely that some test fails, immediately revealing the problem and allowing

to �x it. This practice leads to less time spent in �nding the code responsible
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for errors, and in a higher overall quality of the system.

The software framework has been developed using Smalltalk language,

and speci�cally Cincom VisualWorks vr. 7.4, which is freely available for

non-commercial applications. Smalltalk is a language fully Object Oriented,

with terri�c productivity, enabling to develop complex systems and to make

substantial modi�cations to them very quickly, not jeopardizing quality. As

regarding performance, Smalltalk is an interpreted language, and thus, like

Java, less speedy than a compiled language like C or Fortran. However, it

is enough for our purposes, and there is not any need to trade Smalltalk

�exibility for further speed. In any case, translating the framework into a

more popular OO language like Java would be straightforward, while it can

be possible also to port it to C language.

2.4.1 Veri�cation and Validation

One of the most critical issues in developing software simulation models

is the veri�cation and validation of the model itself. Unfortunately, there

is no a well de�ned technique or process to certify the �correctness� of a

model. Model veri�cation usually refers to techniques used to ensure that

the computer programming and implementation of the theoretical model are

correct. The object-oriented design techniques and program modularity help

to guarantee the correctness of the simulation software (Sargent; 1994). Our

simulation software has been developed following some practices from XP

(see section 2.4), and has a modular architecture that allowed us to group

together functionally-similar classes into packages with clear behaviour and

well de�ned interfaces. Also, each module is supplied with a corresponding

test class that ensure the correct implementation of each operation.

Model validation consists in understanding if the computerized model
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within its domain of applicability possesses a satisfactory range of accuracy

consistent with the intended application of the model (Sargent; 1994). The

validation of economic models is a largely unexplored topic. Arti�cial �nan-

cial markets can be characterized by a large number of parameters in order

to �t any kind of real data, but this approach usually leads to complicated

models, sometimes to the point to build intractable systems, or at least mod-

els extremely di�cult to calibrate. On the other hand, if the framework is

too simple, it becomes analytically tractable, such those proposed by tradi-

tional economic theories. In Chapter 1 we have already shown that these

kinds of models cannot reproduce all the features of real �nancial markets.

A rule of thumb is to keep the model as simple as possible, leaving out all

unnecessary components.

The problem of validation can be addressed with the requirement that

the model exhibits the main statistical properties of �nancial time series,

both using di�erent data from real markets and using various time horizons.

In Section 1.3 we showed that there is a set of stylized facts that is common

to a wide set of �nancial assets: unit root property, fat tails and volatility

clustering. In the following Chapters we will show that our model exhibits

all these statistical properties. A further kind of validation is the conceptual

model validation. Its aim is to understand if the conceptual model is correct

and reasonable for its purpose. We performed it by presenting the model

and the results at many international conferences, and submitting papers to

economics journals (see, e.g. Mannaro et al.; 2005; Ecca et al.; 2006; Mannaro

et al.; 2006; Setzu and Marchesi; 2006). This activity allowed us to collect

meaningful suggestions and feedback on the model and on its developments.



Chapter 3

Assessing the Impact of

Tobin-like Transaction Taxes

Although the analysis of policy measures to curb speculative activity in �-

nancial market attracts public attention and raises intense policy debates,

the literature on the e�ects of measures like the introduction of a Tobin tax

is surprisingly sparse. Part of the silence of economic theory on this issue is

due to the fact that it is not clear why volatility rises and falls, and policies

directed at reducing it are unlikely to succeed and may also have harmful

e�ects.

This chapter presents a study on the e�ects of a transaction tax on one

and on two related markets. In each market it is possible to levy a transaction

tax. In the case of two markets, each trader can choose the market where to

trade, and an attraction function is de�ned which drives their choice, based

on perceived pro�tability. For the sake of brevity, this chapter joins together

the �rst two versions of the arti�cial �nancial market framework (see Section

2.3).
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3.1 Motivations

The deep �nancial crises over the past decade, starting from the Mexican

pesos crisis in 1994 to the Argentina one in 2001, raised serious doubts as to

the ability of free markets to re�ect the �true� value of a speci�c currency. In

fact, too many speculative activities can produce a strong bias in exchange

rates and create a monetary crisis, or at least amplify its e�ects. Many

observers claim that a tax on currency transactions may prove a powerful

tool for penalizing speculators and stabilizing markets. For these reasons,

in recent years there has been an ongoing interest in the idea advanced by

some economists (among whom the most famous is James Tobin; 1978) to

levy a small tax on currency transactions.

Over the last thirty years the volume of foreign exchange trading has

increased hugely. In 1973, daily trading volume averaged around $15 billion;

today, it averages $ 1.9 trillion (BIS; 2005). Moreover, 90% of the trad-

ing volume concerns short-term transactions. In general, economists believe

that most short-term transactions are of a speculative nature, and many

considered them to be a source of market volatility and instability. Instead,

medium or long term transactions are usually related to real investments.

In 1936, Keynes in The General Theory of Employment, Interest, and

Money (Keynes; 1936) asserted that the levy of a small tax on all stock

exchange transactions should contribute to reducing instability in domestic

stock markets. According to Keynes, this tax should discourage speculators

from trading, resulting in lower price volatility of the taxed asset.

In 1978, the Nobel Prize Laureate in Economics James Tobin (1978) pro-

posed the levy of a small tax (0.1%) on all foreign exchange transactions.

This would penalize short-term speculators but not long-term investors, fa-

voring market stability. Later, several authors (see, e.g. Palley; 1999; Baker;
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2000; Felix and Sau; 1996; Frankel; 1996; Kupiec; 1995) proposed a similar

solution for other kinds of securities.

On the other hand, some economists disagree with Keynes and Tobin's

views. Friedman (1953) challenged these theories arguing that speculative

trading could stabilize prices.

There are only a few empirical analyses on the e�ects of transaction taxes

on price volatility. Umlauf (1993) studied Swedish stock market data and

showed that the introduction of a Swedish tax increased the volatility of

stock prices. Its worth noting that the tax level was set at 1% in 1984 and

at 2% in 1986: such values are far too high compared with the percentage

proposed by Tobin.

Habermeier and Kirilenko (2001) analysed the e�ects of transaction costs

and of capital controls on markets, and showed that they can have negative

e�ects on price discovery, volatility and liquidity, reducing market e�ciency.

They produced evidence that the Tobin tax increases market volatility by

discouraging transacting, thereby reducing market liquidity.

(Palley; 2003) argues that the Tobin tax is good for �nancial stability,

and that total transaction costs are not necessarily increased by its impo-

sition. Actually, transaction costs could change the composition of traders,

precluding short-term investors from the market. It leads to a reduction in

volatility and consequently in total transaction costs.

Aliber et al. (2003) demonstrated that a Tobin tax on Foreign Exchange

Transactions may increase volatility. They constructed the time series of

monthly transaction costs estimates, volatility and volume, for four curren-

cies (the British Pound, the Deutsche Mark, the Japanese Yen and the Swiss

Franc) for the period 1977 to 1999. They showed that volatility is posi-

tively correlated with the level of transaction costs, while trading volume
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is negatively correlated. Their results suggest that an increase in transac-

tion costs leads to a decrease in trading volume. Therefore, the e�ect of

the tax on volatility is exactly the opposite of what the proponents of the

Tobin tax would like to have seen. On the other hand, the �ndings of Aliber

et al. (2003) were strongly criticized by Werner (2003), who argued that the

direction of causality between tax and volatility/volumes may be just the

opposite.

In The e�ectiveness of Keynes-Tobin transaction taxes when heteroge-

neous agents can trade in di�erent markets: a behavioural �nance approach

Westerho� (2004a) developed a model in which rational agents apply tech-

nical and fundamental analyses for trading in two di�erent markets. Their

model shows that, if a transaction tax is imposed on one market, speculators

leave this market, making it less volatile. Therefore, their model con�rms

Tobin's hypothesis.

3.2 Model Description

The model is made up of an economy with two stock markets, each trading

an asset with similar characteristics, as regards prices dynamics and traders'

behaviour.

Each trader is modeled as an autonomous agent, and each is given a

given amount of cash and assets. The simulation software (see Section 2.4)

enables to track the traders' portfolio, the price series history and the orders

issued by each trader for each time step. A time step is conventionally one

day in duration.

First we examined the dynamics of a single market, both without and

with a transaction tax of 0.05% to 0.5%. Then we considered the case of

two markets, examining market trend without tax, and then the e�ects of
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introducing the tax �rst in one market, and lastly in both markets.

At each time step, each trader trades only within one market. Before

trading takes place, each trader, in accordance with an attraction function

based on expected gain, may decide to leave one market, switching to the

other.

The trader model de�nes the basic behavioural rules for each kind of

trader. Each kind of trader is tuned setting the values of some parameters,

in such a way that the resulting price series show the well-known �stylized

facts�, and price volatility is similar to that found in real markets. Each kind

of trader is provided with an �activity� parameter that roughly controls the

activity of the trader, and her reactivity to the markets, thus in�uencing the

trader's contribution to price volatility. After many trials, we were able to

introduce a parameter k common to all kinds of traders � an increase in k

leads to an increase in volatility and in volumes.

We concentrated our study on the e�ects of di�erent compositions of

the populations behaviour on taxed (and non taxed) markets. The price

clearing mechanism we used is the same in all simulations, and is �neutral�

under this respect. Other works analysed market dynamics using di�erent

market mechanisms and di�erent trade behavioural rules in terms of stylized

facts and of allocative e�ciency (see, e.g. Bottazzi et al.; 2005).

We studied the case of a single market, to assess the impact of a transac-

tion tax on price volatility and traders' wealth. Then, we studied two related

stock markets, to assess the impact of levying a tax on one of them, and then

on both.
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3.2.1 The decision making process

The proposed model includes N traders having four di�erent kinds of be-

haviour: random, fundamentalist, momentum and contrarian. At each sim-

ulation step, a trader can issue orders with a given probability, which we

usually set at 10% for every trader. In the case of two markets, each trader

chooses the most attractive market, according to her attraction function.

The behaviour of the agents is based on the equations described in Section

2.2. The main limit of the original model was that in order to obtain a good

price process the number of non random traders has to be kept very small.

As described in Raberto et al. (2003), random traders are a �thermal bath�,

and the number of chartist and fundamentalist traders is always less than

1%. Also, the probability that an agent will issue an order is small and equal

to 2%. We upgraded the and improved the agents' model so that the total

number of agents which use a di�erent trading strategy from the random

one can reach the 30% of the total number N of agents, without in�uencing

the overall price process. Also the probability that an agent issues orders

can be increased over 5-fold. This result allowed us to deeply analyse the

interactions among the various kinds of populations, in a more realistic way.

Random traders

Random traders (type R) are zero intelligence traders. We modeled them

using the equations described in Section 2.2, but we performed a sensitivity

analysis of each parameter to calibrate them. We set the window length τi

used for random traders to a value randomly chosen for each trader between 2

and 5, while the value of k was set at 1.9. These values di�er somewhat from

those typically used in past simulations with the original model, that had a

longer time window, and an higher value of k. By so doing, we increased the
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feedback of price volatility on trader's behaviour. In this way, we obtained

more realistic price statistical behaviour in terms of stylized facts, varying

the trader population and levying various tax percentages.

Fundamentalist traders

Fundamentalists (type F) strongly believe that each asset has got an intrinsic

fundamental value pf . Fundamentalists' order limits are set toward pf , and

their size (in stocks for sell orders and in cash for buy orders) equals a fraction

of the current amount of stocks or cash owned by the trader. This size is

proportional to a term q shown in equation 3.1, where k is the same k used

for random traders in equation 2.2.

q = k · |p(t)− pf |
pf

(3.1)

When a transaction tax is levied, these computations are performed in-

creasing (or decreasing) the current price of the tax value.

Momentum traders

Momentum traders (type M) are trend-followers. If the momentum trader

issues a buy (sell) order, the limit price li is calculated as in the original

model, as shown in equation 3.2. The time window τi is draw from a uniform

distribution of integers in the range 2 to 10 days. The expected increment (or

decrement) of the price is divided by the window length, and then multiplied

by the same k used for random traders in equation 2.2. In this way, the trend

is always computed proportionally to an estimate of the derivative of prices.

li = p(t) ·
[
1 + k · p(t)− p(t− τ)

τp(t− τ)

]
(3.2)
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If a transaction tax is levied, the current price p(t−1) is adjusted adding

(or subtracting) the tax to (from) it, to account for the tax e�ect.

If a momentum trader decides to sell the quantity of assets that s/he

can sell qs
i cannot exceed the amount of assets ai(t) owned by the trader i.

If a momentum trader decides to buy, the maximum purchasable quantity

qb
i is limited by the cash ci(t). Both qs

i and qb
i are computed proportionally

to the absolute value of an estimate of the derivative of prices, as shown in

equations 3.3 and 3.4

qs
i = ai(t) · U(0, 1) ·

[
1 + k · |p(t)− p(t− τ)|

τp(t− τ)

]
(3.3)

qb
i =

ci(t)
pi(t)

· U(0, 1) ·
[
1 + k · |p(t)− p(t− τ)|

τp(t− τ)

]
(3.4)

where U(0, 1) is a random draw from a Uniform Distribution between 0

and 1.

Contrarian traders

The contrarian (type C) trader's order limit price and quantity are computed

in the same fashion as the momentum traders, but in the opposite direction.

The transaction tax is dealt with in the same way as for momentum traders.

Attraction functions

In the case study of two markets, at each simulation step (t), the trader

decides in which market she prefers to trade by evaluating an attraction

function for both markets.

Let AT,i
1 (t) and AT,i

2 (t) be the attraction functions for the i-th generic

trader of type T for the �rst and the second market, respectively. At each



3.2 Model Description 45

simulation step t, the i-th trader chooses SM1 with probability given by

equation 3.5a, and SM2 with probability given by equation 3.5b.

πi
1(t) =

AT,i
1 (t)

AT,i
1 (t) + AT,i

2 (t)
(3.5a)

πi
2(t) = 1− πi

1(t) (3.5b)

The attraction functions have been designed taking into account the char-

acteristics of each sub-population of traders.

In most simulations, the trader populations of two markets do not di�er

signi�cantly � no more than a few percentage points. However, in about 1-2%

cases, it may happen that one market becomes too attractive compared to the

other, triggering an avalanche of traders and leaving empty � or almost empty

� the other market. To avoid this divergent behaviour, we constrained the

values of the probability function πi
1(t) to a minimum set at 0.3. This value

is somewhat arbitrary, but it is su�cient to obviate the problem completely,

without introducing any signi�cant side-e�ect in the simulations.

As regards attraction functions, they have been designed taking into

account the speci�c characteristics of various kinds of traders.

Random traders represent the bulk of traders operating in the market

for personal reasons, or with no speci�c trading strategy. When faced with

the possibility of operating in one of two markets, they naturally tend to

prefer the less volatile one. Moreover, they also tend to avoid the market

with higher tax rate. In our model, at each simulation step random traders

choose randomly to buy or sell, with equal probability. If a random trader

decides to sell, her attraction function re�ects the considerations made above,

and is shown in equation 3.6.

AR,i
j,sell = eσ2

j (τi)(1− taxj) (3.6)
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The superscript R denotes the random trader, j denotes the j-th asset,

and σ2
j (τi) represents the volatility of the returns computed in the time

window τi speci�c for each trader. The exponential term ensures that random

traders prefer to sell in a volatile market. The (1 − taxj) term reduces the

attraction of a taxed market, being taxj the transaction tax imposed in j−th

market. For instance, if the tax is 1% in market j, the term taxj is set at

0.01.

If a random trader decides to buy, she performs this action in a less

volatile market with a higher probability. So, the probability that a random

trader buys in a less volatile market is equal to the probability that a ran-

dom trader sells in a more volatile one. The attraction function is given by

equation 3.7.

AR,i
j,buy = e−σ2

j (τi)(1− taxj) (3.7)

Fundamental analysis requires a deep knowledge of the market. Funda-

mentalists thus tend to concentrate on a limited number of markets (Wester-

ho�; 2004b). In our model, each fundamentalist issues orders in one market

only, where she is more knowledgeable, so for each of them the attraction

function of one market is one, and that of the other market is zero. The fun-

damentalist traders' population is equally divided between the two markets,

as well as their total initial wealth.

Momentum and contrarian traders are trend-followers, so they choose

the market depending on the trend of past prices. Basically they prefer the

market with the highest trend, computed in their time window τi. They

also take into account the transaction tax rate, in the same way as random

traders. These choices are re�ected in the attraction function reported in

3.8.
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AM,i
j = AC,i

j = e
|pj(t)−pj(t−τi)|

τipj(t−τi) (1− taxj) (3.8)

The exponential term ensures that the attraction functions will be always

≥ 1 so that equations 3.5a and 3.5b will not diverge.

3.2.2 Price clearing mechanism

The price clearing mechanism of each market is based on the intersection of

the demand-supply curve. We adopted the original algorithm described in

Chapter 2.

3.2.3 Financial Resources

Each agent owns a �nite amount of �nancial resources, that is cash and

stocks. The simulation software is able to keep track of the traders' portfolio,

and the decisions of the individual are in�uenced by their limited budget.

Traders' initial endowment, both in cash and in stocks, follows a Zipf's

law. This law usually refers to the frequency of an event relative to it's rank.

George Kingsley Zipf (1949) found that the frequency of use of the English

words in texts decays as a power law of its rank. The frequency f(i) of the

i-th most common word is given by f(i) ∼ i−β, where β ' 1. A power law

y = Cx−a can be expressed by the formula: log(y) = log(C) − a · log(x),

that is a straight line with slope −a on a log-log plot. A power law decay

means that small occurrences are very common, but large ones are extremely

rare. It is worth noting that this regularity is sometimes also referred to as

Pareto. Pareto was interested in the distribution of income. Let be X a

random variable, X is said to follow a Pareto law if P (X ≥ x) = 1/xα,

where α is a positive constant (Pareto; 1897). In other words, his law means

that there are a few millionaires and many people who make modest income.
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Note that a power law distribution gives the number of people whose income

is x, and not how many people have an income greater than x. It means that

the power law gives the probability distribution function (PDF) associated

with the cumulative distribution function (CDF) given by Pareto's law. The

three terms: power-law, Zipf and Pareto can refer to the same thing and, in

the case of β = 1 (or α = 1) the power-law exponent a = 2 (see, e.g. Adamic;

2000). This kind of law can be applied to many real phenomena, and holds

also for wealth (Dragulescu and Yakovenko; 2002).

The initial traders' endowment, both in cash and stocks, was obtained

by dividing agents into groups of 20 traders, and applying Zipf's law to

each group. We found that an unequal initial endowment increases trading

volumes and generates logarithmic returns with fatter tails. In the simplest

case of a market with one stock and one currency, the distribution of wealth

among traders is calculated as follows.

Let be C(0) the aggregate amount of cash at the beginning of the sim-

ulation C(0) =
∑

i ci(0), and A(0) the aggregate amount of stocks A(0) =
∑

i ai(0). Also, let p be the average price at which the aggregate value of

stocks equals the total value of cash: p = C(0)/A(0), and let N be the

number of traders. At the beginning of each simulation, the i-th agent

is endowed with an amount of cash ci(0) = Ĉ/i and with an amount of

shares ai(0) = Â/i, where Ĉ and Â are two positive constants, such that the

average amount of cash owned by the agents of each group
∑20

k=1 ck(0) is

equal to C(0)/N =
∑N

i=1 ci(0)/N = ci(0), and the average number of stocks
∑20

k=1 ak(0) is equal to A(0)/N =
∑N

i=1 ai(0)/N = ai(0). We usually set

ci(0) = 50, 000 and ai(0) = 1, 000 stocks.

It is worth noting that p is the �equilibrium� price at which the aggregate

value of stocks equals the total value of cash value for markets with only



3.3 Results 49

random traders Raberto et al. (2003). It is the equilibrium price for a closed

market, without external in�ows or out�ows of cash. It is due to the budget

constraints, that oblige the price p(t) to oscillate around the equilibrium

value set at C(0)/A(0). Its value is linked with the mean-reverting behaviour

of the simulator, and we selected it as best unbiased fundamental price pf

used by fundamentalists.

In the case of two markets, we found that the �equilibrium� price depends

on the square root of the number of markets: p ' √
m · C(0)/

∑m
i=1 Am(0),

where m is the number of markets. In this case each trader is given with an

average 1, 000 stocks per market, and $70,500.

3.3 Results

In this section we describe the results of the computational experiments we

performed. We studied the e�ectiveness of the Tobin tax in two steps. In

section 3.3.1 we discuss one market only, �rst without the tax, then levying

a tax rate between 0.05% and 0.5% on each transaction. In section 3.3.2 we

discuss two markets, �rst with no tax applied, and then applying the tax to

the �rst.

We performed numerous simulations for all cases. Each simulation is usu-

ally run with 4, 000 time steps (corresponding to a time span of 16 years),

and with 400 agents, each with a probability p = 0.1 to trade at each time

step. We also performed some simulation runs with 4000 agents, each with

a probability p = 0.01 to trade at each time step. In this way, the average

number of market transactions is the same as the previous case, but each

trader places on average ten times less transactions, thus maintaining virtu-

ally unchanged her wealth, irrespectively of the trading strategy and of the

tax.
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For each trader con�guration we performed 20 runs. In some cases, we

also performed 50 runs, but we never found results to di�er signi�cantly from

those obtained with 20 runs.

3.3.1 One market

As described in the following three Sections, we �rst tested the overall be-

haviour of our model, varying the percentage of fundamentalists from zero

to 30%, in steps of 10, and the percentage of chartists from zero to 30% in a

similar fashion. Note that chartists always comprise the same percentage of

momentum and contrarian traders. Then we tested our model keeping the

percentage of fundamentalists (20%) and of chartists (20%) unchanged but

varying the percentage of momentum versus contrarian traders in 5% steps.

Stylized Facts

First, we tested for the presence of the stylized facts broadly explained in

Section 1.3. The results are in agreement with those of the original version of

the GASM (see Raberto; 2003), so this Section provides just concise summary

of the main �ndings. For the sake of brevity, the following Chapters will not

report details on the stylized facts, except for those cases which deserve a

special mention. Price series show the usual stylized facts, with fat tails of

returns and volatility clustering. Note that, as discussed in section 3.2, the

trader models are not the same as previous reported simulations, but now all

depend on the same coe�cient k, able to control traders' reaction to price

trend, and thus to tune market volatility. After many test runs, we set the

value of k at 1.9, which guarantees the appearance of the price series stylized

facts for virtually every trader composition used.

In Figure 3.1 we plot the histogram of daily log-returns. A best-�t normal
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distribution is superimposed; its narrow peak is well de�ned and is typical of

all simulations we ran. Figure 3.2 shows the survival probability distribution

of the standardized logarithmic return. The solid line represents the survival

probability distribution of the best Gaussian �t and the bold stars that of the

returns. The deviation from Gaussian distribution shows again a leptokurtic

behaviour in the returns tail, with a very well de�ned power-law behaviour

for high values of returns. We found that the tail of the empirical survival

probability distribution follows a power law, with a slope that is always in

the interval [3, 5].

Figure 3.3 shows the simulated stock price path (top) and logarithmic

returns (bottom) of a typical simulation. This �gure emphasizes the volatil-

ity clustering phenomenon, and the mean-reverting behaviour of the price

path in the long-run. We tested for the presence of a unit root, according to

the Augmented Dickey-Fuller test (see Dickey and Fuller; 1979, 1981). The

null hypothesis of a unit root is rejected at the signi�cance level of 1%. This

result is in agreement with the results found by Raberto (2003), and is due

to the fact that we analysed a closed market, with a strong mean-reverting

behaviour. A real market cannot be considered a closed system, but it heav-

ily interacts with the economy, interest rates external events and so on. It

is worth noting that the unit root hypothesis is recovered in the case of an

open market. In the case of an open market the null hypothesis of a unit

root cannot be rejected. These results have been explained in Raberto (2003)

and, for the sake of brevity, they are not reported here. Finally, �gure 3.4

shows the autocorrelation function of raw returns and of the absolute val-

ues of log-returns: the �rst one quickly decays to zero, but the second one

exhibits a slow decay and the presence of long-range correlations.



3.3 Results 52

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

D
en

si
ty

Returns

Figure 3.1: Histogram of the distribution of daily log-returns. The �gure shows the

data related to a simulation superimposed on the best normal �t.
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Figure 3.2: Survival probability distribution of logarithmic returns. The �gure

shows the data related to a simulation superimposed on the best normal �t.
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Figure 3.3: Daily time series for prices (top) and returns (bottom) in the case of

a single-stock closed market.
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Figure 3.4: Estimate of the autocorrelation function of logarithmic returns (top)

and of the autocorrelation of absolute returns (bottom).

One market with no transaction tax

When the tax is not levied in a closed market, we obtained results similar to

those reported in Raberto et al. (2003), with fundamentalists and contrarian
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traders gaining wealth with time, at the expense of momentum traders and,

to a lesser extent, of random traders.

Here we describe the results of several simulations performed varying the

percentage of fundamental and chartist traders from 0% to 30% in steps of

10%, the remainder being random traders. Table 3.1 shows the mean and

standard error of price volatility, computed for the case of no Tobin tax.

Volatility of the returns was computed as the variance during period T :

σ2
r =

1
T − 1

T∑

t=1

(rt − r̄)2 (3.9)

where rt = ln(p(t)) − ln(p(t − 1)) represents the logarithmic returns at

the instant t. We always omitted to include the �rst 250 simulation steps

in price volatility computation, to accommodate possible initial transient

e�ects on price volatility. Note that all values reported in tables from 3.1 to

3.13 are multiplied by 103.

As regards the width of time window T , we performed various tests,

varying T between 5 and 50 time steps. In all cases, irrespectively of trader

composition and tax value, we found very stable average price variance val-

ues, slowly decreasing with T . The percentage di�erence of average price

volatility between T = 5 and T = 50 is always below 12%. We then decided

to use the value T = 10, which guarantees the best trade-o� between low

and high values of the time window used to compute price volatility.

The results of the simulations are reported in Table 3.1. In these runs,

price volatility decreases as the percentage of chartists increases, and in-

creases as the percentage of fundamentalists decreases. These results are

fairly robust and repeatable, because the presented �gures are each averaged

over 20 runs, and their standard error is usually much lower than volatility

itself. Since they are not obvious, we will discuss them in detail.
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Table 3.1: Mean and standard error of volatility in a single market with no

tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 10% 20% 30%

0% 1.61 (0.21) 0.78 (0.10) 0.46 (0.07) 0.19 (0.01)

10% 4.33 (0.44) 1.42 (0.16) 0.49 (0.03) 0.22 (0.01)

20% 7.31 (0.62) 2.41 (0.31) 0.60 (0.06) 0.27 (0.04)

30% 15.17 (0.99) 2.94 (0.33) 1.00 (0.10) 0.26 (0.02)

In the presented model, random traders alone are able to create consistent

price volatility, for two main reasons:

• their wealth is distributed according to Zipf's law, so from time to

time the wealthiest traders place large orders, that are able to generate

signi�cant price variations;

• the limit price of orders is randomly chosen, according to a Gaussian

distribution with variance depending on past price volatility; this in-

troduces a GARCH-like e�ect, able to yield volatility clustering and to

increase overall price volatility.

On the other hand, chartists are composed equally of momentum and

contrarian traders. While momentum traders can destabilize the market,

and thus increase its volatility, contrarian traders tend to stabilize it, and

basically counteract the e�ect of momentum traders. The joint behaviour

of both populations tends to stabilize the market, with respect to the e�ect

of random traders, whose number decreases as the total number of chartists

increases.
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As regards fundamentalists, price volatility increases sharply as their per-

centage increases. This phenomenon is related with the prompt intervention

of fundamentalists when prices diverge from their fundamental value. In

practice, occasional major price variations caused by large orders placed by

random traders, with a limit price that di�ers substantially from the current

price, are immediately counter-acted by fundamentalists, strength being pro-

portional to the original variation. This behaviour drives prices toward the

fundamental value, thus adding volatility to the system. Indeed, fundamen-

talists can be seen as �short memory� traders, since they only look at the

last price realized. The destabilizing behaviour of �short memory� traders is

in line with the �ndings of other agent-based investigations.

In Fig. 3.5 we report the dynamics of wealth of the four populations

of traders for a simulation of 2000 steps. Here both fundamentalists and

chartists account for 10% of total trader population. Fundamentalists and

contrarian traders tend to increase their wealth at the expense of momentum

traders and, to a lesser extent, of random traders, con�rming again the

results reported in Raberto et al. (2003) The decreasing wealth of momentum

traders, however, does not substantially a�ects their behaviour and their

e�ect on the price.

One market with transaction tax

Here we show the e�ects of the tax on a single market. We performed

numerous runs, varying the percentages of trader populations and tax rate.

The tax rate is set at 0.1% and 0.5%. The former �gure is within the range

usually proposed and discussed by supporters and detractors of a transaction

tax, while the latter �gure is much higher, and is used to analyse the e�ects

of an ampli�ed tax. Note that, since both buyer and seller pay the tax, all
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Figure 3.5: Dynamics of wealth of the four populations of traders for a simulation

of 2000 steps.

these �gures should be doubled.

Introducing the tax in one market made it possible to analyse a number

of issues debated among its supporters and detractors. Namely, whether the

taxed market becomes stabler or not, and how volatility and trading volumes

change. In all reported cases, the simulations show the stylized facts of price

series (return autocorrelation, fat tails, volatility clustering).

The results show the price volatility, and its standard error, averaged over

20 runs each. The simulations were performed using 400 traders and 2000

time steps, varying the percentages of trader populations as in the previous

section.

Since our market model has �nite resources, levying a tax leads to a

reduction of total traders' wealth with time, that may be signi�cant for the

highest tax rates. To compensate for this e�ect, we computed the cash

out�ow due to the tax every 100 steps, and gave randomly chosen traders
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small amounts of cash totalling their cash out�ow.

Table 3.2 shows mean and standard error of price volatility, computed

for a Tobin tax of 0.1%. In this case, for low (10%) or zero chartist percent-

age, there are no signi�cant di�erences compared to the no tax market. As

the chartist percentage increases, however, volatility increases substantially

except when no fundamentalists are included. This increase may be as much

as 80%, for the largest percentage of fundamentalist and chartist traders.

Table 3.2: Mean and standard error of volatility in a single market with 0.1%

tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 10% 20% 30%

0 1.62 (0.14) 0.70 (0.04) 0.45 (0.04) 0.28 (0.03)

10% 3.71 (0.33) 1.35 (0.14) 0.60 (0.07) 0.31 (0.01)

20% 7.78 (0.79) 2.44 (0.25) 0.74 (0.08) 0.36 (0.03)

30% 14.44 (1.35) 2.99 (0.28) 1.32 (0.16) 0.56 (0.04)

Table 3.3 shows mean and standard error of price volatility, computed

for a Tobin tax of 0.5%.

For markets with random and fundamentalists traders alone, levying the

tax produces a small reduction in volatility, which varies with fundamentalist

percentage, attaining 5-8% (tax = 0.1%), and as much as 30-40% (tax =

0.5%).

When chartists are taken into account, the tax systematically leads to

an increase in volatility, of up to 80% for tax = 0.1%, and of up to 7-fold for

tax = 0.5%, for the highest percentage of chartists. This e�ect is evident for

a chartist percentage of 20% or 30%. When chartists only account for 10%

of the entire trader population, the increase in volatility is signi�cant only
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Table 3.3: Mean and standard error of volatility in a single market with 0.5%

tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 10% 20% 30%

0 1.06 (0.16) 0.85 (0.09) 0.66 (0.03) 0.71 (0.04)

10% 3.06 (0.41) 1.36 (0.12) 1.15 (0.10) 1.04 (0.09)

20% 5.74 (0.56) 2.73 (0.25) 1.89 (0.15) 1.55 (0.11)

30% 11.05 (0.64) 5.51 (0.28) 3.12 (0.24) 2.25 (0.12)

for 30% fundamentalists. In general, when chartist are included, increasing

the percentage of fundamentalists further increases the volatility when the

tax is levied.

To gain more insight into this behaviour, we performed several runs with

a market model composed of 10% fundamentalists, 5% momentum traders

and 5% contrarian traders, varying the tax from 0 to 1% with steps of 0.025%.

Each tax percentage has been simulated 10 times, and the resulting price

variances averaged. The results shown in Figure 3.6 clearly indicate the

steady increase in volatility, despite the noise in measurements, con�rming

the results reported above.

Using this model, price volatility increases steadily with tax rate, pro-

vided that the percentage of chartists is su�ciently large. When chartists

are excluded, price volatility tends to decrease slowly with increasing tax

rate. These results are in agreement with the empirical �ndings reported by

Umlauf (1993) and by Aliber et al. (2003), who observed a price volatility

increase with tax rate (or, better, with transaction costs).

We conducted further tests keeping the percentage of fundamentalists

(20%) and of chartists (20%) unchanged, but varying that of momentum
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Figure 3.6: Price variance as a function of tax rate for 10% fundamentalist and

10% chartist traders.

versus contrarian traders in 5% steps.

The results of these simulations are shown in Table 3.4. We found volatil-

ity increased with tax rate in all cases, but when contrarian traders were

omitted. With this model, an �extreme� chartist composition, made up of

contrarian or momentum traders alone, seems to increase volatility, while

more balanced compositions result in lower volatility. Momentum traders

tend to increase volatility more, especially when no tax, or a small tax, is

levied.

Figure 3.7 shows the daily time series of logarithmic price returns for a

typical simulation having a trader population composed of 20% fundamen-

talist, 10% momentum, 10% contrarian, for a 0.05% tax rate. Note that

prices always oscillate around 50. This is due to the fact that the �nite

amount of cash and stocks induces mean-reversion on prices around a con-

stant long-run mean which depends on the ratio of the total amount of cash
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Table 3.4: Mean and standard error of volatility computed for di�erent contrarian

traders percentages, pc. The total percentage of chartists is always 20%. All values

are multiplied by 103.

Tax pc =20% pc =15% pc =10% pc =5% pc =0%

rate % Mean (stEr) Mean (stEr) Mean (stEr) Mean (stEr) Mean (stEr)

0.0 1.83 (0.13) 0.62 (0.07) 0.58 (0.06) 1.15 (0.11) 4.88 (0.46)

0.1 1.96 (0.28) 0.95 (0.08) 0.71 (0.07) 1.25 (0.09) 4.31 (0.26)

0.5 4.70 (0.31) 2.26 (0.14) 1.84 (0.14) 2.20 (0.19) 4.78 (0.26)

to the total number of shares (Raberto et al.; 2003). Moreover, the funda-

mental price p(f) of fundamentalist traders is set to 50 to be consistent with

the mean reverting behaviour. The increase of volatility could be explained

by the reduction of orders when a tax is applied. Note that we have 400

agents, and on average 40 active agents at each time step, resulting in an

average of 20 sell orders and 20 buy orders of di�erent sizes. If transac-

tion taxes reduce these numbers, and also the agents' trading amount, the

demand and supply curves from which the price is derived becomes much

fuzzier, magnifying price variations. The relationship between transaction

taxes, market depth and price volatility is also explored by Ehrenstein et al.

(2005), yielding similar results.

In Tables 3.5, 3.6 and 3.7, we report the average daily volumes for the

cases studied. The traded volumes do not change as much as volatility as

trader composition and tax rate are varied. However, note the strong anti-

correlation between volatility and volumes in many cases.

Westerho� (2003), using a di�erent model with unlimited resources ob-

served a di�erent behaviour � a reduction in volatility for low tax rates,

increasing as rates are increased. These results con�rm how di�cult it is to



3.3 Results 62

0 500 1000 1500 2000 2500 3000 3500 4000
35

40

45

50

55

60

65

70

P
ric

e

Time

0 500 1000 1500 2000 2500 3000 3500 4000
−0.2

−0.1

0

0.1

0.2

R
et

ur
ns

Time

Figure 3.7: Daily time series for prices (top) and returns (bottom).

Table 3.5: Mean and standard error of daily volumes in a single market with

0.0% tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 10% 20% 30%

0% 9.51 (0.91) 10.04 (0.96) 10.63 (1.00) 11.17 (1.06)

10% 8.02 (0.75) 8.69 (0.83) 9.28 (0.90) 9.94 (0.97)

20% 6.92 (0.65) 7.54 (0.74) 8.19 (0.82) 8.76 (0.89)

30% 5.80 (0.56) 6.43 (0.66) 7.12 (0.75) 7.69 (0.83)

assess the impact of a change in market regulation using a theoretical model,

suggesting further studies are warranted to gain a greater insight into market

behaviour.
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Table 3.6: Mean and standard error of daily volumes in a single market with

0.1% tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 10% 20% 30%

0% 9.51 (0.91) 9.82 (0.93) 10.07 (0.96) 10.18 (0.99)

10% 8.06 (0.75) 8.41 (0.80) 8.75 (0.85) 8.91 (0.90)

20% 6.85 (0.64) 7.27 (0.71) 7.57 (0.77) 7.70 (0.82)

30% 5.76 (0.55) 6.16 (0.64) 6.44 (0.69) 6.57 (0.74)

Table 3.7: Mean and standard error of daily volumes in a single market with

0.5% tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 10% 20% 30%

0% 9.87 (0.88) 9.30 (0.85) 8.82 (0.85) 8.41 (0.88)

10% 8.16 (0.73) 7.78 (0.72) 7.35 (0.73) 7.01 (0.76)

20% 6.88 (0.63) 6.57 (0.64) 6.19 (0.65) 5.88 (0.67)

30% 5.73 (0.55) 5.44 (0.56) 5.15 (0.58) 4.87 (0.61)

3.3.2 Two markets

In this subsection we discuss the second part of our experiment. We analysed

two markets �rst levying no transaction tax and then introducing the tax in

one market, leaving the other untaxed. The rules enabling traders to switch

from one market to the other are described in Section 3.2.1. We recall that

fundamentalist traders do not switch between markets.

Traders' initial cash and stock endowment was chosen with the constraint

that wealth was balanced in the two markets. We performed a number of
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simulations varying fundamentalist and chartist percentages between 0 and

20, maintaining the same percentage of momentum and contrarian traders.

In this way, we had a �thermal bath� of random traders, and at the same time

a su�ciently large number of other kinds of traders to make their in�uence

felt in the price dynamics.

The number of traders used in each simulation was 4000, with a 2%

probability of trading at each time step. In this way, we were able to generate

for each market the same average number of orders as the simulations for a

single market. Note that we had 400 traders in the single market simulations,

with a 10% probability of trading at each time step. The much larger number

of traders was chosen so as to minimize any possible side-e�ects caused by a

wealth increase or reduction for speci�c trader kinds.

Each con�guration was simulated 20 times, using 2000 time steps each,

and we computed the average price variance (volatility) and the standard

error of this variance, to assess price volatility data consistency. The variance

has been computed for intervals of 10 time steps, discarding the �rst 250

steps, as in previous runs.

Two markets: no transaction tax

Here we examine the dynamics of two markets with no transaction tax.

When no tax is levied in either of the closed markets, we obtain the clas-

sical stylized facts (returns autocorrelation, fat tails, volatility clustering),

observed for the single market. For the sake of brevity, these results are not

reported here.

Tables 3.8 and 3.9 give the mean and the standard error of price volatility,

computed for the case of no Tobin tax, varying the percentages of fundamen-

talists and chartists.
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The price volatility values con�rm that both markets behave in the same

way. Moreover, in this case the number of traders switching from one mar-

ket to another, and vice-versa, are balanced in both markets. Volatility is

somewhat higher than in the corresponding Table 3.1, denoting that the pres-

ence of two markets, with traders switching between them, tends to increase

price volatility. Again, price volatility decreases with increasing percentages

of chartists, and increases with increasing percentages of fundamentalists.

These experiments con�rm the �ndings obtained for single markets and two

markets with no tax. The �rst observation is that having two markets leads

to a substantial increase in price volatility. This phenomenon might be ex-

plained by the imbalance between cash and stocks with respect to a single

market. However, we performed a number of simulations with one market,

varying traders' initial cash endowment, while leaving their stock endowment

unchanged, but did not notice any change in volatility. Note that volatility

increases 3-4 fold even for markets with just random traders, who switch

from one to the other trying to reduce their risk. They tend to sell in the

more volatile market, and buy in the less volatile one, as shown in equations

3.6 and 3.7 (section 3.2.1). Probably, this behaviour creates an imbalance in

orders resulting in an overall increase in volatility. The intrinsic mean rever-

sion mechanism due to limited trader resources avoids long-term imbalance

between the two markets. The presence of fundamentalists seems to reduce

the increase in volatility, while the combined presence of high percentages

of chartists and fundamentalists magni�es it � for 20% fundamentalists and

20% chartists, we observed a 8-9 fold increase (see Tables 3.1, 3.8 and 3.9).

In Fig. 3.8 we show the wealth dynamics for the four trader populations

in both markets, for a simulation of 2000 steps. Both fundamentalists and

chartists account for 10% of total trader population. For the two markets,
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Table 3.8: Mean and standard error of volatility in market one. The results

are multiplied by 103.

Chartist

Fundamentalist 0% 5% 10% 20%

0% 5.62 (0.58) 3.72 (0.50) 2.04 (0.25) 0.67 (0.08)

5% 8.15 (1.34) 4.20 (0.61) 1.89 (0.28) 0.79 (0.15)

10% 12.18 (1.87) 4.88 (0.79) 3.92 (0.71) 1.07 (0.19)

20% 37.22 (3.42) 19.38 (2.15) 7.49 (0.88) 2.25 (0.36)

Table 3.9: Mean and standard error of volatility in market two. The results

are multiplied by 103.

Chartist

Fundamentalist 0% 5% 10% 20%

0% 4.90 (0.73) 3.87 (0.84) 1.95 (0.27) 0.67 (0.09)

5% 8.12 (1.53) 4.07 (0.66) 1.88 (0.29) 0.74 (0.09)

10% 7.99 (1.14) 5.08 (0.76) 2.26 (0.27) 1.01 (0.18)

20% 35.65 (3.22) 17.23 (1.87) 7.78 (1.02) 2.04 (0.48)

fundamentalists and contrarian traders tend to increase their wealth at the

expense of momentum traders and random traders. The di�erences in wealth

are less pronounced for the single market, but we should recall that in this

case the number of traders rises to 4000, and they tend to trade �ve times

less than for the single market.
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Figure 3.8: Wealth dynamics of the four trader populations for a simulation of

2000 steps, for two markets.

Two markets: transaction tax in one

Here we discuss the dynamics of two markets, levying the tax in just one of

them (Market 1). When levying a tax on Market 1 transactions, we obviously

found total traders' wealth to decrease over time, because our market model

has limited resources. This decrease a�ects both cash � because the tax

is paid in cash � and prices � because a cash shortage a�ects prices. If

the fundamental price (pf ) is not adjusted according to the cash reduction,

in a closed market after a while fundamentalists wealth will also diminish,

because they tend to push prices towards their fundamental value which

eventually becomes unsustainable. They buy all the stocks they can and

then stay still, while the value of their stocks slowly diminishes. However, in

our simulations the cash drain of tax payment is negligible, because the tax

rate is low, the number of transactions made by each trader is also low, and

the number of simulated time steps is limited. Thus, the reported results
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are not a�ected by any cash drain.

Tables 3.10 and 3.11 give the mean and standard error of price volatility

in markets 1 and 2 respectively, computed for a tax rate of 0.1%, varying the

percentage of fundamentalists and chartists. Tables 3.12 and 3.13 show the

same con�gurations and data, this time computed for a tax rate of 0.5%.

Table 3.10: Mean and standard error of volatility in market one, with 0.1%

transaction tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 5% 10% 20%

0% 7.27 (0.99) 3.88 (0.59) 2.96 (0.48) 1.16 (0.17)

5% 5.88 (0.76) 4.38 (0.53) 2.23 (0.44) 1.36 (0.26)

10% 11.55 (1.26) 7.16 (1.02) 3.39 (0.52) 1.28 (0.17)

20% 43.12 (4.44) 16.71 (1.87) 10.86 (1.30) 2.71 (0.52)

Table 3.11: Mean and standard error of volatility in market two, with 0.1%

transaction tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 5% 10% 20%

0% 6.16 (0.81) 3.19 (0.47) 2.45 (0.43) 0.85 (0.08)

5% 5.77 (0.69) 3.89 (0.67) 2.80 (0.38) 0.68 (0.09)

10% 11.48 (1.83) 7.44 (1.05) 2.10 (0.31) 1.33 (0.24)

20% 36.92 (4.61) 17.62 (2.29) 7.05 (1.05) 1.56 (0.19)

The e�ects of the tax observed for a single market (no substantial dif-

ferences for random and fundamentalist traders alone, volatility increase in

the presence of chartists) are fully con�rmed in the case of a tax levied on
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Table 3.12: Mean and standard error of volatility in market one, with 0.5%

transaction tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 5% 10% 20%

0% 6.76 (0.92) 5.06 (0.65) 3.14 (0.44) 2.05 (0.26)

5% 5.28 (0.67) 4.82 (0.93) 3.95 (0.73) 2.24 (0.28)

10% 11.09 (1.57) 6.61 (0.83) 5.77 (0.88) 3.81 (0.66)

20% 36.10 (3.64) 29.09 (2.48) 16.26 (1.69) 7.28 (0.72)

Table 3.13: Mean and standard error of volatility in market two, with 0.5%

transaction tax. The results are multiplied by 103.

Chartist

Fundamentalist 0% 5% 10% 20%

0% 5.58 (0.61) 4.54 (0.79) 1.98 (0.29) 0.89 (0.15)

5% 6.98 (1.11) 3.52 (0.7) 1.91 (0.35) 0.72 (0.10)

10% 12.09 (1.84) 3.74 (0.60) 4.05 (0.74) 1.02 (0.24)

20% 43.63 (3.79) 18.06 (2.10) 5.92 (0.86) 1.10 (0.12)

one market, linked to a second, untaxed market. The increase in volatility

is however less pronounced, maybe because the market volatility is already

very high.

The most signi�cant e�ect we found is that the taxed market presents a

greater volatility than the linked untaxed market, in all those cases where

levying the tax has a major e�ect, i.e. in the presence of chartists. For a

highly speculative market, i.e. for the higher percentages of chartists, the

untaxed market shows a reduction in volatility with respect to the case of no
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tax market, while the taxed market shows a strong increase, thus �adsorbing�

to some extent additional volatility from the former.

Table 3.14 shows average daily trading volumes in both markets, for

di�erent trader compositions and tax rates. The taxed market is, as always,

Market 1. The values are averaged over 20 simulations, and standard errors

are also given.

As expected, when no tax is levied, average trading volumes do not di�er

signi�cantly from one market to the other. The introduction of the tax leads

to smaller volumes in the taxed market, in all those cases where it results in

a price volatility increase. The di�erence in trading volumes is not as large

as the di�erence in volatility, at the most in the order of 20%. This �nding

con�rms, however, that traders tend to shun the taxed market, and that a

lower volume triggers an increase in volatility, as discussed in Section 3.3.1.

Table 3.14: Average daily volumes. Tax levyed on market one only. The

results are divided by 103

Pop. (%) No Tax 0.1% Tax 0.5% Tax

F. C. Mkt1 Mkt2 Mkt1 Mkt2 Mkt1 Mkt2

0 0 9.49 (1.05) 9.48 (1.04) 9.55 (1.07) 9.46 (1.05) 9.47 (1.07) 9.57 (1.07)

0 10 9.97 (1.05) 10.01 (1.05) 9.81 (1.04) 9.91 (1.05) 9.37 (1.02) 9.85 (1.04)

0 20 10.55 (1.07) 10.63 (1.08) 10.13 (1.05) 10.54 (1.08) 9.26 (1.03) 10.31 (1.05)

10 0 8.61 (0.94) 8.60 (0.94) 8.56 (0.94) 8.61 (0.94) 8.57 (0.94) 8.68 (0.94)

10 10 9.24 (0.99) 9.29 (0.98) 9.05 (0.97) 9.25 (0.99) 8.51 (0.94) 9.25 (0.99)

10 20 10.01 (1.05) 9.95 (1.06) 9.44 (1.01) 9.99 (1.05) 8.40 (0.96) 9.96 (1.04)

20 0 7.91 (0.90) 7.87 (0.90) 7.85 (0.90) 7.89 (0.89) 7.82 (0.89) 7.91 (0.90)

20 10 8.50 (0.94) 8.47 (0.95) 8.30 (0.93) 8.50 (0.94) 7.78 (0.88) 8.58 (0.95)

20 20 9.17 (1.00) 9.12 (0.99) 8.76 (0.98) 9.21 (1.01) 7.77 (0.92) 9.27 (1.01)



Chapter 4

Short Selling and Margin

Trading

In this Chapter, we discuss the e�ects of introducing and removing short-

selling restrictions and margin requirements on a stock market. Our aim

was to study whether and how stock prices, volatility and long-run wealth

distribution are in�uenced by these kinds of restrictions. The introduction

and the removal of constraints enabled us to analyse some interesting issues:

e�ects of restrictions on volatility, long-run agents' wealth distribution and

the relationship between price shocks and in debt positions.

4.1 Motivations

After the great stock market crash of 1929, some restrictions were imple-

mented to ensure the market does not crash again. On one hand, when

prices declined, many investors who had bought stocks on margin tried to

sell their shares disrupting the market. On the other hand, short sellers were

pointed out as one of the main causes of the crash. The U.S. stock market

reacted restricting short-selling and setting margin requirements.



4.1 Motivations 72

In 1934 the U.S. Congress gave the Federal Reserve Board the power to

set initial, maintenance and short sale margin requirements on stock markets.

Margin requirements were set in order to reduce excessive volatility of stock

prices, protect investors from losses due to speculative activities, and reduce

loans by banks to stockholders, moving credit toward more productive assets.

The 1987 stock market crash renewed both political and academic in-

terest on the e�ectiveness of restriction policies for stocks and derivative

products. Since then, a wide debate on these solutions started, and studies

were performed on the e�ects of such impositions.

In April 2005, the China Securities Regulatory Commission (CSRC) is-

sued a new plan for state share reform. As reported by Bloomberg News1,

�China plans to allow investors to take out loans to buy shares and to sell

borrowed stock for the �rst time, moves aimed at tapping the country's $4

trillion of bank deposits and boosting trading. The China Securities Regu-

latory Commission may select �ve brokerages to start margin-lending and

short-selling services this year". This event will surely renew the interest on

short-selling and margin requirements regulations.

Buying on margin means to borrow money from a bank or a broker-

dealer to buy securities. The margin requirements set the maximum legal

amount that an investor may borrow to increase her purchasing power, so

she can buy securities without fully paying for them. For instance, if the

initial margin requirement is set at 20 percent, an investor can borrow up to

80 percent of the current value of the owned securities.

There has been an heated debate on the e�ectiveness of margin regula-

tions and on their in�uence on asset prices. The central issue is the claim

that margin requirements have an in�uence on stock price volatility.
1For more details see http://www.bloomberg.com
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In late eighties, some studies by Hardouvelis (1988, 1990), claimed that

there is evidence of a negative relationship between stock volatility and mar-

gin requirements. Moreover, he asserted that changes in margins level can

in�uence monthly stock return volatility. These conclusions support the

opinion that margin requirements could be used to control price volatility.

On the other hand, previous literature disagree with Hordouvelis' �nd-

ings. Moore (1966) stated that margin requirements fail to ful�l their objec-

tives. Largay andWest (1973) and O�cer (1973) also concluded that changes

in margin requirements had little or no e�ect on stock price volatility.

Owing to the results of Hardouvelis, the debate on margin requirement

e�ectiveness has become very heated. Many authors, including Salinger

(1989), Ferris and Chance (1988), Schwert (1989) and Hsieh et al. (1990),

re-examined the connection between margin and volatility. These authors

examined the issue from di�erent points of view using di�erent econometric

techniques, but they uniformly concluded that there is no evidence of a rela-

tionship margin-volatility. Kim (2002) tested whether margin requirements

a�ect individual wealth-constrained speculators. To test this possibility, they

examined the stock market reaction to changes in the initial margin require-

ment of the Tokio Stock Exchange. The analysed the volatility of the stocks

with the highest percentage of individual ownership, but they found, �nding

that changes in initial margin requirement don't have much e�ect on the

volatility of those securities.

Another critical question in �nancial literature, that is fairly symmetri-

cal to margin trading is whether and how short-sale constraints a�ect the

tendency of the stock markets. Short selling is a technique used by investors

who try to pro�t from the falling price of a stock. They borrow the shares

from someone else and sell them. When the price falls, they will cover their
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position by buying back the shares. If their prediction was right, short sellers

gain a pro�t.

After the stock market crash of October 1929, many short-sale restric-

tions were imposed on short-selling in the United States. Short sellers were

immediately pointed out as the cause of the collapse, so three regulatory

changes were decided in order to reduce short-selling2.

Short-selling advocates claim that it increases liquidity, favours risk shar-

ing and increases informational e�ciency. On the other hand, opponents of

short-selling claim that it causes high volatility, favors market crashes and

panic selling.

Miller (1977) observed that, if short-selling is restricted and investors

have heterogeneous beliefs, the observed price of a security does not re�ect

the beliefs of all potential investors, but only the opinion of the optimistic

ones. The implication of his idea was that stocks may be overpriced because

of short-selling restrictions. Miller's hypothesis implies a negative relation-

ship between short interest and returns. In recent years, empirical evidence

on this relationship has been pointed out by several studies, among them we

cite Jones and Lamont (2002), Ofek and Richardson (2001) and Chen et al.

(2002).

King et al. (1993) studied the e�ect of short selling on asset market bub-

bles in an experimental laboratory environment. found that short selling does

not in�uence market bubbles. Ackert et al. (2002) conducted experiments on

two asset markets and stated that short selling eliminates the bubble-and-

crash phenomenon. Haruvy and Noussair (2006) studied the relationship

between short-selling constraints and assets prices using a simulation model

based on the work by De Long et al. (1990b). They found that short selling
2See http://www.prudentbear.com/press_room_short_selling_history.html
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reduces prices to levels below fundamental values and that the reduction of

the bubble-and-crash phenomenon is the consequence of such a trend rather

than of the e�ectiveness of short selling restrictions.

Some studies examine the relationship between return volatility and

short-sale constraints. Ho (1996) produced evidence that volatility increased

when short-selling prohibition was lifted during the Pan Electric crisis of

1985. Kraus and Rubin (2003) developed a model to predict the e�ect of

index options introduction on volatility of stock returns. Since short-selling

the stock was restricted, the option was considered as a form of reduction of

this constraint. The model is highly stylized, and it predicts that volatility

can either increase or decrease, depending on model parameters.

Diamond and Verrecchia (1987) asserted that short-sale restrictions can

slow down the response of prices to new information: some investors who

want buy or sell cannot take part in the market bringing a decline in liquidity.

In other words, if short-selling is possible, there is greater liquidity.

4.2 The Extended Model

In this Section we introduce the major improvements to the model we de-

veloped in order to assess the impact of short selling restrictions and margin

requirements.

Both margins and short-selling restrictions are implemented in a simpli-

�ed manner. We don't distinguish between initial margin requirements and

maintenance requirements. There are no transaction costs or taxes, so agents

can borrow money/stocks without paying any interest for them. Moreover,

margin and short-selling requirements are kept symmetrical, in the sense

that their maximum allowed percentages are the same.

The population of traders is made up of two main categories: the �rst one
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consists of agents that can issue orders using their available limited resources.

They are forbidden to sell if they do not have any stock to sell, and they

cannot buy if they do not have enough money to do so. The second one is

made up of traders that are allowed to buy/sell stocks in debt. The agents

can sell stocks without owing them (we will say that they can issue in debt

selling orders) and buy shares without owing enough money to pay them

(in debt buying orders). We will name agents belonging to the second group

�Debt Prone Trader� (DPT ), and we will call agents from the �rst group

�non-Debt Prone Trader� (non−DPT ). Both DPT and non−DPT belong

to one of the four categories of traders described in Chapter 3. For the sake

of brevity we will mark DPT traders with a star (for instance Random*

means �Debt Prone Traders of type Random�).

It is worth noting that in this case we slightly modi�ed the strategy

of fundamentalist traders. We improved their model by transforming the

trading probability from a constant to a function depending on the current

price p(t) and on the fundamental price pf . At each time step, they decide

whether or not to trade with a probability p depending on the ratio between

pf and p(t). If p(t) = pf , the probability p will be equal to 0.0, and it will

increase as a squared function of the ratio max( pf

p(t) ,
p(t)
pf

). The maximum

value of p is set at 0.1. Note that, if the price of the asset is close to pf , the

trading activity of fundamentalists is low, because the market is not very

attractive for them.

4.2.1 non-Debt Prone Traders

non−DPT are risk-adverse agents, so they trade using their limited resources

without issuing in debt orders. If a non debt prone trader issues a buy (sell)

limit order, the order amount and the limit price are computed as described
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in Chapter 2. Note that here the parameter k is set at a value equal to 1.4.

This choice brings to smaller values of volatility in comparison with those

found in Chapter 3, but these values are still in agreement with those of real

�nancial data.

4.2.2 Debt Prone Traders

DPT are risk-prone agents. They can borrow money (or stocks) without

paying any interest on it (there are no transaction costs or taxes), but in

debt transactions must be guaranteed by the agents' total wealth. The debt

level of each DPT cannot exceed a certain threshold called safety margin

(m). If a trader exceeds the safety margin she is forced to cover her position

and repay her debts. If an agent has negative wealth wi(t), she goes bankrupt

and is obliged to leave the market. The wealth wi(t) of the generic i − th

trader at time step t is de�ned as wi(t) = ci(t) + ai(t) · p(t), where ci(t) is

the amount of cash and ai(t) the amount of stocks that the agent holds at

time t. The safety margin is a constraint that can be moved up or down

in order to allow agents to borrow more or less money (stocks), setting the

debt limit. In our tests, the value of m varies from 0.0 to 0.9. If m = 0.0, it

means that both short selling and margin trading are forbidden. If m > 0.0,

it means that short selling and margin trading are allowed. For instance, if

m is set at the maximum value (0.9), it means that margins are set at 10%

and a debt prone trader can borrow stocks (to sell short) or cash (to buy on

margin) up to 90% of her cash (stock value). Each debt prone trader decides

whether to buy or sell �rst on the basis of her strategy, then she has two

choices: to trade using her limited resources or to trade borrowing stocks or

money. These choices have equal probability.

If the i − th agent decides to issue an in debt order, the order size has
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an upper limit. If the agent issues a buy order, the amount of stocks to

purchase cannot exceed the quantity âb
i(t) (see equation 4.1). In debt selling

orders are generated fairly symmetrically relative to in debt buying orders,

the maximum quantity on sale is âs
i (t) (see equation 4.2).

âb
i(t) = m · ai(t) + bci(t)

p(t)
c (4.1)

âs
i (t) = ai(t) + bmci(t)

p(t)
c (4.2)

If an agent exceeds her safety margin, she is obliged to cover her position.

In particular, if she holds an amount of assets ai(t) < 0 and âs
i (t) < 0, she

is forced to buy the amount of stocks equal to the quantity expressed in

equation 4.3. Symmetrically, if a trader holds an amount of cash ci(t) < 0

and âb
i(t) < 0, she is forced to sell an amount of stocks equal to the quantity

expressed in equation 4.4.

ab
m = d−

ai(t) + m ci(t)
p(t)

1−m
e (4.3)

as
m = d−

m · ai(t) + ci(t)
p(t)

1−m
e (4.4)

4.3 Results

First, we performed several computational experiments on a closed market,

i.e. a market with no cash or stock in�ow or out�ow. We performed several

tests varying some parameters of the model such as the percentage of DPT

and non − DPT agents, the percentage of the four population types, the

safety margin and the probability that DPT traders issue in debt orders. We

considered a large number of experimental cases, performing 20 runs for each
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case. Each simulation is usually run with 4000 time steps (corresponding to a

time span of 20 years) and with 400 agents. Then, we opened the market by

varying the cash of the traders, in order to understand how external shocks

in�uence volatility, both with and without DPTs.

4.3.1 Closed Market

Random Traders

We �rst explored market behaviour when only random traders are present.

We studied volatility trend varying some parameters of the model. Volatility

is de�ned as the standard deviation of prices in a time window 50 steps long.

We set the Safety Margin at 0.8 and varied the percentage of Random*

traders from 0% to 100% in steps of 25%. The results showed that an

increase in the percentage of random traders able to trade in debt brings a

very slight increase in volatility, as shown in �gure 4.1.

We also explored return volatility varying the value of m parameter from

0.1 to 0.9. We observed that volatility looks not a�ected by m, but for

the highest values of m. This result does not depend on the percentage of

DPTs. In �gure 4.2 we report this behaviour for simulations with 50% of

debt prone traders. When m = 0.9, there is an increase in volatility, but

this phenomenon is due to the bankrupt of some traders, which makes the

market unstable. When a trader goes bankrupt, she is forced to cover her

position as far as possible, and then she leaves the market. On one hand,

this fact implies that an amount of stocks are sold or bought at limit prices

low or high enough to have a high probability to be ful�lled, and on the other

hand it lowers the number of traders. Both e�ects tend to increase market

volatility.

We found similar results by varying the probability that DPTs issue
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Figure 4.1: Mean and standard deviation of price variance as a function of Ran-

dom*. The percentage of DPT was varied from 0% to 100% in steps of 25%, with

m = 0.8.
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Figure 4.2: Mean and standard deviation of price variance as a function of m.

in debt orders, as shown in �gure 4.3. This behaviour is not unexpected,

because increasing this probability is equivalent to increase the percentage
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of in debt orders; with a high margin equal to 0.8, this yields many bankrupts,

with consequent volatility increase.
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Figure 4.3: Mean and standard deviation of price variance as a function of P(in-

debt), with the percentage of DPT random traders set at 50% and m = 0.8.

We also studied the dynamics of wealth of the populations of traders.

We found that the wealth of both random and Random* traders remains

approximately the same during the whole simulation. Figure 4.4 shows the

average wealth 1/N
∑

i wi(t) of the two populations for a typical simulation

4000 steps long with 50% random and 50% Random* traders. The total

traders' wealth varies, depending on the stock price variations, but the wealth

of both populations does not di�er signi�cantly for the whole simulation.

Trend Followers

Next, we investigated how volatility is in�uenced by the presence of trend

followers (momentum and contrarian) debt prone traders. We performed six

groups of tests: Random and Momentum; Random and Momentum*; Ran-
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Figure 4.4: Dynamics of wealth of Random and Random* for a typical simulation

with m = 0.8 and P (in− debt) = 50%.

dom and Contrarian; Random and Contrarian*; Random, Momentum and

Contrarian; Random, Momentum* and Contrarian*. The total percentage

of trend followers has been set to 0, 10% and 20%. When there are both

momentum and contrarian traders, each kind accounts for one half of the

total percentage. Each value shown is the mean of 20 runs. The standard

deviation of market volatility in these runs is shown in parenthesis.

Table 4.1 reports the results for the various kinds of trend followers. First,

we found that the presence of a small percentage of momentum traders alone

(up to about 10 − 15%) does not tend to increase volatility, that increases

only for higher percentages. This is probably due to the limited amount of

traders' resources, and to the di�erent time scales the momentum traders

use to compute the trend. This behaviour is similar with Momentum*, but

when they reach 20%, volatility sudden increases. This is due to a not

negligible number of traders who declare bankrupt, with consequent increase

in volatility.
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In the performed simulations, the presence of contrarian traders alone

tend to slightly increase volatility. This phenomenon is due to the �hits�

to the price in the opposite direction of the current price trend. This phe-

nomenon is not a�ected by limited traders' resources, because it is in ac-

cord with the intrinsic mean reversion behaviour of prices. The presence

of debt prone contrarian traders obviously increases this behaviour. When

debt prone contrarian traders reach 20%, there are very few bankrupts, that

further slightly increase volatility.

When both kinds of trend followers play together, the situation stabi-

lizes, irrespectively of their debt inclination. Market volatility tends to be

constant, and in this case we did not observe any bankrupt.

Table 4.1: Mean and standard error of volatility with trend followers and

random traders. The results are multiplied by 103.

0% 10% 20%

Momentum 0.27 (0.04) 0.26 (0.04) 0.30 (0.04)

Momentum* 0.27 (0.04) 0.29 (0.04) 0.94 (0.41)

Contrarian 0.27 (0.04) 0.31 (0.04) 0.45 (0.06)

Contrarian* 0.27 (0.04) 0.35 (0.06) 0.59 (0.11)

Momentum and Contrarian 0.27 (0.04) 0.27 (0.02) 0.25 (0.03)

Momentum* and Contrarian* 0.27 (0.04) 0.28 (0.03) 0.27 (0.03)

We then analysed the e�ects of the dynamics of wealth with the trend

follower traders. We investigated if and how DPT agents in�uence this

behaviour. We found that debt prone traders show the same dynamics

of non − DPT traders, but the e�ects are ampli�ed. Contrarian* traders

gain more than Contrarian traders, Momentum* lose more than Momentum

traders, as shown in �gure 4.5.
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Figure 4.5: Dynamics of wealth with trend followers for a typical simulation with

m = 0.8 and P (in− debt) = 50%.

Fundamentalists

When studying volatility behaviour using random traders and fundamental-

ist traders, we found that allowing fundamentalists to short sell and to buy

on margin volatility increases. Table 4.2 shows the market volatility (and

its standard deviation, related to 20 di�erent runs), setting the total per-

centage of fundamentalists to 0, 10% and 20%. Note that no trader declares

bankrupt during all simulations. In all cases, the total wealth of both funda-

mentalists and debt prone fundamentalists tend to increase at the expenses

of random traders' wealth.

Figure 4.6 shows that volatility slightly increases with the increase of the

safety margin m and of the probability that debt prone traders issue a debt

order P (in− debt).
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Table 4.2: Mean and standard error of volatility with fundamentalists and

random traders. The results are multiplied by 103.

0% 10% 20%

Fundamentalist 0.27 (0.04) 0.33 (0.04) 0.51 (0.10)

Fundamentalist* 0.27 (0.04) 0.36 (0.04) 0.55 (0.11)
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(a) Volatility as a function of the

Safety Margin.
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(b) Volatility as a function of P(in-

debt).

Figure 4.6: Volatility with a population made of 10% of DPT fundamentalists and

of 90% random traders.

All Kinds of Traders

In this section we report the results of tests we conducted using all trader

populations. The main goal was to understand whether or not the results

were merely the sum of the e�ects of each population.

First, we used momentum, contrarian and fundamentalist traders, setting

the same percentage of agents for each kind of strategy. We found that DPT

traders slightly increase volatility, as shown in table 4.3. In this table, the

reported percentages refer to each kind of traders. So, a percentage of 5%

means that there are 5% of fundamentalists, 5% of momentum and 5% of

contrarian traders.
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Table 4.3: Mean and standard error of volatility with fundamentalists trend

followers and random traders. The results are multiplied by 103.

0% 5% 10%

Fundamentalist, Momentum, Contrarian 0.27 (0.04) 0.28 (0.04) 0.34 (0.06)

Fundamentalist*, Momentum*, Contrarian* 0.27 (0.04) 0.29 (0.04) 0.38 (0.07)

Note that the increase in volatility is not due to failures of traders, be-

cause no trader fails during any of these tests. The sensitivity analysis both

of the m parameter and of the probability that debt prone traders issue a

debt order show results similar to those presented in previous sections. The

�ndings are shown in �gure 4.7.
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Figure 4.7: Volatility with a population made of 5% of DPT fundamentalists, 5%

of DPT momentum and 5% of DPT contrarian traders.

Finally, we performed a group of tests using all kinds of traders, with

and without PDT . We set the percentage of both DPT and non − DPT

fundamentalist, momentum and contrarian traders at 5%, and the percentage

of both DPT and non−DPT random traders at 35%. We chose to equally

divide the thermal bath of agents of type random into 2 populations of the
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same size of DPT and non − DPT agents in order to avoid any kind of

asymmetry in the results. The resulting volatility was 0.31, with a standard

deviation of 0.04. This �gure has to be compared with the case of a market

with no debt prone trader, but with the same percentage of fundamentalist,

momentum and contrarian traders with respect to random ones. In this

latter case, we had a volatility of 0.28, with a standard deviation of 0.04. In

both cases, there is no trader declaring bankrupt.

The sensitivity analysis referring to this case is shown in �gure 4.8. Here

volatility looks to slowly decrease with m, except for the highest values. The

most interesting result is that, with all kinds of traders playing the market,

volatility clearly decreases with the probability that debt prone traders place

in debt orders. This result is due to the interplay of all kinds of traders, and

we don't have at the moment an explanation for it.

Figure 4.9 presents the wealth dynamics for a typical simulation in which

all eight populations are taken into account. Note that fundamentalists and

contrarians gain wealth, while momentum traders and, to a lesser extent, ran-

dom traders, lose wealth. This behaviour is due to the relationship between

the strategies of each type of trader and the mean reverting behaviour of the

market Raberto et al. (2003). The new �nding is that debt prone traders

present the same behaviour of non−DPT , but they ampli�es the e�ects ob-

tained without them. Actually, fundamentalist and contrarian DPTs gain

more than fundamentalist and contrarian non − DPTs, while momentum

and random DPTs lose more than non−DPTs of the same kind.
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(a) Volatility as a function of the

Safety Margin.
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Figure 4.8: Volatility with a population made of all types of traders, both DPT

and non−DPT .

0 500 1000 1500 2000 2500 3000 3500 4000

0.5

1

1.5

2

x 10
5

Time

W
ea

lth

Fundamentalist*

Fundamentalist

Contrarian*

Contrarian

Random

Momentum*

Momentum

Random*

Figure 4.9: Dynamics of wealth with all eight types of traders for a typical simu-

lation with m = 0.8 and P (in− debt) = 50%.

4.3.2 Open Market

We opened the market by varying the cash of the traders. The main goal is to

understand how external shocks in�uence volatility, both with and without

DPTs. The cash variation ∆ci(t) follows the law expressed in equation 4.5.
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∆ci(t) is proportional to each trader's wealth and its level depends on the σ

parameter.

∆ci(t) = wi(t) · [eN(0,σ) − 1] (4.5)

where N(0, σ) is a random draw from a Gaussian distribution with average 0

and standard deviation σ, and σ is a parameter. These in�ows and out�ows

of cash can be considered as external factors able to in�uence the market.

We varied the amount of cash 10 steps apart, by adding to each trader's cash

the term ∆ci(t) de�ned in equation 4.5.

We performed many runs changing the population of traders. For the

sake of brevity, we report here just two examples: the �rst one with random

traders and the second one with all kinds of traders. The �ndings are similar

to those obtained using other combinations of traders.

The main result is that changes to traders' cash increase volatility. The

increase is patient both with and without DPT traders. Table 4.4 shows

this �nding for tests conducted with non−DPT random traders and with a

population made up of 50% non−DPT and of 50% DPT random traders.

Note that if DPTs are present, volatility will increase more than without

them. Also, if the value of σ is too high, volatility will suddenly increase. We

studied the last case (reported in the last column of table 4.4) more deeply,

and we found that the excessive increment in volatility is due to a sudden

increase in the number of traders who fail.

The quantity of traders who declare bankrupt can be inferred from �gure

4.10, which shows the total number of traders active in the market versus

simulation steps. An excessive cash in�ow can destabilize the market. Even if

DPTs are not present, a large number of agents can fail and leave the market,

because of negative cash in�ows. This phenomenon yields an increase in price
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returns and in volatility. Figure 4.10 shows the population size superimposed

on prices and the population size superimposed on logarithmic returns for a

simulation with random traders alone, and σ = 10−4. These �gure show a

correspondence between the steps where traders' failures happen, and daily

return variations, which look very high during these steps.

Table 4.4: Mean and standard error of Volatility with random traders. The

results are multiplied by 103

Population σ

Random Random* 0.0 10−5 10−4

100% 0% 0.27 (0.04) 0.29 (0.05) 1.99 (1.48)

50% 50% 0.27 (0.03) 0.29 (0.06) 6.19 (4.53)
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Figure 4.10: Daily time series for prices (a) and returns (b) with random traders

and σ = 10−4. The dotted line represents the population size.

If DPTs are present, the number of agents who declare bankrupt in-

crease. Also, these traders tend to fail sooner. We calculated the number of

failed traders after the end of the simulations, and we found an average of

150.95 bankrupts in the case of random traders alone (with standard devi-
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ation 71.00). If random DPTs are taken into account, the average number

of traders who leave the market increase to 239.10 (with standard devia-

tion 107.78). Figure 4.11 shows the relationship between traders' bankrupts,

prices and returns. In order to remark that debt prone traders tend to fail

more than non−DPTs, �gure 4.11 reports the population size of both ran-

dom and random* traders. Note that, if the number of failures is too high

(over 50%), the market will become unsteady. Moreover, in the case of open

market, the results are robust to changes in the values of the safety margin

and of P (in− debt).

We conducted further experiments using di�erent traders' populations, as

the ones described in section 4.3.1. We found similar results to those obtained

with only random traders � cash in�ows and out�ows increase volatility, debt

prone traders tend to declare bankrupt more frequently than non−DPTs of

the same kind, simulations are robust to changes in m and in P (in− debt).
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Figure 4.11: Daily time series for prices (a) and returns (b) with 50% non−DPT

and 50% DPT random traders, with σ = 10−4. The dotted line represents the

population size.



Chapter 5

The Interplay Among Two

Stock Markets and the FOREX

It is well known that the recent �nancial crises, starting from the Mexican

pesos crisis in 1994 to the Argentina's in 2001, have been accompanied by

episodes of �nancial markets contagion, that is, many countries have expe-

rienced increases in the volatility and comovements of their �nancial asset

markets.

Although changes in the statistical properties of prices are predictable

in countries experiencing �nancial and exchange rate crises, the patterns of

comovement and of contagion of crises across countries are still not fully

understood. The de�nition itself of contagion, in fact, varies widely across

literature. A large number of tests have been proposed for assessing the

presence and the level of international contagion, but the results are often

con�icting.

The main goal of this Chapter is to analyse the interaction between

two stock markets in two di�erent countries, both during tranquil periods

and during a monetary crisis. We developed a multi-agent model with two
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arti�cial stock markets and two di�erent currencies, by extending the general

framework described in previous chapters. The starting point of this study

was the development of a foreign exchange market (FOREX), that provides

a link between the two stock markets and sets the current exchange rate.

5.1 Contagion and interdependence

In recent years, much attention has been given to transmission of �nancial

crises from a country to other countries, and usually this topic gains interest

after an international crisis.

Generally speaking, the spread of crises from one market to other mar-

kets depends on the links existing among those markets. One of the most

important issues is that there is still ambiguity on the de�nition and on the

meaning of the term �contagion�, and therefore a large number of method-

ologies and of tests have been proposed to measure it.

There are papers that attempt to detect and measure the factors that

favour �nancial crises, such as those by Forbes (2004) and by Eichengreen

et al. (1996). Also, a number of papers use ARCH and GARCH techniques

to estimate how changes in volatility are transmitted across countries; see

for instance Hamao et al. (1990). However, is very di�cult to identify the

channels through which contagion occurs, and to measure their weight. Many

researchers agree that the straightforward approach to test for contagion is

to analyse the cross-market correlation coe�cient. For example, Butler and

Joaquin (2002) analysed the correlation dynamics in bear, calm and bull

markets. They found an increase in correlations during bear market periods

compared with calm and bullish periods.

We embrace the terminology proposed by Forbes and Rigobon (2002):

they asserted that stock markets can exhibit a certain degree of comove-
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ments both before and after a shock or a crisis in one market. They de�ne

contagion as a signi�cant increase in cross-market linkages after a shock to

one country (or group of countries). This means that contagion occurs only

if cross-market comovements increase signi�cantly after a shock. On the

other hand, if the markets exhibit a high degree of comovement during peri-

ods of stability, even if the markets continue to be highly correlated after a

shock to one market, this may not constitute contagion. The authors use the

term interdependence to refer to this situation. Forbes and Rigobon test for

contagion by following a correlation analysis approach. According to their

de�nition, contagion occurs only if there is an increase in the unconditional

correlation coe�cient. They de�ne the unconditional correlation coe�cient

as the traditional correlation coe�cient adjusted in order to take into account

the bias in heteroscedasticity (see Forbes and Rigobon; 2002).

5.2 The Extended Model

We consider an economy with two stock markets (SM1 and SM2) and one

foreign exchange market (FOREX). The two stock markets are perfectly

symmetric, except for the accepted trading currency: the stocks of the SM1

are exchanged using the �dollar�, while those of the SM2 market are ex-

changed using the �euro�. The FOREX determines the exchange rate be-

tween the dollar and the euro.

At each time step, each trader trades only within one market. Before

trading takes place, each trader, in accordance with an attraction function

based on expected gain may decide to leave a market, switching to the other

one. Note that the trader converts all her money into the currency of the

destination market before leaving the current market. This choice increases

the purchasing power of the trader in the just selected market.
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If a trader decides to buy or sell stocks, she places a limit order on the

selected stock market, as described in Chapter 3.

The FOREX market di�ers from the stock markets in two main respects:

the traders issue only market orders, and a market maker is assumed to

adjust the exchange rate at the end of each trading period, on the basis

of the excess demand, as described in Section 5.2.1. At the end of each

simulation step, the exchange orders are collected and the new exchange

rate is computed. The FOREX is a closed market, so the total amount

of cash cannot vary during the simulations. If all the exchange orders are

executed at the new exchange rate, the quantity of both dollars and euro

will change. In order to avoid this phenomenon, we randomly choose and

discard a number of orders, to equilibrate the amount of exchanged cash.

Also, in the case of the FOREX the agents issue market orders, whose

size is a random fraction of the current cash owned by the trader herself.

In particular, each market order has information about the currency to sell

(dollar or euro), the order amount, and the currency to buy (euro or dollars).

The order amount cannot exceed the trader's current cash availability, and

the amount of currency that the agent will achieve to buy depends on the

new exchange rate S(t + 1).

5.2.1 The exchange rate clearing mechanism

The exchange rate is adjusted with respect to excess demand ED(t). In

particular, the exchange rate S(t + 1) for the simulation step t + 1 is given

by equation 5.1:

S(t + 1) = S(t) · (1 + c · ED(t)) · er(t), (5.1)

where c is a positive normalization coe�cient, and r(t) is a draw from a
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Gaussian Distribution N(0, σs(t)), whose standard deviation σs(t) depends

on the historical exchange rate standard deviation computed on a time win-

dow T , as shown in equation 5.2.

σs(t) = k ∗ σ(T ), (5.2)

where k is a positive coe�cient. The value of k is always equal to 1.4,

while the window T is 20 steps long.

The excess demand is the sum of the orders issued by the traders. More

speci�cally, excess buying drives exchange rate up and, symmetrically, excess

selling drives exchange rate down.

Since that there are only two currencies, we decided that ED represents

the excess demand of euro against dollars. It follows that equation 5.1 is the

current exchange rate of the euro against the dollar.

5.2.2 The decision making process

We extended the four basic kinds of the agents' behaviour (random, fun-

damentalist, momentum and contrarian) by allowing them to issue market

orders in the FOREX. The only di�erence between limit orders and market

orders is that market orders do not have a limit price, so they are executed

at the current price set by the market maker. Each kind of traders issues

market orders using exactly the same strategy used for issuing limit orders.

The extension is obvious, except for fundamentalists, which require further

explanation. Let be Sf the fundamental exchange rate �/$ between the dol-

lar and the euro: if S(t) > Sf (S(t) < Sf ), the fundamentalist trader will

place a market order to sell (buy) euro in exchange for dollars.



5.3 Results 97

5.2.3 Attraction functions

At each simulation step, each trader chooses the most attractive stock market

by evaluating the attraction functions described in Chapter 3, but in this case

we decided to make some changes. First, not before �ve simulation steps

from her last switching (corresponding roughly to one week of trading), each

agent chooses the market to trade in on the basis of her trading strategy.

This choice �t better with the case of markets in di�erent countries, and

allowed us to remove the constraint πi
j(t) ≥ 0.3. With regard to random

traders, we simpli�ed their function and we decided that, when faced with

the possibility of operating in one of two markets, they randomly select one

of them. Finally, we decided to allow fundamentalists to switch market. This

choice was made in order to give them the possibility to leave the bearish

market in the case of a crisis. Let be pj
f the fundamental price in market

j = 1, 2. The fundamental traders will choose the most pro�table market

on the basis of the di�erence between the current price and the fundamental

price, as given by equation 5.3.

AF,i
j = e

|pj(t)−p
j
f
|

p
j
f . (5.3)

The superscript F indicates the fundamentalist sub-population, j denotes

the j − th stock market, and pj(t) is the j − th stock price.

5.3 Results

Here we discuss the results of the computational experiments performed. We

analysed the markets behaviour in three steps. In Section 5.3.1 we present

the foreign exchange market only, while in Section 5.3.2 we discuss the dy-

namics of the three markets, �rst without monetary shocks, and then simu-
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lating an in�ationary depreciation of the dollar.

5.3.1 Foreign Exchange Market

We �rst tested the overall behaviour of the FOREX market model, vary-

ing the percentage of fundamentalists and of chartists, while �xing the total

number of agents to 400. Note that chartists always comprise the same per-

centage of momentum and contrarian traders. Trader's initial endowment,

both in dollar and euro, was obtained by dividing agents into groups of 20

traders, and applying Zipf's law to each group, as described in Chapter 3.

Here, each agent is given an average amount of $50000 and �50000.

At the beginning of the simulations, the exchange rate between the two

currencies is set at the �equilibrium� value S(f), which depends on the ratio

between the total number of dollars and of euro exchanged. Since the total

number of euro is exactly equal to the total number of dollars, both the

starting exchange rate and the fundamental value used by fundamentalists

are set at 1.0. The exchange rate series exhibit the usual �stylized facts�,

with fat tails of returns and volatility clustering. Figure 5.1 shows both the

daily euro-dollar exchange rate (top) and the daily time series of logarithmic

price returns (bottom) for a typical simulation 10000 steps long, having a

population composed of 10% fundamentalist, 5% momentum and 5% con-

trarian traders. Figure 5.2 shows the survival probability distribution of the

standardized logarithmic return (bold stars) superimposed on the best Gaus-

sian �t (solid line). The deviation from Gaussian distribution shows again a

leptokurtic behaviour in the returns tail, with a very well de�ned power-law

behaviour for high values of returns.

The model is capable, to a certain extent, to reproduce the so called

disconnected puzzle (Obstfeld and Rogo�; 2000) which states that the ex-
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change rate is usually far from its underlying fundamentals. In our model,

which is completely endogenous and thus characterized by the absence of

external �news�, the fundamental value of the exchange rate is equal to the

ratio between the total quantity of dollars and the total quantity of euro

owned by the traders, that is 1.0. Figure 5.1 show that the exchange rate

can substantially deviate from 1.0 for periods longer than 250 steps, that

correspond roughly to one year of trading.
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Figure 5.1: Daily time series for euro-dollar exchange rate (top) and returns (bot-

tom).

5.3.2 Two stock markets and the FOREX: putting it all to-
gether

Here we discuss the dynamics of the two stock markets combined with the

foreign exchange market. We performed extensive simulations, 2000 time

steps long, and examined two di�erent cases: the behaviour of the whole

economy without any external in�uence, and the e�ects of a sudden depre-

ciation of the dollar.

Each simulation was run using 1200 agents divided into two separate

groups. The �rst one was composed of traders acting only in the FOREX

market and had 400 agents. The role of this population is to keep the
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Figure 5.2: Survival probability distribution of standardized logarithmic returns.

The bold stars represent an estimate of the cumulative distribution of returns related

to a simulation. The solid line represents the survival probability distribution of the

best Gaussian �t.

FOREX alive independently of the two stock markets. The remaining 800

agents form the second group, which trade in the two stock markets following

the rules described in Section 5.2.2. It is worth noting that, on average, the

agents belonging to the second group are equally distributed between the

two stock markets, so all three markets have an average number of traders

equal to 400.

Traders' initial stock and currency endowment was obtained as described

in Chapter 3. Each trader assigned to SM1 is given an average $100000 and

1000 stocks, but no euro or stocks of SM2. Symmetrically, each agent that

starts to trade in SM2 is given an average �100000 cash and 1000 SM2

stocks. Finally, the agents populating the FOREX is given an average

$100000 and �100000 cash, but they do not own any stock.

Both the starting price pj(0) of the stock j and the fundamental price pj
f

known by the fundamentalists are equal to j/
√

2j − 1 (Cj(0)/Aj(0)), where

Cj(0) is the total cash amount of market j, and Aj(0) is the total number

of shares of market j. The value is equal to $80 for SM1, and �80 for SM2.
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Similarly, at the beginning of the simulations the exchange rate �/$ is set

at a value equal to the ratio between the total number of euro and dollars,

that is 1.0.

Figures from 5.3(a) to 5.5 show the results of a typical simulation 2000

steps long. The trader population is composed of 10% fundamentalists, 10%

momentum, 10% contrarian, and 70% random traders. In particular, �gures

5.3(a) and 5.3(b) show the daily prices and daily log-returns for the SM1

stock and SM2 stock respectively. Figure 5.4 show the dynamics of the euro-

dollar exchange rate, and �gure 5.5 shows the dynamics of traders' wealth.

All three markets of the model exhibit the key stylized facts of �nancial

time series, and the dynamics of wealth distribution is unvaried, with fun-

damentalist and contrarian traders winning at the expenses of random and

momentum traders. The presence of the exchange market does not seem to

in�uence by itself the other markets, either with and without the GARCH

e�ect.
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Figure 5.3: Daily time series for stock prices (top) and returns (bottom).
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Figure 5.4: Daily time series for euro-dollar exchange rate (top) and returns (bot-

tom).
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Figure 5.5: Wealth dynamics of the four trader populations.
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5.3.3 The in�ationary shock

We studied the consequences of a sudden �nancial crisis of the dollar cur-

rency, due to exogenous factors a�ecting the dollar market. We modeled this

phenomenon by opening the market and increasing the wealth of traders in

dollars, simulating a depreciation of dollars against euro. In particular, at

the end of the �rst half of the simulation after the step number 1000, we

doubled the amount of dollars owned by each trader.

Regarding price dynamics, the sudden increase of the quantity of dollars

lead to a slow increase in the fundamental value of the stock exchanged in

dollars, proportional to the quantity of money added. Figure 5.6(a) displays

the e�ect of the cash in�ow on the SM1: the fundamental value of the stock

moves from $80.0 to $160.0. On the other hand the price of the SM2 stock

is not a�ected by the shock, as shown in Figure 5.6(b). Finally, Figure 5.7

points out the consequent appreciation of the euro against the dollar: the

euro doubles its value against the dollar currency.

Then we studied the consequences of the in�ationary shock on trading

volumes. We found an increase in volumes of the FOREX (see Figure 5.8),

that is due to the cash in�ow. The increase in the trading activity does not

spread to the stock markets, whose volumes remains substantially unvaried.

This behaviour was predictable, because the total number of stocks is kept

constants during all simulations, and a change in the total amount of cash

is not su�cient to lead to a increase/decrease in the volumes.

There exists a set of stylized facts about the spreading of shocks across

markets. Corsetti et al. (2001) identi�ed four empirical regularities charac-

terizing periods of �nancial turmoil:

1. periods of �nancial turmoil favour falls in stock prices;

2. volatility of prices increases during crisis periods;
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3. covariance between stock market returns increases during crisis periods;

4. returns correlation is not necessary larger than during tranquil periods.

Figure 5.7 shows that the dollar shock does not in�uence the exchange

rate volatility. On the other hand, both the SM1 and SM2 price volatility

tend to increase in the days following the shock as presented in Figure 5.9(a)

and in Figure 5.9(b) respectively. We computed both weekly and monthly

volatility, but for the sake of brevity we report here only the latter. This

seems to con�rm the second regularity quoted above.

We studied the dynamics of both returns and absolute returns corre-

lations between SM1 and SM2 during the tranquil period and during the

dollar crisis. Figure 5.10 shows the correlation analysis of a typical simulation

2000 steps long. The correlation coe�cients are calculated by considering

not overlapping return series 20 days long. Variables computed using weekly

and monthly returns gave very similar results. We found that the in�ation-

ary shock in not capable to in�uence the correlation coe�cient dynamics,

which remain more or less the same during the whole of the simulation.

This con�rms the fourth regularity quoted above.

On the basis of the de�nitions given in Section 5.1, we can conclude that

this model is not able to reproduce contagion, because there is no signi�cant

increment in the correlation values of returns. This result rules out the

possibility to run further tests on contagion, such as that discussed in a

series of papers by Boyer et al. (1997) and by Loretan and English (2000),

which require an increase in the correlation coe�cients as a necessary and

not su�cient condition.

Finally we investigated the covariance dynamics of returns. Figure 5.11

shows that the shock brings to a sharp increase in the covariance of absolute

returns (bottom) and to a decrease in the covariance of raw returns (top).
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This result seems to con�rm the third regularity identi�ed in (Corsetti et al.;

2001).
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Figure 5.6: Daily time series for stock prices (top) and returns (bottom). The

in�ationary shock is applied at the end of the step number 1000.
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Figure 5.7: Daily time series for euro-dollar exchange rate (top) and returns (bot-

tom). The in�ationary shock is applied at the end of the step number 1000.
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Figure 5.8: Daily time series for euro-dollar exchange rate (top) and volumes

(bottom). The in�ationary shock is applied at the end of the step number 1000.

500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

1

2

3

4

5

6

7

x 10
−3

Time

V
ol

at
ili

ty

Dollar Stock

(a) SM1.

500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

1

2

3

4

5

6

7

x 10
−3

Time

V
ol

at
ili

ty

Euro Stock

(b) SM2.

Figure 5.9: Daily volatility for the stock prices between step 500 and 1500 of the

simulation. The in�ationary shock is applied at the end of the step number 1000.
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Figure 5.10: Cross correlations of returns (top) and of absolute returns (bottom)

of the two stock price series. Each point in the horizontal axis represents one month

of trading, corresponding to 20 simulation steps.
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Figure 5.11: Covariance of returns (top) and of absolute returns (bottom) of the

stock price series. Each point in the horizontal axis represents one month of trading,

corresponding to 20 simulation steps.



Chapter 6

Conclusions

This thesis presented an agent-based computer simulation framework for

building theoretical models in economics and �nance. The project was built

on the basis of the �Genoa Arti�cial Stock Market�, which was born in the

early 2000's at the University of Genoa. The original model has been com-

pletely re-engineered, and it has been improved and extended in order to

address a wide range of open problems in �nance and economics. The cur-

rent version of the model includes many realistic trading features, and has

been validated by showing that the simulated time series exhibit the main

empirical properties of real �nancial markets. This arti�cial market has been

developed using object-oriented software techniques, and is aimed to be easily

extended and composed, yielding multi-asset and multi-market simulations.

This thesis faces three big open issues that the available literature do not

succeed in giving them an answer.

First, we studied the e�ects of transaction taxes in �nancial markets. We

performed numerous simulations, varying trader composition and tax rate.

We found that levying a tax in�uences market behaviour signi�cantly, even

when the rate is low. Price volatility increases consistently with tax rate,
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but only when chartist traders are present in the market. Then, we analysed

the dynamics of two markets, giving each trader the opportunity of choosing

the market she prefers to trade in, according to an attraction function. We

performed simulations on this market pair with no tax levied, and then taxing

one market. Firstly, we observed that, irrespective of trader composition

and tax rate, the interplay of markets leads to an increase in price volatility.

Secondly, we found that, notwithstanding the small transaction tax (typically

0.1-0.5% of transaction cost) and the simple trader models used, the tax

does actually impact heavily on market behaviour, increasing price volatility

and reducing trading volumes. This happens only with trader compositions

sensitive to the tax, namely those including chartist traders. Despite the low

tax rate, introducing the transaction tax increases price volatility, computed

for di�erent time horizons, signi�cantly and reduces trading volumes, though

to a lesser extent. These results concur with many empirical �ndings and

provide a measure, using a theoretical model, of the impact of a change in

market regulation. On the other hand, a part of the literature asserts that

speculators tend to leave the taxed markets, that thus become less volatile.

The second case study deals with the impact of margin requirements and

of short sale restrictions on stock markets. Considering the closed market,

we found that if short selling and margin trading are allowed, volatility will

tend to slightly increase. The increase in volatility is substantially unrelated

to restriction levels and to debt proneness of traders. We found that, if

short selling and margin trading are not banned, some traders could declare

bankrupt and leave the market. The number of bankrupts is usually very low

and negligible. Also, the wealth distribution of both DPT and of non−DPT

have the same trend, but for the �rst ones the trend is stronger. We showed

that generally the open and the closed market have similar features, except
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for the fact that in an open market the number of bankrupts increases.

External factors, such as sudden variations of prices and wealth, damage

DPTs much more than non − DPTs, so DPTs tend to fail more easily

than non−DPTs. In general, bankrupts favor high volatility of prices and

may lead to periods of unsteadiness, so we can assert that in this sense the

presence of in debt positions may ease unsteadiness.

Finally, we presented a model made up of two stock markets with di�er-

ent currencies, and of a FOREX market enabling traders to exchange their

currencies in order to switch to the other stock market. The markets are

completely closed and self-consistent. There is no external in�uences, and

the amount of cash and stocks is kept constant, but for the case of controlled

cash in�ow simulating an in�ationary crisis. Simulating a monetary shock

in one market, with a steep, substantial in�ow of money, yielded a gradual

adaptation to the new fundamental prices in both the a�ected stock market,

and in the FOREX market, and showed, at least to some extent, three of the

four stylized facts about the spreading of shocks across markets identi�ed

by Corsetti et al. (2001): volatility of prices and covariance between stock

market returns increase during crisis periods, and returns correlation is not

necessary larger than during tranquil periods. The fourth fact, i.e. that

periods of �nancial turmoil favor falls in stock prices is not observed, but in

real markets it depends on traders' risk aversion, and on the ability of real

trader to move theirs assets to other investments. This is clearly not possible

in a closed model like this one, so the absence of this behaviour is obvious.

A similar consideration applies to contagion. We shoved that simply linking

two stock markets with an exchange market does not yield an increase in

return correlation when there is a crisis in one of the markets. Again, this is

not unexpected, because in real world contagion is a consequence of strong
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economic links between economies, and such links are simply not present in

our simple model. It needs to be said also that, while our model is able to get

insight on the intrinsic characteristics of linking two stock markets through

a FOREX market, showing that interesting behaviours arise simply from the

structural properties of the model, in reality FOREX markets are driven by

much more than stock markets' needs and by their internal traders. Much

more features have to be added to the model to re�ect more thoroughly how

real markets behave.

These three case studies show how the presented agent-based arti�cial

market can be used to develop theoretical models in order to perform tests

and to validate hypotheses in economics and �nance. A further extension

of the framework is in progress, and its goal is to analyse the impact of

stock option trading on the market of the underlying security. Although

the current version of the model is able to contribute to open debates which

attract public attention and arise the interest of policy makers, much more

features have to be added to the model to re�ect more thoroughly how real

markets behave. Among others, we may quote interest rates of bonds, stock

dividends, which could be related to the trend of the economy, also yielding

di�erent fundamental values of the stock. Finally, traders' risk aversion has

to be modeled, which might a�ect the switching probability between markets

in the case of multi-market models. In future works, we plan to address all

these issues by extending the framework again.

���������
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