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1. Introduction 

 

Photometric Stereo is a fundamental part of the entire process concerning computer vision [1]. This issue is 

very important in industrial applications, artificial intelligence researches and so on. It’s based on an image processing 

procedure that analyses the scene and tries to recover its three-dimensional surface. There are a lot of techniques to 3D 

map a single object or an entire scene and each of them has different features regarding the approach to the problem. 

The most used is laser scanning techniques, since it’s able to 3D map separately and, most of all, independently each 

single point of a sample. Instead, almost all other methods need to analyse a pixel cluster or even all pixels in N images 

to recover surface heights. Obviously this represents a drawback, since the height value of one point (whose data is 

supposed noiseless) will be biased by the noise in the adjacent pixels. For this reason all of these methods are carefully 

used and, in most cases, are merged with other more accurate methods [2]. However, depending on the nature of 

samples and image acquisition systems, sometimes we are forced to make use of only one technique. For instance in 

section 7 we show the 3D map of object observed with scanning  electron microscope (SEM); we believe that it’s really 

difficult to use a laser scanning inside the SEM, don’t you?  

In this sense we have focused our efforts in solving some trouble concerning both the management of non-

idealities (with respect to the mathematical model) and the numerical algorithm, to enhance its performances in terms of 

accuracy and computational time. Before showing our work we want to list some reference about previous works in 

Photometric Stereo and generally in Shape from X (e.g. shape from shading) algorithms. 

Photometric Stereo was conceived by Woodham [3] that takes the theory of shape from shading, which 

reconstructs the heights using only one image, and extends it to a number 2≥N  images. This technique uses a 

reflectance map as a mathematical model or a lookup table, which decreases the computational time in some simple 

applications. The lookup tables are built with a calibration sphere of known shape and material behaviour. Depending 

on used algorithm the sphere should be of the same material of objects to be 3D mapped.  On the other hand, the 

algorithms that reconstruct also albedo parameters don’t need this constraint. Note that, if there is no need to find albedo 

it’s better to acquire only gray-scale images, to minimize used memory, while colour images are obviously necessary if 

we need chromatic information. Generally the vast majority of methods use gray-scale images. For Lambertian surface, 

as we’ll see in next sections, photometric equations are linear and only three images are enough to reconstruct both 

gradient and albedo. With more than three images some papers use the “surplus” information to find other object part, 

as outliers [4], or to recover unknown illumination directions and strengths [5]. While some methods start from a given 

reflectance map and then find the heights, other techniques focus their attention to estimate reflectance parameters. 
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Some instances are Nayar [6], who uses the so-called hybrid reflectance model, and Tagare and de Figueiredo [7], who 

developed a photometric stereo for the class of m-lobe reflectance maps (they called it so). As we’ll also see in this 

work, many papers deal with the possibility to consider a surface as Lambertian even if it has non-idealities as shadows 

or highlights. The trick is to consider a mathematical model that define highlights and shadows as deviations from 

Lambertian law; in this way the algorithm can manage them and reconstruct surfaces properly. One of these techniques 

was proposed by Coleman and Jain [8].  

On the other hand, colour images contain a lot of redundant information regards the gradient extraction. If one 

could have this data, he should use this information whether to make the algorithm more robust or to compute more 

than heights. Christensen and Shapiro [9] introduced the method of colour photometric stereo (CPS) for surfaces with 

an arbitrary reflectance map. A drawback of this technique is that it needs a calibration step, while (other papers already 

do that) we’ll demonstrate in the following sections that it’s not necessary. Other papers (as [10]) separate the 

Lambertian signal to the others with an image processing tool, which permits to avoid any non-ideality bias. 

Before starting to face our issue we list here the sections of this work. Section 1 describes the basics in 

photometric stereo physical model and finds the most used reflectance map equation for Lambertian surfaces. Section 2 

shows the first steps we had done studying PS and especially the changing from using two to four light sources and lays 

the bases of next sections. Then, Section 3 illustrates the theory of gradient and albedo extraction. Section 4 deals with 

an algorithm we have developed to avoid illumination biases. In Section 5 we explain our gradient integration algorithm 

and compare it with existing ones. We also study its performances in terms of computational time and robustness. 

Section 6 is made by all applications we are contended with and we’ll show there our algorithm potential. The last two 

sections are the Appendix A, in which we demonstrate the mathematical details in choosing the best lighting conditions 

used to light the analytical PS sample (the vase), and references. 
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2. Image formation and reflectance map 

 

In this section we deal with the image formation process and we find a mathematical model that relates object 

and light geometry with pixels intensity. First we introduce some notions as radiometry, irradiance, radiance, image 

brightness and bidirectional reflectance distribution function. The latter is the most important function that, together 

with known light sources position, leads to reflectance map formulation. Following theory sums up the basics of 

photometric stereo as discussed in [1]. 

To understand how the pixels intensity in acquired images is determined, we should study some radiometry 

concepts. First, the irradiance is the amount of light falling on a surface and it’s the power per unit area incident on it 

( 2
m

W ). The radiance, instead, is the amount of light radiated from a surface and it’s measured as the power radiated 

from the surface per unit area per unit solid angle (
srm

W
2 ).  Remember that the solid angle is defined as: 

 

2

cos

R

A ϑ
=Ω   (2.1) 

 

where A is surface area, ϑ  is the angle between surface normal and a line connecting the patch to the origin 

and R is the length of this line. 

Starting from these definitions we now discuss the image formation process. Let’s consider Fig. 2.1, where 

there are one object, a lens and an image plane.  

 

 
 

Fig. 2.1 – Image formation system 
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As easy to see, if the rays passing through the lens are not deflected, the solid angle concerning the object is 

equal to the solid angle regarding the image plane. These solid angles are: 
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and if they are equal, it holds 
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Now, we should investigate how much of the light emitted from the surface patch go through the lens. The 

solid angle subtended by the lens, as seen from surface patch is 
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where d is diameter lens. 

The power of the light emitted from the surface patch and falling on image plane is 
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where L is the radiance of the surface in the direction toward lens. The irradiance of the image plane patch will be 
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Using (2.3) we find this relationship 
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Thus image irradiance is proportional to scene radiance L and to the angle alpha between the ray connecting 

the center of the lens and the patch and the optical axis. This is the first important result in the procedure that leads to 

reflectance map.  

We saw how image irradiance depends on scene radiance, but what does radiance depend on? It depends on the 

light that falls on the object and the fraction of this light that is reflected, due to many reasons as object geometry or 

object reflection properties. The equation that describe what we have just said is called bidirectional reflectance 

distribution function (BRDF) 

 

( )
( )
( )ii

ee

eeii
E

L
f

ϕϑδ

ϕϑδ
ϕϑϕϑ

,

,
,;, =   (2.8) 

 

where ( )ee ϕϑ ,  and ( )ii ϕϑ ,  are the viewing and lighting direction (Fig.2.2). 

 

 

 

 
 

Fig. 2.2 – BRDF geometry 
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One important property of this function consists in Helmholtz reciprocity condition 

 

( ) ( )iieeeeii ff ϕϑϕϑϕϑϕϑ ,;,,;, =   (2.9) 

 

Generally we don’t have a single specific direction which the light comes from, but we have a “sky” with 

different radiance that depends on the sky region. Consider such a sky as a hemisphere and a part of it of size 

( )ii δϕδϑ , . Supposed that a patch is in the hemisphere center and then it subtends a solid angle  

 

iii δϕδϑϑδω sin=   (2.10) 

 

The irradiance received from this part of the “sky” will be 

 

( ) iiiiiE δϕδϑϑϕϑ sin,   (2.11) 

 

So, the total irradiance is 
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−
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where iϑcos  accounts for the foreshortening of surface seen from the direction ( )ii ϕϑ , . 

So, the radiance of the surface will be 

 

( ) ( ) ( )∫ ∫
−

=
π

π

π

δϕδϑϑϑϕϑϕϑϕϑϕϑ
2

0
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The same approach has to be considered if we want to compute the radiance of a Lambertian surface. In an 

ideal Lambertian surface one patch appears equally bright from all viewing directions and doesn’t absorb any radiation 

power. So, the BRDF function must be constant. To find that value we have to use the previous integrals, setting that 

the total irradiance is equal to radiance integral over all directions, so 
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which becomes 
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This leads to 

 

π

1
=f   (2.16) 

 

So, 

 

i
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ππ
cos

11
0 ==   (2.17) 

 

We have found the relation that correlates the direction and intensity of illumination with the surface radiance, 

which the pixels brightness depends on. Now we have only to write this relation in terms of surface derivatives along x 

and y. 

We can easily demonstrate that a normal vector could be written as 
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In the same way and for using similar notation we could define the illumination vector as 
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Now, using these equations, 
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Since this equation is the unique term that really influence the pixels brightness, while the other terms are only 

scale factors, usually we define a normalized reflectance map ( )qpR ,  
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As we shall see in next section this kind of reflectance map doesn’t care about the surface albedo. This surface 

property should be added as an important scale factor that depends on the nature of each single area patch 

corresponding with one image pixel. 

Before moving on with the next section, Photometric Stereo basics are now described. Consider now the 

( )qp,  space and an acquired image of a surface with uniform albedo. Let us consider also a single pixel with value 1E . 

Then we have 

 

( ) 1, EqpR =   (2.22) 

 

This equation is a curve in the ( )qp,  plane. We can’t compute the ( )qp,  value matching 1E , since there are 

infinite values of this gradient pair. We need much more information. We need more images with different light 

condition (different l
r

 vector)! Other images represent other curves and the intersection point of these curves is the 

gradient of the analysed point. Fig. 2.3 shows reflectance map curves for some E values, setting 1=Sp  

and 5.0=Sq . This is the starting point for the development of all PS algorithms. 
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Fig. 2.3 – Reflectance map curves for ten values of E 
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3. Changing from two to four lights 

 

When we started to apply PS algorithm to real surfaces, we used a particular form of the reflectance map seen 

in previous chapters to compute the gradient field and we placed only two lights, one on the right and the other on the 

left of the camera, 
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where RI  is the acquired object image, which depends on the scene geometry and on object reflectance 

properties, 0I  is the intensity of the light, ),( yxρ  is the albedo and ( )βα ,  defines the position of each light (Fig. 

3.1). 

 

 

 

With this model we used to compute the derivatives in such an easy way: in the case of derivative along x we 

consider 01 =β  and πβ =2  and easily find 

 
 

Fig. 3.1 – System geometry 
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and in the same way, choosing 
2

1

π
β =  and 

2
2
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β −=  
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However, this leads to a big problem, since with two lights I could obtain only a part of the gradient field that 

is absolutely necessary for computing the depth map. With one derivative I could only know the height map of one row 

along x a time (or column along y) but I can’t establish a connection with the height information of adjacent rows (or 

column). For this reason the first 3D reconstructions are very poor and there is a great problem with noise effects on 

them. 

The first solution is to use the same formulas but four lights, the first two ones for the x derivative and the 

latter ones for the y derivative. It’s obvious that this approach increases enormously the 3D reconstruction algorithm 

possibilities. Let’s see an example of this first simple approach at the photometric stereo issue. 

In every part of this thesis we’ll use always one particular PS sample, which permits us to compare different 

methods, whether a gradient extraction or an integration algorithm is performed. Fig.3.3 shows this object to be 3D 

mapped. One big issue in photometric stereo and shape from shading algorithms is accuracy estimation, since, if a real 

sample is chosen, rarely it’s possible to numerically compare the real geometry with the reconstructed one. So, in 

addition to a real sample, we have to consider, during this work, also an analytical one. Typically there are some PS and 

SFS numerical surface (Fig.3.2) [11]. We choose the vase and the reasons of this will be clear when the integration 

algorithms will be developed and analysed.  
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a)      b) 

 

 
 

c)      d) 
 

 
 

e)      f) 

 

Fig. 3.2 – typical PS and SFS test images 
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Fig. 3.4 – The circle with the minimum ray that includes all surface ( )qp,  pairs was displayed in red and it corresponds to the 

maximum alpha value that doesn’t allow shadows in gray scale images 

 
 

Fig. 3.3 – the PS sample in this work to test used algorithms 
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In the case of the vase we have to choose the best illumination condition. Referring to appendix A, we should 

analyse the gradient field in the ( )qp,  space to solve this task. Precisely, considering all possible beta values, we have 

to find the alpha value that doesn’t in any case make the shadow line intersect the minimum circle that includes all 

surface points plotted in the ( )qp,  plane. Fig.3.4 shows vase gradient pairs plotted in ( )qp,  plane and the minimum 

circle that contains them.  

The coordinates of the most distant ( )qp,  pair are ( )4.7,2.10 . Using this parameter in (8.9) in the appendix 

we could find that °≈= 5.40792.0max radα . 

Using the equations above we could compute the derivatives along x and y of both shell and vase. Starting with 

the x one we have to consider 01 =β  and πβ =2 . Fig. 3.5 and 3.6 show ( )
21

, RR II  of shell and vase and their x 

derivative. Instead, for the y derivative we put  
2

1

π
β =  and 

2
2

π
β −= . Fig. 3.7 and 3.8 show ( )

21
, RR II  of shell 

and vase and their y derivative. Note that in shell case we don’t know the numerical exact value of alpha (assuming 

parallel rays, see section 5), but it doesn’t matter, because it will only affect scale 3D reconstruction. 
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a)      b) 
 

 
 

c) 
 

Fig. 3.5 – a) and b) show shell images lit respectively from right and left, while c) surface derivative along x 
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a)      b) 
 

 
 

c) 
 

 
 

d) 
 

Fig. 3.6 – a) and b) show vase images lit respectively from right and left, while c) surface derivative along x. d) is the error 

between the original x derivative and the computed one 
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a)      b) 
 

 
 

c) 
 

Fig. 3.7 – a) and b) show shell images lit respectively from the upside and downside, while c) surface derivative along y. 

N.B. in real images the y axis has the opposite direction than y axis in analytical image (vase)  
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a)      b) 
 

 
 

c) 
 

 
 

d) 
 

Fig. 3.8 – a) and b) show vase images lit respectively from the upside and downside, while c) surface derivative along y 
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In this sense the gradient recovery assumes a minor importance than the second step, the gradient integration, 

which is a fundamental issue to reach the height map starting from the gradient field. However, is the four lights set the 

best solution and, if yes, in which terms?  

Actually the choice of a specific lights set depends on many factors. For instance if we want to decrease 

acquisition time we could acquire only three color images, which are the minimum data set that permits to compute the 

gradient field and the albedo. However, if the surface is away from the smoothness condition, more than four images 

are probably needed to avoid shadows distortions in gradient and albedo. So, it’s obvious that the more images we have, 

the more accurate will be the 3D recovered map, but the more is also the acquisition time. In any case, we need to find a 

trade-off between these issues. For example, in real-time applications we are bound by hardware acquisition rate and we 

should choose the best solution in terms of images number and images resolution. The latter depends on which object 

we have to deal with. In the next section the basic gradient extraction theory and formulas were explained [12].   
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4. Basic theory – gradient extraction 

 

In this section we discuss the theory of gradient computation. In order to define a proper mathematical model 

we consider a Lambertian surface behaviour. Many works demonstrate that it’s possible, under some assumptions, to 

separate this special cue to the others (highlight, shadows an so on) [10]. In such a way many non-ideal surfaces can be 

transformed to be treated as Lambertian. For this reason the following theory is usable in almost every photometric 

stereo experiment.  

The reflectance function in Lambertian case is the scalar product of two vectors, the lighting one and the 

surface normal: 
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Now, to simplify notation consider this vectors: 
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If we have Nk ,,2,1 K=  light sources we can write: 

 

nlI kk ⋅=   (4.3) 

 

This formula doesn’t care about surface chromaticity (albedo). 

But where could albedo occur and what does its appearance depend on? While we are sure that it occurs in 

surface microfacets (which are projected onto pixels in image plane) as its absolute property so-called body colour, its 

appearance could depend on the light colour. Considering this latter factor we have to rewrite the previous equation in 

this way: 
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where [ ]T
BGR

µµµµ = , if we consider the separated RGB signals. 

Now, from (4.3) and (4.4) we obtain 
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Let now deal with the body colour. As the light colour is a RGB vector multiplied by the light direction vector, 

in the same way the body colour is a RGB vector multiplied by surface normal. (4.4) becomes 
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where [ ]TBGR ρρρρ = . In this case the colour acquired image is 
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Generally, since the concept of colour is relative to a fixed colour, which is considered the reference one, we 

could consider system normalized regarding the light colour. In such a way the image equation is: 

 

( )nLI kk ⋅= ρ   (4.8) 

 

Note that, in the ideal case, it doesn’t matter using gray-scale or colour images, and it’s obvious after 

considering last equation. However, if there is some noise in acquired image, the analysis of three cues (RGB) could 

allow us to understand the original colour vector in the RGB cube [10][12], or, at least, to obtain most accurate 3D map. 

Considering (4.8) it’s obvious that we need at least three images for having a solution. With three images 

( 3,2,1=k ) we have this linear system: 
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where [ ] [ ]TLLLL 321=  and [ ]TIIII
321

0 = . As well known, if 3>k , we should apply the Moore-Penrose 

inverse matrix: 
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That’s all regarding the basic theory of gradient extraction. More complex issues will be treated in next 

sections. 

For the moment, we are interested in comparing this kind of gradient computation and the particular method 

based on four image acquisitions seen in previous section. We analytically analyse equation form using Moore-Penrose 

matrix and in the same light set condition than before. With the four light sources used in section 3, where we have 

 



 25 















−=

=

=

=

2

2

0

4

3

2

1

π
β

πβ

π
β

β

  (4.11) 

 

the L matrix will be 
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so, 
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This leads to 
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In the RGB case we could write these equations in such a way 

 



 26 

( )




































+++

+++

+++

++=

















+++

−
−===

+++

−
−===

BBBB

GGGG

RRRR

BGRBGRBGRBGR

BGRBGR

BGRBGRBGRBGR

BGRBGR

IIII

IIII

IIII

qp

IIII

II
qqq

IIII

II
ppp

B

G

R

BGR

BGR

4321

4321

4321

22

4321

42

4321

31

1sec
4

1

cot2

cot2

,,,,,,,,

,,,,

,,,,,,,,

,,,,

α

ρ

ρ

ρ

α

α

  (4.15) 

 

In absence of noise each colour cue produces the same gradient. However, it’s very useful, because we could 

use this behaviour to make the algorithm more robust in presence of noise. Equations (4.14), compared with equations 

(3.2) and (3.3) tell us that, if there aren’t any non-idealities 

 

4231 IIII +=+   (4.16) 

 

This will be a simple way to detect non-idealities such shadows, highlights or non-parallel rays. 

Now, let compare the gradient field of the two used images sets (shell and vase) computed with the latter 

equations and with (3.2) and (3.3). We should expect the same result with the vase due to the fact that it’s an analytical 

ideal surface, while we should have a very different result in the shell case, most of all in shadows areas. 

Fig.4.1 shows what we expected, i.e. the two vase computed gradients are numerically the same. Instead, 

Fig.4.2 states that the two shell gradient fields are different. Precisely they differ more in the zone in which there are 

non-idealities. For this reason Fig. 4.3 shows an image where black means less difference; as expected, shadows zone 

are white. 
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a) 
 

 
 

b) 
 

Fig. 4.1 – a) and b) are the differences between the vase x and y derivatives computed with (4.14) and (3.2) with (3.3)  
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a) 
 

 
 

b) 
 

Fig. 4.2 – a) and b) are the differences between the shell x and y derivatives computed with (4.14) and (3.2) with (3.3) 
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a) 
 

 
 

b) 
 

Fig. 4.3 – a) and b) are the difference images between the shell x and y derivatives computed with (4.14) and (3.2) with (3.3) 
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5. Rays correction 

 

So far we have seen the basic theory of gradient extraction. However we made some assumptions that could 

not fit the real conditions. If we take care about considering surface non-idealities, there could be also light behaviours 

that produce gradient and 3D reconstruction biases. In this sense and under particular conditions we have developed a 

method to correct this structured noise. In this section we study the simple case of point light source near the object and 

starting from this particular situation we find that it’s possible to apply the founded final equations to any case. 

We start this analysis assuming that a point light source is lighting a plane, so for all pixels 0== qp . If the 

light is near the plane we easily note that two surface points with the same ( )qp,  values will be lit with different alpha. 

So, the corresponding pixels in plane image have different gray level Fig. 5.1. This is in contrast to (4.8).  

 

 

 

One thing is clear: for a plane I have a different alpha value for each surface point. We solve this problem (for 

now in the plane case) using three steps. The first is considering a plane with known albedo (or we could consider its 

albedo as the reference colour value). Then an average alpha value is found. The last step is to build a correction matrix 

for the specific light source. After these steps we are able to 3D map and to recover albedo of any plane at the same z 

 
 

Fig. 5.1 – with a point light source to surface patches with the same gradient are lit with different light directions and then have 

different pixel gray levels 
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value. It’s not really a big result, but, after describing this procedure, we demonstrate that it is possible to improve it 

under particular but not too binding conditions.  

Only in this case we use a different sample instead of shell (it would be vain to consider an ideal surface such 

the vase), due to the fact that what we are going to explain is more visible with it rather than the shell. 

Let consider a white plane, a white light source and gray-scale images (for now we don’t care about random 

noise correction). For this surface, as state above, 0== qp  for all patches, so we can write: 
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If rays are not parallel we should make a distinction between all pixels so, in matrix terms, 
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jiI ,, cos
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α=   (5.2) 

 

If we know the value of alpha we also know the alpha biases in each real image pixel. Now, how we could 

state the real value of alpha if the light is a point light source? One method should be to consider the alpha between the 

ray which links light position and the intersection between plane and view direction.  However it would be a good 

method only for point light source and we should choose another approach with a casual light distribution (not only 

regarding light direction but also regarding light intensity). Instead, knowing the albedo and gradient of the plane, we 

could measure the average alpha value. Fig. 5.2 shows the same plane lit from four different directions (the same of the 

previous section). As is easy to see, instead of the ideal case, the gray-level distribution is not uniform in a single image 

and it’s not equal comparing images one another. 
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So, if we consider a NxM matrix the mean alpha value is 
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a)     b) 
 

  
 

c)     d) 
 

Fig. 5.2 – a),b),c) and d) show the white plane lit respectively from right, left, upside and downside 
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These two methods are the approach boundaries. The first is the same as the second with a Dirac function 

applied in the image center. A reasonable trade-off is adding a weight depending on the distance between the pixel and 

image center. The equation becomes 
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(N.B. we put K out of the summary because the four weighted matrices are equal each other) 

where  
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Once we have computed alpha we build a correction matrix 
k

M in such a way 
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so, 
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We have founded a simple equation for the correction matrix 
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Fig. 5.3 shows plane images after applying the correction matrices on them. The computed alpha value is 

°≈≈ 2645.0 radMα . Chosen these correction matrices, obviously it doesn’t matter if we’ll deal with a plane with 

different albedo, because it is only a gray-level pixel scale factor. In this case we only have a different equation 
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So, 
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and 

 

k

ji

Mk

ji
I

M
,

, ~
cosαρ

=   (5.11) 

 

As we said before this is not a really great result, since if I move the plane forwards or backwards along z axis 

the alpha correction at the same pixel changes. For instance, if I put an object on the plane and I want to recover its 

gradient I should consider a different alpha distortion than the plane case. How can I go on to make this result be worth 

effort? 

In Fig. 5.1 we have seen that two pixels involve different light directions, if the light is not far enough to make 

us consider parallel rays. But, if the light is not too near the plane we could demonstrate that for a little difference in z 

axis the same correction matrix is valid yet. The only thing we have to study is this z range, in which we could 

generalize the particular plane correction matrices and use them for any object. Let start to see the geometric problem 

(Fig. 5.4). I have to find the z∂  that permits me to consider alpha variation numerically zero in the case of point light 

source. Independently of the surface slope the alpha variation involve a variation in l term. We would want that each 

element of light vector doesn’t change the value out of a specific range.  
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a)     b) 
 

  
 

c)     d) 
 

Fig. 5.3 – a),b),c) and d) show the white plane lit respectively from right, left, upside and downside after applying the correction 

matrix on it 



 36 

 

 

The involved vector is 

 

[ ]αβαβα cossinsincossin=l   (5.12) 

 

We want that  
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This condition leads to 

 













=≤
−

=≤
−

ε
α

αα

ε
α

αα

01.0
cos

coscos

01.0
sin

sinsin

1

21

1

12

  (5.14) 

 

Using Fig. 5.4 we can write 

 

 
 

Fig. 5.4 – For applying correction matrices to any object being 3D mapped I should find the variation of z that permits to 

consider numerically zero the variation of alpha  
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This result means that, if the plane, in which the light sources lie, is one meter and a half far from the plane 

where I could put any sample on, I could reconstruct a gradient field of a surface that has a z map in almost 3 cm range. 

This is a very similar condition, comparing with our experiments, so we could apply correction matrices even if there is 

an object on the original white plane. Fig. 5.5 shows four images of an archaeological sample. Now we apply on them 

the correction matrices (Fig. 5.6) and we show the results (Fig. 5.7). Even if we didn’t mention the integration algorithm 

yet, in order to understand the effect of this correction approach, we also show the 3D reconstructions using the original 

images and the corrected ones (Fig. 5.8). As is easy to see, the 3D map using original images is biased: the plane should 

be a flat surface instead of semi-spherical. On the other hand, the surface computed after using correction matrices 

appear no biased and the plane under the sample is flat, as it should be. 
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a)     b) 
 

  
 

c)     d) 
 

Fig. 5.5 – a),b),c) and d) show the archaeological sample lit respectively from right, left, upside and downside before applying 

the correction matrix on it 
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a)     b) 
 

  
 

c)     d) 
 

Fig. 5.6 – a),b),c) and d) show the archaeological sample lit respectively from right, left, upside and downside after applying the 

correction matrix on it 
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a) 
 

 
 

b) 
 

 Fig. 5.7 – a), b) show the archaeological sample gradient computed after applying the correction matrix on it 
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a) 
 

 
 

b) 
 

 Fig. 5.8 – the archaeological sample 3D map computed a) without and b) after applying the correction matrix on it 
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6. Gradient Integration 

 

In previous section we have analysed the gradient computation process. Now we start to deal with the second 

main step, i.e. the integration step, which permits to perform a transformation between the gradient field and the 

corresponding heights map. In the past, the first test consists in applying the Riemann one dimensional integration, 

since we had only two photos and one derivative (x or y).  The results are not really good, most of all in the real case. 

Indeed the Riemann approach is not too bad in the ideal case, but it’s very noise sensitive, so it becomes unusable with 

real surfaces. Concerning the vase, for example, the 3D map is quite good in the case of x derivative while is really bad 

with the y derivative (Fig. 6.1). This depends on the fact that Riemann integration performs only one integration per 

row (or column) and doesn’t make any correlation between columns (or rows). Furthermore, if it doesn’t have the 

boundary condition as initial cue, the first row (or column) starts from zero value. It’s not worth developing a Riemann 

based algorithm that cares about the boundaries. For this reason an ideal surface with the first column equal to zero (as 

the vase) has a good reconstruction with the Riemann integral applied on the x derivative (Fig. 6.1). This represents the 

first trial and, for obvious reasons, we immediately abandon this kind of approach. We have read a lot of works and 

tried some known algorithms concerning this issue and there is a lot of different ways to recover z map from the 

gradient field, for instance using Fourier transforms [13] or Green’s formulas, but so far we believe that the best trade-

off between the reconstruction accuracy and computational time is the biconjugate gradient method (BGM) approach 

[14]. In this section we’re going to discuss a particular algorithm we have developed based on BGM, taking care of both 

surface and boundary integrals. First we’ll talk about the matrix problem involved in two-dimensional integration 

process (Poisson matrix), then we’ll show the theory concerning BGM and finally we’ll illustrate our modified 

algorithm. 

 

6.1 Poisson matrix 

 

Poisson equation is the prototypical elliptic equation 
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where ( )yx,ρ  is the known term. Using the finite-difference and matrix representation it becomes 
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where ∆  is the distance in ( )yx,  plane between two surface patch centers along x (or y), supposed they are equal. 

Now let us consider a surface that consists in a NxM  matrix. We could write 
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for 12 −= Ni K  and  12 −= Mj K . This leads to a matrix formulation, which involves the so-called “tridiagonal 

with fringes” matrix. For example, if ( ) ( )6,6, =MN , we’ll have a 16x16 Poisson matrix. 
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The unknown term is 

 

[ ]Tzzzzzzzzzzzzzzzz 5,54,53,52,55,44,43,42,45,34,33,32,35,24,23,22,2  (6.5) 

 

Instead, the given term is build by ji,ρ  and the boundary conditions in such a way 

 
 

a) 
 

 
 

b) 
 

Fig. 6.1 – 3D map computed applying Riemann integral to a) x and b) y derivative  
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Note that the four pixels at the matrix edge are not involved in the surface integration. So, we could generalize 

these matrices using a generic NxM  matrix and using this representation 
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and 
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For solving (6.7) equation it’s possible to use a lot of numerical methods, but we should narrow down the 

possible algorithm taking care that most of all involve A inverse matrix computation. Since A matrix has 

( )( ) ( )( )( )22,22 −−−− MNMN  dimension, even with small value of N and M, the calculation of the inverse 

could be computationally very hard. The BGM avoids the inverse computation but involves the original sparse matrix 

storage. For the moment we shall explain this algorithm and then we’ll modify it to avoid also its storage in hardware 

memory, increasing computational time. 

 

6.2 BGM 

 

The conjugate gradient algorithm is based on the minimization of this formula [14]: 
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It’s minimized when 
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So, it’s is minimized for the z values that solves (6.7). The generic numerical algorithm (known as biconjugate 

gradient method) starts supplying initial vectors 1r  and 1r  (which have the same z dimension), the first guess 0z  and 

set 11 rp =  and 11 rp = . 

Then, it carries out this recurrence 

 

kkkk

kkkk

kkkk

kk

kk

k

k

T

kkk

kkkk

kk

kk

k

pzz

prp

prp

rr

rr

pArr

pArr

pAp

rr

α

β

β

β

α

α

α

+=

+=

+=

⋅

⋅
=

⋅−=

⋅−=

⋅⋅

⋅
=

+

++

++

++

+

+

1

11

11

11

1

1

  (6.14) 



 47 

 

In our case A is symmetric so we can set kk rr =  and kk pp = . Furthermore we choose 00 =z , which 

means that the residual br =0 . The recurrence becomes 
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6.3 Our algorithm 

 

So far we have seen the two-dimensional integration problem and the numerical method to solve it. However, 

in real photometric stereo case, we haven’t any given boundary condition and we really don’t want to store a big matrix, 

even if it’s sparse. In fact, if we have a common 512x512 image the A matrix will be 262144x262144 matrix with more 

than 1 million non-zero elements. We improve this algorithm performing two tasks, first we use the conjugate method 

to execute a boundary integration and then we avoid storing the sparse matrix with a simple algorithm that compute 

kk pAp ⋅⋅ . 

 

6.3.1 Boundary integration 

 

Supposed the derivatives along x and y are two NxN  matrices. A particular case of Poisson’s formula is used 

to compute the depth map in the matrix contour. First of all the boundary is considered as a linear vector 

 

[ ]TNNNNNNNNNNNNC zzzzzzzzzzzzzz 1,11,21,11,2,1,,,1,2,11,12,11,1 LLLL −−−−= (6.16) 

Then the equation (6.2) is rewritten considering only one derivative along the direction of the contour vector 
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where iρ  depends on the surface derivatives along x and y and its value is 
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Note that the first and the last elements of Cz  vector are the same and, since an integration involves an 

additive constant, we could set 01,1 =z . This procedure leads to an A matrix with the diagonal element equal to -2 

and, for each row the element value before and after -2 is 1.  

 

6.3.2 Surface integration 

 

Using previous results as BGM algorithm cues, we have to analyse only the known term of (6.7). This is the 

sum of the second derivatives but, in our experiments, we have the first derivative. Using finite-difference 

approximation we put 
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State this, we could write the known term as brbc zzb −−= ρ , where bcz  and brz  are the same as before 

and ρ  is 

 

jijijijiji qqpp ,1,,1,, −+−= ++ρ   (6.20) 
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The last thing we have to discuss is the procedure that permits us to avoid A matrix storage. We said that we 

perfectly know the A matrix and, except little differences, the n+1 row is equal to the shifted n row. If we manage these 

little differences we could perform the product only with a for loop without storing the sparse matrix. These differences 

are the zero values that interrupt the diagonal with "1" values adjacent to matrix diagonal. These values occur with a 

regular recurrence, which depends on the number of columns in the original acquired images. So, every change is 

predictable and there’s no problem to perform this operation. In this way we could reach an algorithm performance 

better than common algorithm used in professional software for computation. 

Now we show the result of this procedure in the analytical and real test cases (vase and shell) (Fig. 6.2 and 

6.3). As we explain in section 4, the algorithm recovers the albedo information too. Fig. 6.3 shows the shell 

reconstructed surface with its applied albedo. 

Then, we investigate algorithm changed version to improve its performances and, among many trial, we found 

that the iteration number (hence the computational time) could be decreased using a 9 pixels kernel instead of Poisson’s 

5p kernel. Since the derivatives along all direction could be written as a linear combination of x and y derivatives, if we 

consider also the derivatives along the diagonals of a surface matrix, we’ll have a Poisson’s equation that include all 

pixels in a 3x3 kernel centered on ( )ji, coordinates. Fig. 6.4 shows a comparison between 5-kernel and 9-kernel 

algorithm performances in terms of number of iteration and computational time. 
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a) 

 

 
 

b) 
 

 
 

c) 
 

Fig. 6.2 – a) Vase 3D map computed applying BGM integral, b) the original surface and c) the height error %. 
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a) 
 

 
 

b) 
 

 
 

c) 
 

Fig. 6.3 – a), b) shell 3D map computed applying BGM integral, c) the reconstructed surface with applied albedo map. 
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a) 
 

 
 

b) 
 

Fig. 6.4 – a), b) show the performance differences, between our algorithm based on Poisson’s equation (5p kernel) and the 
modified 9p kernel algorithm, respectively regarding the number of iterations and computational time. In abscissas there is the 

dimension N of a NxN surface matrix.  
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These improvements make our algorithm working better than commercial software in solving Poisson’s and 

modified Poisson’s algorithms. We find that our algorithm takes less time to compute the biconjugate gradient process 

than a famous software (that we are not going to mention) (Fig.6.5).   

There is another way to improve the computational time regarding the 3D map of a surface. Many papers deal 

with Photometric stereo issue, but most of all take as initial cue the boundary conditions, which is a really binding thing. 

We are able to find a 3D map without any information but the gradient, and this is a special feature that allows us to 

more decrease the time taken to have surface heights. We have only to take not the entire image in a single step, but part 

of it. After computing the boundary we reconstruct the boundary of a surface region (e.g. the upper left quarter); starting 

from the known boundary we have to compute only two edges of this subsurface. Then, its surface integral is performed 

and we could continue finding the 3D map of the other regions. Note that, after this step, if we want to reconstruct the 

upper right quarter we already know the heights of three of its edge, and so on. The point of fact is that the time needed 

to work the entire surface out is more than the time taken for calculating four sub-surfaces. Let us consider a NxN 

matrix with 600=N . Our algorithm takes more than seven minutes (about seven minutes and a half) for the entire 

surface, while it takes about one second for a nxn sub-matrix with 100=n . So, with this “divide et impera” approach, 

we spend about 40 seconds instead of 450. If we consider a nxn with 50=n , the entire surface will be reconstructed 

in about 30 seconds. We decrease the computational time by 94%. This approach could be very useful regarding the 

real-time issue, which could clear the way for new innovative applications.  

 
 

Fig. 6.5 – A comparison between our algorithm and a famous calculus software in solving BG iteration process. In abscissas 
there is the dimension N of a NxN surface matrix.  
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The possibility of having an algorithm that compute boundary of any region with any topological (two-

dimensional) features allows us to solve one of the most important problems: the biases of shadow region. There are 

some papers [12] that state the capability of identifying shadow zones and robustly computing the real gradient without 

any distortion. But the shadow zone contains also a lot of information in the case of a non-ideal surface, most of all in 

the presence of discontinuities, which are the “devil” in photometric stereo. In such cases shadows can help us first to 

recognize discontinuities and then to reconstruct the right gradient and the right surface. Consider a lit cube lying on a 

planar surface. It produces a cast shadow on the plane.  If we applied one algorithm to remove the shadows effect in 

gradient field we’ll have an equal to zero gradient and the reconstructed surface will be a plane. This is one instance 

which shows both the lack of many algorithms in managing shadows and the great information contained in them. As 

an example of applying a simple algorithm to right reconstruct shadow zones without losing the information held in 

them, let see Fig. 6.6, where we use the capabilities of the curvilinear algorithm (one-dimensional Poisson’s approach) 

to reconstruct a self-shadow in a facial 3D map.  

 

 

 
a)        b) 

 
Fig. 6.6 – Comparison between facial reconstruction a) without shadow managing and b) removing one of the cast 

shadows due to the nose 
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7. Applications 

 

The most wonderful feature in this kind of research is that PS could be applied to a large number of samples 

and it works not only for near Lambertian surface and using common lights, but also with different kind of images and 

with surfaces that is non-Lambertian. For instance we reconstruct objects acquiring their scanning electron microscope 

(SEM) images. Another example is face 3D map; while the skin is approximately Lambertian, the eye is right 

reconstructed, even if we couldn’t consider it Lambertian at all. These are to examples that demonstrate the adaptability 

of PS to many real cases, even if they are really far from the ideal conditions. This fact proves the developed algorithm 

is robust regarding most of the distortions causes. Due to this robustness we have applied it to many research and 

application fields and in the following section we separately analyse each of them: 

 

- archaeology 

- biometrics 

- graphology 

- huge and far objects 3D map 

- police inquiry 

- SEM samples 

- biology 

- polynomial texture map (PTM) samples 

Furthermore, during these experiments we need a software to manage some data. So we had developed a 

visualization tool and a software that controls the acquisition of SEM images (section 7.2). We’ll broadly show them 

and their behaviour. 

 

7.1 Optical applications 

 

Archaeology is the first application field we have dealt with during our research. The first sample was a double 

of a Sumerian tablet, with a great number of incisions on it. We were surprised to note that the 3D map is perfectly 

readable even if in the first experiments we use a surface matrix with low resolution (Fig. 7.1 and Fig. 7.2). The effect 

of the heights with albedo separation is evident if we compare the 3D map with and without the chromatic information.  
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a)       b) 
 

 
 

c) 
 

Fig. 7.1 – a) one of Sumerian tablet (front) original images, b) 3D map and c) 3D map with albedo  
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Concerning archaeological issues a very important application is stratigraphy. Using our algorithm 

archaeologists can 3D map every step of stratigraphic process, avoiding the needed drawing task. This makes this 

procedure more accurate and reliable. Fig. 7.3 shows a simulation of a stratigraphic operation supposing we have three 

surfaces. 

 

 
 

a)       b) 
 

 
 

c) 
 

Fig. 7.2 – a) one of Sumerian tablet (rear) original images, b) 3D map and c) 3D map with albedo  
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a) 
 

 
 

b) 
 

 
 

c) 
 

Fig. 7.3 – These are three stratigraphic surfaces. a) is the first layer, b) the first and the second layers and c) all layers. 
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One feature of our algorithm is the separated extraction of heights and chromatic information. This proves to 

be very useful in archaeology when an inscription is illegible due to its dirtiness. Fig. 7.4 shows a headstone completely 

impossible to read, while Fig. 7.5 demonstrates that, removing the albedo, with a 3D map we are able to read the 

original Roman inscriptions. 

 

 
 

Fig. 7.4 – A completely illegible headstone 
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Another important application is biometrics. In this section we are going to show the capabilities of PS in 3D 

mapping part of human body, useful, for instance, for security application. The first samples we illustrate are facial 

reconstructions (N.B. we have human guinea-pig leave to public her photo). In Fig. 7.6 we have a face with open eyes. 

This demonstrates that even non-ideal surfaces could be considered almost Lambertian due to the algorithm robustness 

regarding non-idealities. 

 

 
 

a) 
 

 
 

b) 
 

Fig. 7.5 – a) An image of a part of the headstone and b) its 3D map in which we are able to read the original inscriptions 
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In this sample we could see that the face is reconstructed properly but a lot of distortions appear in the hair. 

Depending on the specific application (for instance security) we could consider a part of image in which we are able to 

manage all non-ideal elements and to avoid surface biases. The following figure (Fig. 7.7) proves that it’s possible to 

use our algorithm to 3D map fingerprints. This feature is really important, because generally fingerprints identification 

is performed with two dimensional data. Possibility to use three-dimensional information improves the identification 

accuracy and decreases a lot potential errors. 

 

 

 
 

Fig. 7.7 – A fingerprint 3D map 

 
 

Fig. 7.6 – A face 3D map with right reconstruction of eyes zone 
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Graphology is the science of human identification by his handwriting. Broadly it uses letter shapes and ink 

intensity to identify the author of any writing; all of these instruments are two-dimensional. Even in this case having 

three-dimensional information can help in identifying task. We have tried our algorithm reconstructing two 

superimposed drawn lines (Fig. 7.8). Using this kind of information we immediately see that one line is deeper than the 

other, so the man who writes in this paper has used different effort drawing the lines. This could be a good information 

depending on what somebody is searching for. 

 

 

 

Finally the last kind of application concerning optical domain is the 3D map, using solar light, of object at a 

great distance from the viewer. In Fig. 7.9 we show the 3D reconstruction of a moon crater. 

Instead, Fig. 7.10 represents a summarise of the capabilities of our method. 

 
 

Fig. 7.8 – A 3D map of two superimposed drawn lines 



 63 

 

 

 

 
 

a)    b)    c) 
  

Fig. 7.10 – Pure albedo a), pure geometry b), and rendered 3D reconstruction c) of a shell by Photometric Stereo. These are the 

general results after applying our algorithm to a sample in optical domain 

 
 

a) 
 

 
 

b) 
 

Fig. 7.9 – A moon crater. Original image a) and reconstructed detail b) by 2-source (sunlight at midnight of two successive days) 

Photometric Stereo. 
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7.2 Scanning Electron Microscope 

 

So far we have dealt with optical images and we have considered surfaces behaviour as Lambertian. There is 

another type of images that, even if it’s physically completely different from common images, permits to consider the 

surface in the same Lambertian way. They are scanning electron microscope (SEM) images. Obviously it increases the 

possible application field and as we demonstrate that it’s possible to reconstruct huge and far object using, for instance, 

solar light, now we can say we are able to investigate the microscopic world. In the following we’ll see many exemplars 

of typical SEM samples but, before doing this, we should illustrate the procedure to acquired SEM images for 3D 

reconstruction algorithm. Even if the image acquisition system is very different from many point of view we need the 

same images set. So, not considering the nature of SEM signal, the unique difference is that SEM images are gray-level 

matrices and the concept of albedo in this data is not the real chromatic property. In scanning electron microscope 

albedo variations represent material variations along the surface. Giving a closer look to the PS-based 3D recovery 

method, it consists of the acquisition of 4 Back-Scattered (BS) images, which allow us to compute surface gradient, 

and, since we have to rotate the sample under observation due to the fact that we have only one light source (in SEM the 

corresponding light source is the electron detector), and since the rotation is not perfectly performed by the micro 

mechanical system in SEM, we need to align acquired images to give our algorithm them.  Stated this, to acquire 

images we need to perform the following procedure, due to the intrinsic microscope behaviour.  

 

 

First of all the subject is framed, magnified and focused. Then both brightness and contrast are separately set 

for the two detectors to be used, i.e. the off-axis BackScattered  (BS) electron detector and the complete circular axial 

  
 

a)       b) 

 

Fig. 7.11 – a) BS and b) IS images of the same frame scan. 
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BS detector, which produce isotropic shading (we indicated them as IS images). In Fig. 7.11 you can see the BS and IS 

images related to the first image acquisition. So, after framing these two images of the object we want to 3D map, we 

start this sequence 

1) Acquisition of a pair BS and IS images, as in fig. 7.11. 

2) mechanical rotation of the specimen by 90° 

3) Acquisition of a reduced IS image in the central  area, that is first counter-rotated by 90°,  and then 

 

4) cross-correlate with the previous IS image. This gives the ( )yx ∆∆ ,  that we use to re-align the image in 

SEM acquisition display 

 

5) The new image center of the rotated specimen is mechanically brought back by ( )yx ∆−∆− , as close as 

possible to the previous centre 

6) Steps 1-4 are repeated 3 times 

At the end of the process (which takes few minutes, including the image acquisition), a twin set of 4+4 images 

is stored (Fig. 7.14). 

 
 

Fig. 7.13 – cross-correlate with the previous IS image 

 

 
 

Fig. 7.12 – reduced IS image counter-clockwise rotated by 90° 
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 The automatic alignment during the acquisition process is not really accurate for a good 3D reconstruction so 

we have to perform also a software image processing to refine the alignment. Then we have the four images (Fig. 7.15) 

that will be used by the PS algorithm to find surface heights (Fig. 7.16). 

 

 

Following figures shows other possible kind of SEM samples that are useful to be 3D reconstructed. 

 
 

Fig. 7.16 – The 3D map of this SEM sample 

 
 

Fig. 7.15 – The images after the image processing alignment. These images are ready to be processed by PS algorithm 

 
 

Fig. 7.14 – Stored images at the end of SEM acquisition process. BS images in the first row and IS images in the second. 
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a)    b) 
 

 
 

c) 
 

Fig. 7.19 – a) Optical image and b) SEM detail of the percussion surface of an exploded bullet-case; c) reveals the 3D shape. 

  
 

a)    b) 
 

Fig. 7.18 – a) One of the BS SEM images of a coin detail and b) its 3D reconstruction. 

 
 

Fig. 7.17 – A set of BS images (upper row), the corresponding IS twin set (central row) and some 3D views (lower row) of the 

reconstructed surface of a damaged solid-state electron device. 
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7.3 Polynomial Texture Map 

 

The last application we want to describe involves an algorithm and software developed in HP labs at Palo Alto 

(CA). This algorithm called Polynomial Texture Mapping (PTM) takes N images of an object and interpolates this cue 

data to virtually render the surface as lit from any chosen directions [15]. Since we can choose the direction of 

illumination of a PTM sample, it’s evident that we can light the surface from the directions we need to perform PS 

algorithm and to find surface 3D map. For this reason we download from hp-labs web site the PTM software and some 

samples and we find the heights of them. Next figures demonstrate the advantages of merging our and their algorithm. 

 

 
 

a) 
 

 
 

b) 
 

 
 

c) 
 

Fig. 7.20 – a) one of PTM (Sumerian tablet) original images, b) 3D map and c) 3D map with albedo  
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a) 
 

 
 

b) 

 

 
 

c) 
 

Fig. 7.21 – a) one of PTM (a front of an ancient coin) original images, b) 3D map and c) 3D map with albedo  
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a) 
 

 
 

b) 
 

 
 

c) 
 

Fig. 7.22 – a) one of PTM (a rear of an ancient coin) original images, b) 3D map and c) 3D map with albedo  
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8. Appendix A 

 

In order to have the best PS test images, a particular issue has to be faced: the light set-up. Since we have an 

analytical surface map (with real object it’s more complicated and we don’t deal with it here), it is necessary that the 

produced images set is the best to be applied to PS algorithms. In few words we should avoid in the images every non-

ideal element, such as cast and self shadows, highlights and noise. First of all we should note that the smoothness of 

surface must be suitable for PS, which is not able enough to recognize strong surface discontinuities, and we should not 

have any noise or highlights; this is due to the fact that the surface is not a real object and we could choose the proper 

material behaviour. The last issue is the presence of shadows (cast and/or self). To solve this problem we have to 

analyse the given analytical surface gradient field and find a rule to decide the illumination parameters, which don’t 

produces any shadow. Let’s make an example in one dimension. Suppose we have a pyramid with the base in the x-y 

plane and let z-axis be its axis. Consider a section on the x-z plane (Fig. 8.1). Before moving on, note that shadows in 

images (both cast or self) involve the presence of a negative scalar product, between the illumination direction and 

surface normal, in at least one image pixel (or one object microfacet).  

 

 

 

We know that the reflectance function stated that 

 

 
 

Fig. 8.1 – one dimensional geometry for best light set-up estimation  
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where the term with the s-indices is the illumination direction vector while the other term is the surface normal. 

If we want to avoid shadows we should choose a proper illumination vector, which assures us that in every object 

microfacet the R function is non-negative. This task is really simple if we know surface gradient field. As we can easily 

see in one dimension, if 
2

π
α ≤  (and this is a necessary condition in PS), then the maximum alpha value, to avoid 

shadows along the entire surface, will be 
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Now let consider the usual two dimensional condition. While in the previous case we deal with alpha, since the 

derivative could be only in x direction, now the analysis of beta is needed. In other words we should study all possible 

directions of light rays to choose the maximum alpha value that does not produce any shadow independently of beta 

value. 

In this sense, first of all note that usually the PS algorithms consider a continuous surface made by a finite 

number of microfacets, which begin pixels in image domain. Furthermore, we consider the pixel as an image of a 

square object region with unitary edge. Stated this, the depth variation (Fig. 8.2) within a pixel is 

 

yqxpz δδδ +=   (8.3) 
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Fig. 8.2 – The change in height is the sum of the products between derivative and the step along each direction   

 

Fig. 8.3 – Image gray level value depends on the light direction vector and the normal of the 10 zz  segment that lies on 

intersection plane 



 74 

where xδ  and yδ  are he steps. Considering a random light direction (Fig. 8.3), the image gray level value depends on 

the normal of the 10 zz  segment that lies on intersection plane.  Given a range of possible ( )qp,  derivatives along x 

and y we should decide which light parameters never produce shadows. Since β  might have any value, we must focus 

on α .  

First of all we have to consider the reflectance equation in ( )qp,  axes and in the boundary condition 

( ) 0, =qpR . We can easily see that in this particular case the reflectance relation is a line with the following equation 
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Lack of shadows holds 
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This relation describes a part of ( )qp,  plane and if every ( )qp,  lies in this zone then we are sure that there 

won’t be any shadows in the image. Stated this and given a range of derivatives values we could study the maximum 

alpha value that satisfies the condition above. Fig. 8.4 shows the geometric simple task to be solved. Here we have a 

region of the plane that contains any possible ( )qp,  couple in object surface. It’s well know that the value of r depends 

on alpha value, while the angle between r and p (or q) axis depends on beta value. So we have to compute the maximum 

alpha value that permits us to cover with the circle the squared region defined by ( )qp,  ranges. 

It’s obvious that the value of maxr will be 

 

( ) ( )22

max maxmax qpr +=   (8.6) 
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To compute the parameters we must consider the line equation and two constraints: first the line should be 

normal to maxr  vector, second the point ( )qp max,max  must lie on the line. Note that I’m not computing the 

parameters of the line in Fig. 8.4 but of the parallel line that is tangent to the circle in the first quadrant. It doesn’t matter 

because the signs of the point that lie on the line are not important, since the alpha value depends only on the length of  

maxr . 

In mathematical terms the constraints are respectively 
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This leads to 

 

Fig. 8.4 – Once we know ( )qp,  range, we have to choose maximum alpha value to avoid shadows independently of 

beta 
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Considering that ( )βα , define the light position vector and that we don’t care about beta we could find with 

no trouble 
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Finally, if we choose maxαα ≤ , we will sure that no shadow could affect our 3D reconstruction, 

independently of beta. 

Generally we won’t have a perfect squared region which identifies the gradient range. So, after plotting all 

surface ( )qp,  pairs, we should find the pair that is the most distant one from axis intersection. The p and q values of 

this point become the maximum values in (8.9). 
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