
Universit̀a degli Studi di Cagliari

Facoltà di Ingegneria

Dipartimento di Ingegneria Elettrica ed Elettronica

Corso di Dottorato in Ingegneria Elettronica ed Informatica

XIX Ciclo

Statistical Pattern Recognition Techniques for
Intrusion Detection in Computer Networks

Challenges and Solutions

Tesi di Dottorato di

Dott. Ing. Roberto Perdisci

Relatore

Prof. Ing. Giorgio Giacinto

This work was developed in part at the Department of Electrical and Electronic Engineering,

University of Cagliari, Italy, and in part at the Georgia Tech Information Security Center, College of

Computing, Georgia Institute of Technology, Atlanta, GA, USA.

c© 2006, Roberto Perdisci. All rights reserved.

Alla mia famiglia

Abstract

Intrusion Detection Systems (IDS) aim at detecting and possibly preventing the execution of attacks

against computer networks, thus representing a fundamental component of a network defence-in-

depth architecture. Designing an IDS can be viewed as apattern recognitionproblem. Pattern

recognition techniques have been proven successful in learning concepts from example data and

constructing classifiers that are able to classify new data with high accuracy. In network intrusion

detection the main objective is to design a classifier that isable to distinguish between normal

and attack traffic, therefore several researchers have used statistical pattern recognition and related

techniques to accomplish this task showing promising results.

We explore several aspects of the application of statistical pattern recognition to network intru-

sion detection from a practitioner point of view. Our intentis to point out significant challenges and

possible solutions related to designing statistical pattern classification systems for network intrusion

detection. In particular, we discuss three problems: a) Learning from unlabeled traffic; b) Learning

in adversarial environment; c) Operating in adversarial environment. Because of the difficulties in

constructing labeled datasets of network traffic, unlabeled learningtechniques have recently been

proposed to construct anomaly-based network IDS. In this case, the traffic used for learning is usu-

ally directly extracted from the live network to be protected and does not undergo any labeling

process. Unfortunately, learning from unlabeled data is inherently difficult. As a consequenceun-

labeled anomaly IDSsuffer from a relatively high number of false positives. We propose a new

unlabeled anomaly IDS based on a modular Multiple ClassifierSystem (MCS), and show that the

proposed approach improves the accuracy performance compared to “monolithic” IDS proposed by

other researchers. As the network traffic used for training unlabeled IDS is directly extracted from

I

II Abstract

the network, an adversary may try to pollute the training dataset by sending properfly crafted traffic

to the protected network. The adversary’s objective is to modify the distribution of training data, so

that future attack instances will not be detected. Using a case study we show that such attacks are

possible in practice and then we discuss possible coutermeasures. Also, assuming the adversay does

not interfere with the learning process, she may try to “evade” the IDS during the oprational phase.

We show how an attack may be transformed to blend in normal traffic, thus reaching the protected

network unnoticed. Afterwords, we present a strategy whichaims to harden anomaly-based network

IDS by combining multiple classifiers, makingblending attacksmore difficult to succeed.

II

Acknowledgments

There are many people I’d like to thank for supporting me during my doctoral studies. First I’d like

to thank my advisors, Prof. Giorgio Giacinto, Prof. Fabio Roli, and Prof. Wenke Lee. They are

definitely great scientists and great people. They guided meand taught me how to think like an

ambitious and effective researcher. They also gave me the possibility to spend half of my studies at

the Georgia Institute of Technology, and I will be always extremely grateful for that.

Studying both at the University of Cagliari and at Georgia Tech gave me the opportunity to be

part of two great research groups and meet so many wonderful people. I’d like to thank all my

colleagues, but I’m afraid the list would be too long. Among them, Luca Didaci, David Dagon,

Prahlad Fogla, Guofei Gu, Roberto Tronci, Ignazio Pillai, Monirul Sharif, in particular, are the

people with whom I had the privilege to work and exchange ideas about both research and life in

general.

Special thanks go to my family. My parents have always supported me and I know they are

proud of what I’ve done, and I hope they know I’m proud of them as much as they are of me, and

that I immensely love them. The same love I feel for my sister,my brother, my sister in law, and my

nieces. This thesis is dedicated to all of them.

Also, special thanks go to my girlfriend Hannah. She supported me and tolerated me every time

I was nervous and stressed out about my thesis. She has alwaysbeen extremely kind and patient

with me, no matter what, and I love her so much because of that.

Least but not last... I’d like to thank my closest friends, Alessandro and Natasha, Danilo, Fab-

rizio, Cristian, and Gianluca. With them I shared moments I’ll never forget. Thank you guys!

III

IV Acknowledgments

IV

Contents

1 Introduction to Intrusion Detection 1

1.1 Computer Security .. . 1

1.2 Intrusion Detection 3

1.2.1 Misuse-based vs. Anomaly-based Intrusion Detection. 4

1.2.2 Host-based vs. Network-based Intrusion Detection 5

1.2.3 Practical Aspects of Intrusion Detection 5

1.3 Attacks Against Intrusion Detection Systems 6

1.4 Outlook of this Thesis 7

1.4.1 Our Contribution . 8

1.4.2 Thesis Outline . 10

2 Pattern Recognition for Network Intrusion Detection 11

2.1 Pattern Recognition 11

2.1.1 Designing a Statistical Pattern Recognition System 12

2.1.2 Multi-Class Pattern Classification 13

2.1.3 One-Class Pattern Classification 14

2.1.4 Multiple Classifier Systems 15

2.1.5 Classification Performance Evaluation 16

2.2 Application of Statistical Pattern Recognition to Network Intrusion Detection . . . 18

2.2.1 Supervised Network IDS .. 19

2.2.2 Unlabeled Network IDS .20

V

VI CONTENTS

2.2.3 Feature Extraction for Network Intrusion Detection 24

3 Unlabeled Anomaly Detection 25

3.1 Problem Definition .. . 25

3.2 Difficulties in Unlabeled Anomaly Detection 26

3.2.1 The Base-rate Fallacy .. . 26

3.3 State of the Art .. 28

3.4 Performance Improvement Using a Modular MCS 30

3.4.1 Assumptions . 30

3.4.2 Modular Architecture .. . 30

3.4.3 Overall vs. Service-Specific False Alarm Rate 31

3.4.4 Service-Specific MCS .34

3.4.5 One-Class Classification 35

3.4.6 Combining One-Class Classifiers 39

3.5 Experimental Results 42

3.5.1 Training Set Undersampling 43

3.5.2 Performace Evaluation .. . 46

3.6 Discussion .. 50

4 Learning in Adversarial Environment 53

4.1 Learning in Presence of Malicious Errors 54

4.2 Case Study: Misleading Worm Signature Generators 56

4.3 Noise Injection Attack 58

4.3.1 Collecting Suspicious Flows 59

4.3.2 Injecting Noise into The Suspicious Flow Pool 60

4.3.3 Crafting the Noise: A Case Study Using Polygraph 61

4.3.4 Effects of the Noise on Other Automatic Signature Generators 72

4.4 Experiments .. 73

4.4.1 Experimental Setup .. 73

4.4.2 Misleading Bayes Signatures 75

VI

CONTENTS VII

4.4.3 Misleading All The Three Signatures at The Same Time 77

4.4.4 Analysis of the Results .. . 79

4.5 Attack Against Semantic-based Signature Generators 80

4.6 Possible Countermeasures 81

5 Operating in Adversarial Environment 83

5.1 Payload-based Anomaly Detection 83

5.2 Evading Detection 84

5.2.1 Polymorphic Attacks .. 85

5.2.2 Mimicry Attacks . 85

5.2.3 Polymorphic Blending Attack 86

5.3 Hardening Payload-based Anomaly Detection Systems 91

5.3.1 One-Class SVM . 92

5.3.2 Mahalanobis Distance-based Classifier 93

5.3.3 Payload Classification .. . 93

5.4 Experiments .. 98

5.4.1 Experimental Setup .. 98

5.4.2 Performance Evaluation .. . 100

5.5 Discussion .. 107

6 Conclusion 111

6.1 Our Contribution .. . 111

6.2 Future Work .112

VII

VIII CONTENTS

VIII

List of Tables

3.1 Composition of the training set before the undersampling phase 44

3.2 Composition of the training set after the undersamplingphase 44

3.3 Composition of the test set 45

3.4 Performance attained by theν-SVC classifier on the six modules in terms of AUC.

For each module, the best performance is reported in bold. 45

3.5 Performance attained by thek-means classifier on the six modules in terms of AUC.

For each module, the best performance is reported in bold. 46

3.6 Performance attained by the Parzen classifier on the six modules in terms of AUC.

For each module, the best performance is reported in bold. 46

3.7 Performance attained by the Clustering algorithm proposed in [31] on the six mod-

ules in terms of AUC. For each module, the best performance isreported in bold. . 47

3.8 Summary of the best results in terms of AUC attained for each module. 47

3.9 Results attained by the proposed three modular systems.. 48

3.10 Results attained by applying the “monolithic” approach using the clustering algo-

rithm proposed in [31]. .. 51

3.11 Results attained by applying the “monolithic” approach using theν-SVC classifier. 51

4.1 Percentage of successful attacks (using “Forwarded-For” and “Modified-Since”) . . 78

4.2 Percentage of successful attacks (using “Cache-Control” and “Range: bytes”) . . . 79

5.1 Performance of 1-gram PAYL. 100

IX

X LIST OF TABLES

5.2 Performance of single one-class SVM classifiers. The numbers in bold represent the

best average AUC for a fixed value ofν. The standard deviation is reported between

parentheses. 101

5.3 Performance of single MD classifiers. The numbers in boldrepresent the best aver-

age AUC for a fixed value ofν. The standard deviation is reported between paren-

theses. 102

5.4 Performance of single MD classifiers for varyingν. No feature clustering is applied.

The number in bold represents the best result. 103

5.5 Performance of an implementation of 2-gram PAYL using a single MD classifier,

ν = 0 andk = 65, 536. 104

5.6 Average AUC of classifier ensembles constructed using the majority voting rule.

The numbers in bold represent the best result for varyingk. The standard deviation

is reported between parentheses. 105

5.7 Performance of an overall IDS constructed using an ensemble of one-class SVM

and settingk = 40. The DFP is referred to the single classifiers of the ensemble. . . 106

X

List of Figures

1.1 The evolution of attack sophistication and devolution of attackers’ skills [69]. . . . 3

2.1 The process of designing a Pattern Recognition System 12

2.2 Three fundamental reasons why an MCS may work better thanthe single best clas-

sifier in the ensemble [28]. .. . 15

3.1 The base-rate fallacy problem [12]. 28

3.2 Modular architecture 31

3.3 Feature subsets for service-specific MCS 35

4.1 Causative attack against a learning algorithm.G and G′ represent two different

attack instances. The training dataset is polluted by placing data points along the

line that connects the center of the sphere toG andG′. Different amounts of well

crafted data points are needed to mislead the algorithm and shift the decision surface

so thatG first, and thenG′, are not detected as anomalous [14]. 55

4.2 Worm signature generation and detection scheme. 58

4.3 Worm propagation .. 61

4.4 Structure of the flows (simplified) 61

4.5 An example of fake anomalous flow 70

4.6 Case 1. The false positives are measured over the innocuous flow pool 76

4.7 Case 1. The false positives are measured over the test flowpool 76

4.8 Case 2. The false positives are measured over the innocuous flow pool 77

XI

XII LIST OF FIGURES

4.9 Case 2. The false positives are measured over the test flowpool 78

5.1 Polymorphic Blending Attack. After transformation theattack lies inside the deci-

sion surface constructed around normal traffic. 87

5.2 Polymorphic Blending Attack scenario [34] 88

5.3 ROC curves obtained by combining One-Class SVM classifiers using the majority

voting rule. Each curve is related to a different value ofk. Notice that the scales

have been adjusted in order to highlight the differences among the curves. 105

5.4 ROC curves obtained by combining MD classifiers using themajority voting rule.

Each curve is related to a different value ofk. Notice that the scales have been

adjusted in order to highlight the differences among the curves. 106

5.5 Average relative mutual information for varyingν. 107

XII

Chapter 1

Introduction to Intrusion Detection

1.1 Computer Security

Ever since the birth of multi-level/multi-user computers in 1960s, computer security has assumed a

fundamental role. A multi-level computer supports access control policies which aim to guarantee

limited access to resources. The access decision is based onthe classification of both the user’s

privileges and properties of the object the user wants to access [58, 69]. Because of the very limited

or absent networking, in multi-level computers the primaryconcern was related to legitimated users

who try to access resources without having proper authorization. Afterwards, along with the growth

in popularity of personal computers and the development of the Internet in 1990s, the scenario

changed and the primary concern became the potential vulnerability of computer systems in face of

attacks from anonymous remote users [69].

The first known internet-wide attack and penetration occurred in November 1988. The attack

was in the form of a self-propagating program that spread through the network using a variety of

propagation techniques [69]. The attack was named “Morris Worm”, after his author Robert T.

Morris Jr. The “Morris Worm” exploited common misconfiguration in sendmail, a Mail Transfer

Agent (MTA) software. In 1996 the online magazinePhrackpublished an article by Aleph One [79]

discussing the details of how to perform intrusions by exploiting buffer-overflow vulnerabilities.

Today, attacks that exploit buffer-overflow vulnerabilities (usually referred to asbuffer-overflow at-

tacks) are among the most common and effective, given the large number of new buffer-overflow

1

2 1. Introduction to Intrusion Detection

vulnerabilities discovered every year and that a successful attack has a high probability of yielding

administration privileges on the attacked machine [69]. Since early 1990s, attacks against com-

puter systems have significantly increased in number and sophistication. At the same time, the

development and release ofautomatic attacktools on the Internet has caused the skills necessary

for launching computer attacks to dramatically decrease, as shown in Figure 1.1. On the other

hand, whereas in the beginning attacks were performed usually as a way to prove attacker’s own

skills, today the motivations behind attacks against computer systems are becoming more and more

criminal-driven [71]. As a consequence of computer crime, many companies have lately undergone

major financial losses [38].

One of the first studies on computer security is “Computer Security Threat Monitoring and

Surveillance”, by J. P. Anderson, published in 1980 [11]. Inhis work, Anderson discussed a frame-

work for investigation of intrusions and intrusion detection. In particular, he gave a definition of

fundamental terms likeThreat, Risk, Vulnerability, Attack, andPenetration, from a computer secu-

rity perspective. The definition of these terms as given by Anderson in [11] are reported below:

Threat: The potential possibility of a deliberate, unauthorized attempt to:

(a) Access information

(b) Manipulate information

(c) Render a system unreliable or unusable

Risk: Accidental or unpredictable exposure of information, or violation of op-

erations integrity due to malfunction of hardware or incomplete or in-

correct software design.

Vulnerability: A known or suspected flow in the hardware or software design or opera-

tion of a system that exposes the system to penetration or itsinformation

to accidental disclosure.

Attack: A specific formulation or execution of a plan to carry out a threat.

Penetration: A successful attack; the ability to obtain (unauthorized)access to files

and programs or the control state of a computer system.

2

1.2 Intrusion Detection 3

Figure 1.1: The evolution of attack sophistication and devolution of attackers’ skills [69].

1.2 Intrusion Detection

According to Anderson’s terminology, intrusion detectionaims at detecting and possibly preventing

the execution of both penetrations (or intrusions) and attacks, i.e., both successful and unsuccess-

ful attacks1. In the beginning, intrusion detection was performed through manual analysis of audit

records by security experts. This was particularly important for early computer-assisted financial

transactions and for the protection of military systems. Afterwards, because of the growth of the

volume of financial transactions and military information handled by computer systems, it was ev-

ident that an automatic way to perform security audit was needed. Dorothy Denning’s paper “An

Intrusion Detection Model” [25] is one of the first and most influential papers on intrusion detection.

Denning assumes the attacks are distinguishable from normal users’ behavior. Therefore, the main

task for constructing an effective Intrusion Detection System (IDS) is to find an appropriate way

of modeling the normal activities and suitable metrics to measure the distance between attacker’s

activities and the model of normal behavior. Denning’s workhas inspired many researchers and

represents the base for several commercial products [71].

1Although detecting intrusions is the most important objective, gathering information about unsuccessful attacks is in
general useful as well because it allowes security experts to estimate where the major threats come from and what are the
targeted machines in the protected network

3

4 1. Introduction to Intrusion Detection

1.2.1 Misuse-based vs. Anomaly-based Intrusion Detection

The intrusion detection problem can be viewed as an instanceof the general signal-detection prob-

lem [71]. Intrusive activitiescan be viewed as the signal to be detected whereasnormal activities

can be considered to be noise. In classical signal-detection approaches, the distribution of both the

signal and the noise is known or approximated. The decision process consists in distinguishing be-

tween noise and signal-plus-noise in the communication channel. Unlike classical signal-detection,

in which both a model of the noise and the signal are used to make a decision, IDS typically base

their decision on either a model of the signal (i.e., a model of attack activities) or a model of the

noise (i.e., the normal behavior). IDS which construct a model of the attacks to make a decision are

usually referred to asmisuse-basedIDS. Misuse-based IDS often use a set of rules (or signatures)

as attack model, with each rule usually dedicated to detect adifferent attack. In this case IDS are

commonly referred to assignature-basedIDS. A rule can be as simple as a string of consecutive

byte values that matches a part of a network packet sent during the execution of the attack the rule

refers to. On the other hand, when a model of normal activities is used to make a decision, IDS are

usually referred to asanomaly-basedIDS.

Despite the anomaly-based approach was the first to be introduced by Denning in [25], signature-

based IDS are the most deployed. This is in part due to the factthat signature-based IDS are effective

in detecting known attacks and usually produce less false alarms (i.e., a normal event erroneously

flagged as attack) compared to anomaly-based IDS. An exampleof widely deployed signature-based

IDS isSnort [90], an open source software project that has received a lotof attention during the last

few years. However, although signature-based IDS have beenproven to be quite effective, they are

inherently unable to detect unknown attacks or even new variants of known attacks [71]. Moreover,

the signature-generation process is usually a slow (semi-)manual process. This means that a window

of vulnerability exists even after the attack is released and brought to the attention of the computer

security research community. Conversely, anomaly-based IDS are in theory able to detect any know

or unknown attack. However, designing a model of normal behavior and suitable metrics that allow

to clearly separate attacks or anomalous activities from normal activities is in general non trivial and

the resulting IDS are usually prone to false alarms.

4

1.2 Intrusion Detection 5

1.2.2 Host-based vs. Network-based Intrusion Detection

Based on the type of events or data the IDS analyze in order to detect intrusions, it is also possi-

ble to distinguish between host-based and network-based IDS. Host-based IDS are installed on and

protect single hosts, usually by inspecting system log data. For example, the audited system log

data may be sequences of system calls2 [114]. Host-based IDS can also monitor single applications.

For example, an host-based IDS protecting a web server may monitor the logs produced by thehttp

serversoftware looking for anomalous http request patterns. On the other hand, network-based IDS

analyze packets crossing an entire network segment. Network-based IDS have the advantage of

being able to protect a high number of hosts at the same time. However, they can suffer from per-

formance problems due to the large amount of traffic they need to analyze in real-time and possible

attacks that exploit ambiguities in network protocols and cause the exhaustion of the memory and

computational resources of the IDS [39]. Furthermore, network-based IDS cannot easily monitor

encrypted communications and are inherently unable to monitor intrusive activities that do not pro-

duce externally (with respect to a single host) observable evidence. On the other hand, host-based

IDS have access to detailed information on system events butmay be disabled or made useless by an

attacker who successfully gains administrative privileges on the protected machine. Intrusions that

bring to the installation of so calledroot kits3 [49] are an example of such attacks. Once theroot kit

is installed, it is usually possible for the attacker to cover the traces of malicious activities by, for

example, cleaning the system logs, hiding information about malicious processes at the kernel level,

etc.

1.2.3 Practical Aspects of Intrusion Detection

IDS must be considered as just one piece of the defense-in-depth strategy of an organization. A

precise plan is needed before the deployment of any detection sensor. In particular, decisions have

to be made regarding where to place the sensors in order to maximize the security of critical net-

work assets, how to configure the IDS so that the general security policies of the organization are

2System calls are calls to functions provided by the operating system kernel
3A root kit is a piece of software that installs itself as part of the operating system kernel and is able to hide traces of

anomalous system activities

5

6 1. Introduction to Intrusion Detection

respected, and how to react to alarms raised by the IDS [71].

In case of large networks, it may be necessary to deploy multiple IDS to protect different seg-

ments of the network. Moreover, given the complementarity of network-based and host-based IDS,

deploying multiple IDS of different types may help in raising the bar against network intrusions.

However, managing multiple IDS requires a significant effort. Furthermore, although collecting and

correlating information from multiple sensors would help in constructing a thorough view of the

network, this process is not straightforward. Some work hasbeen done on correlation of alarms

generated by multiple IDS, along with information generated by firewalls, authentication servers

and other devices used to enforce security [104, 105, 82]. However, alarm correlation is still in its

infancy.

1.3 Attacks Against Intrusion Detection Systems

The objective of IDS is to detect attacks against machines hosted by the protected network. However,

IDS themselves can be the target of attacks. If the attacker gains information about the IDS that

protects the network (e.g., through social engineering, collusive employee, etc.), she may tray to

attack the IDS in order to disable it or to make it unable to detect future intrusion attempts. Besides,

alike many other kinds of software, commercial and researchIDS often have security vulnerabilities

resulting from flawed design or coding errors.

In [85] three different attacks against network-based IDS are discussed. By low-level packet

forgery, it is possible to construct network traffic in order to produceinsertion, evesionandDenial

of Service(DoS) attacks. Insertion attacks exploit the fact that network IDS may accept packets that

the destination machine will reject. An attacker may use insertion of unrelevant packets to prevent

the signature matching algorithm of a signature-based IDS to detect an ongoing attack. Similarly,

an evasion attack exploits the fact that the IDS may neglect packets that the real destination machine

will accept as valid. For example, an attacker may split IP packets using overlapping fragments.

Some IDS may not be able to correctly reconstruct and analyzethe original IP packet, whereas

the destination machine may be able to reconstruct the original IP packet correctly. If the original

packet contains an attack, the destination machine may be violated while the IDS would produce a

6

1.4 Outlook of this Thesis 7

false negative (i.e., no alarm is raised). On the other hand,the objective of DoS attacks is to cause

IDS’ resource exhaustion. It is easy to see that reassembling fragmented packets may be a CPU

and memory intensive task, given that the fragments of a samepacket may arrive unordered and in

different time instants. As network-based IDS have to monitor large volumes of traffic in real-time,

the attacker may try to generate large amounts ofwell-craftedfragmented packets in order to cause

the IDS to reach 100% of CPU usage or to consume the TCP/IP stack buffer, so that the IDS will not

be able to process new packets until part of the resources (CPU or memory) are freed. This means

that an DoS attack against the IDS may be used to hide an intrusion to a machine in the protected

network.

Attackers may also usepolymorphismandmetamorphismto evade detection [40]. The objective

of these techniques is to modify the code of a given attack every time the attack is launched against

a new victim. This makes signature-based IDS ineffective, because the different instances of the

attack do not share any common features, or the common features are not sufficient to generate

an effective signature. On the other hand, anomaly-based IDS may be able to detect polymorphic

attacks because they usually look sufficiently different from normal traffic. However, a number of

attacks, often referred to asmimicry attacks, have been proposed that can evade both network-based

and host-based anomaly detectors [98, 109, 34]. The idea behind mimicry attacks is to craft the

attack so that it looks like “normal” from the point of view ofthe IDS, while still being able to

exploit the targeted vulnerability.

Another class of attacks has been recently proposed againstthe learning phase implemented by

some IDS. When machine learning techniques are implementedto construct the IDS, the attacker

may try to pollute the learning data on which the IDS is trained. The attack is launched by forcing

the IDS to learn from properly crafted data, so that during the operational phase the IDS will not be

able to detect certain attacks against the protected network [14, 81, 77].

1.4 Outlook of this Thesis

As anticipated above, and as we hope will be clearer by the endof this thesis, designing a network

IDS is a very complicated task. Current commercial and research network IDS often suffer from

7

8 1. Introduction to Intrusion Detection

relatively poor accuracy in detecting attacks against the protected network. Moreover, as discussed

in Section 1.3, network IDS themselves may be vulnerable to different types of attacks.

Designing an IDS can be viewed as apattern recognitionproblem. Pattern recognition tech-

niques have been proven successful in learning concepts from example data and constructing clas-

sifiers that are able to classify new data with high accuracy.In particular, statistical pattern recogni-

tion has been successfully applied in many fields. In networkintrusion detection the main objective

is to design a classifier that is able to distinguish between normal and attack traffic. Several re-

searcher have used statistical pattern recognition and related techniques to accomplish this task (e.g.,

[59, 37, 31, 112]). The obtained results show that the application of statistical pattern recognition is

promising and may lead to significant advances in intrusion detection.

1.4.1 Our Contribution

In this thesis we focus on the application of statistical pattern recognition techniques for the devel-

opment of network-based IDS. We explore several aspects of this task from a practitioner point of

view. Our intent is to point out significant challenges and possible solutions related to designing

statistical pattern classification systems for network intrusion detection. In particular, we discuss

three problems:

a) Learning from unlabeled traffic. Many pattern classifiers are constructed using asupervised

learningapproach. To this end, a dataset containing a representative number of labeled exam-

ples of both normal and (different types of) attack traffic is needed. Unfortunately, in network

intrusion detection it is very hard and expensive to construct such a labeled dataset. In order

to overcome this problem,unsupervisedor unlabeled learningtechniques have recently been

proposed to construct anomaly-based network IDS. However,learning from unlabeled data

is inherently difficult. As a consequence, these systems often suffer from a relatively high

number of false positives, thus making the IDS unlikely to beused in real scenarios. In order

to improve the performance of unlabeled anomaly-based network IDS, we propose a modu-

lar Multiple Classifier System (MCS). We discuss how such a system can be designed and

we show that the proposed modular approach improves the detection accuracy, compared to

unlabeled anomaly detectors proposed by other researchers.

8

1.4 Outlook of this Thesis 9

b) Learning in adversarial environment. As mentioned above, the process of labeling network

data is often very hard and expensive. Therefore, unlabeledlearning has been proposed to

overcome this problem. Usually, in unlabeled network IDS a certain amount of traffic is col-

lected from a live network and used (after filtering) to fit a statistical model. The obtained

model is then used for classification of new traffic, i.e., to distinguish between normal traffic

and attacks. In the process of collecting and learning from unlabeled traffic it is fundamental

to account for an adversary which may try to interfere with the IDS’ learning process. The

objective of the adversary is to modify the distribution of the training data used to fit the detec-

tion model, so that future attacks will passed unnoticed. Webriefly discuss some theoretical

scenarios in which this could happen, and present a case study in which we show how this type

of attacks are possible in practice. The objective is to point out the weaknesses of the learn-

ing phase implemented by certain IDS. We also discuss some possible (partial) solutions to

the problem of learning in adversarial environment, although we believe a generic and sound

solution to this problem is still to be found.

c) Operating in adversarial environment. Assume the adversary is not able or simply chooses

not to interfere with the learning process of an IDS. After the IDS has been trained and de-

ployed, the adversary may still be able to evade the IDS. Evasive attacks have been demon-

strated to be successful against both misuse-based and anomaly-based systems. In particular,

as discussed in Section 1.3, a class of attacks referred to asmimicry attackshas been proven

successful against host based anomaly detection systems. We will show that such mimicry

attacks are also possible against recently proposed network IDS which are designed using

statistical pattern recognition techniques. The main reason why such attacks are possible is

due to the simplicity of the statistical model used by some IDS. This simplicity derives from

a trade-off between the computational performance of the IDS and its accuracy. In order to

make mimicry attacks less likely to succeed we propose a new network anomaly IDS based on

a multiple classifier system. The proposed architecture increases the robustness of statistical

based anomaly IDS, while adding low overhead compared to existing detection systems.

9

10 1. Introduction to Intrusion Detection

1.4.2 Thesis Outline

This thesis is structured as follows. In Chapter 2 we introduce statistical pattern recognition tech-

niques and briefly report how researchers have so far appliedthem to network intrusion detection.

Supervised and unsupervised learning approaches are briefly presented, and the reasons why un-

supervised or unlabeled learning approaches seem to be moresuitable for addressing the intrusion

detection problem are discussed. In Chapter 3 we present theaccuracy challenges to be faced when

designing an anomaly detection system based on unlabeled learning approaches. In particular, we

discuss thebase rate fallacyproblem and propose a modular approach based on Multiple Classi-

fier Systems (MCS) for improving the accuracy performance ofunsupervised anomaly detectors.

Chapter 4 presents the problem of learning in adversarial environment. We discuss how the attacker

may, in theory, mislead a learning algorithm in order to evade the resulting detection model. We

also present a case study, showing how such kind ofmisleading attackscan be successfully devised

and launched in practice. Possible ad-hoc solutions to misleading attacks are discussed, although a

generic solution remains an open research problem. Chapter5 presents an attack calledPolymorphic

Blending Attack. The Polymorphic Blending Attack is a mimicry attack devised against anomaly

detection systems which use simple payload statistics in order to construct a model of normal net-

work traffic. The objective of the attacker is to transform a generic attack into a polymorphic variant

which looks like normal traffic from the point of view of the IDS, yet maintaining the same attack

semantic. The Polymorphic Blending Attack points out the difficulties related to operating in ad-

versarial environment. As a possible solution to the Polymorphic Blending Attack we propose an

anomaly detector constructed by using an ensemble of one-class SVM classifiers, which makes the

attack less likely to succeed. Then, we briefly conclude in Chapter 6.

10

Chapter 2

Pattern Recognition for Network

Intrusion Detection

This chapter is divided in two parts. In the first part we briefly and informally introducePattern

Recognition, with particular focus onStatistical Pattern Classification, whereas in the second part

we discuss the most significant work on the application of pattern recognition and related techniques

to the problem of network intrusion detection.

2.1 Pattern Recognition

Pattern recognition studies “how machines can observe the environment, learn how to distinguish

patterns of interest from their background, and make sound and reasonable decisions about the cat-

egories of the patterns” [44]. A pattern can be for example a fingerprint image, a human face,

a voice signal, a text document, a network packet, etc. Pattern recognition techniques have been

proven successful in learning concepts from example data and constructing classifiers that are able

to classify new data with high accuracy. In particular, statistical pattern recognition techniques have

been the most studied and applied in practice [44]. Based on the learning approach, pattern recog-

nition techniques can be divided insupervisedandunsupervised. Supervised pattern recognition

approaches are able to learn concepts from labeled examples1. The label attached to each example

1In this thesis we do not discuss regression problems, we onlyfocus on classification.

11

12 2. Pattern Recognition for Network Intrusion Detection

Figure 2.1: The process of designing a Pattern Recognition System

pattern represents the class (or category) the pattern belongs to. During the operational phase the

supervised pattern recognition system assigns new patterns to a predefined class. On the other hand,

unsupervised approaches deal with learning concepts from unlabeled data. In unsupervised classifi-

cation new patterns are assigned to a hitherto unknown class[44]. An alternative approach, called

semi-supervised, has also been proposed, whereby both labeled and unlabeledexamples are used

during the learning process [22].

2.1.1 Designing a Statistical Pattern Recognition System

A high level view of the process of designing a pattern recognition systems is depicted in Figure 2.1.

Once the problem to be solved has been defined, the first step isto collect example data that will be

pre-elaborated and fed to the learning system. In order for the collected data to be used by the pattern

recognition system, a number offeatureshave to be measured. The features are used to describe the

patterns. For example,minutiaepoints are common features used to describe fingerprint images in

fingerprint recognition [42]. As mentioned in Section 2.1, the learning problem may be addressed

12

2.1 Pattern Recognition 13

using the supervised or unsupervised approach.

When the supervised approach is used, the problem of understanding if all the measured features

are useful has to be address. In theory, the higher the numberof features, the easier to precisely

distinguish between patterns belonging to different classes. In practice, when a high number of

features is used and a limited number of example patterns is available for learning, the curse of

dimensionality problem may arise and the performance of therecognition system may degrade [29,

44]. Feature selection and extraction techniques aim at reducing the dimensionality of the feature

space in order to improve the accuracy of the classifier. Afterwards, a suitable learning algorithm has

to be chosen. The training and test phase allow the designer to construct and estimate the accuracy

of a classifier. As deciding a priori that a certain learning algorithm is the most suitable for the

problem at hand is usually not easy, model selection is performed by constructing several classifiers

using different learning algorithms, comparing the performance of each of them and choosing the

one that performs the best [57]. If the results are not satisfactory, it may be necessary to go back and

redesign part of the recognition system in order to improve the performance, for example by using

different feature reduction techniques or a new learning algorithm.

Clustering algorithms are usually applied when the available example patterns are not labeled.

Clustering aims at identifying and grouping patterns that are close to each other according to a

certain metric [43]. The results of the clustering process are then usually validated by an expert on

the problem at hand. A cluster may be representative of a formerly unknown class of patterns. For

example, clustering is often applied in marketing analysisin order to discover classes (or groups)

of customers that have meaningful characteristics (from the point of view of marketing analysts) in

common.

2.1.2 Multi-Class Pattern Classification

A pattern classifier can be viewed as a function

C : Rn 7→ Ω, Ω = {ω1, ω2, .., ωl} (2.1)

13

14 2. Pattern Recognition for Network Intrusion Detection

whereωi , i = 1, .., l represent the possible classes. Given a patternx, the classifierC assigns it to a

classC(x) = ω∗ ∈ Ω. Given a dataset of labeled patterns D= {(x1, L(x1)), (x2, L(x2)), .., (xm, L(xm))},

whereL : Rn 7→ Ω is a (unknown) function that assigns a patternxi to its true classωxi
2, supervised

learning algorithms aim at constructing a classifierC that can correctly classify new patterns. We

say thatC is trained on D.

OnceC has been trained, a generic new patternz < D can be classified usingC. As an interme-

diate step towards the classification ofz, C computes thesupportsor scoresµi(z), i = 1, .., l, where

eachµi(z) represents how stronglyC believes thatz ∈ ωi . Afterwards, a decision rule is applied on

the supportsµi(z), i = 1, ..l, in order to assign a label to the patternz. Typically, the decision rule is

arg max
i=1,..,l

(µi(z)) = k ⇒ z ∈ ωk (2.2)

2.1.3 One-Class Pattern Classification

Most supervised learning algorithms work well when the training dataset isbalanced, i.e., when it

contains approximately the same number of examples from each class. In the presence of unbalanced

datasets, techniques such as undersampling of the most represented class, oversampling of the least

represented class, and other similar techniques are usually applied [45, 15]. However, in case of

two-class problems for which one of the classes of objects iswell-sampled, whereas the other one

is severely undersampled or not represented (e.g., due to the fact that it is too difficult or expensive

to obtain a significant number of training patterns for that class), resampling the dataset might not

improve the performance and might not even be possible. In this cases,one-class classification

approaches may be applied3.

One-class classifiers aim at constructing a decision surface around the example patterns belong-

ing to the most represented class while leaving out the patterns belonging to the least represented

one [100]. The goal is to distinguish between a set oftarget objectsand all the other possible ob-

jects, referred to asoutliers. Therefore, during the operational phase, if a new patterz lies inside the

constructed decision surface it will be classified as target, otherwise it will be classified as outlier.

2For simplicity, we are not consider the problem of learning from noisyexamples.
3Novelty detectionandoutlier detectionare other terms used in the pattern recognition literature to refer to one-class

classification

14

2.1 Pattern Recognition 15

Figure 2.2: Three fundamental reasons why an MCS may work better than thesingle best classifier in the ensemble [28].

2.1.4 Multiple Classifier Systems

A Multiple Classifier System (MCS) is an ensemble of classifiers whose individual decisions are

combined in some way to make a final decision about new patterns [28, 57]. For example, a simple

and straightforward way to combine the decision of multipleclassifiers is by the application of

the majority voting rule [50, 57]. Assume we want to solve a two-class problem for which we

constructed three different classifiers,C1, C2, andC3. Let ω1 andω2 be the two classes. We can

construct an MCS based on the majority voting rule so that a patternz is assigned to, say, classω1

if at least two out of three classifiers assignedz toω1, otherwisez is labeled as belonging toω2.

It has been shown in many applications that MCS are much more accurate than any of the single

classifiers they combine. As discussed by Dietterich in [28], in order for the MCS to perform better

than the single classifiers in the ensemble, the combined classifiers need to be accurate and diverse,

in the sense that they need to perform better than the random labeling algorithm and make different

errors on new patterns. Dietterich [28] explained three reasons why accuracy and diversity are

15

16 2. Pattern Recognition for Network Intrusion Detection

desired (see Figure 2.2). LetF : Rn 7→ Ω, be the (unknown) function that correctly assigns any

patternz to its true classωz, and assume to haven different classifiersH1,H2, ..,Hn, in a hypothesis

spaceH , constructed so that they approximateF. The first reason given by Dietterich is statistical.

A learning algorithm can be seen as a search algorithm that tries to find a functionH ∈ H as close

as possible toF. When the size of the training dataset D is small compared to the size ofH , the

algorithm may find many different functions{Hi}i=1..n ∈ H which all have the same accuracy on D.

By combining the output of the classifiers{Hi}i=1..n, the obtained MCS reduces the risk of choosing

a single classifier that may have poor performance on new data. The second reason is computational.

Many learning algorithms have a stochastic component and perform some sort of search with random

initialization withinH . These algorithms may get stuck in a local optima. An ensemble constructed

by running the learning algorithm using different initializations may provide a better approximation

of F. The third reason is representational. In many real casesF < H , i.e.,F cannot be represented

by the learning algorithm. By combining the different hypothesis{Hi}i=1..n ∈ H , it may be possible

to “expand” the spaceH and find a solution which is closer toF.

2.1.5 Classification Performance Evaluation

As mentioned in Section 2.1.1, model selection is an important part of the process of designing

pattern recognition systems. In order to perform model selection, we need a way to compute and

compare the accuracy of different classification algorithms. The accuracy of a classifier C is defined

as (1−Perr), wherePerr is the probability of error, i.e., the probability of a pattern x be misclassified

by C. The accuracy can be directly estimated as the fraction of correctly classified patters. For

example, assuming the classifierC has been trained using a training dataset D, given a labeled

dataset of test examples T= {(z1, L(z1)), (z2, L(z2)), .., (zNt , L(zNt))}, with T , D, the accuracy can

be computed as

Accuracy(C) =
1
Nt

∑

z∈T

I (C(z) = L(z)) (2.3)

whereI is the indication function, wherebyI (a) = 1 if a is true, otherwiseI (a) = 0. This method for

estimating the accuracy is calledhold-out. Another method, calledk-fold cross-validation, is often

used to estimate the accuracy when a limited amount of labeled data is available. In this case the

16

2.1 Pattern Recognition 17

training dataset D is divided ink portions, D1, ..,Dk, of equal size. The classifier is trained on the

union of (k − 1) portions and the accuracy is estimated on the one portion that has not been used

during training. This process is repeatedk times, testing on a different portion for each iteration.

Thek accuracy measures are then averaged to obtain a more reliable estimate of the real accuracy.

For many classification problems the accuracy is not a suitable measure. For example, consider

a two-class problem for which a class is well represented in the test set, whereas the other one is not

(see Section 2.1.3). Formally, letN1 be the number of test patters of the first class, andN2 be the

number of test patterns of the second class. In the considered example we haveN1 ≫ N2, and the

test dataset is said to behighly unbalanced. Suppose now that a classifierC always classifies the

patterns as belonging to the first class. In this case

Accuracy(C) =
N1

N1 + N2
� 1 (2.4)

It is easy to see that according to the estimated accuracy theclassifier performs almost perfectly,

although in fact it will always make a mistake on objects fromthe second class.

Another way to evaluate and compare the performance of a classifier C is by means of the

Receiver Operating Characteristic curve (ROC) and the AreaUnder the ROC Curve (AUC) [17].

Assume we have again a two-class problem. We can refer to one of the classes, sayωp, as the

positiveclass, and the other, sayωn, as thenegativeclass. LetNp be the number of patterns from

classωp (i.e., the positive class),Nn be the number of patterns from classωn (i.e., the negative class),

theFalse Positives, FP, be the number of patterns from the negative class that have been erroneously

classified as positive patterns byC, and theTrue Positives, TP, be the number of patterns from the

positive class that have been correctly classified as positive patterns. According to the definition

above we can compute the false positive and true positive rate asFP
Nn

, andT P
Np

respectively.

As mentioned in Section 2.1.2, given a test patternz, C computes the supportsµi(z), i = p, n, for

the positive and negative class. A possible decision rule is

z ∈ ωp ⇔ µp(z) > θ (2.5)

whereθ is a constant. By varying the thresholdθ it is possible to “tune” the false positive and

17

18 2. Pattern Recognition for Network Intrusion Detection

true positive rates generated byC. The ROC curve is a two dimensional curve. The coordinates

(x, y) of the points on the ROC curve represent the false positive and true positive rate generated

by C using different values of the thresholdθ. The ROC curve represents a good way to visualize

a classifier’s performance and helps in choosing a suitable operating point, i.e., a suitable value of

the decision thresholdθ for the classifierC for which the desired trade-off betweenFP and TP

is attained. However, when comparing different classification algorithms it is often desirable to

obtain a number, instead of a graph, as a measure of classification performance [17]. Therefore,

the AUC is used as an estimate of classification performance.The highest the AUC, the better the

classification performance of a classifierC. In particular, the AUC is an estimate of the probability

P(µp(zp) > µp(zn)), wherezp ∈ ωp represents a generic positive pattern, andzn ∈ ωn represents

a generic negative pattern. Therefore, the AUC is an estimate of the probability that the classifier

scores the positive patterns higher than the negative ones [17].

Many other methods for estimating and comparing the performance of classifiers exist. We

suggest the reader to refer to [51, 29, 44, 57] for a more complete discussion and for the details on

estimating classification accuracy and performing model selection.

2.2 Application of Statistical Pattern Recognition to Network Intru-

sion Detection

As mentioned in Section 1.2.1, signature-based IDS are not able to detect really new attacks or

even variants of already known attacks. This is mainly due tothe fact that theattack signatures

are usually (semi-)manually written. It is difficult for security experts to write generic signatures

capable of detecting variants of attacks against a known vulnerability. Attempts to manually write

such signatures may easily make the IDS prone to false alarms. Attackers are aware of this problem

and are constantly developing new attack tools with the objective toevadesignature-based IDS. For

example, techniques based on metamorphism and polymorphism are used to generate instances of

the same attack that look syntactically different from each other, yet retaining the same semantic and

therefore the same effect on the victim [108]. In principle this problem could be solved by designing

vulnerability-specificsignatures [110] that capture the “root-cause” of an attack, thus allowing the

18

2.2 Application of Statistical Pattern Recognition to Network Intrusion Detection 19

IDS to detect all the attacks that try to exploit the same vulnerability. This type of signatures usually

works well when implemented as part of host-based IDS. However, it is difficult to implement

vulnerability-specific signatures for network-based IDS due to computational complexity problems

related to the high volume of events to be analyzed.

The main motivation in using pattern recognition techniques for IDS is their generalization abil-

ity, i.e., the ability to correctly classify new patterns, which may support the recognition of variants

of known attacks and unknown attacks that cannot be detectedby signature-based IDS. In the fol-

lowing we briefly report how supervised and unsupervised learning approaches have been so far

applied to network-based intrusion detection.

2.2.1 Supervised Network IDS

A number of supervised learning approaches for constructing network IDS have been proposed in

the literature, for example [59, 30, 74, 80, 37, 36]. In [59] Lee proposed a framework based on data

mining techniques to find a suitable set of features for describing network connections and construct

network IDS. Lee’s analysis brought to the construction of the KDDCup’99 dataset (http://kdd.

ics.uci.edu/databases/kddcup99/kddcup99.html), which is part of the UCI KDD archive

(http://kdd.ics.uci.edu/). In the KDDCup’99 each pattern represents a network connection

which is described by 41 features. For example, the number ofbytes transmitted by the source and

the destination of the connection, the duration in terms of seconds, the number of connections to the

same destination machine in a certain time window, are amongthe used features. The features where

derived in order to distinguish between normal connectionsand a number of different computer

attacks grouped in four categories. RIPPER [23], a rule learning algorithm, is used by Lee [59] to

infer classification rules that distinguish between normalnetwork connections and different types

of attacks. Each RIPPER rule consists of a conjunction of conditions to be tested on values of

attributes that describe network connections. In [30] Elkan presented the results of the KDDCup’99

classifier learning competition. The competition consisted in constructing a classification system

capable of distinguishing between legitimate and illegitimate network connections. The dataset

used for the competition was derived from the work of Lee [59]mentioned above. Among the 24

participants, the winning classification system [83] was anMCS constructed using decision trees

19

20 2. Pattern Recognition for Network Intrusion Detection

and a combination ofbaggingand boosting[57]. In [74] artificial neural networks and support

vector machine are compared on the task of classifying network connections, whereas [80] compares

decision trees and support vector machines on the same task.In [36, 37] Giacinto et al. proposed

a modular MCS for supervised misuse-based detection of network connections. Each module is

responsible for detecting attacks that use a certain (groupof) service(s) as attack vector. Multiple

classifiers are trained on descriptions of network connections obtained using different subsets of the

set of attributes (or features) proposed by Lee [59]. The output of the obtained classifiers are then

combined using various techniques in order to decide if a connection is normal or if it is an attack.

In order to apply supervised learning techniques a dataset containing examples of attack pat-

terns as well as normal traffic is needed. In 1998 and 1999 the MIT Lincoln Laboratory worked

on a project funded by DARPA for evaluating IDS [65], which led to the construction of two la-

beled datasets of network traffic containing both normal and attack traffic. These datasets contain

the traces of several weeks of traffic in the (simulated) computer network of an air force base. How-

ever, the obtained datasets, usually referred to asDARPA 1998andDARPA 1999, have been largely

criticized [70, 67]. The main critique is concerned with thefact that the simulated traffic contained

in the DARPA datasets cannot be considered representative of a real network traffic. In particular,

the percentage of attack traffic contained in the dataset is way larger than the percentage of attack

traffic expected for a real network. Moreover, a large part of the normal traffic was artificially pro-

duced using automatic scripts that cannot accurately simulate the traffic generated as a consequence

of human behavior. On the other hand, creating a labeled dataset of traffic directly extracting the

raw data form a real network and then analyzing it in order to assign a label to each packet or con-

nection is very hard and expensive. Moreover, traffic traces from different networks have different

characteristics, therefore the labeling process should berepeated for each new network we want to

protect. For these reasons, the supervised approach is difficult to apply in the general case.

2.2.2 Unlabeled Network IDS

In order to overcome the problems related to supervised network IDS, unsupervisedor unlabeled

approaches for constructing anomaly-based network IDS have been recently proposed [84, 31, 55,

66, 116, 118, 112, 63, 113, 111]. Here there is an ambiguity between the terms “unsupervised”

20

2.2 Application of Statistical Pattern Recognition to Network Intrusion Detection 21

and “unlabeled” that should be clarified. In the intrusion detection literature these two terms are

often used as synonyms, whereas according to the pattern recognition terminology this may create

confusion. Unfortunately, we were not able to find a clear definition of the difference between the

two terms and the techniques they refer to. We think a possible definition that solves the ambiguity

may be the following. We refer tounsupervised learningin those cases when the (unlabeled) training

patterns are used to find hitherto unknown classes [44], whereas we refer tounlabeled learningin

those cases when the setΩ of possible classes is already known and we want do find a classification

function C : Rn 7→ Ω using unlabeled examples. As the objective of anomaly-based intrusion

detection is to distinguish between two known classes, i.e., normal and anomalous traffic, in the

following we will refer tounlabeledanomaly detection.

In unlabeled intrusion detection, the traffic is directly extracted from the computer network to be

protected and used without the necessity of a labeling process. The onlya priori knowledge about

the data is usually represented by two assumptions that usually hold in practice: a) the extracted

dataset contains two classes of data, normal and anomalous traffic; b) the numerosity of the anoma-

lous traffic class is by far less than the numerosity of the normal traffic class. In case when these

assumptions are true, novelty detection, outlier-detection or one-class classification techniques can

be applied to construct anomaly-based network IDS. As mentioned in Section 1.2.1, anomaly-based

IDS have the advantage of being able (at least in theory) to detect both known and never-before-seen

attacks. This ability supports the main motivation (discussed above) for applying pattern recognition

techniques to develop intrusion detection systems.

NIDES [10] is one of the first unlabeled anomaly detection systems. It monitors TCP/UDP

ports and source and destination IP addresses. NIDES buildsa model of network behavior over a

long-term period, which is assumed to contain a very low amount of (or no) attacks. During the op-

erational phase, NIDES raises and allarm if a network packetsignificantly deviates from the normal

behavior profile. In [68], Mahoney et al. proposed a nonstationary anomaly detection systems. The

proposed detection systems is made up of two components, PHAD and ALAD. PHAD monitors the

traffic on a packet basis. It constructs anormal modelof 33 fields from the Ethernet, IP, and trans-

port layer packet header. Instead of monitoring single packets, ALAD monitors TCP connections. It

constructs a model of normal connections using informationon source and destination IP addresses

21

22 2. Pattern Recognition for Network Intrusion Detection

and TCP ports, TCP header flags, andkeywords, which represent the first word on a line of input

for a certain application protocol. The detection algorithm is devised in order to assign a high score

to an event , i.e., an attribute having a particular value, ifno novel values have been seen for a long

time for that event [68].

In [84] a variant of the single-linkage clustering algorithm is used to discover outliers in the

training dataset. A pattern vector represents a connection. Once the normal patterns are sepa-

rated from outlier patterns, the clusters of normal data areused to construct a supervised detection

model. Tests are performed on the KDDCup’99 dataset. In [31], Eskin et al. presented a geo-

metric framework to perform anomaly detection. The patterns are mapped from a feature spaceF

to a new feature spaceF′ and anomalies are detected by searching for patterns that lie in sparse

regions ofF′. Three different classification technique are used, a clustering algorithm, a k-NN al-

gorithm and a SVM-based one-class classifier. Experiments are performed on the UCI KDD dataset

(http://kdd.ics.uci.edu/), both on the portion containing network traffic, and on the portion

containing sequences of system-calls.

The anomaly detectors proposed in [55, 112, 113, 111] analyze the traffic on a packet basis. The

focus is on detecting attack packets that carry executable code. This approach is particularly useful

against buffer overflow attacks, which are frequently seen in the wild. In[55] Kruegel et al. proposed

a service specific anomaly detection systems. The main idea at the base of the proposed approach is

to include information about the protocol into the model of normal traffic. To this end, they describe

the network packets using three (sets of) features, namely the type of request (i.e., the protocol

and the type of request for that particular protocol), the packet length, and an approximation of the

distribution of byte values in the payload. The histogram representing the distribution of the byte

values in normal payloads is sorted in a discending order with respect to the occurrence frequency

of the byte values, and split in 6 bins. An overall anomaly score is computed by combining anomaly

scores computed on the type of the request from the client to the server, the length of the request and

by a measure of similarity between the distribution of byte values in the packet under test and the

distribution in normal traffic. A variant of the Perason’sχ2 test is used to compute this similarity.

Kruegel et al. also proposed a similar model to detect web-based attacks through the analysis of

URI strings [56] related to HTTP GET requests. In this case a model is learned for each specific

22

2.2 Application of Statistical Pattern Recognition to Network Intrusion Detection 23

web application hosted on a web server. The length and character distribution of the parameters

passed to the web application through the URI are analyzed and a detection model is constructed in

a way which is very similar to the one proposed in [55]. The authors also propose to combine this

statistical model to a structural model of the URI based on Markov models. Mahoney et al. [66]

proposed an anomaly detector that uses the first 48 bytes of IPpackets as features to describe the

network traffic. Nine different network protocols are considered and a separate modelis constructed

for each one of them. The detector assigns a high anomaly score to rare events.

In [116], Yang et al. proposed an anomaly detection measure called EWIND and an unsuper-

vised pattern learning algorithm that uses EWIND to find outlier connections in the data, whereas

Leung et al. [63] presented a new density-based and grid-based clustering algorithm to perform un-

labeled network anomaly detection. In [118] a two-layer IDSis presented. The first layer uses a

clustering algorithm to “compress” the information extracted for network packets, whereas the sec-

ond layer implements an anomaly detection algorithm to classify the patterns received from the first

layer.

Wang et al. [112, 113, 111] develop on the idea presented in [55] and propose a more precise

way to model the distribution of byte values in the payload ofnormal packets. In [112, 113] they

propose to consider the entire distribution of byte values without any binning. A model is trained for

each different service running on different server hosts in the protected network. For each packet,

the frequency of the byte values in the payload (i.e., the data portion of the packet) is measured

and a simple Gaussian model is trained. The detection of anomalous packets is performed by using

a simplified Mahalanobis distance between the packets and the model of normal traffic. As the

distribution of single byte values in the payload do not extract structural information, they also

propose to generalize the detection model by measuring the distribution ofn-grams, i.e., sequences

of n consecutive bytes in the payload. In [111] a new way to model the normal traffic is presented.

The authors propose to use a Bloom filter [18] to store information about the distribution of n-

grams [24] in the payload. Compared to [112, 113], the technique presented in [111] provides a way

to efficiently store structural information extracted from the payload and improves the classification

accuracy. The authors first propose an unlabeled learning approach, whereby a model of normal

traffic is trained on a dataset of payloads which are considered mostly normal. Then they propose to

23

24 2. Pattern Recognition for Network Intrusion Detection

improve the detector by adding a supervised learning phase to construct a model of known attacks.

Statistical models of normal traffic are also used to detect Distributed Denial of Service (DDoS)

attacks. In [32], for example, the authors propose to measure the distribution of a number of fields in

IP packet headers in order to create a model of normal traffic passing through a router. A statistical

distribution of the values is estimated for a number of fieldsduring a period of lengthW. This

distribution is considered as anormal profileof traffic. Future traffic is compared to the obtained

distributions by means of aχ2 statistical test. Traffic which is significantly different from the normal

profile is considered anomalous and possibly generate by a DDoS attack. Therefore, a response is

activated in order to reduce the impact of the detected attacks (or anomalies) [32].

It is worth noting that some of the work briefly presented herewill be described in more details

in the next chapters.

2.2.3 Feature Extraction for Network Intrusion Detection

In the pattern recognition literature, the term “feature extraction” often refers to the process of

projecting the patterns from an original feature spaceF to a new feature spaceF ′ with the objective

of reducing the dimensionality of the feature space. In other cases the term “feature extraction”

refers to the measurement of the features themselves. Unless otherwise specified, in the remainder

of this thesis we refer to feature extraction as the “featuremeasurement” process, namely the process

through which the features used to describe the patters are measured.

The feature extraction process is a fundamental part of the design of a pattern recognition sys-

tem. Because the features describe the patterns to be classified, choosing the wrong features usually

heavily influences the results of the learning phase, and thus the overall performance of the recogni-

tion system. The choice of what features might be the most suitable often involves a broad expertise

on the problem at hand. It is worth noting that in network intrusion detection the features to be

measured are strictly related to what kind of traffic the IDS is going to analyze and to what kind of

attacks we want to detect, as discussed in Section 2.2.1 and in Section 2.2.2.

24

Chapter 3

Unlabeled Anomaly Detection

As mentioned in Section 2.2.1, the application of supervised learning approaches for designing

network IDS is hampered by the problems in obtaining a representative labeled dataset of network

traffic. For this reason, unlabeled anomaly detection approacheshave been recently proposed, for

example in [84, 31, 112, 111].

In this chapter we discuss unlabeled anomaly detection techniques that aim to learn how to dis-

tinguish between normal and attack (or anomalous) network connections from unlabeled examples.

We will first give a precise definition of the problem. Afterwards, we will present some related

work on the topic and some of the challenges related to unlabeled anomaly detection in general.

Because learning from unlabeled is inherently hard, recently proposed unlabeled anomaly detectors

tend to be prone to a high rate of false alarms. We will proposea possible solution to the unlabeled

anomaly detection problem based on a modular Multiple Classifier System (MCS), and show that

the proposed approach improves the classification accuracycompared to approaches proposed by

other researchers.

3.1 Problem Definition

The traffic over a TCP/IP network consists of packets related to communications between hosts. The

exchange of packets between hosts usually fits in theclient-serverparadigm, whereby a client host

requests some information offered by a service running on a server host. The set of packets related

25

26 3. Unlabeled Anomaly Detection

to the communication established between the client and (the service running on) the server forms

a connection. Each connection can be viewed as a pattern to be classified and the network-based

anomaly detection problem can be formulated as follows [36]:

Given the information about connections between pairs of hosts, assign each connection to the

class of either normal or anomalous traffic.

3.2 Difficulties in Unlabeled Anomaly Detection

Learning from unlabeled data is more difficult than learning from labeled data [43]. Due to the

inherent difficulties in learning from unlabeled data, unlabeled anomalydetection systems usually

suffer from a relatively high false positive rate. It turns out that high false positive rates cause a

significant decrease in the Bayesian detection rate, as shown in the following. As we will discuss

later in this chapter, it is extremely important to improve the performance of anomaly detectors in

order to attain a very low false positive rate and a high detection rate at the same time.

3.2.1 The Base-rate Fallacy

The base-rate fallacy is a logical fallacy that occurs when making a probability judgment without

taking into accounta priori probabilities. As an example, consider e medical testT for a disease

D which is 99% accurate, i.e., the probabilityP(T = positive|D) that the result ofT is positive

given that the patient is sick, and the probabilityP(T = negative|¬D) thatT is negative given that

the patient is not sick are both equal to 0.99. Given a patientwho was found to be positive to the

medical testT, we want to know what is the probabilityP(D|T = positive) that the patient really

suffer from the diseaseD. A quick (but wrong) judgment may bring us to believe that theanswer is

P(D|T = positive)= 0.99. This answer does not take into account the incidence of the disease in

the population, i.e., thea priori probabilities. Now, letP(D) = 10−4 be the rate of incidence ofD in

the population under study, andP(¬D) = 1 − P(D). We can easily compute the correct answer by

26

3.2 Difficulties in Unlabeled Anomaly Detection 27

means of the Bayes formula

P(D|T = positive)=
P(T = positive|D) · P(D)

P(T = positive|D) · P(D) + P(T = positive|¬D) · P(¬D)
(3.1)

which gives

P(D|T = positive)=
0.99 · 10−4

0.99 · 10−4 + 0.01 · (1− 10−4)
= 0.0098 (3.2)

This means that even if the the test is 99% accurate, the probability of the patient being sick is less

than 1%.

The same reasoning applies to the intrusion detection problem. In [12], Axelsson presents a

simple example considering a hypothetical installation that includes a few tens of computers. Let

assume this computers produce 106 audit records per day through logging. He also hypothesis that

given the limited number of computers, the number of attacksper days is limited to just a few. If we

assume, say, 2 intrusions attempts per day and 10 audit record reported per intrusion, thea priori

probabilities of an audit record being related to an attack,P(I), and to normal activities,P(¬I),

would be 2· 10−5 and 0.99998, respectively. Assume we deployed an IDS which monitors the audit

records mentioned above. Let,P(A|I) be the probability that the IDS raises an alarm given that an

intrusion occurred, i.e., the detection rate, andP(A|¬I) be the probability that the IDS raises an alarm

given that no intrusion occurred, i.e., the false alarm rate. The probabilityP(I |A) that an intrusion

really occurred given that the IDS raised an allarm is

P(I |A) =
P(A|I) · P(I)

P(A|I) · P(I) + P(A|¬I) · P(¬I)
(3.3)

It is easy to see that the factor governing the detection rate, P(I) = 2 · 10−5, is completely over-

whelmed by the factor governing the false positive rate,P(¬I) = 0.99998. This is what causes the

fallacy to arise [12]. As an example, assume a (unrealistic)perfect detection rate,P(A|I) = 1.0, and

a very low false positive rate,P(A|¬I) = 1 · 10−5. In this case the Bayesian detection rate is only

P(I |A) = 0.66, that is there is a 34% chance that no intrusion occurred even though the IDS raised an

alarm. Figure 3.1 shows how the base-rate affectsP(I |A) for varying detection rate and false allarm

rate.

27

28 3. Unlabeled Anomaly Detection

Figure 3.1: The base-rate fallacy problem [12].

In the applications we consider in this chapter we are concerned with analyzing network connec-

tions instead of system logs. The problem presented above applies to this case as well, given that we

expect the number to network connections related to intrusions to be overwhelmed by the number of

normal connections. The only way to mitigate the base-rate problem seems to be the improvement

of the classification accuracy of the IDS in order to make it asclose as possible to the ideal situation

of 100% detection rate and 0% false positive rate, thus maximizing P(I |A).

3.3 State of the Art

In Section 2.2.2 we briefly reported the most relevant work onunlabeled anomaly detection. Among

the studies described in Section 2.2.2, the closest to ours were presented in [84] and [31], which

are described in more detail in the following. Both in [84] and [31] the authors assume that the

traffic is extracted from the computer network to be protected and is unlabeled. The onlya priori

knowledge about the data is represented by two assumptions that usually hold in practice: a) the

extracted dataset contains two classes of data, normal and anomalous traffic; b) the numerosity of

the anomalous traffic class is by far less than the numerosity of the normal traffic class.

In [84], Portnoy et al. used an online clustering algorithm to group similar network connec-

28

3.3 State of the Art 29

tions. Given a metricM and a cluster widthw, instances (i.e., network connections) are picked up

one by one from the training dataset. According toM a distance is measured between the instance

and the centroid of the already existing clusters. The instance is assigned to the closest cluster if

the minimum distance is less thanw, otherwise the instance initializes a new cluster. After all the

instances in the training dataset have been grouped the obtained clusters are labeled. According to

the assumption that the numerosity of the anomalous traffic class is by far less than the numerosity

of the normal traffic class, the clusters are labeled by numerosity and the largest ones are labeled

as “normal” until a certain percentage of instances are covered, and the rest of the clusters are then

labeled as “anomalous”. During the detection phase a distance is measured between the instance

under test and the centroids of the clusters obtained duringtraining. The instance is classified ac-

cording to the label associated to the closest cluster. Experiments are performed on the KDDCup’99

dataset. The approach proposed by Portnoy is “monolithic” in the sense that one detection model is

constructed for all the possible network protocols.

In [31], Eskin et al. propose to project the patterns from an original feature spaceF to a suitable

feature spaceF′, and then to apply outlier detection algorithms inF′ in order to isolate the attack

patterns from the normal ones. The proposed detection algorithms are based on the dot product

among pattern vectors, therefore kernel functions may be applied, and there is no need to explicitly

map the patterns fromF to F′. Assuming that the numerosity of the class of normal connections

is by far higher than the numerosity of the class of anomalousconnections, the authors propose

three different algorithms for anomaly detection. The first algorithmis cluster-based. Given a

patternx, the algorithm estimates the local density aroundx by counting the number of patterns

in a hypersphere of radiusw centered inx. Points that are in low density regions are classified as

anomalous. The second algorithm is based on a variant of thek-NN algorithm. If the sum of the

distances betweenx and itsk nearest neighbors is greater than a certain threshold,x is considered

anomalous. The third algorithm is the one-class SVM by Schölkopf et al. [92]. Similarly to [84] the

anomaly detection algorithms are applied using a “monolithic” approach, i.e., one detection model

is constructed which takes into account all the possible network protocols.

29

30 3. Unlabeled Anomaly Detection

3.4 Performance Improvement Using a Modular MCS

As discussed in Section 3.3, the anomaly detection systems proposed in [84] and [31] are based on

a “monolithic” approach. A single classifier is constructedin order to distinguish between normal

and attack connections, regardless of the network protocol. As each network protocol has different

characteristics, it is hard to construct a precise model of normal traffic by using a single classifier.

In the following we propose a modular approach. According tothe differences among protocols,

one or multiple classifiers are constructed in order to modelnormal connections related to different

(groups of) protocols. We then compare the obtained resultswith the results obtained by using a

“monolithic” approach.

3.4.1 Assumptions

As in [84] and [31], we assume that the traffic is directly extracted from the computer network to be

protected, and used without need of a labeling process. The only a priori knowledge about the data

is represented by two assumptions that usually hold in practice: a) the extracted dataset contains

two classes of data, normal and anomalous traffic; b) the numerosity of the anomalous traffic class

is by far less than the numerosity of the normal traffic class. The latter assumption is usually true

unless Distributed Denial of Service attacks (DDoS) or other coordinated attacks are occurring while

the traffic is sniffed from the network. However, as DDoS attacks usually have the objective of

exhausting the network resources, their effects are in general easy to detect. We then need to be

careful and use only the traffic we believe was not sniffed during such attacks. Assumption b) is also

supported by the fact that signature-based IDS can be used toprune known attacks from the sniffed

traffic in order to reduce the numerosity of the attack class in the training dataset.

3.4.2 Modular Architecture

As mentioned in Section 3.1, each connection is related to a particular service. Different services

are characterized by different peculiarities, e.g., the traffic related to the HTTP service is different

from the traffic related to the SMTP service. Besides, as different services involve different soft-

ware applications, attacks launched against different services manifest different characteristics. We

30

3.4 Performance Improvement Using a Modular MCS 31

Figure 3.2: Modular architecture

propose to divide the network services intom groups, each one containing a number of “similar”

services [37]. Therefore,m modules are used, each one modeling the normal traffic related to one

group of services. The intuitive advantage given by the modular approach is supported by the results

in [61], where Lee et al. used information theory to measure the “complexity” of the classification

task. The subdivision of services into groups turns into a decrease of the entropy of each subset of

data, which in general coincides to the ability to constructa more precise model of the normal traffic.

An example of how the services can be grouped is shown in Figure 3.2, where the groupings refer

to the network from which the KDD-Cup 1999 dataset was derived (see Section 3.5). In Figure 3.2,

a “miscellaneous” group is used to aggregate different services that are rarely used in the computer

network at hand. It is worth noting that the number of groups and the type of services in each group

depend on the network to be protected, as different networks may provide different services with

different characteristics.

3.4.3 Overall vs. Service-Specific False Alarm Rate

Anomaly detection requires setting an acceptance threshold t, so that a traffic patternx is labelled

as anomalous if its similaritys(x,M) to the normal modelM is less thent. The similarity measure

s depends on the particular technique chosen to implement themodel of normal traffic M. As we

use different modules (i.e., different models) for different services, a method to tune the acceptance

threshold for each module is necessary. In order to solve this task, we propose an heuristic approach

whereby given a fixed tolerable false alarm rate for the IDS, the overall detection rate is optimized.

Let m be the number of service-specific modules of the IDS;FARbe the overall tolerable false

31

32 3. Unlabeled Anomaly Detection

alarm rate;FARi be the false alarm rate related to thei-th module;ti be the acceptance threshold for

the i-th module;P(Mi) = ni/n be the prior distribution of the patterns related to thei-th group of

services (i.e., the module)Mi in the training data, whereni is the number of patterns related to the

services for which the moduleMi is responsible andn is the total number of patterns in the training

dataset. Accordingly,FAR is defined as

FAR=
m

∑

i=1

P(Mi) · FARi (3.4)

Given a fixed value of the tolerable false alarm rateFAR for the IDS, there are many possible

ways to “distribute” the overallFAR on them modules. A value ofFARi has to be chosen for

each moduleMi so that Equation (3.4) is satisfied. Once aFARi has been set for each module

Mi, the thresholdsti can be chosen accordingly. As a first choice, we could setFARi = FAR for

each moduleMi. This choice satisfies Equation (3.4) and appears to be reasonable, given that no

service is seemingly penalized. Nevertheless, this choicepresents two drawbacks. One drawback

is related to the actual number of false positives generatedby each service. As the number of false

positives is proportional toP(Mi), the group of services (i.e., the module) accounting for the largest

portion of the traffic produces a number of false alarms that is by far larger than the one produced

by poorly represented services (i.e., those services whichare rarely, or not so often used in the

network). This behavior is not adequate as the modules of theIDS that produce an overwhelming

number of false alarms could be “turned off” by the network administrator. The other drawback is

related to the relation betweenFARi and the detection rate of thei-th service,DRi . We observed

experimentally that for a fixed value ofFARi, the corresponding value ofDRi strongly dipends on

P(Mi). In particular, the largerP(Mi) the largerDRi. This effect can be explained as follows. Small

values ofP(Mi) are related to services rarely used in the network, wherebya smaller training set

for Mi can be extracted and the corresponding classifier(s) in general will not be able to adequately

model the normal traffic.

According to the considerations reported above, given a fixed FARwe propose to computeFARi

as

32

3.4 Performance Improvement Using a Modular MCS 33

FARi =
1

m · P(Mi)
FAR (3.5)

This choice satisfies Equation (3.4) and allows us to attain an higher overall detection rateDR

than that attained by choosing a fixed valueFARi = FARfor each module.

In order to set an acceptance thresholdti for the moduleMi, to obtain the false alarm rateFARi

computed as in Equation (3.5), we propose the following heuristic. Let us first note that for a given

value ofti , the fractionpr i (ti) of patterns rejected byMi may contain both patterns related to attacks

and false alarms. Let us denote withpai (ti) the fraction of rejected attack patterns using the threshold

ti , and with f ari(ti) the related fraction of false alarms. It is easy to see that the following relation

holds:

pr i (ti) = pai (ti) + f ari (ti) (3.6)

We want to setti so thatf ari (ti) is equal to the desired false alarm rateFARi (computed by using

(3.5)). As for a given value ofti the only measurable quantity in Equation (3.6) is the rejection rate

pr i (ti), we need some hypothesis onpai (ti) so that we can estimatef ari(ti) = pr i (ti) − pai (ti), and

therefore we can choseti in order to obtainf ari(ti) = FARi. We propose to assumepai (ti) = Pai ,

wherePai is the expected attack probability for thei-th service2. In other words, we assume that for

a given threshold value, the rejected patterns are made up ofall the attacks related to that service

contained in the training set, plus a certain number of normal patterns. Thus, having fixed the value

of pai (ti) = Pai , we can tuneti in order to obtainf ari (ti) = FARi.

It is easy to see that the computed thresholdsti (estimated according to the heuristic described

above) produce the required overallFAR(see Equation (3.4)) only if the fraction of patterns rejected

by each module actually contains all the attacksni · Pai , whereni is the total number of training

patterns for the moduleMi. If this is not the case and the rejection ratepr i includes just a portion

of the attacks, a larger number of false alarmsf ari (ti) > FARi will occur. However, if the training

dataset is a good sample of the real network traffic, we expect most of the attacks will “look” different

2In practice, if the network is already protected by “standard” security devices (e.g., firewall, signature-based IDS,
etc.), we may be able to estimatePai from historical data related to attacks to the network service i that occurred in the
past.

33

34 3. Unlabeled Anomaly Detection

from normal traffic and will be likely deemed outliers and rejected by the model.

3.4.4 Service-Specific MCS

Lee et al. [60] proposed a framework for constructing the features used to describe the connections

(the patterns). The derived set of features can be subdivided into two groups: i) features describ-

ing each single connection; ii) features related to statistical measures on “correlated” connections,

namely different connections that have in common either the type of service they refer to or the des-

tination host (i.e., the server host). The latter subset of features is usually referred astraffic features.

On the other hand, the first group of features can be further subdivided into two subsets, namely

intrinsic featuresandcontent features. The intrinsic features are extracted from theheadersof the

packets related to the connection, whereas the content features are extracted from thepayload(i.e.,

the data portion of the packets). We callF the entire set of features andI , C andT the subsets of

intrinsic, contentandtraffic features respectively, so thatF = I ∪C ∪ T.

As explained in Section 3.4.2, our IDS is subdivided into a number of modules. Each module

implements a model of the normal traffic related to a group of services, so that a module can be

viewed as aservice-specificIDS. The problem of modeling the normal traffic for each module of the

IDS can be formulated essentially in two different ways: i) a “monolithic” classifier can be trained

using all the available features to describe a pattern; ii) subsets of features from the three groups

described above can be used separately to train different classifiers whose outputs can be combined.

Depending on the dimensionality of the feature spaced and the size of the training set, one approach

can outperform the other. In particular, a multiple classifier approach can be effective when the use

of a “monolithic” classifier suffers from the “curse of dimensionality” problem, i.e. the training set

ni is too small with respect tod [29]. We propose to use, when needed, a MCS that consists of either

two or three classifiers, depending on the moduleMi we consider. When a two-classifiers MCS is

used, the module is implemented by training two classifiers on two different features subsets, namely

I ∪C andI ∪T. On the other hand, when a three-classifiers MCS is used, the module is implemented

by training a classifier on each single subset of features, namely one classifier is trained by using the

subsetI , one by usingC and one by usingT (see Figure 3.3).

34

3.4 Performance Improvement Using a Modular MCS 35

Figure 3.3: Feature subsets for service-specific MCS

3.4.5 One-Class Classification

One-class classification (also referred to as outlier detection) techniques are particularly useful in

those two-class problems where one of the classes of objectsis well-sampled, whereas the other one

is severely undersampled due to the fact that it is too difficult or expensive to obtain a significant

number of training patterns. The goal of one-class classification is to distinguish between a set of

target objectsand all the other possible objects, referred asoutliers [101, 100]. A number of one-

class classification techniques have been proposed in the literature. Following the categorization

of one-class classifiers proposed by Tax [100], they can be subdivided into three groups, namely

density methods, boundary methods and reconstruction methods.

We decided to use one classification method from each category to implement the service-

specific MCS modules described in Section 3.4.4 in order to compare different approaches that

showed good results in other applications. In particular, we chose the Parzen density estimation [29]

from the density methods, theν-SVC [92] from the boundary methods and the thek-means algo-

rithm [43] from the reconstruction methods. These one-class classifiers exhibited good performance

on a number of applications [100]. Besides, the output of thek-means andν-SVC classifiers can be

redefined as class-conditional probability density functions, so that they can be correctly combined

with the output of the Parzen classifier (see Section 3.4.6).We also trained the clustering technique

proposed by Eskin et al. [31] in order to compare the results of the combination of “standard” pattern

recognition techniques with an algorithm tailored to the unlabeled intrusion detection problem.

35

36 3. Unlabeled Anomaly Detection

Parzen Density Estimation

The Parzen-window approach [29] can be used to estimate the density of the target objects distribu-

tion

p(x|ωt) =
1
n

n
∑

i=1

1

hd
ϕ

(x − xi

h

)

(3.7)

wheren is the total number of training patterns belonging to the target classωt, xi is the i-

th training pattern,ϕ is a kernel function,h is the width of the Parzen-window andp(x|ωt) is the

estimated class-conditional probability density distribution. When the Gaussian kernel

ϕ(x) =
1

(2π)
d
2

exp

(

−
1
2
||x||2

)

(3.8)

is used,p(x|ωt) can be written as

p(x|ωt) = 1
n

n
∑

i=1

1
(2πs)d/2 exp

(

−
‖x−xi ‖

2

2s

)

, s= h2. (3.9)

and the one-class Parzen classifier can be obtained by simplysetting a thresholdθ whereby a

patternz is rejected (i.e., deemed an outlier) ifp(z|ωt) < θ [100].

k-means

Thek-means classifier is based on the well-knownk-means clustering algorithm [43]. The algorithm

identifiesk clusters in the data by iteratively assigning each pattern to the nearest cluster. This

algorithm can be used as a one-class classifier by clusteringthe training set and then computing the

distanced(z, ωt) of a test patternz from the target distributionωt as

d(z, ωt) = min
i=1..k
||z− µi || (3.10)

whereµi represents thei-th cluster center. If the distance is larger than a threshold θ the pattern

will be rejected [100]. It is hard to map the distanced(z, ωt) into a probability density distribution

and thus the combination of thek-means one-class classifier with density-based classifiers(e.g., the

36

3.4 Performance Improvement Using a Modular MCS 37

Parzen classifier) may produce unreliable results, as will be explained in Section 3.4.6. In order to

allow this algorithm to produce an output that can be interpreted as a probability density function,

we propose to use all thek distances between the test patternz and the centroidsµi as follows

p(x|ωt) = 1
k

k
∑

i=1

1
(2πs)d/2 exp

(

−
‖x−µi‖

2

2s

)

s= avg
i, j
||µi − µ j ||, i, j = 1, 2, .., k

(3.11)

In other words, we model the distribution of the target classby a mixture ofk normal densities,

each one centred on a centroidµi. An heuristic is used to computesas the average distance between

the k centroids. As for the one-class Parzen classifier, the one-class k-means classifier based on

Equation (3.11) can be obtained by setting a thresholdθwhereby a patternz is rejected ifp(z|ωt) < θ.

It is worth noting that the same number of distances||z− µi || have to be computed both in (3.10) and

(3.11). Besides, the number of centroids is in general chosen to be low, thereforescan be efficiently

computed. This means that the proposed probability densityestimate does not add appreciable

complexity to the classifier.

ν-SVC

Theν-SVC classifier was proposed by Schölkopf et al. in [92] and is inspired by the Support Vector

Machine classifier proposed by Vapnik [107]. The one-class classification problem is formulated

to find an hyperplane that separates a desired fraction of thetraining patterns from the origin of

the feature spaceF. This hyperplane cannot always be found in the original feature space, thus a

mapping functionΦ : F −→ F′, from F to a kernel spaceF′, is used. In particular, it can be proven

that when the Gaussian kernel

K(x, y) = Φ(x) · Φ(y) = exp

(

−
||x − y||2

2s

)

(3.12)

is used, it is always possible to find a hyperplane that solvesthe separation problem. The problem

is formulated as follows:

37

38 3. Unlabeled Anomaly Detection

minw,ξ,ρ

(

1
2 ‖w‖

2 − ρ + 1
νl

∑

i
ξi

)

w · φ (xi) ≥ ρ − ξi , ξi ≥ 0, ∀i = 1, .., l

(3.13)

wherew is a vector orthogonal to the hyperplane,ν represents the fraction of training patterns

that are allowed to be rejected (i.e., that are not separatedfrom the origin by the hyperplane),xi is

the i-th training pattern,l is the total number of training patterns,ξ = [ξ1, .., ξl]T is a vector of slack

variables used to “penalize” the rejected patterns,ρ represents the margin, i.e., the distance of the

hyperplane from the origin.

The solution of (3.13) brings to the decision function, for ageneric test patternz, formulated as

fsvc(z) = I

(

∑

i
αiK (xi , z) ≥ ρ

)

,
∑l

i=1αi = 1 (3.14)

whereI is the indicator function3 and the parametersαi andρ are provided by the solution of

(3.13). According to (3.14), a patternz is either rejected iffsvc(z) = 0 or accepted as target object if

fsvc(z) = 1. When the Gaussian kernel (3.12) is used, the output of theν-SVC can be formulated in

terms of a class conditional probability by

p(x|ωt) =
1

(2π·s)
d
2

∑n
i=1αi · K(x, xi) =

∑n
i=1αi

1

(2π·s)
d
2
· e−

1
2
||x−xi ||

2

s (3.15)

which respects the constraint
∫

Rd p(x|ωt)dx = 1.

It is worth noting that in general only a small number of coefficientsαi will be different from

zero, thusp(x|ωt) can be efficiently computed. The training patternsxi whereby the relatedαi , 0

represent the support vectors for theν-SVC. The acceptance threshold can be rewritten as

ρ′ =
ρ

(2π · s)
d
2

(3.16)

so that a patternz will be considered an outlier ifp(z|ωt) < ρ′.

It is worth noting that Tax et. al [102] independently formulated a SVM-based one-class classi-

3I (x) = 1 if x is true, otherwiseI (x) = 0

38

3.4 Performance Improvement Using a Modular MCS 39

fier whose solution is identical to the one of theν-SVC when the Gaussian kernel is used.

3.4.6 Combining One-Class Classifiers

Traditional pattern classifiers can be combined by using many different combination rules and meth-

ods [57]. Among the combination rules, themin, max, meanandproductrules [50] are some of the

most commonly used. These combination rules can be easily applied when the output of the clas-

sifiers can be viewed as ana posteriori probability Pi(ω j |x), wherepi refers to the output of the

i-classifier, whereasω j is the j-class of objects. In case of a two-class problem, thea posteriori

probability can be written as

Pi(ω j |x) =
pi(x|ω j)P(ω j)

pi(x)
=

pi(x|ω j)P(ω j)

pi(x|ω1)P(ω1) + pi(x|ω2)P(ω2)
, j = 1, 2, i = 1, .., L (3.17)

whereL is the number of classifiers. Unfortunately, in case of one-class classifiers in general it

is not possible to reliably estimate the probability distribution of one of the two classes, namely the

probability density of the outlier objects (i.e., one of theterms in the denominator in (3.17)). Tax et

al. [101] proposed to consider the distribution of the outlier to be constant in a suitable region of the

feature set, so that thea posterioriprobability for the target class, for example, can be approximated

as

Pi(ωt |x) =
pi(x|ωt)P(ωt)

pi(x|ωt)P(ωt) + θi · P(ωo)
, i = 1, .., L (3.18)

whereωt represents the target class,ωo represent the outlier class andθi is the uniform density

distribution assumed for the outlier patterns. Let’s consider now the traditionalmeancombination

rule. We need to compute

µ(ωt|x) = 1
L

∑L
i=1 Pi(ωt |x)

µ(ωo|x) = 1
L

∑L
i=1 Pi(ωo|x)

(3.19)

and the decision criterion is

39

40 3. Unlabeled Anomaly Detection

x is an outlier ⇔ µ(ωt |x) < µ(ωo|x) (3.20)

If we assumepi(x) ≃ p(x),∀i, we can write

µ(ω j |x) = 1
L

∑L
i=1

pi (x|ω j)·P(ω j)
p(x) = 1

L
P(ω j)
p(x)

∑L
i=1 pi(x|ω j) (3.21)

where j = t, o (i.e., (3.21) is applied to both the target and the outlier class). In this case we can

compute

yavg(x) =
1
L

L
∑

i=1

pi(x|ωt) (3.22)

θ
′

=
P(ωo)
P(ωt)

·
1
L

L
∑

i=1

θi (3.23)

and the decision criterion (3.20) becomes simply

x is an outlier ⇔ yavg(x) < θ
′

(3.24)

which means that we can combine the class-conditional probability density functions, instead

of the a posterioriprobabilities estimated by each classifier. The obtainedyavg(x) can be used as

a standard one-class classifier output and the thresholdθ
′

can be independently tuned to attain the

desired trade-off between false positives (i.e., target objects classified asoutliers) and false negatives

(i.e., outliers classified as belonging to the target class). This approach is (almost) exactly like the

one proposed in [101] and [100] and can be extended to themin, maxandproductrules.

Another approach is to estimatePi(ωt |x) andPi(ωo|x) so that the decision criterion (3.20) can

be used directly. For each one-class classifieri we have

Pi(ωt |x) = pi (x|ωt)P(ωt)
pi (x|ωt)P(ωt)+θi ·P(ωo)

Pi(ωo|x) = θi ·P(ωo)
pi (x|ωt)P(ωt)+θi ·P(ωo)

(3.25)

and, settingτi = θi ·
P(ωo)
P(ωt)

, the decision criterion for the classifieri can be written as

40

3.4 Performance Improvement Using a Modular MCS 41

x is an outlier ⇔ pi(x|ωt) < τi (3.26)

It is worth noting thatτi represents the decision threshold applied on the output of classifieri.

According to (3.25) we can write

Pi(ωt |x) =
pi(x|ωt)

pi(x|ωt) + τi
, i = 1, .., L (3.27)

Pi(ωo|x) =
τi

pi(x|ωt) + τi
, i = 1, .., L (3.28)

In practice, we can set the thresholdsτi so that a given rejection rate is produced by each single

one-class classifier. Once the thresholdsτi , i = 1, .., L, have been set, the posterior probabilities

can be estimated using (3.27) and (3.28), and the rule (3.20)can be applied. This approach can be

extended to themin, maxandproductrules by computingµ(ωt|x) andµ(ωo|x) according to the new

rule and then applying (3.20).

As mentioned in Section 3.4.5, it is not possible to directlymake use of the output of one-

class classifiers that implement boundary or reconstruction methods in (3.22), (3.27) and (3.28). In

order to solve this problem, Tax et al. [101] proposed an heuristic approach to map the output of

“distance-based” classifiers to a probability estimate

P̃(x|ωt) = exp

(

−
ρ(x|ωt)

s

)

(3.29)

whereρ(x|ωt) is the output to be mapped (e.g.,ρ(x|ωt) = mini=1..k ||x − µi ||, if the k-means

classifier is considered). However, in generalP̃ does not repsect the integral constraint for a density

probability distribution, whereby

∫

Rd
P̃(x|ωt)dx , 1 (3.30)

This fact may produce some problems, especially when the output of “distance-based” one-class

classifiers is combined with density-based classifiers (e.g., the Parzen classifier described in Section

3.4.5), which respect the integral constraint by definition. On the other hand, the methods proposed

41

42 3. Unlabeled Anomaly Detection

in Section 3.4.5 to compute the output of thek-means andν-SVC classifiers do not suffer from this

problem and the decision criterion (3.24) can be used without further output transformations.

3.5 Experimental Results

Experiments were carried out on a subset of the DARPA 1998 dataset distributed as part of the

UCI KDD Archive (http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html). The

DARPA 1998 dataset was created by the MIT Lincoln Laboratorygroup in the framework of the

1998 Intrusion Detection Evaluation Program (http://www.ll.mit.edu/IST/ideval). This

dataset was obtained from the network traffic produced by simulating the computer network of an

air-force base. It consists of seven weeks of traffic data for training purposes, and two weeks of data

for testing. A subset of the traffic of the DARPA 1998 dataset has been mapped to a pattern recog-

nition problem and distributed as the KDD-Cup 1999 dataset.The training set is made of 494,020

patterns, and the test set contains 311,029 patterns. Each pattern represents a network connection

described by a 41-dimensional feature vector according to the set of features illustrated in Section

3.4.2. In particular, 9 features were of the intrinsic type,13 features were of the content type, and

the remaining 19 features were of the traffic type. Each pattern of the data set is labelled as be-

longing to one out of five classes, namelynormal traffic and four different classes of attack:Probe,

Denial of Service(DoS),Remote to Local(R2L), andUser to Root(U2R). The attacks belonging to

a certain attack class are designed to attain the same effect by exploiting different vulnerabilities of

the computer network.

The DARPA dataset has been widely criticized [67, 70]. The main criticism is related to the

fact that the traffic traces reported in the dataset are not representative of a real network scenario. In

particular, it is worth noting that the prior probabilitiesof the attack classes included in the DARPA

1998 dataset (and thus in the KDD-Cup 1999) cannot be considered representative of the traffic in

a real network. This fact has been clearly pointed out in a critique of the DARPA corpus of data by

McHugh [70]. Although this dataset has been criticized, it is currently used by researchers because

it is the only reference dataset that allows the designers tocompare results obtained using different

intrusion detection techniques.

42

3.5 Experimental Results 43

In order to perform experiments withunlabeledintrusion detection techniques, we removed the

labels of all the training patterns to simulate theunlabeledcollection of network traffic. Besides, we

relabeled the patterns of the test set as belonging either tothenormal traffic class or to the “generic”

attackclass, thus discarding the different labels assigned to attack patterns related to different classes

of attack. Nominal features have been converted into numerical values according to the procedure

in [31]. Given a nominal feature withN possible distinct values, it is mapped to a vector of length

N, i.e., the vector contains one coordinate for every possible value of the feature. When a particular

value of the feature is mapped on the vector, the coordinate corresponding to the value of the feature

is set to 1/N, whereas the other coordinates (i.e., the ones corresponding to the otherN − 1 possible

values for the feature) are set to zero.

According to the description of the modular architecture presented in Section 3.4.2, we divided

the traffic of the data set into six subsets, each one related to “similar” services:HTTP, containing

the traffic related to the HTTP protocol;FTP, containing the traffic related to the control flow and

data flow for the FTP protocol, and the traffic related to the TFTP protocol;Mail, containing the

traffic related to the SMTP, POP2, POP3, NNTP, and IMAP4 protocols;ICMP, containing the traffic

related to the ICMP protocol;Private&Other, containing the traffic related to TCP/UDP ports higher

than 49,152;Miscellaneous, containing all the remaining traffic. For each module, the features

taking a constant value for all patterns have been discarded, provided that these features have a

constant value by “definition” for that service, and not by chance. For example, the intrinsic feature

“protocol type” is always constant and equal to the value “TCP” for thehttp, andmail services,

thus for those services it can be discarded. As a result, for each module we used a subset of the

41 available features, namely: 29 features for theHTTPmodule; 34 features for theFTP module;

16 features for theICMP module (in particular, the content features were discardedas they have no

meaning for the ICMP traffic); 31 features for theMail module; 37 features for theMiscellaneous

module; 29 features for thePrivate&Othermodule.

3.5.1 Training Set Undersampling

As mentioned above, the prior probabilities of the attack classes in the training portion of the KDD-

Cup 1999 dataset cannot be considered representative of thetraffic in a real network. The analysis

43

44 3. Unlabeled Anomaly Detection

HTTP FTP Mail ICMP Private & Others Miscellaneous

Normal
61,885 4,172 9,677 1,288 12,998 7,257

(96.55%) (78.16%) (99.83%) (0.46%) (81.27%) (98.33%)

Attacks
2,208 1,166 16 28,1250 2,996 123

(3.45%) (21.84%) (0.17%) (99.54%) (18.73%) (1.67%)

Table 3.1: Composition of the training set before the undersampling phase

HTTP FTP Mail ICMP Private & Others Miscellaneous

Normal
61,885 4,172 9,677 1,288 12,998 7,257

(99.83%) (96.60%) (99.83%) (69.66%) (96.09%) (98.33%)

Attacks
106 147 16 561 529 123

(0.17%) (3.40%) (0.17%) (30.34%) (3.91%) (1.67%)

Table 3.2: Composition of the training set after the undersampling phase

of the training set confirmed that it contained a large fraction of attacks compared to normal traffic

patterns, as show in Table 3.1. This violates the first assumption behind unlabeled techniques, i.e.,

connections containing attacks should account for a small portion of the network traffic. As typical

network traffic satisfies this assumption [84], we filtered the training setso that the selected data

satisfied this assumption. To this end, for each service we retained all the normal connections, while

we sampled the attack patterns so that they accounted for 1.5% of the total traffic. This sampling

procedure is similar to the one performed by other researchers [84, 31]. Let us recall that each

attack classis made up of connections related to a number of differentattack types, eachattack type

designed to produce the same effect of all the attacks in the same class. For each type of attack, a

different number of patterns is available because each attack type produces a different number of

connections, and because of the simulations carried out during the DARPA programme. A number

of techniques can be used to sample a set of data such that the resulting subset is representative of

the whole data [15].

In the reported experiments we reduced the percentage of attacks by reducing the number of

those attacks accounting for a number of connections largerthan 973, which is 1% of the total

normal connections. In particular we proceeded as follows:

a) 10 subsets, each one containing 101 patterns, are extracted randomly from eachattack type

(this “magic” number was chosen in order to attain a total percentage of attacks equal to

1.5%);

b) for each subset, we trained aν-SVC classifier, and computed the error attained by using the

44

3.5 Experimental Results 45

HTTP FTP Mail ICMP Private & Others Miscellaneous

Normal
39,247 1,170 3,222 380 12,930 3,644

(95.04%) (38.22%) (25.50%) (0.23%) (16.35%) (43.53%)

Attacks
2,050 1,891 9,412 164,591 66,145 4,727

(4.96%) (61.78%) (74.50%) (99.77%) (83.65%) (56.47%)

Table 3.3: Composition of the test set

HTTP FTP Mail ICMP Private & Others Miscellaneous
ν-SVC F 0.995 0.894 0.971 0.862 0.992 0.987

ν-SVC - max rule
I ∪C + I ∪ T 0.956 0.918 0.960 - 0.911 0.975

I +C + T 0.807 0.566 0.956 0.929 0.918 0.939

ν-SVC - min rule
I ∪C + I ∪ T 0.948 0.967 0.855 - 0.921 0.953

I +C + T 0.773 0.973 0.954 0.913 0.904 0.944

ν-SVC - mean rule
I ∪C + I ∪ T 0.952 0.962 0.970 - 0.957 0.965

I +C + T 0.865 0.972 0.953 0.879 0.921 0.988

ν-SVC - product rule
I ∪C + I ∪ T 0.951 0.961 0.857 - 0.919 0.963

I +C + T 0.865 0.971 0.953 0.879 0.921 0.945

Table 3.4: Performance attained by theν-SVC classifier on the six modules in terms of AUC. For each module, the best
performance is reported in bold.

remaining patterns of that attack type as a test set;

c) the subset with the smallest error is selected, as it can beconsidered representative of the

entire set of available connections for that attack type.

Table 3.2 shows the composition of the training set obtainedafter the preprocessing phase. It can

be observed that attacks are not distributed uniformly among different services. While the overall

percentage of attacks has been reduced so that it is equal to 1.5% of all the training traffic, the

percentages of attacks related to different services range from the 0.17% of theHTTP and Mail

traffic, to the 30.34% of theICMP traffic. The high percentage of attacks in theICMP traffic can

be explained by observing that the available training set contained a very small number of normal

ICMP connections compared to attacks, so that the proposed reduction of the number of attack

patterns left theICMP traffic data unbalanced.

It is worth noting that the distribution of traffic reported in Table 3.2 was used to compute

the prior probabilities related to the different modules of the IDS, according to the discussion in

Section 3.4.3.

Table 3.3 shows the composition of the test set. As shown in the table, the test set contains

a very large fraction of attacks, as it was designed to test the performance of IDS and not to be

representative of a realistic network traffic. It is worth noting that we did not apply any changes on

45

46 3. Unlabeled Anomaly Detection

HTTP FTP Mail ICMP Private & Others Miscellaneous
k-means F 0.978 0.820 0.899 0.736 0.918 0.955

k-means - max rule
I ∪C + I ∪ T 0.864 0.874 0.926 - 0.917 0.974

I +C + T 0.872 0.335 0.930 0.913 0.917 0.889

k-means - min rule
I ∪C + I ∪ T 0.353 0.830 0.826 - 0.903 0.909

I +C + T 0.814 0.926 0.630 0.750 0.907 0.284

k-means - mean rule
I ∪C + I ∪ T 0.859 0.778 0.913 - 0.965 0.932

I +C + T 0.961 0.850 0.929 0.740 0.920 0.947

k-means - product rule
I ∪C + I ∪ T 0.858 0.777 0.913 - 0.965 0.932

I +C + T 0.965 0.851 0.929 0.740 0.920 0.951

Table 3.5: Performance attained by thek-means classifier on the six modules in terms of AUC. For each module, the best
performance is reported in bold.

HTTP FTP Mail ICMP Private & Others Miscellaneous
Parzen F 0.977 0.878 0.932 0.743 0.921 0.982

Parzen - max rule
I ∪C + I ∪ T 0.854 0.904 0.568 - 0.905 0.900

I +C + T 0.858 0.368 0.581 0.872 0.903 0.909

Parzen - min rule
I ∪C + I ∪ T 0.987 0.868 0.940 - 0.921 0.974

I +C + T 0.982 0.914 0.940 0.704 0.864 0.698

Parzen - mean rule
I ∪C + I ∪ T 0.854 0.904 0.828 - 0.991 0.900

I +C + T 0.858 0.867 0.582 0.872 0.910 0.909

Parzen - product rule
I ∪C + I ∪ T 0.857 0.913 0.839 - 0.977 0.906

I +C + T 0.959 0.924 0.941 0.725 0.888 0.898

Table 3.6: Performance attained by the Parzen classifier on the six modules in terms of AUC. For each module, the best
performance is reported in bold.

the test set.

3.5.2 Performace Evaluation

We divided the performance evaluation experiments into twophases. In the first phase, we evaluated

the performance of one module of the IDS at a time. In particular, for each module the performance

of a “monolithic” classifier is compared to the performance attained by combining classifiers trained

on distinct feature subsets (see Section 3.4.4). In the second phase, the modules related to different

services are combined, and the performance of the overall IDS is evaluated. Performance evaluation

has been carried out by ROC curve analysis, i.e., by computing the detection rate as a function of the

false alarm rate. Different ROC can be compared by computing the Area Under the Curve (AUC).

AUC measures the average performance of the related classifier, so that the larger the value of AUC

of a classifier the higher the performance [100]. It is worth noting that AUC usually measures the

average performance of classifiers considering the entire range of variation of the false positive rate.

For some ranges of the false alarm rate the classifier with thesmallest AUC value may provide the

highest detection rate. Therefore, it may be better to measure the AUC in the interval [0, a], where

46

3.5 Experimental Results 47

HTTP FTP Mail ICMP Private & Others Miscellaneous
Cluster F 0.967 0.839 0.891 0.739 0.847 0.973

Cluster - max rule
I ∪C + I ∪ T 0.965 0.705 0.949 - 0.843 0.253

I +C + T 0.740 0.478 0.949 0.918 0.390 0.141

Cluster - min rule
I ∪C + I ∪ T 0.922 0.782 0.802 - 0.903 0.875

I +C + T 0.970 0.809 0.814 0.856 0.848 0.936

Cluster - mean rule
I ∪C + I ∪ T 0.932 0.829 0.962 - 0.915 0.876

I +C + T 0.983 0.874 0.970 0.872 0.847 0.958

Cluster - product rule
I ∪C + I ∪ T 0.924 0.802 0.802 - 0.903 0.875

I +C + T 0.980 0.809 0.814 0.872 0.947 0.943

Table 3.7: Performance attained by the Clustering algorithm proposedin [31] on the six modules in terms of AUC. For
each module, the best performance is reported in bold.

HTTP FTP Mail ICMP Private & Others Miscellaneous

Best
ν-SVC ν-SVC ν-SVC ν-SVC Parzen ν-SVC

F
min rule

F
max rule min rule mean rule

I +C + T I + T I ∪C + I ∪ T I +C + T

Table 3.8: Summary of the best results in terms of AUC attained for each module.

a < 1 represents the maximum expected false positive rate. However, it is not always possible to

know in advance the working point (or the set of possible working points) on the ROC curve that

will be actually used during the operational phase. Moreover, in our application the overall false

positive rate is “distributed” in different percentages on different modules in order to optimize the

performance of the IDS (see Section 3.4.2). In these cases ofunknowna the AUC measured in the

interval [0, 1] is a valuable indicator of the performance of the classifier.

Evaluation of Service-Specific Modules

The first phase of the performance evaluation consisted of three experiments for each of the six mod-

ules. The first experiment was designed to assess the performance of individual one-class classifiers,

i.e., theν-SVC, the k-means, and the Parzen classifier when the patterns are described by using the

entire set of available featuresF. The performance of the clustering algorithm described in [31] have

been also computed for comparison purposes. The second experiment was designed to assess the

performance attained by combining classifiers trained on two distinct feature subsets, i.e. the subset

of intrinsic and traffic featuresI ∪T, and the subset made of intrinsic and content featuresI ∪C (see

Section 3.4.4). In particular, each classifier has been trained using the two feature subsets, and then

they have been combined by using four different combination rules, i.e. themaxrule, themin rule,

themeanrule, and theproduct rule. The third experiment was designed to assess the performance

47

48 3. Unlabeled Anomaly Detection

Best Modules in terms of AUC ν-SVC Bestν-SVC modules in terms of AUC
False Alarm Rate Detection Rate False Alarm Rate Detection rate False Alarm Rate Detection Rate

0.87% 75.34% 0.91% 67.31% 0.88% 79.27%
2.10% 80.35% 2.06% 75.61% 2.07% 89.45%
2.64% 80.80% 2.65% 77.10% 2.66% 89.67%
4.00% 85.67% 3.20% 86.31% 3.28% 89.92%
5.49% 94.12% 4.51% 92.25% 4.82% 93.02%
6.86% 94.27% 6.72% 93.91% 6.49% 94.16%
8.25% 94.32% 8.09% 94.12% 8.05% 94.26%
10.44% 94.38% 9.62% 94.25% 9.49% 94.31%

Table 3.9: Results attained by the proposed three modular systems.

attained by combining classifiers trained on three distinctfeature subsets, i.e. the intrinsic features

I , the traffic featuresT, and the content featuresC (see Section 3.4.4) by using again four different

combination rules.

When combining classifiers trained on different feature spaces, we used both the combination

approaches described in Section 3.4.6. We noted that for theν-SVC, the k-means, and the clustering

algorithm proposed in [31], the best performance was obtained by estimating the posterior proba-

bilities for the target class as in (3.27) and then comparingthese probabilities to a varying threshold

in order to compute the ROC curves. For the Parzen classifier,the combination of class conditional

probabilities, using (3.22) and the decision criteria (3.24), produced the best results.

In the following, we discuss the results obtained by applying the best combination approach

for each single classifier. Therefore, we present the results obtained by combining the posterior

probabilities for theν-SVC, the k-means, and the clustering algorithm, and the results obtained by

combining the class conditional probabilities for the Parzen classifier.

Tables 3.4, 3.5, 3.6, and 3.7 summarize the performance results on the test set in terms of AUC,

for the ν-SVC, thek-means, the Parzen classifier, and the clustering algorithmproposed in [31],

respectively. For each algorithm, the parameters have beentuned on the training set. It is worth

noting that in the case of theICMP protocol only intrinsic and traffic features were available, thus

only the third kind of experiment could be performed by combining two one-class classifiers trained

on intrinsic and traffic features, respectively.

The obtained results are discussed in Section 3.6.

48

3.5 Experimental Results 49

Evaluation of Overall IDS

In order to analyze the performance of the overall IDS, we built three systems:

1) An “optimal” system made up, for each module, of the classification techniques that provided

the highest value of AUC, according to Table 3.8.

2) A system made up of one “monolithic”ν-SVC for each module. We chose to useν-SVC

classifiers because on average they provide better results than the other considered classifiers,

as discussed in Section 3.6.

3) As in the second system, we chose to useν-SVC classifiers. Then, for each module we

chose between a “monolithic” versus a MCS approach, according to best performance results

reported in Table 3.4. It is worth noting that for theMiscellaneousmodule the performance

of the “monolithic” classifier is really close to the best performance result. Therefore, it

is difficult to conclued which approach really performs better thanthe other. We chose to

construct a system made up of one “monolithic”ν-SVC for theHTTP, Mail, Miscellaneous

andPrivate&Other modules, and a MCS for theFTP and ICMP modules (we will further

discuss the motivation for this choice in Section 3.6). For theFTP module we used an MCS

constructed by using threeν-SVC classifiers, namely one trained on the subset of features I ,

one on the subsetC and one on the subsetT. For theICMP module we constructed a MCS

using twoν-SVC classifiers, namely one trained on the subset of features I and one on the

subsetT. In particular, for theFTPmodule, themin rule was used, whereas themaxrule was

used for theICMP module.

In order to evaluate the performance of the three IDS systems, we computed some working

points according to the heuristic proposed in Section 3.4.3. The attained results are reported in

Table 3.9. The motivation for the choice of the three proposed IDS systems and the attained results

are further discussed in Section 3.6.

49

50 3. Unlabeled Anomaly Detection

3.6 Discussion

The results reported in Section 3.5.2 clearly show that theν-SVC algorithm provides the highest

AUC value for all services, when classifiers are trained using all the available features. The differ-

ence between the performance ofν-SVC and that of the other algorithms is very small in the caseof

theHTTPand theMiscellaneoustraffic, while it is larger for the other services.

Tables 3.4, 3.5, 3.6, and 3.7 show that combining classifierstrained on distinct feature sets

does not always improve performance, with respect to those attained by classifiers trained on the

entire feature set. In particular, it can be seen that for theν-SVC, k-means, and Parzen classifiers,

the use of distinct feature sets clearly outperforms the useof the entire feature set F only for the

FTP, and ICMP modules. In the case of the clustering algorithm, the use of distinct feature sets

clearly outperforms the use of the entire feature set F only for theMail, ICMP, andPrivate&Others

modules. In all other cases the differences in performance are small, thus the superiority of one

technique against the others cannot be concluded. Unfortunately, results show no regularity. For

this reason, it is difficult to explain the behavior of different classifiers and combination rules on

different modules. On the other hand, results clearly show that each module should be carefully and

independently designed by making a decision about the classification algorithm to be used, and by

choosing between an individual classification technique and the MCS approach.

Summing up, reported results allow us to conclude that theν-SVC algorithm performs better

than the other ones, on average. Further, it is easy to see that the combination of distinct feature

representations usually provides significantly higher performance, with respect to just one classifier

trained on the entire feature set, only for theFTPandICMP modules. These observations have been

used in Section 3.5.2, where three different overall IDS made up of six modules are described.

In order to compare the performance of the modular systems proposed in Section 3.5.2 to the

approach used by Eskin et al. [31], we trained the clusteringalgorithm proposed in [31] and the

ν-SVC on the entire training set obtained after subsampling.It is worth noting that this approach is

the same used in [31]. Besides, our test set is the same as the one used in [31], and we also used an

approach similar to the one proposed in [31] to adjust the training dataset. The performance results

obtained on the test set are reported in Tables 3.10 and 3.11,respectively. It is easy to see that if

50

3.6 Discussion 51

Clustering
False Alarm Rate Detection Rate

1% 18.37%
2% 26.80%
3% 27.21%
4% 92.21%
5% 92.24%
6% 92.25%
7% 92.25%
8% 92.29%
9% 92.29%
10% 92.68%

Table 3.10:Results attained by applying the “monolithic” approach using the clustering algorithm proposed in [31].

ν-SVC
False Alarm Rate Detection Rate

1% 17.91%
2% 66.44%
3% 78.40%
4% 78.85%
5% 86.07%
6% 92.53%
7% 92.57%
8% 92.60%
9% 92.63%
10% 92.91%

Table 3.11:Results attained by applying the “monolithic” approach using theν-SVC classifier.

the false alarm rate is set to 1%, the algorithms trained on the entire training set provide a detection

rate near 18%, while the proposed modular approaches provide detection rates from 67% to 79%

(see Table 3.9). As the effectiveness of IDS depends on the capability of providing high detection

rates at small false alarms rates, the proposed modular approaches are very effective compared to the

“monolithic” approaches. At 4% false alarm rate, the “monolithic” clustering algorithm provides

better results than the modular approaches, in terms of detection rates. However, for higher false

positive rates, the clustering algorithm does not provide performance improvements, whereas the

proposed modular IDS reaches definitely better detection rates with respect to the ones obtained at

low false positive rates. It is worth noting that, from a practical point of view, the working point of

anomaly detectors are usually tuned to produce a low false alarm rate (e.g., equal to 1% or lower).

Reported results clearly show that the proposed modular approach outperforms the “monolithic”

approaches in the range of low false positive rates, due to its capability of allowing different false

positive rates on different modules. This result is even more evident if we comparethe Bayesian

detection rates for the different approaches at a false positive rateP(A|¬I) = 0.01. Thea priori

51

52 3. Unlabeled Anomaly Detection

probabilities areP(I) = 0.985 andP(¬I) = 0.015. In case of the monolithic approach using the

clustering algorithm proposed in [31], the detection rateP(A|I) = 0.1837 and the Bayesian detection

rate isP(I |A) = 0.2186. In case of the monolithicν-SVC, P(A|I) = 0.1791 and the Bayesian

detection rate isP(I |A) = 0.2143. On the other hand, in case of the modular approach withν-SVC

classifiersP(A|I) = 0.67961, and the obtained Bayesian detection rate isP(I |A) = 0.5085, which

is much higher than the Bayesian detection rate attained using the monolithic approach. Although

more work has to be done in order to further increase the Bayesian detection rate, the modular

approach is promising and should be considered as a basic scheme for the development of more

accurate anomaly detection systems.

1This number was obtained by linear interpolation between the points (0.0091, 0.6731) and (0.0206, 0.7561)

52

Chapter 4

Learning in Adversarial Environment

As discussed in Chapter 3, learning from unlabeled traffic directly extracted from a live network

is an inherently difficult pattern recognition problem. Besides the difficulties that characterize the

unlabeled learning problem itself, we need to take into account how an adversary (i.e., an attacker)

could interfere with the learning process. As the traffic does not undergo any labeling process

(e.g., by a human expert) attackers may try to pollute the training traffic with properly crafted data

(e.g., packets or connections) in order to mislead the learning algorithm and make the resulting

detection model, and therefore the IDS itself, useless. In the following we present different strategies

the adversary may use to interfere with the learning process, their theoretical effects, and possible

countermeasures. We then present a case study which shows a practical example of how an adversary

may affect the accuracy of intrusion detection schemes which are designed to protect against fast

propagating worms. We analyze automatic signature generation algorithms which aim at learning

“worm signatures” from (unlabeled) examples of worm flows. The generated signatures are used by

worm detection systems in order to stop the propagation of the worm. We show how the attacker may

inject properly crafted noise in the training dataset in order to mislead the signature learning process

and make the generated signatures ineffective. In particular, we present an instance of the noise

injection attack that can evade Polygraph [76], a recently proposed signature generation system.

Polygraph is of particular interest for two reasons: a) it isable to generate signatures for worms

that use a high level of polymorphism, and b) it constructs “Bayes signatures” which represent

a statistical model of worm traffic and therefore can be used as the detection model for network

53

54 4. Learning in Adversarial Environment

IDS based on statistical pattern recognition. We also present possible ad-hoc countermeasures to

the proposed noise injection attack and discuss the reasonswhy we believe a thorough and robust

solution to this type of attacks remains an open research problem.

4.1 Learning in Presence of Malicious Errors

To the best of our knowledge, the most significant theoretic study on learning in adversarial environ-

ment is [47]. Within the context of Valiant’s Probably Approximately Correct (PAC) learning [106],

Kearns et al. [47] analyze the problem of learning in the presence of an adversary that may introduce

malicious errors in the data. The authors study theoptimal malicious error, i.e., the largest value

of the probability of error on the training data that can be tollerated by any learning algorithm for

a certain representation classC [47]. They show that there exist representation classes forwhich

the optimal malicious errorrate can be achieved using simple polynomial-time algorithms. Their

analysis is based on two-class problems. They refer to one ofthe classes aspositiveclass and to

the other asnegativeclass, and prove that algorithms that learn from labeled examples of both the

classes can tolerate more errors in the data compared to algorithms that learn form labeled examples

of only one of the classes [47].

In [14], Barreno et al. discuss the security of machine learning algorithms applied to the devel-

opment of IDS. They first propose a taxonomy of attacks against learning algorithms. According to

the proposed taxonomy, they distinguish betweencausativeandexploratoryattacks [14]. Causative

attacks aim to alter the training process by influencing the distribution of training data. Exploratory

attacks do not aim to alter the training process, but aim to discover information about the learning

algorithm through probing techniques. Within the class of causative attacks, the authors further

distinguish betweenintegrity andavailability attacks. The objective ofcausative integrityattacks

is to mislead the learning algorithm in order to prevent the IDS to detect future intrusions. On the

other hand,causative availabilityattacks aim to force the IDS to make a sufficient amount of errors,

so that it becomes useless and will be likely turned off by the administrator. Afterwards, an exam-

ple of causative integrity attack against an anomaly detector based on a simple anomaly detection

algorithm is described. The simplicity of the learning algorithm allows the authors to analytically

54

4.1 Learning in Presence of Malicious Errors 55

Figure 4.1: Causative attack against a learning algorithm.G andG′ represent two different attack instances. The training
dataset is polluted by placing data points along the line that connects the center of the sphere toG andG′. Different
amounts of well crafted data points are needed to mislead thealgorithm and shift the decision surface so thatG first, and
thenG′, are not detected as anomalous [14].

study the problem of learning from polluted traffic and find a bound on the effort required by the

attacker to mislead the IDS so that future attacks will not bedetected. The considered anomaly

detection algorithm constructs a hypersphere around the normal data. During the operational phase,

the instances that lay outside the sphere are classified as anomalous [14]. As shown in Figure 4.1,

the objective of the attacker is to pollute the training dataso that eventually an attack instanceG will

lay inside the sphere, which means that the attack is not detected by the IDS. Assuming the attacker

knows the set of features used to describe the traffic, the learning algorithm, and the current state of

the IDS, the attack strategy is to inject properly crafted instances in the traffic in order to force the

hypersphere to shift towardsG, until it lays inside the decision surface [14].

Barreno et al. [14] also propose possible countermeasures to the causative attacks. For example

they propose to implementdisinformationand randomizationstrategies. Disinformations consists

in somehow lying to the attacker, whereas randomization etails introducing some level of random-

ization in the paprameters used to train the model of normal traffic, so that it is difficult for the

attacker to learn or guess the actual state of the IDS (i.e., where the decision surface is placed).

This may make launching causative attacks more difficult. However, we believe countermeasures

are application dependent and are not always applicable or effective, as we discuss in Section 4.6.

55

56 4. Learning in Adversarial Environment

4.2 Case Study: Misleading Worm Signature Generators

In the last few years, large worm outbreaks have pointed out the inadequacy of today’s network

security systems. The now famous Code Red worm, released in July 2001, infected more than

360,000 hosts in less than 14 hours [73], whereas the Slammerworm, released in January 2003, was

able to infect more than 90% of the vulnerable population in less then 10 minutes [72]. More recent

worms are able to propagate through multiple vectors [87, 86] and to use mutation techniques in

an attempt to create variants which are difficult to detect by using traditional signature-based IDS

[108, 26]. In 2002, Staniford et al. discussed the risks related to the realistic ability of an attacker to

gain control of an enormous number of Internet hosts and anticipated the concept of “flash-worms”,

which would be able to infect the entire vulnerable population in tens of seconds [97].

A number of techniques have been proposed in order to try to limit the propagation of aggres-

sive worms, including anomaly detection [103, 113], dynamic quarantine [119, 115], automatic

signature generation [53, 48, 94, 76, 117, 78, 99], address space and instruction-set randomization

[16, 46]. Among these, automatic signature generation systems have recently gained substantial

interest within the computer security research community.

Signature generation is a key step in the defense against worm propagation. Most of the sig-

natures used by firewalls or signature-based intrusion detection systems (IDS) are created using a

manual analysis of worm traffic flows. This is usually a time-consuming process, and thus cannot

keep pace with rapidly spreading worms. Manual analysis becomes even harder and more time-

consuming if the worms use metamorphism and polymorphism techniques. Automatic signature

generation is a promising alternative. The goal is to automatically, and thus very quickly, learn

worm signatures by extracting the invariant parts of examples of worm flows collected in the wild.

Early approaches [53, 48, 94] are based on syntactic analysis of suspicious traffic flows. These

approaches have limited abilities to learn (or extract) reliable signatures from truly polymorphic

worms. Newsome et al. recently proposed two approaches to address this problem [76, 78]. Poly-

graph [76] is based on syntactic analysis of suspicious traffic flows, and implements three different

types of signature generation algorithms. Taint analysis [78] is a semantic analysis approach based

on the execution of possible vulnerable applications inside a protected environment.

56

4.2 Case Study: Misleading Worm Signature Generators 57

We will focus on signature generation systems that aim at automatically learning and deploying

signatures that could be used by firewalls or network IDS. Other automatic signature generators are

based on the extraction ofhost-basedsignatures that need to access the execution or application

environment they are trying to protect in order to be effective, as proposed for example in [64].

We do not discuss these systems here. We will examine the abilities of syntactic-based automatic

signature generators in the face of advanced polymorphic worms that not only spread using a high

level of polymorphism but also deliberatelymisleadthe learning process in order to prevent the

resulting signatures from stopping its propagation.

Using Polygraph [76] as a case study, we introduce a class of attacks whereby a worm can

combine polymorphism and misleading behavior in order to interfere with the learning process and

disrupt the generation of reliable signatures. We will showthat this result can be achieved by in-

tentionally injecting properly crafted noise into the training dataset of suspicious flows used by

syntactic-based signature generators to learn worm signatures. We will present a specific instance

of the attack that can mislead Polygraph, and then we will discuss how such noise injection attacks

are general in that different attacks can be devised to mislead other recently proposed automatic

signature generators. According to the taxonomy in [14], the attacks we present are causative at-

tacks against signature-based IDS which use automaticallygenerated worm signatures to stop worm

propagation.

The system architecture of Polygraph includes a flow classifier module and a signature genera-

tion module [76]. The flow classifier collects the suspiciousand the innocuous flows from which the

signatures are learned. The authors assumed that the flow classifier can be imperfect and that it can

introduce some noise into the pool of suspicious flows, regardless of the classification technique used

by the flow classifier. The authors then proposed some techniques to cope with the noise during the

signature generation process. This design characteristicis common to most of the syntactic-based

automatic signature generators. That is, little or no attention is paid to filtering the noise during the

suspicious flow gathering process. This is a serious shortcoming that can be exploited by combining

polymorphism and misleading behavior. We will show how amisleading polymorphic wormcan

create and sendfake anomalousflows during its propagation to deliberately pollute the setof flows

used to extract the signatures. Polygraph’s authors state that their system is resilient to (at least)

57

58 4. Learning in Adversarial Environment

80% of noise into the set of suspicious flows [76]. We will showthat by constructing well-crafted

fake anomalousflows, a worm can mislead the signature generation algorithms by injecting much

less than 80% of noise into the set of suspicious flows, thus preventing the generation of useful sig-

natures. We would like to emphasize that although we demonstrate the effects of the noise injection

attack on Polygraph, which is used as a case study here, it is ageneral attack on all the syntactic-

based signature generation systems proposed in the literature because they do not addresses directly

the problem of intentional pollution of the dataset of suspicious flows. In particular, we will discuss

how the attack can be generalized to defeat other recent automatic signature generation systems, and

why it cannot always be prevented by evensemantic-basedapproaches similar to [78].

4.3 Noise Injection Attack

Figure 4.2: Worm signature generation and detection scheme.

Noise injection attack works by polluting the training set of suspicious traffic flows, orsuspicious

flow pool[48, 76], used by automatic signature generators in the signature learning (or extraction)

process (see Figure 4.2). The attack aims to mislead the signature generation algorithms by injecting

well-craftednoise to prevent the generation of useful signatures. In thefollowing sections we briefly

survey the most common techniques used by a “flow classifier” to collect the suspicious flows.

We then show how the worm can inject noise withouta priori knowledge about the classification

58

4.3 Noise Injection Attack 59

technique in use. To accomplish the task of misleading the signature generation algorithms, the

noise has to be crafted in a suitable manner. Different noise injection attacks can be implemented

by crafting the noise in different manners. We first demonstrate how this attack can be implemented

against Polygraph [76], and then analyze the possible effects of noise injection attack on Nemean

[117], another recently proposed automatic signature generator. Different implementations of the

attack can be devised to mislead other signature generators.

4.3.1 Collecting Suspicious Flows

A few techniques have been proposed to accomplish the task ofcollecting the suspicious flows,

which represent (part of) the training dataset used for learning the signatures. Honeycomb [53]

uses a simulated honeynet. Any flow sent towards the honeynetis inserted into the suspicious flow

pool. Nemean [117] uses a similar approach combining real and simulated hosts. In [99] a double

honeynet is proposed. In this case a first-layer honeynet is made of real hosts. Whenever a first-

layer honeypot is infected by a worm, its outgoing traffic is redirected to a second-layer simulated

honeynet and inserted into the suspicious flow pool. Autograph [48] implements a classification

approach based on port-scanning detection. Each valid flow sent by a scanner to a valid IP address

is inserted into the suspicious flow pool. Anomaly-based IDScan also be used as flow classifiers. For

example, PAYL [112] uses the byte frequency distribution ofthe normal packets to detect anomalies,

and can be used as a flow classifier.

There are other techniques that are not considered in our study. Earlybird [94] extracts all the

possible substrings of a given fixed lengthβ from each packet to compute the content prevalence.

β cannot be reduced to just a few bytes due to computational complexity and memory consump-

tion problems. As shown in [76], a polymorphic worm can contain invariants that are just two or

three bytes long, potentially evading Earlybird. Since ourstudy focuses onmisleadingpolymorphic

worms that try to mislead signature generators, we must assume that the flow classifier can detect

polymorphic worm instances as suspicious flows. Approachesfor run-time detection of injected

code, e.g., [78, 64, 46, 16] are not considered because they are largely limited toapplication-based

worms (e.g., CodeRed [73], Slammer [72], etc.) and are not effective againstOS-basedworms (e.g.,

Sasser [88], Zotob [89], etc.). We are concerned with general-purpose worms. More importantly,

59

60 4. Learning in Adversarial Environment

these approaches are “host-based” while almost all the automatic signature generators presented in

literature use “traffic-based” flow classifiers.

4.3.2 Injecting Noise into The Suspicious Flow Pool

Suppose a worm has infected a host in networkA and is now trying to infect some hosts in network

B. Suppose also that each time the worm sends a polymorphic instance to a host inB, it also sends

a fake anomalousflow to the same host, as shown in Figure 4.3. Section 4.3.3 provides details on

the creation offake anomalousflows. For now consider that thefake anomalousflow does not need

to exploit the vulnerability and thus can be crafted in a veryflexible manner to appear like the real

worm in all but the invariant parts (which are necessary to exploit the vulnerability). For example

a fake anomalousflow can be crafted so that it contains the same protocol framework as the worm

(e.g., a GET request) and the same byte frequency distribution, and at the same time not containing

the real worm’s invariants.

Suppose the network B is monitored by a “traffic-based” flow classifier. The worm and itsfake

anomalousflow must both be stored in the suspicious flow pool in order to mislead the signature

generation algorithm. This is possible with the flow classifiers we consider (see Section 4.3.1). We

describe how this can be accomplished with each of the flow classifiers below:

• Honeynet. In this case the vulnerable host that the worm is trying to infect can be a real or

simulated honeypot. Since both the real worm and thefake anomalousflow are sent to the

same destination at (roughly) the same time, they will both be considered suspicious by the

honeypot and stored into the suspicious flow pool.

• Double honeynet. In this case the real worm will infect a first-layer honeypot, whereas the

fake anomalousflow will not, and will be disregarded. However, only the outgoing traffic will

be redirected to the second-layer simulated honeypot and stored into the suspicious flow pool.

Given that the outgoing traffic generated by the worm instance at the first-layer honeypot will

again contain both a real worm flow and another fake anomalousflow, they will be stored into

the suspicious flow pool together.

• Port-scanning detection. If the worm scans more thans unused IP addresses, the source of

60

4.3 Noise Injection Attack 61

Figure 4.3: Worm propagation

Figure 4.4: Structure of the flows (simplified)

the scanning (i.e., the infected host inA) will be considered a scanner. Therefore, each flow

sent by the infected host inA towardsBafter the scanning phase will be considered suspicious.

Given that the real worm and thefake anomalousflow originate from the same source host,

they will be both inserted into the suspicious flow pool.

• Byte frequency-based classifier. Thefake anomalousflow can be easily crafted to match the

byte frequency distribution of the real worm flow (as discussed in Section 4.3.3). This means

that if the real worm flow is flagged as anomalous, itsfake anomalousflow will very likely be

flagged as anomalous, too. Thus, both the worm and thefake anomalousflow will be stored

into the suspicious flow pool.

Note that each copy of the worm could craft and send more than onefake anomalousflow at the

same time. In this case the real worm flow and all itsfake anomalousflows will be inserted into the

suspicious flow pool together. The discussion above suggests that without a semantic-based analysis

it is not possible to distinguish between the real worm flow and its fake anomalous flows.

4.3.3 Crafting the Noise: A Case Study Using Polygraph

In this section we present a noise injection attack devised to mislead Polygraph [76]. In order to

explain how the noise can be crafted to mislead Polygraph we first describe the high level structure

61

62 4. Learning in Adversarial Environment

of a polymorphic worm and how Polygraph extracts worm signatures.

High Level Structure of A Polymorphic Worm

As discussed in [52] and in [76], a polymorphic worm is made ofthe following components:

• Protocol framework. In many cases the vulnerability is associated with a particular execution

path in the application code. In turn, this execution path can be activated by one (or just a few)

particular request type(s). Therefore, the protocol framework is usually common to all the

worm variants. However, in some cases it may still be possible to modify the attack vector,

thus reducing the number of invariants.

• Exploit’s invariant bytes . These bytes have a fixed value that cannot be changed because

they are absolutely necessary for the exploit to work.

• Wildcard bytes. These bytes can assume any value without affecting the exploit.

• Worm’s body. It contains the instructions the worm executes once the vulnerability has been

exploited. If the worm uses a good polymorphic engine, thesebytes can assume different

values in each worm copy. Common techniques to achieve body (shellcode) polymorphism

include register shuffling, equivalent instruction substitution, instruction reordering, garbage

insertions, and encryption. Different keys can be used in encryption for different instances of

the attack to ensure that the body’s byte sequence is different every time.

• Polymorphic decryptor. It contains the first instructions to be executed after the vulnerability

has been exploited. The polymorphic decryptor decodes the worm’s body and then jumps to it.

Obviously, the decryptor itself cannot be encrypted. However, polymorphism of the decryptor

can be achieved using various code obfuscation techniques.

Note that this is a simplified view.

Polygraph’s Signature Generation Module

Polygraph consists of several modules [76]. A flow classifierperforms flow reconstruction and

classification on packets received from the network. The flows deemed suspicious are stored into

62

4.3 Noise Injection Attack 63

a suspicious flowpool, whereas the flows deemed innocuous are stored into aninnocuous flow

pool. The signature generator module uses both pools duringthe signature generation process. The

objective of Polygraph [76] is to extract the invariant parts of a polymorphic worm using three

different signature generation algorithms. We briefly summarize how these algorithms work.

• Conjunction signatures. During the preprocessing phase the substrings common to all the

flows in the suspicious flow pool are extracted. These substrings are calledtokens. A con-

junction signature is made of an unordered set of tokens. A flow matches the signature if it

contains all the tokens in the signature.

• Token-Subsequence signature. As with the conjunction signatures, the set of tokens in com-

mon among all the suspicious flows are extracted. Then, each suspicious flow is rewritten as

a sequence of tokens separated by a special characterγ. A string alignment algorithm cre-

ates an ordered list of tokens that is present in all the suspicious flows. A token-subsequence

signature consists of the obtained ordered list of tokens. Aflow matches the signature if the

ordered sequence of tokens is in the flow.

• Bayes signatures. All the tokens of a minimum lengthα that are common to at leastK out of

the total numberN of suspicious flows are extracted. Then, for each tokenti , p(ti |S uspicious f low)

andp(ti |Innocuous f low), the probabilities of finding the token in a suspicious flow and in an

innocuous flow, respectively, are computed. A score

λi = log

[

p(ti |S uspicious f low)
p(ti |Innocuous f low)

]

is then assigned to each tokenti. The probabilityp(ti |S uspicious f low) is estimated over the

suspicious flow pool, whereasp(ti |Innocuous f low) is estimated over the innocuous flow pool.

During the match process, the scoresλi for the tokensti contained in the flow under test are

summed. The flow matches the signature if the obtained total scoreΛ exceeds a precomputed

thresholdθ. This threshold is computed during the signature generation process. Given a

predetermined acceptable percentage of false positivesr, θ is chosen so that the signature

produces less thanr false positives and minimizes the number of false negativesat the same

63

64 4. Learning in Adversarial Environment

time.

The conjunction and token-subsequence signatures are not resilient to noise in the suspicious

flow pool. For example, if just one noise flow that does not contain the worm’s invariants appears in

the suspicious flow pool, the worm’s invariants will not be extracted during the preprocessing phase

because they are not present inall of the flows. For this reason Polygraph [76] applies a hierarchical

clustering algorithm during the generation of conjunctionand token-subsequence signatures in an

attempt to isolate the worm flows from the noise. Each clusterconsists of a set of suspicious flows

{a1, a2, .., an}, and the signaturesa extracted from the set. That is, each cluster can be represented

as a pair ({a1, a2, .., an}, sa). The similarity between two clusters is based on thespecificityof the

signatures, namely, the number of false positives (measured over the innocuous flow pool) produced

by the new signature obtained by merging the two clusters. For example, the similarity between

two clusters ({a1, a2, .., an}, sa) and ({b1, b2, .., bm}, sb) is computed as the number of false positives

produced by the signaturesa,b extracted from the merged set of flows{a1, a2, .., an, b1, b2, .., bm}.

The algorithm starts withN clusters, one for each suspicious flow, and then proceeds iteratively to

merge pairs of the (remaining) clusters. At each step, only the one pair of clusters that upon merging

produce the signature with the lowest false positive rate are actually merged. The algorithm proceeds

until all the “merged” signatures produce an unacceptable number of false positives or there is only

one cluster left.

From a statistical pattern recognition point of view, the tokens represent the features used to

describe network flows. In case of conjunction and token-subsequence signatures a flow is described

using binary features which encode the presence or absence of tokens in the flow, whereas in case of

Bayes signatures the value of each feature represents a score computed according to the probability

of finding a token in normal and worm flows, as described above.A signature represents a prototype

to which network flows are compared during the detection (or recognition) phase.

Misleading Conjunction and Token-Subsequences Signatures

A signature is useful if it contains at least a subset of the invariant substrings of the worm. The hi-

erarchical clustering algorithm implemented by Polygraphis greedy [76]. This choice is motivated

64

4.3 Noise Injection Attack 65

by the fact that a non-greedy clustering algorithm would be computationally expensive. This prop-

erty can be exploited by injecting well-crafted noise to prevent the generation of a useful signature.

Below, we describe how to craft the noise to mislead Polygraph.

Suppose that a polymorphic worm propagates using the schemedescribed in Section 4.3.2 (see

Figure 4.3). Suppose also that thefake anomalousflow is crafted so that it has some substrings in

common with the real worm, but does not contain thetrue invariant parts of the worm, as shown in

Figure 4.4. We callT I (True Invariants) the set oftrue invariant substrings, andFI (Fake Invariants)

the set of substrings in common between the worm and its fake anomalous flow. Suppose now

that the suspicious flow pool contains three copies of the worm, and then also three corresponding

fake anomalousflows. We callwi the i-th copy of the worm in the suspicious flow pool andfi its

fake anomalousflow. Note thatFI i is different for different pairs ofwi and fi because each fake

anomalous flow is crafted specifically according to a worm flow, and each worm flow is different

due to polymorphism.

The clustering algorithm starts (at step 0) by constructingone signature for each (single) flow

in the suspicious flow pool. During the first step of the clustering process, whenever a worm flow

wi and the corresponding fake anomalous flowfi are considered together, a signature containing

the common substringsFI i will be generated. It is worth noting that the generated signature in this

case will not containT I. Whenever two worm flowswi andw j are considered together, a signature

containingT I will be generated. Whereas, whenever two fake anomalous flows fi and f j or a worm

flow wi and a fake anomalous flowf j (j , i, i.e, it is from a different worm flow) are considered

together, the generated signature will contain just substrings extracted from the protocol framework

PF (and possibly other substrings that are in common just by chance). Obviously, a signature

containing mostly tokens extracted from the protocol framework would produce a high number of

false positives because the normal/innocuous flows will also need to use the protocol/application and

thus can also contain substrings of the protocol framework.Therefore, pairs ofwi and f j and pairs

of fi and f j (i , j) will not be merged. Now, the question is whether a pair ofwi and fi (resulting

in a signature containingFI i) or a pair ofwi andw j (resulting in a signature containingT I) will be

merged.

Let p(f alse positive|FI i) andp(f alse positive|T I) be the probabilities that a signature contain-

65

66 4. Learning in Adversarial Environment

ing FI i and a signature containingT I will produce a false positive, respectively. If the fake invari-

antsFI i had been “well-crafted” by the worm during propagation so that p(f alse positive|FI i) <

p(f alse positive|T I), the “merged” signatures1, produced by the first step of the clustering algo-

rithm (see above) will containFI i but will not containT I. That is, a worm flow and its correspond-

ing fake anomalous flow, say,w1 and f1 will be merged. Of course, the question is how to obtain

p(f alse positive|FI i) < p(f alse positive|T I). In Section 4.3.3, we will describe how to produce,

in practice, a fake anomalous flow that corresponds to a true worm flow. For now, we state that

theFI i tokens are made of random bytes and that the total number and the lengths of tokens inFI i

are greater than the number and the lengths of tokens inT I. As a result,p(f alse positive|FI i) <

p(f alse positive|T I) will be very likely to hold. To show this, letpf (b) be the probability of a byte

b, contained in a fake invariant token, to appear in an innocuous flow, andpt(b) the probability of a

byteb, contained in a true invariant token, to appear in an innocuous flow. Let the cardinalities of

the setsFI i andT I be x = |FI i | andy = |T I|, respectively, and the lengths of a tokent fk ∈ FI i and

a tokenttk ∈ T I be lk andhk, respectively. Assuming the bytes of a token to be extractedfrom a

uniform random distribution and assuming the tokens to be statistically independent, we can write:

p(f alse positive|FI i) =
∏x

k=1
∏lk

j=1 pf (bk, j)

p(f alse positive|T I) =
∏y

k=1

∏hk
j=1 pt(bk, j)

(4.1)

wherebk, j is the j-th byte of thek-th token. Now, if we assume that the bytesbk, j have the same

probability, p, to be present in an innocuous flow, so thatpf (bk, j) = pt(bk, j) = p, ∀k, j , it is easy to

see that ifx · avgk(lk) > y · avgk(hk) we can obtainp(f alse positive|FI i) < p(f alse positive|T I).

Now, returning to the clustering process. At this point, there is one cluster, say, ({w1, f1}, s1),

and two worm flows and two fake anomalous flows. Consider all the candidates for merging. We

already know from the above discussion that if we only consider the four clusters containing a

single flow, the only acceptable merging will be between a worm flow and its corresponding fake

anomalous flow, sayw2 and f2, resulting in a signature containingFI2. Butw2 (or f2) can also merge

with the existing cluster, resulting in a set{w1, f1,w2} (or {w1, f1, f2}). By extracting the substrings

common to all the three flows the algorithm would obtain only tokens belonging to the protocol

66

4.3 Noise Injection Attack 67

framework (and possibly other small substrings that are common to all three flows just by chance).

We callCSi j the signature extracted from{wi , fi ,w j} (or {wi , fi , f j}). Note thatT I * CSi j . Again,

p(f alse positive|FI j) < p(f alse positive|CSi j) will very likely hold given thatCSi j will mostly

contain just tokens from the protocol framework. Therefore, the only acceptable cluster is{w2, f2}.

The algorithm continues and finally there will be three clusters, namely{w1, f1}, {w2, f2} and

{w3, f3}, and three corresponding signatures. At this point, the clustering algorithm will consider

merging the clusters, say, to form{{w1, f1}, {w2, f2}}. But the set of substrings in common among all

the four flows will not containT I. Once again, the signature will mostly contain invariants related

to the protocol framework, and as a result will likely produce a high number of false positives. Thus,

this cluster is not acceptable, and the clustering algorithm has to terminate.

In conclusion, the noise injection attack misleads Polygraph to generate signatures containing

the fake invariant strings (FI i), rather than a useful signature containing the true invariants (T I).

Misleading Bayes Signatures

To generate Bayes signatures, Polygraph first extracts the tokens of a minimum lengthα that are

common to at leastK out of a total number ofN suspicious flows. IfK = 0.2 × N, as suggested

in [76], an attacker can mislead the Bayes signatures by simply programming the worm so that it

sends five fake anomalous flows per worm variant because in this case the true invariants (T I) occur

in less than 20% of the suspicious flows and will not be extracted/used. It seems then that for a low

value ofK the worm needs to flood the suspicious flow pool with a large number of fake anomalous

flows. However, we show how the worm can craft the fake anomalous flows so that just a few (one

or two) of them per worm variant will be sufficient to mislead the generation of Bayes signatures.

If a worm crafts the fake anomalous flows as described in Section 4.3.3, the Bayes signature

generation algorithm will very likely generate ausefulworm signature containing tokens related to

the protocol frameworkPF and the true invariant tokensT I. The tokensPF will be present in 100%

of the suspicious flows, whereas the tokensT I will be present in 50% of the suspicious flows if one

fake anomalous flow per worm variant is used. The fake invariants FI are specific for each worm

variant and its fake anomalous flow. This means eachFI i will, in general, be present less thanK

times in the suspicious flow pool (unlessK is very small) and will not be used to generate the Bayes

67

68 4. Learning in Adversarial Environment

signatures. In short, the technique described in Section 4.3.3 cannot mislead Bayes signatures.

As described in Section 4.3.3, during the generation of a Bayes signature a scoreλi is computed

for each tokenti in the signature. During the matching process, the scores ofmatched tokens are

summed. The technique we develop here is to insert a set of strings in the fake anomalous flows in

such a way that the generated signatures contains tokens that will score an innocuous flow higher

than a true worm flow, thus making it very hard to set a proper threshold value (θ) to obtain both low

false positive and false negative rates.

Consider now a lengthn string of bytesv = (v1, v2, ..vn) that appears in the innocuous flow pool

(but does not appear in the worm flows) with a probabilityp that is neither too low nor too high, for

examplep1 = 0.05 < p(v|Innocuous f low) < 0.20 = p2. If v is injected into the fake anomalous

flows generated by each variant of the worm, this string will appear in at least 50% of the suspicious

flows. This means that the stringv will be considered as a token in the Bayes signature. We have

p(v|suspicious f low) ≥ 0.5 andp1 < p(v|Innocuous f low) < p2, thus the tokenv would receive a

scoreλv betweenlog(0.5/p2) andlog(0.5/p1). If we split the stringv to all the possible substrings of

lengthm< n, we will obtainn−m+1 different substringsv1,m = (v1, v2, ..vm), v2,m+1 = (v2, v3, ..vm+1),

..., vn−m+1,n = (vn−m+1, vn−m+2, ..vn). Suppose now the worm injects all of then − m+ 1 substrings

randomly (with respect to the position for each substring) in each fake anomalous flow, instead of

injecting the entire stringv. All of the substrings ofv will be present in at least 50% of the suspicious

flows in the suspicious flow pool and will therefore be added astokens into the Bayes signature.

If m is not much lower thann, we can expect thatp(v j, j+m−1|Innocuous f low) will be not much

higher thanp(v|Innocuous f low). In turn, we expect the scoreλvj, j+m−1 associated with each of the

n−m+ 1 substrings ofv to be not much lower than the scoreλv. This results in a multiplying effect

on the score ofv because a flow that containsv also contains all of its substrings. We will refer to

the stringsv j, j+m−1, j = 1..(n−m+ 1) asscore multiplier strings.

The Bayes signatures now includePF, T I and the score multiplier strings. During the matching

phase, the total score for a real worm flow is:

S =
∑

l

λPFl +
∑

h

λT Ih (4.2)

68

4.3 Noise Injection Attack 69

HereλT Ih is the score of a worm’s true invariant tokenT Ih andλPFl is the score of a protocol

framework tokenPFl (note that the worm will not containv).

On the other hand, the total score for an innocuous flow containing v is at least:

Λ =

n−m+1
∑

j=1

λvj, j+m−1 (4.3)

The innocuous flow containsv and thus all of its substrings, which are tokens in the Bayes

signatures (the flow can also containPF tokens etc.) If the attacker choosesv and m such that

Λ > S, it will be impossible to set a thresholdθ for the Bayes signatures that will produce a low

false positive rate and low false negative rate at the same time. This is because ifθ < S (and then

alsoθ < Λ) the signature will generate a high number of false positives (from around 5% to 20%

for the proposed example 0.05 < p(v|Innocuous f low) < 0.20), due to the presence ofv, and then

of all its substrings, into a non-negligible percentage of normal traffic. On the other hand, ifθ > Λ

(and then alsoθ > S) the Bayes signature will produce around 100% false negatives.

In conclusion, the attacking technique described here prevents the generation of a useful signa-

ture. We will discuss in Section 4.4 how the attacker can automatically extract a set ofcandidate

stringsv (and therefore itsscore multipliersubstrings) from network traffic traces. The obtained

candidate strings can be used to obtain the multiplying effect explained above.

Crafting The Noise

Before propagating to the next victim the worm must first create a polymorphic copy of itselfwi.

Then it can create the associated fake anomalous flowfi using the following algorithm:

a) f (0)
i = clone(wi): Create a copy ofwi.

b) f (1)
i = randomlyPermuteBytes(f (0)

i): Permute the bytes off (0)
i but leaving the protocol

framework bytes unchanged.

c) a[] = extractFakeInvariants(wi ,k,l): Copyk substrings of lengthl from wi into an arraya,

choosing them at random, but do not copy substrings that contain protocol framework or true

invariant bytes.

69

70 4. Learning in Adversarial Environment

Figure 4.5: An example of fake anomalous flow

d) f (2)
i = injectFakeInvariants(f (1)

i ,a[]): Copy the fake invariant substrings intof (1)
i but do not

overwrite bytes belonging to the protocol framework (see Figure 4.4).

e) f (3)
i = injectScoreMultiplierStrings (f (2)

i ,v): Injectscore multiplier stringsin f (2)
i by splitting

a stringv as explained in Section 4.3.3. The stringv can be chosen from a set of candidate

strings obtained by means of an analysis of normal network traffic traces performed using the

algorithm explained in [81]. The attacker could embed a subset of the candidate strings into

the worm’s code. The decision on which stringv to use can be based on time. For example,

the worm could embed the time of its first infection into its code and then use a different

string v periodically (e.g., every 10 minutes for a fast-propagating worm). This is necessary

because the worm and its fake anomalous flows can arrive at theflow classifiers from multiple

infected hosts. Given that thescore multiplier stringshave to be present in a high fraction

of the total number of fake anomalous flows into the suspicious pool, the worm cannot just

pick v at random each time it propagates to a new victim. Instead, each v has to be used for a

period of time.

f) f (4)
i = obfuscateTrueInvariants(f (3)

i): This is necessary becausef (3)
i could still contain some

true invariant strings, even though just by chance. The obfuscation process assures thatf (4)
i

will not contain the worm’s true invariants.

Here f (h)
i represents an “update” off (h−1)

i . The final fake anomalous flowf (4)
i and the worm

variantwi are sent together to the next victim. An example of the application of the above algorithm

is reported in Figure 4.5. The fake anomalous flow has been crafted usingk = 3 fake invariants of

lengthl = 4. The stringv is 6 bytes long and the length of thescore multiplier substringsis m= 3.

It is worth noting that the resultingfake anomalousflow does not contain the true invariant tokens.

70

4.3 Noise Injection Attack 71

If the byte frequency distribution ofwi and fi are not very close (due to the injection of the score

multiplier strings) a simple padding technique could be applied to make the two byte frequency

distribution closer.

Combining Noise Injection and Red Herring Attacks

In Section 4.3.3 we presented how the fake anomalous flows canbe crafted to mislead the gener-

ation of Conjunction and Token-subsequences signatures. For such attack to be successful, fake

anomalous flows generated by different worm variants should not contain common substrings. The

attacking method presented in Section 4.3.3 to mislead the generation of Bayes signatures violates

this constraint because all the fake anomalous flows in the suspicious flow pool have to contain the

samescore multiplier strings. However, this turns out not to be a problem. During the application

of the hierarchical clustering algorithm, whenever two fake anomalous flowsfi and f j are involved

in a merge, the extracted tokens will be either part of the protocol framework orscore multiplier

substrings. Therefore, the generated signature will very likely produce a high number of false pos-

itives and the flows will not be kept in the same cluster. It is then very likely to see (following

the analysis in Section 4.3.3) that the only acceptable clusters are{wi , fi}. Thus, the attack against

Bayes signatures described in Section 4.3.3 does not interfere with the attack against Conjunction or

Token-subsequence signatures. It follows that crafting the fake anomalous flows as described in Sec-

tion 4.3.3, the attack is effective against the three different types of Polygraph signature generation

algorithms.

However, the results of the attack are not deterministically predictable. As mentioned in Section

4.3.3 it is possible that a set of flows contains some substrings that are common just by chance to

all the flows in the set. For example it could happen that two worm variantswi andw j present (by

chance) a common substringci, j , besides the protocol framework and true invariant tokens.This

means that to avoidwi andw j being kept in the same cluster, the constraintp(f alse positive|FI) <

p(f alse positive|T I, ci, j) needs to be verified. Given thatci, j is unknown, it is not easy to craft the

set of fake invariantsFI to assure that this constraint is satisfied. Besides, even ifthe worm craftsFI

so thatp(f alse positive|FI) is close to zero, it can also happen thatp(f alse positive|T I, ci, j) = 0.

In this case there is no way to determine which signature is more specific than the other, and we

71

72 4. Learning in Adversarial Environment

assume the merged cluster to be kept is chosen at random.

We will show in Section 4.4 that in practice the probability of success for the noise injection

attack is fairly high. To further increase the success chance of the noise injection attack, it is possible

to combine it with thered herring attack discussed by Polygraph’s authors in [76]. The worm

variants could include sometemporary true invariantsthat change over time. If the Conjunction

and Token-subsequence signature generation algorithms produce (by chance) a useful signature, this

signature would become useless over a certain period of time. After this period of time Polygraph

could try to generate again new Conjunction and Token-subsequence signatures to detect the worm.

Nevertheless, this time Polygraph may not be as “fortunate”as the first time in generating a useful

signature. Besides, if thetemporary true invariantswere chosen among high frequency strings (e.g.,

extracted from network traces using the algorithm presented in [81] setting the probability between

0.8 and 1), the related tokens would receive a low score during the generation of the Bayes signature

and therefore would not interfere with the noise injection attack against Bayes signatures. The final

result is that the attacker has a very high probability to succeed in misleading all the three types of

signatures at the same time.

4.3.4 Effects of the Noise on Other Automatic Signature Generators

We have performed experiments only on Polygraph. However, it is possible to evaluate the effects

of different noise injection attacks on other systems basing the analysis on the description of the

signature generation algorithms. We present an analysis ofthe possible effects of noise injection

attack on Nemean [117].

Nemean is a recently proposed automatic signature generator that uses a semantic analysis of

the network protocols and two types of signatures, namely connection and session signatures [117].

It uses a honeynet to collect the suspicious flow pool. Then itapplies a clustering algorithm to group

similar connections inconnection clustersand similar sessions insession clusters. Each cluster

contains the observed variants of the same worm. Even thoughNemean is suitable for generating

signatures for worms that use limited polymorphism [117], it introduces interesting features such as

semantic protocol analysis and connection and session clustering. For this reason, it is interesting to

discuss how it could be misled using the noise injection attack.

72

4.4 Experiments 73

Nemean represents a connection by a vector containing the distribution of bytes, the request

type and the response codes that occurred in the network data[117]. The fake anomalousflows

can be injected into the suspicious flow pool as explained in Section 4.3.2. Given that thefake

anomalousflows can be crafted to have the same protocol framework and (almost perfectly) the

same distribution of bytes as the worm variant they derive from, thefake anomalousflows and the

worm variants will be very likely considered in the same connection cluster. If thefake anomalous

flows are crafted by applying a random permutation of the worm’s bytes (see Section 4.3.3), the

signature generation algorithm will not be able to discoversignificant invariant parts common to

the flows in a cluster, and the extracted connection signatures will be useless because they will

likely produce a high number of false positives. This noise injection attack will affect the session

signatures as well, given that they are constructed based onthe results produced by the connection

clustering process [117].

4.4 Experiments

In our experiments we tried to have an experimental setup similar to the one reported in [76] in

order to make the results comparable. Polygraph software isnot publicly available, therefore we

implemented our own version following the description of the algorithms in [76].

4.4.1 Experimental Setup

Polygraph setup. We performed all the experiments setting the minimum tokenlengthα = 2

and the token-extraction threshold for Bayes signature generation to be 20% of the total size of the

suspicious flow pool. We also set the minimum cluster size to 3and the maximum acceptable false

positive rate for a signature to be 0.01 during the application of the hierarchical clustering algorithm

for Conjunction and Token-subsequences signatures.

Polymorphic worm. We considered the Apache-Knacker exploit reported in [76]as the attack

vector for the worm. We simulated an ideal polymorphic engine following the same idea used

by Polygraph’s authors, keeping the protocol framework of the attack and the first two byte of the

return address fixed and filling the wildcard and code bytes uniformly at random. Each worm variant

73

74 4. Learning in Adversarial Environment

matches the regular expression:

GET .* HTTP/1.1\r\n.*\r\nHost: .*\r\n.*\r\nHost: .*\xFF\xBF.*\r\n

Datasets. We collected several days of HTTP requests taken from the backbone of a busy

aggregated/16 and/17 academic network (i.e., CIDR [35] blocks of the forma.b.0.0/16 and

c.d.e.0/17) hosting thousands of machines. The collected traffic contains requests towards thou-

sands of different public web-servers, both internal and external with respect to our network. The

network traffic traces were collected between October and November 2004. We split the traffic traces

to obtain three different datasets which are described below.

Innocuous flow pool. The innocuous flow pool was made of 100,459 flows related to HTTP

requests towards 898 different web-servers1. Among these, 7 flows matched the same regular ex-

pression as the polymorphic worm. Thus, in absence of noise in the suspicious flow pool, a generated

signature that matched the worm invariants would result in around 0.007% of false positives on the

innocuous flow pool. These 7 flows were the only ones to containthe\xFF\xBF string. Very similar

to our traffic data, the\xFF\xBF string was present in 0.008% of the evaluation flows used by Poly-

graph’s authors to perform their experiments [76]. In [76] the \xFF\xBF token caused the Bayes

signature to produce 0.008% of false positives.

Test flow pools. We used two sets of test flows in our experiments. The first setwas made of

217,164 innocuous flows1 extracted from the traffic traces. We inspected this test set to ensure that

it did not include any flow containing the\xFF\xBF string. The second test set was made of 100

simulated worm variants. We used the first test set to measurethe false positive rate and the second

to measure the false negative rate produced by the signatures. Note that we obtained the innocuous

flow pool and the test set made of innocuous flows from two different slices of the network traces.

Score multiplier strings. We used a dataset made of 5,000 flows to extract the score multiplier

strings. We analyzed the flows using the algorithm presentedin [81]. We extracted all the sub-

strings of length from 6 to 15 bytes having an occurrence frequency between 0.05 and 0.2, obtaining

around 300 different strings. Many of them were strings related to HTTP-header fields introduced by

certain browsers, such as “Cache-Control’, “Modified-Since”, “Firefox/0.10.1”, “Downloader/6.3”,

1The flows were “innocuous” in the sense that they did not contain the considered worm.

74

4.4 Experiments 75

etc. The extracted strings are the candidate strings that can be used to obtain a score multiplying

effect to force Bayes signatures to generate a high number of false positives, as explained in Sec-

tion 4.3.3. It is worth noting that the flows used to extract the score multiplier strings contained both

inbound and outbound HTTP requests taken from the perimeterof our network. The flows were

related to requests among a large number of different web-servers and clients. For these reasons

we expect the obtained strings and occurrence frequencies to be general and not specific just to our

network2.

Fake anomalous flows. We crafted the fake anomalous flows using the algorithm presented in

Section 4.3.3. We usedk = 2 fake invariants of lengthl = 5 for all the fake anomalous flows. We

used several combinations of score multiplier stringsv by splitting them in different ways to obtain

a different number of substrings for each test. For each fake anomalous flow, we chose2
3 of the

obtained substrings at random and injected them into the flow3.

4.4.2 Misleading Bayes Signatures

In [15] Polygraph’s authors state that Bayes signatures areresilient to the presence of noise into the

suspicious flow pool until the noise level reaches at least 80% of the total number of flows. In our

experiments we found that if the fake anomalous flows are properly crafted, just 50% of noise in the

suspicious flow pool (i.e., 1 fake anomalous flow per worm variant) can make the generated signature

useless. We performed several experiments using 10 worm variants and 1 or 2 fake anomalous flows

per variant in the suspicious flow pool. The fake anomalous flows were crafted as explained in

Section 4.3.3 and 4.4.1. We report the results of two group oftests below.

Case 1. We obtained the best result using “Firefox/0.10.1” (12.2%) and “shockwave-flash”

(11.9%) as score multiplier strings. The percentages between parenthesis represent the occurrence

frequencies of the strings (see Section 4.4.1). We split thetwo score multiplier strings to obtain all

the possible substrings of sizem= 9 (e.g., “Firefox/0”, “irefox/0.”, “refox/0.1”, etc.).

As described above, we simulated two attack scenarios using1 and 2 fake anomalous flows per

2The extracted strings could obviously present different occurrence frequencies over time. Nevertheless it isreasonable
to assume that the attacker could perform a similar analysison traffic traces collected just a few weeks or even days before
launching the attack.

3Thus, the fake anomalous flows did not always contain the sameset of substrings.

75

76 4. Learning in Adversarial Environment

Figure 4.6: Case 1. The false positives are measured over the in-
nocuous flow pool

Figure 4.7: Case 1. The false positives are measured over the test
flow pool

worm variant, respectively. Therefore, the suspicious flowpool was made of 20 flows during the

first attack scenario and of 30 flows during the second one. We generated the Bayes signature on

the suspicious flow pool and measured the false positive rates on the innocuous flow pool and the

test flow pool made of innocuous traffic. The results are shown in Figure 4.6 and Figure 4.7. Please

note that the graphs are represented on different ranges of false positives to highlight the difference

between the two attack scenarios. The plots represent the false positives and false negatives produced

by the signature while varying the thresholdθ starting from 0.0 and incrementing it using a 0.5

increment step. A threshold equal to 0.0 obviously produces100% of false positives and 0% of

false negatives. By incrementing the threshold, the percentage of false positives decreases. The

arrows indicate the coordinates related to the maximum value of the threshold that produces no false

76

4.4 Experiments 77

Figure 4.8: Case 2. The false positives are measured over the innocuous flow pool

negatives. The Bayes signature generated during the secondscenario is reported in [81].

In Section 4.3.3 we discussed how Polygraph optimizes the thresholdθ for Bayes signatures. It

is easy to see from Figure 4.6 that the noise injection attackprevents the thresholdθ to be optimized.

Consider for example the graph related to the injection of 1 fake anomalous flow per worm variant.

If θ = 9.5, the signature generates 11.74% of false positives and 0% of false negatives. In order to

decrease the number of false positives the threshold would need to be incremented further. However,

as soon as the threshold exceeds 9.5 the signature produces 100% of false negatives.

Case 2. In this case “Pragma: no-cache” (9.4%) and “-powerpoint” (7.0%) were used as score

multiplier strings. We split these two strings to obtain allthe substrings of lengthm= 4. Again, the

suspicious flow pool contained 10 worm variants and 1 or 2 fakeanomalous flows per variant. The

results are reported in Figures 4.8 and 4.9. Please note that, again, the graphs are represented on

different ranges of false positives to highlight the difference between the two attack scenarios. The

Bayes signature generated during the second scenario (2 fake anomalous flows per worm variant) is

reported in [81].

4.4.3 Misleading All The Three Signatures at The Same Time

The objective of the noise injection attack is to prevent thegeneration of useful signatures. In

order to achieve this result the attack needs to prevent the generation of useful conjunction, token-

subsequences, and Bayes signatures at the same time. As discussed in Section 4.3.3, the results of

77

78 4. Learning in Adversarial Environment

Figure 4.9: Case 2. The false positives are measured over the test flow pool

1 fake anomalous flow2 fake anomalous flows
Conjunction 73.3% 88.9%
Token-subsequences 60.0% 73.3%
Bayes 100% 100%
All three signatures 44.4% 62.2%

Table 4.1: Percentage of successful attacks (using “Forwarded-For” and “Modified-Since”)

the attack are not deterministically predictable. In orderto estimate the probability of success we

simulated the noise injection attack multiple times. We considered an attack successful if Polygraph

did not generate a conjunction or token-subsequence signature that would match the worm and if

the Bayes signature produced more than 1% of false positivesmeasured over the innocuous flow

pool. Even though a false positive rate around 1% is seemingly low, we consider it intolerable for

a blockingsignature. We report the results with fake anomalous flows crafted using two different

combinations of score multiplier strings. We divided the tests into two groups. The first group

of tests were performed using “Forwarded-For” (11.3%) and “Modified-Since” (15.2%) as score

multiplier strings, splitting them into substrings of length m = 5. The second group of test were

performed using “Cache-Control” (15.1%) and “Range: bytes” (11.9%), splitting them in substrings

of lengthm = 4. For each group of tests we simulated two noise injection attack scenarios using

1 and 2 fake anomalous flows per worm variant, respectively. We used 5 worm variants in the

suspicious flow pool for both the first and the second scenario. We generated the signatures 45 times

for the first group of tests and 20 times for the second group. The results are shown in Table 4.1

and Table 4.2. The reported percentages represent how many times the attack was successful in

78

4.4 Experiments 79

1 fake anomalous flow2 fake anomalous flows
Conjunction 65% 95%
Token-subsequences 40% 90%
Bayes 90% 100%
All three signatures 20% 85%

Table 4.2: Percentage of successful attacks (using “Cache-Control” and “Range: bytes”)

avoiding the generation of useful signatures. The first three rows report the percentage of success

computed for each type of signatures, individually. The last row represents the percentage of attacks

that succeeded in misleading Polygraph so that it could not generate any useful signature, regardless

of the signature type. It is worth noting that in both experiments, when using 2 fake anomalous flows

per worm variant, the attack has a higher probability to succeed, and further, it prevents Polygraph

from generating a useful Bayes signature 100% of the time.

4.4.4 Analysis of the Results

Polygraph’s authors showed that their system is resilient to the presence of as much as 80% of

“normal” noise in the suspicious flow pool [76]. However, we showed that if the noise is properly

crafted, just 50% of noise could prevent Polygraph from generating useful signatures a majority

of the times. As shown above, if the detection threshold for Bayes signatures is set in order to

produce a low amount of false positives, we obtain almost 100% of false negatives. According to

the attack taxonomy in [14], we can interpret this as the result of a successfulcausative integrity

attack, because the learning phase is influenced so that future attacks will not be detected. On the

other hand, if the detection threshold is set so that a low number of false negatives are produced, the

signatures generate too many false positives. If the signatures were deployed they would produce a

self-Denial of Serviceattack. We can interpret this as the result of a successfulcausative availability

attack.

In addition, as explained in Section 4.3.3, the noise injection attack can be easily combined with

the red herring attack discussed in [76]. The combination ofthe two attacks increases the probability

that the worm will prevent the generation of a useful signature.

We also conducted preliminary experiments on NETBIOS traffic to extract score multiplier

strings that can be used by a worm that uses this protocol as attack vector. We chose NETBIOS

79

80 4. Learning in Adversarial Environment

because it is an attack vector for most of theOS-basedworms. We analyzed more than 5,000 NET-

BIOS flows, searching for strings of length from 6 to 15 bytes and an occurrence frequency between

0.05 and 0.2. We found 29 candidate strings in “TCP-based” NETBIOS traffic and 58 candidate

strings in “UDP-based” requests. This experiment suggeststhat our noise injection technique using

“score multiplier” strings can work for a variety of protocols.

4.5 Attack Against Semantic-based Signature Generators

In [78] Newsome et al. propose dynamic taint analysis for automatic signature generation. The

idea consists in running (potentially) vulnerable networkapplications in a virtual machine. This

gives full control on the instructions executed by the application. The method aims to detect the

memory location to which the execution of the application ishijacked while under attack. Assume,

for example, an application running in the virtual machine for taint analysis has a buffer overflow

vulnerability [79]. Assume also a new worm has been developed in order to exploit this vulnerability.

While running in the virtual machine, all the data arriving to the vulnerable application from the

network are labeled as tainted, and every attempt to hijack the application’s execution flow to execute

code contained in tainted data is detected. As soon as the worm flow tries to force the application

to execute the worm’s code, the application is stopped and the taint analysis engine registers the

address where the worm code resides in memory. As there are just a limited number of possible

address locations the worm could use, part of the registeredaddress (e.g., the first two bytes) is

likely shared by all the (polymorphic) variants of the worm and may be used to help Polygraph

in generating a more robust worm signature [78]. According to the description of fake anomalous

flows given above, the noise injection attack we presented would not work in this case, because the

fake anomalous flows do not attempt to exploit the vulnerability and are then filtered out by the taint

analysis engine. On the other hand, we can imagine of a noise injection attack for which the fake

anomalous flows are constructed to actually exploit the vulnerability and hijack the application’s

execution flow to a random memory address. In this case it is difficult to distinguish between a real

worm and a fake anomalous flow. This means that the fake anomalous flows cannot be easily filtered

out, unless further and more expensive semantic analysis isperformed. The only shortcoming of

80

4.6 Possible Countermeasures 81

this attack is represented by the fact that the worm propagation would slow down. Given that each

new worm instance and its fake anomalous flows are sent to the next victim in a random order, it

might happen that the first flow to be received by the application is a fake anomalous flow. In this

case, because the fake anomalous flow actually exploits the vulnerability, the attacked application

may crush due to the attempt to hijack the execution to a random memory address. This prevents

the worm flow, which arrives later, to be executed and infect the machine. On the other hand,

whenever the worm flow is the first to be received, the machine is infected and contributes to the

worm propagation.

4.6 Possible Countermeasures

A possible defense against our implementation of the noise injection attack is to use a white list to

attempt to filter out flows that contain the score multiplier substrings. However, this is not straight-

forward and may not even be possible. As shown in Section 4.4.1, there are a very large number

of strings that a worm can potentially use. The set of candidate strings extracted from the traffic

are determined by the occurrence frequency ranges, and the sets of substrings are determined by the

string length value. These are chosen by the attacker and arenot knowna priori to the signature

generator. Further, the strings actually used by a worm instance to create fake anomalous flows can

change over time. As a result, a reliable way to filter out the fake anomalous flows is to look for

occurrences of all possible substrings of a very large set ofstrings. This can be very expensive.

Further, such aggressive filtering may prevent the system from producing useful worm signatures

that happen to contain such substrings.

Another possible countermeasure against the score multiplier strings technique is to modify the

detection algorithm for Bayes signatures. For example, every time a test flow matches a token, the

related bytes in the flow should be marked to prevent them from“participating” in matching another

token of the same signature. This means that the score multiplier effect described in Section 4.3.3

cannot be achieved anymore. However, the attack may still work if multiple candidate stringsv

(see Section 4.3.3) are carefully chosen and if they are split without overlap, although now the

induced false positive rate may be much less than the one obtained during the experiments reported

81

82 4. Learning in Adversarial Environment

in Section 4.4.2.

Even if the above countermeasures happen to work in some cases, the fundamental problem still

exists: without an accurate and robust flow classifier that can prevent the injection of fake anomalous

flows, syntactic-based automated signature generators arevulnerable. The noise injection attack we

have described above is proof-of-concept. We suspect thereare many other similar attacks which

may also defeat semantic-based signature generators, as described in Section 4.5, and believe that a

robust solution to the noise injection attack is still an open research problem.

82

Chapter 5

Operating in Adversarial Environment

In the previous chapter we discussed how an adversary may tryto interfer with the learning process

used by IDS. In this chapter we describe another challenge. Assume no interference was present

during the training of the IDS. After deployment, the adversary may still try to launch sophisticated

attacks which are crafted in order to “evade” the IDS, so thatno alarm is raised. In the following

we focus onevasive attacksagainst anomaly-based IDS. Evasive attacks of this type areusually

referred to as mimicry attacks. We present a recently proposed mimicry attack against payload-

based anomaly IDS, first, and then we present a possible solution to make payload-based anomaly

IDS more robust by means of a Multiple Classifier System (MCS).

5.1 Payload-based Anomaly Detection

Recent work on unlabeled anomaly detection focused onhigh speedclassification based on simple

payload1 statistics [55, 66, 112, 113, 111]. For example, PAYL [112, 113] extracts 256 features

from the payload. Each feature represents the occurrence frequency in the payload of one of the

256 possible byte values. A simple model of normal traffic is then constructed by computing the

average and standard deviation of each feature. A payload isconsidered anomalous if asimplified

Mahalanobis distancebetween the payload under test and the model of normal traffic exceeds a

1The payload is the data portion of a network packet.

83

84 5. Operating in Adversarial Environment

predetermined threshold. Wang et al. [112] also proposed a more genericn-gram2 version of PAYL.

In this case the payload is described by a pattern vector in a 256n-dimensional feature space. The

n-grams extract byte sequence information from the payload,which helps in constructing a more

precise model of the normal traffic compared to the simple byte frequency-based model. The ex-

traction ofn-gram statistics from the payload can be performed efficiently and the IDS can be used

to monitor high speed links in real time. However, given the exponentially growing number of ex-

tracted features, the highern the more difficult it may be to construct an accurate model because of

the curse of dimensionality and possible computational complexity problems. In order to overcome

the high dimensionality problem, Wang et al. recently proposed ANAGRAM [111], an anomaly IDS

that uses Bloom filters to “compress” the dimensionality of the feature space. First they propose a

single Bloom filter to model only (unlabeld) normal traffic, and then they propose a second filter

which models known attacks. During detection, then-grams are extracted from the payload and

matched against both the normal and attack models. The authors also discuss the ability of ANA-

GRAM to detect polymorphic blending attacks (which we discuss in Section 5.2.3) constructed to

evade 1-gram PAYL.

Other anomaly detection systems based on more complex features have been proposed [103,

21]. These anomaly detectors involve the extraction of syntax and semantic information from the

payload, which is usually a computationally expensive task. Therefore, it may not be possible to use

this approaches in order to analyze network traffic on high speed links in real time.

5.2 Evading Detection

Since IDS started to become popular, researchers began studying the robustness of IDS against so-

phisticated attacks which are constructed with the objective of exploiting the targeted vulnerability

without being detected. This type of attacks are usually referred to asevasive attacks. Researchers

in this area have used TCP/IP transformations to demonstrate IDS evasions [85], and address weak-

nesses created by ambiguities in network protocols [39]. Numerous tools have been created for

evading IDS, includingfragroute [96], snot [95], andmucus [75]. Some authors have inves-

2Here ann-gram representsn consecutive bytes in the payload

84

5.2 Evading Detection 85

tigated techniques to automate the generation of evasive attacks. For example, in [108], the au-

thors identified mutation operations to generate variations on known exploits. Similarly, the authors

in [91] modeled attack transformations to derive new variations on known attacks.

5.2.1 Polymorphic Attacks

In Section 4.3.3 we presented a high level structure of a polymorphic worm. Polymorphism can be

applied to generic attacks using the same high level structure. As a consequence, a polymorphic

attack is an attack that is able to change its appearance withevery instance. Therefore, there may

be no fixed or predictable signature for the attack which could be used by signature-based IDS. As

a result, polymorphic attacks have a high chance of evading detection because most of the current

intrusion detection systems and anti-virus systems are signature-based.

5.2.2 Mimicry Attacks

It has been demonstrated that many anomaly detection systems can be evaded bymimicry at-

tacks [109, 54, 26, 34]. A mimicry attack is an evasive attackagainst a network or system vul-

nerability. The attack is carefully crafted so that the attack pattern, i.e., the representation of the

attack used during the classification process, lies inside the decision surface that separates the nor-

mal patterns from the anomalous ones (i.e., theoutliers). A successful mimicry attack is able to

exploit the targeted vulnerability while causing the anomaly IDS to produce a false negative (i.e.,

no alarm is raised). Mimicry attacks by means ofevasive polymorphismhave been recently ex-

plored [26, 34]. These attacks aim to evade payload-based anomaly detectors. CLET [26], an

advanced polymorphic engine, performs spectrum analysis on the payload in order to evade IDS.

Given an attack payload, CLET adds padding bytes in a separate cramming byteszone (of given

length) to make the byte frequency distribution of the attack close to the model of normal traffic.

In [34], Fogla et al. showed how to construct a mimicry attack, calledpolymorphic blending attack,

that can evade 1-gram (i.e., thesingle-byte frequencyversion) and 2-gram PAYL. Using byte substi-

tution and padding techniques, the polymorphic blending attack encodes the attack payload so that

the obtainedtransformedattack is classified as normal by PAYL, while still being ableto exploit the

targeted vulnerability. We discuss the details of the polymorphic blending attack in Section 5.2.3.

85

86 5. Operating in Adversarial Environment

5.2.3 Polymorphic Blending Attack

Polymorphic attack instances usually look very different from normal traffic. For example, the

polymorphic decryptor and encrypted shellcode (Section 4.3.3) may contain characters that have

very low probability of appearing in normal packets. Thus, an anomaly-based IDS may detect the

polymorphic attack instances by recognizing their deviation from the normal profile. For example,

Wang et al. [112, 113] showed that the byte frequency distribution of an (polymorphic) attack is

quite different from that of normal traffic, and can thus be used by PAYL to detect polymorphic

attacks.

Clearly, if a polymorphic attack can “blend in” with (or looklike) normal, it can evade detection

by an anomaly-based IDS. Normal traffic contains a lot of syntactic and semantic information, but

only a very small amount of such information can be used byhigh speednetwork-based anomaly

IDS. This is due to fundamental difficulties in modeling complex systems and performance overhead

related to real-time monitoring. For example, the network traffic profile used by PAYL [112, 113] in-

cludes simple statistics such as maximum or average size andrate of packets, frequency distribution

of bytes in packets, and range of tokens at different offsets. The simplicity of PAYL makes it fast

and suitable for real-time detection in high speed links. However, very low structural information is

extracted from the payload and used to construct the model ofnormal traffic.

Given the incompleteness and imprecision of the normal profiles based on simple traffic statis-

tics, it is quite feasible to launch what we callpolymorphic blending attacks. The main idea is that,

when generating a polymorphic attack instance, care can be taken so that its payload characteristics,

as measured by the anomaly IDS, will match the normal profile.For example, in order to evade

detection by PAYL [112, 113], the polymorphic engine can carefully choose the characters used in

encryption and pad the attack payload with a chosen set of characters, so that the resulting byte fre-

quency of the attack instance will closely match the normal profile and thus be considered as normal

by PAYL.

From the point of view of statistical pattern recognition, the polymorphic blending attack can

be seen as a transformationT which modifies an attack in order to move its representation (i.e.,

its pattern vector) inside the decision surface constructed by the IDS, as depicted for example in

Figure 5.1.

86

5.2 Evading Detection 87

Figure 5.1: Polymorphic Blending Attack. After transformation the attack lies inside the decision surface constructed
around normal traffic.

Attack Scenario

Figure 5.2 shows a possible scenario for the polymorphic blending attack. There are a few assump-

tions behind this scenario:

• The attack program has already compromised a hostX inside a networkA which communi-

cates with the target hostY inside networkB. NetworkA and hostX may have poor security

so that the attack can penetrate without getting detected, or there is a colluding insider.

• The attack program has knowledge ofIDSB. This might be possible using a variety of ap-

proaches, e.g., social engineering (e.g., company sales orpurchase data), or fingerprinting, or

trial-and-error. We argue that one cannot assume that the IDS deployment is a secret and se-

curity by obscurity is never reliable. We assumeIDSB is a payload-based anomaly detection

system (e.g., PAYL [112]).

• Given some packet data fromX to Y, the attack program will be able to generate its own

version of the statistical normal profile used byIDSB. This is feasible if we assume that the

IDSB is known and hence its algorithm for learning a normal profileis also known.

• A typical anomaly IDS has a threshold setting that can be adjusted to obtain a desired false

87

88 5. Operating in Adversarial Environment

Figure 5.2: Polymorphic Blending Attack scenario [34]

positive rate. We assume that the attack program does not know the exact value of the thresh-

old used byIDSB, but has an estimation of the generally acceptable false positive and false

negative rates. With this knowledge, the attack program canestimate the error threshold when

crafting a new attack instance to match the IDS profile.

Once the attack program has control of hostX, it observes the normal traffic going fromX to Y.

The attacker builds (estimates) a normal profile for this traffic using the same modeling technique

that IDSB uses. This profile is calledartificial profile [34]. With it, the attack program creates

a mutated instance of itself in such a way that the statisticsof the mutated instance matches the

artificial profile. WhenIDSB analyzes these mutated attack packets, it is unable to discern them

from normal traffic because the artificial profile can be very close to the actualprofile in use by

IDSB. Thus, the attack successfully infiltrates the networkB and compromises hostY.

The polymorphic blending attack has three basic steps: (1) learn the IDS normal profile; (2)

encrypt the attack body; (3) and generate a polymorphic decryptor.

Learning the Normal Profile

The task at hand for the attack program is to observe the normal traffic going from a host, sayX, to

another host in the target network, sayY, and generate a normal profile close to the one used by the

IDS at the target network, sayIDSB, using the same algorithm used by the IDS.

88

5.2 Evading Detection 89

A simple method to get the normal data is by sniffing the network traffic going from networkA

to hostY. This can be easily accomplished in a bus network. In a switched environment it may be

harder to obtain such data. But the attack program knows the type of service running at the target

host. It may then simply generate normal request packets andlearn the artificial profile using these

packets.

In theory, even if the attack program learns a profile from just a single normal packet, and

then mutates an attack instance so that it matches the statistics of the normal packet perfectly, the

resulting polymorphic blended attack packet should not be flagged as an anomaly byIDSB if the

normal packet does not result in a false positive in the first place. On the other hand, it is beneficial

to generate an artificial profile that is as close to the normalprofile used byIDSB as possible so that

if a polymorphic blended attack packet matches the artificial profile closely, it has a high chance of

evadingIDSB. In general, if more normal packets are captured and used by the attack program, it

will be able to learn an artificial normal profile that is closer to the normal profile used byIDSB.

Attack Body Encryption

After learning the normal profile, the attack program creates a new attack instance and encrypts (and

blends) it to match the normal profile. For simplicity, a straightforward byte substitution scheme

followed by padding can be used for encryption. The main ideahere is that every character in the

attack body can be substituted by a character(s) observed from the normal traffic using a substitution

table. The encrypted attack body can then be padded with somemore garbage normal data so

that this polymorphic blended attack packet can match the normal profile even better. To keep the

padding (and hence the packet size) minimal, the substituted attack body should already match the

normal profile closely. We can use this design criterion to produce a suitable substitution table.

To ensure that substitution algorithm is reversible (for decrypting and running the attack code), a

one-to-one or one-to-many mapping can be used. A single-byte substitution is preferred over multi-

byte substitution because multi-byte substitution will inflate the size of attack body after substitution.

An obvious requirement of such encryption scheme is that theencrypted attack body should con-

tain characters from only the normal traffic. Although this may be hard for a general encryption

technique (because the output typically looks random), it is an easy requirement for a simple byte

89

90 5. Operating in Adversarial Environment

substitution scheme. However, finding an optimal substitution table that requires minimal padding

is a complex problem. In [34], the authors show that for certain cases this is a very hard problem.

Therefore, a greedy method is proposed to find an acceptable substitution table. The main idea is to

first sort the statistical features in the descending order of the frequency for both the attack body and

normal traffic. For each unassigned entry with the highest frequency in the attack body, map it to an

available (not yet mapped) normal entry with the highest frequency. Repeat this until all entries in

the attack body are mapped. The feature mapping can be translated to a character mapping. Then

a substitution table can be created for encryption and decryption purposes. For the details of the

greedy algorithm see [34].

Polymorphic Decryptor

Once the vulnerability has been exploited, the decryptor first removes all the extra padding from the

encrypted attack body and then uses a reverse substitution table (or decoding table) to decrypt the

attack body to produce the original attack code (shellcode).

The decryptor is not encrypted but can be mutated using multiple iterations of shellcode poly-

morphism processing (e.g., mapping an instruction to an equivalent one randomly chosen from a

set of candidates). To reverse the substitution done duringblending, the decryptor needs to look up

a decoding table that contains the required reverse mappings. The decoding table for one-to-one

mapping can be stored in an array where thei-th entry of the array represents the normal charac-

ter used to substitute attack characteri. Such an encoding table contains only normal characters.

Unused entries in the table can be used for padding. On the other hand, storage of decoding tables

for one-to-many mapping or variable-length mapping is complicated and typically requires larger

space [34].

Incorporating Attack Vector and Polymorphic Decryptor in B lending

The attack vector, decryptor and decryption table are not encrypted. Their addition to the attack

packet payload alters the packet statistics. The new statistics may deviate significantly from the

normal profile. If the changes are significant, the normal profile has to be adjusted through an

iterative blending process [34].

90

5.3 Hardening Payload-based Anomaly Detection Systems 91

5.3 Hardening Payload-based Anomaly Detection Systems

In order to make it harder for the attacker to evade the IDS, a comprehensive model of the normal

traffic is needed. Furthermore, the modeling technique needs to bealso practical and efficient. We

address these challenges using an ensemble of classifiers. Classifier ensembles, often referred to

as Multiple Classifier Systems (MCS), have been proved to achieve better accuracy in many ap-

plications, compared to the best single classifier in the ensemble. A number of security related

applications of MCS have been proposed in the literature. For example, MCS are used in multi-

modal biometrics for hardening person identification [19, 41], and in misuse-based IDS [37, 36] to

improve the detection accuracy. To the best of our knowledge, no work has been presented so far

that explicitly addresses the problem of increasing thehardness of evasionof anomaly-based IDS

using multiple classifier systems. We propose a new approachto construct ahigh speedpayload-

based anomaly IDS by combining multiple one-class SVM classifiers. Our approach is intended to

improve both the detection accuracy and the hardness of evasion of high speed anomaly detectors.

MCS attain accuracy improvements when the combined classifiers are “diverse”, i.e., they make

different errors on new patterns [28]. A way to induce diversity is to combine classifiers that are

based on descriptions of the patterns in different feature spaces [57]. We propose a new technique

to extract the features from the payload that is similar to the 2-gram technique. Instead of measur-

ing the frequency of the pairs of consecutive bytes, we propose to measure the features by using a

sliding window that “covers” two bytes which areν positions apart from each other in the payload.

We refere to this pairs of bytes as 2ν-grams. The proposed featrue extraction process do not add

any complexity with respect to the traditional 2-gram technique and can be performed efficiently.

We also show that the proposed technique allows us to “summarize” the occurrence frequency of

n-grams, withn > 2, thus capturing byte sequence information while limitingthe dimensionality

of the feature space. By varying the parameterν, we construct a representation of the payload in

different feature spaces. Then we use a feature clustering algorithm originally proposed in [27] for

text classification problems to reduce the dimensionality of the different feature spaces where the

payload is represented. Detection accuracy and hardness ofevasion are obtained by constructing our

anomaly-based IDS using a combination of multiple one-class SVM classifiers that work on these

91

92 5. Operating in Adversarial Environment

different feature spaces. Using multiple classifiers forces theattacker to devise a mimicry attack that

evades multiple models of normal traffic at the same time, which is intuitively harder than evading

just one model. We compare our payload-based anomaly IDS to the original implementation of

1-gram PAYL by Columbia University, to an implementation of2-gram PAYL, and to an IDS con-

structed by combining multiple one-class classifiers basedon thesimplified Mahalanobis distance

used by PAYL.

In the following, we present two different one-class classification algorithms that we used to

perform our experiments, namely a classifier inspired to theSupport Vector Machine (SVM) [107],

and a classifier based on the Mahalanobis distance [29]. As wediscuss in Section 5.3.3, there is an

analogy between anomaly detection based onn-gram statistics and text classification problems. We

chose the one-class SVM classifier because SVM have been shown to achieve good performances in

text classification problems [93, 62]. We also describe the Mahalanobis distance based classification

algorithm because it is the same classification algorithm used by PAYL [112], a recently proposed

anomaly detector based onn-gram statistics.

5.3.1 One-Class SVM

We use the classifier described in Section 3.4.5, which was proposed by Schölkopf et al. in [92].

Because we combine multiple classifiers using the simple majority voting rule, as described in Sec-

tion 5.3.3, here we do not use Equation 3.15 to transform the output of the classifier into class

conditional probabilities estimates. Therefore, we simply use the Gaussian kernel

K(x, y) = Φ(x) · Φ(y) = exp
(

−γ||x − y||2
)

(5.1)

and compute the output of the classifier according to Equation 3.14.

92

5.3 Hardening Payload-based Anomaly Detection Systems 93

5.3.2 Mahalanobis Distance-based Classifier

Given a training datasetD = {x1, x2, .., xm}, the averageφi and standard deviationσi are computed

for each feature as

φi =
1
m

∑m
k=1 xki

σi =

√

1
m−1

∑m
k=1(xki − φi)2

(5.2)

wherexki is thei-th feature of a patternxk∈D andm is the total number of training patterns. We call

M(φ, σ) the model of normal traffic, whereφ = [φ1, φ2, .., φl] andσ = [σ1, σ2, .., σl]. Assuming

the features to be uncorrelated, asimplified Mahalanobis distance3 [112] ∆(z,M(φ, σ)) between a

generic patternz = [z1, z2, .., zl] and the modelM(φ, σ) can be computed as

∆(z,M(φ, σ)) =
l

∑

i=1

|zi − φi |

σi + α
(5.3)

whereα is a constantsmoothing factorintroduced in order to avoid division by zero. Given a

thresholdθ, the decision rule for the classifier can be written as

∆(z,M(φ, σ)) > θ ⇒ z is an outlier (5.4)

The thresholdθ can be computed during training so that a chosen rejection rate r of patterns inD

is left outside the decision surface, i.e., the classifier produces a false positive rater on the training

datasetD, if we assumeD contains only examples extracted from the target class.

5.3.3 Payload Classification

Feature Extraction

The detection model used by PAYL [112] is based on the frequency distribution of then-grams (i.e.,

the sequences ofn consecutive bytes) in the payload. The occurrence frequency of then-grams is

3Thesimplified Mahalanobis distancedo not involve square operations, which would slow down the computation of
the distance.

93

94 5. Operating in Adversarial Environment

measured by using a sliding window of lengthn. The window slides over the payload with a step

equal to one byte and counts the occurrence frequency in the payload of the 256n possiblen-grams.

Therefore, in this case the payload is represented by a pattern vector in a 256n-dimensional feature

space. It is easy to see that the highern, the larger the amount of structural infomation extracted

from the payload. However, usingn = 2 we already obtain 65,536 features. Larger values ofn are

impractical given the exponentially growing dimensionality of the feature space and the curse of

dimensionality problem [29]. On the other hand, by measuring the occurrence frequency of pairs

of bytes that areν positions (i.e.,ν bytes) apart from each other in the payload, it is still possible to

extract some information related to then-grams, withn > 2. We call such pairs of bytes 2ν-grams.

In practice, the occurrence frequency of the 2ν-grams can be measured by using a (ν+2) long sliding

window with a “gap” between the first and last byte.

Consider a payloadB = [b1, b2, .., bl], wherebi is the byte value at positioni. The occurrence

frequency in the payloadB of ann-gramβ = [β1, β2, .., βn] , with n < l, is computed as

f (β|B) =
of occurrences ofβ in B

l − n+ 1
(5.5)

where the number of occurrences ofβ in B is measured by using the sliding window technique, and

(l − n+ 1) is the total number of times the window can “slide” overB. f (β|B) can be interpreted as

an estimate of the probabilityp(β|B) of finding then-gramβ (i.e., the sequence of consecutive bytes

[β1, β2, .., βn]) in B. Accordingly, the probability of finding a 2ν-gram{β1, βν+2} can be written as

p({β1, βν+2}|B) =
∑

β2,..,βν+1

p([β1, β2, .., βν+1, βν+2]|B) (5.6)

It is worth noting that forν = 0 the 2ν-gram technique reduces to the “standard” 2-gram technique.

Whenν > 0, the occurrence frequency in the payload of a 2ν-gram {β1, βν+2} can be viewed as a

marginal probability computed on the distribution of the (ν + 2)-grams that start withβ1 and end

with βν+2. In practice the frequency of a 2ν-gram somehow “summarizes” the occurrence frequency

of 256ν n-grams, withn = ν + 2.

From the occurrence frequency of then-grams it is possible to derive the distribution of the

(n − 1)-grams, (n − 2)-grams, etc. On the other hand, measuring the occurrence frequency of the

94

5.3 Hardening Payload-based Anomaly Detection Systems 95

2ν-grams does not allow us to automatically derive the distribution of 2(ν−1)-grams, 2(ν−2)-grams,

etc. The distributions of 2ν-grams with different values ofν give us different structural information

about the payload. The intuition is that, ideally, if we could somehow combine the structural infor-

mation extracted using different values ofν = 0, ..,N we would be able to reconstruct the structural

information given by the distribution ofn-grams, withn = (N + 2). This motivates the combination

of classifiers that work on different descriptions of the payload obtained using the 2ν-gram technique

with different values ofν.

Feature Reduction

Payload anomaly detection based on the frequency ofn-grams is analogous to a text classification

problem for which the bag-of-words model and a simple unweighted raw frequency vector represen-

tation [62] is used. The different possiblen-grams can be viewed as the words, whereas a payload

can be viewed as a document to be classified. In general for text classification only the words that

are present in the documents of the training set are considered. This approach is not suitable in

case of a one-class classification problem. Given that the training set contains (almost) only target

examples (i.e., “normal” documents), we cannot conclude that a word that have a probability equal

to zero to appear in the training dataset will not be discriminant. As a matter of fact, if we knew of

a wordw that has probabilityp(w|dt) = 0, ∀dt∈Ct, of appearing in the class of target documentsCt,

and p(w|do) = 1, ∀do∈Co, of appearing in documents of the outlier classCo, it would be sufficient

to measure just one binary feature, namely the presence or not of wt in the document, to construct a

perfect classifier. This is the reason why we choose to take into account all the 256n n-grams, even

though their occurrence frequency measured on the trainingset is equal to zero. Using the 2ν-gram

technique we still extract 2562 features. This high number of features could make it difficult to con-

struct an accurate classifier, because of the curse of dimensionality [29] and possible computational

complexity problems related to learning algorithms.

In order to reduce the dimensionality of the feature space for payload anomaly detection, we ap-

ply a feature clustering algorithm originally proposed by Dhillon et al. in [27] for text classification.

Given the number of desired clusters, the algorithm iteratively aggregates the features until the infor-

mation loss due to the clustering process is less than a certain threshold. This clustering algorithm

95

96 5. Operating in Adversarial Environment

has the property to reduce the within cluster and among clusters Jensen-Shannon divergence [27]

computed on the distribution of words, and has been shown to help obtain better classification accu-

racy results with respect to other feature reduction techniques for text classification [27]. The inputs

to the algorithm are:

1. The set of distributions{p(Ci |w j) : 1≤i≤m, 1≤ j≤l}, whereCi is the i-th class of documents,

m is the total number of classes,w j is a word andl is the total number of possible different

words in the documents.

2. The set of all the priors{p(w j), 1≤ j≤l}.

3. The number of desired clustersk.

The output is represented by the set of word clustersW = {W1,W2, ..,Wk}. Therefore, after clustering

the dimensionality of the feature space is reduced froml to k. The information loss is measured as

Q({Wh}
k
h=1) =

k
∑

h=1

∑

wj∈Wh

p(w j)KL(p(C|w j), p(C|Wh)) (5.7)

whereC = {Ci}i=1..m, andKL(p1, p2) is the Kullback-Leibler divergence between the probability

distributionsp1 andp2.

In the originall-dimensional feature space, thej-th feature of a pattern vectorxi represents the

occurrence frequencyf (w j |di) of the wordw j in the documentdi . The new representationx′i of di in

thek-dimensional feature space can be obtained by computing thefeatures according to

f (Wh|di) =
∑

wj∈Wh

f (w j |di), h = 1, .., k (5.8)

where f (Wh|di) can be interpreted as the occurrence frequency of the cluster of wordsWh in the

documentdi .

In case of a one-class problem,m= 2 and we can callCt the target class andCo the outlier class.

96

5.3 Hardening Payload-based Anomaly Detection Systems 97

The posterior probabilities{p(Ci |w j) : i = t, o, 1≤ j≤l} can be computed as

p(Ci |w j) =
p(wj |Ci)p(Ci)

p(wj |Ct)p(Ct)+p(wj |Co)p(Co)

i = t, o, 1≤ j≤l

(5.9)

and the priors{p(w j), 1≤ j≤l} can be computed as

p(w j) = p(w j |Ct)p(Ct) + p(w j |Co)p(Co), 1≤ j≤l (5.10)

The probabilitiesp(w j |Ct) of finding a wordw j in documents of the target classCt can be reliably

estimated on the training dataset, whereas it is difficult to estimatep(w j |Co), given the low number

(or the absence) of examples of documents in the outlier classCo. Similarly, it is difficult to reliably

estimate the prior probabilitiesp(Ci) =
Ni
N , i = t, o, whereNi is the number of training patterns of

the classCi andN = Nt + No is the total number of training patterns. Given thatNo≪Nt (or even

No = 0), the estimated priors arep(Co) ≃ 0 andp(Ct) ≃ 1, which may be very different from the

real prior probabilities.

In our application, the wordsw j are represented by the 2562 possible different 2ν-grams (with a

fixed ν). In order to apply the feature clustering algorithm, we estimate p(w j |Ct) by measuring the

occurrence frequency of the 2ν-gramsw j on the training dataset and we assume a uniform distribu-

tion p(w j |Co) = 1
l of the 2ν-grams for the outlier class. We also assumep(Co) to be equal to the

desired rejection rate for the one-class classifiers, and accordingly p(Ct) = 1− p(Co).

Combining One-Class Classifiers

Multiple Classifier Systems (MCS) have been proved to improve classification performaces in many

applications [28]. MCS achieve better performance than thebest single classifier when the classifiers

of the ensemble are accurate and diverse, i.e., make different errors on new patterns [28]. Diversity

can be intuitively induced for example by combining classifiers that are based on descriptions of the

patterns in different feature spaces [57].

Several techniques have been proposed in the literature forcombining classifiers [57]. To the

97

98 5. Operating in Adversarial Environment

best of our knowledge, the problem of combining one-class classifiers has been addressed only

by Tax et al. in [101] and in [100]. We use a simple majority voting rule [57] to combine one-

class classifiers that work on different descriptions of the payload. Suppose we have a datasetof

payloadsT = {π1, π2, .., πm}. Given a payloadπk, we extract the features as discussed in Section 5.3.3

obtaining L different descriptions{x(1)
k , x

(2)
k , .., x

(L)
k } of πk. L one-class classifier are constructed.

The h-th classifier is trained on a datasetD(h) = {x(h)
1 , x

(h)
2 , .., x

(h)
m }, obtained fromT using theh-th

description for the payloads. During the operational phase, a payload is classified as target (i.e.,

normal) if it is labeled as target by the majority of the classifiers, otherwise it is classified as outlier

(i.e., anomalous).

5.4 Experiments

In this section we compare and discuss the classification performance of four different anomaly

IDS. We compare the performace obtained using the original implementation of 1-gram PAYL [112]

developed at Columbia University, an implementation of 2-gram PAYL, and two anomaly IDS we

built by combining multiple one-class classifiers. One of these two IDS was implemented using an

ensemble of one-class SVM classifiers, whereas the other wasimplemented using an ensemble of

Mahalanobis Distance-based (MD) one-class classifiers. Wealso show and discuss the performance

of the single classifiers used to construct the ensembles. Tothe best of our knowledge, no public

implementation of 2-gram PAYL exists. We implemented our own (simplified) version of 2-gram

PAYL in order to compare its performance to the other considered anomaly IDS.

5.4.1 Experimental Setup

It is easy to see that the accuracy of the anomaly detection systems we consider can be considerably

influenced by the values assigned to a number of free parameters. Tuning all the free parameters

in order to find the optimal configuration is a difficult and computationally expensive search task.

We did not perform a complete tuning of the parameters, but weused a number of reasonable

values that should represent an acceptable suboptimal configuration. For 1-gram PAYL we used

the default configuration provided along with the software.For all the MD classifiers and our 2-

98

5.4 Experiments 99

gram PAYL we set the smoothing factorα = 0.001, because this is the same default value forα

used by 1-gram PAYL (which also uses the MD classification algorithm). We usedLibSVM [20]

to perform the experiments with one-class SVM. For all the one-class SVM classifiers we used

the gaussian kernel in (5.1). Some techniques for the optimization of the parameterγ have been

proposed in the literature [13]. Simple tuning is usually performed iteratively changing the value of

γ and retraining the classifier [20], which results in a computationally expensive process in case of

multiple classifiers. Therefore, in order to choose a suitable value forγ we performed a number of

pilot experiments. We noted that settingγ = 0.5 the one-class SVM classifiers performed well in all

the different feature spaces obtained by varying the parametersν and the number of feature clusters

k during the feature extraction and reduction processes, respectively (see Section 5.3.3). Having

fixed the values for some of the parameters as explained above, we performed several experiments

varying the “gap”ν and the number of feature clustersk. The values we used for this parameters

and the obtained results are discussed in detail in Section 5.4.2.

We performed all the experiments using 5 days of HTTP requests towards our department’s

web server collected during October 2004. We assumed this unlabeled traffic to contain mainly

normal requests and possibly a low fraction of noise, i.e., anomalous packets. We used the first

day of this traffic to train the IDS and the last 4 days to measure the false positive rate (i.e., the

false alarm rate). In the following we refer to the first day oftraffic as training dataset, and to

the last 4 days astest dataset. The training dataset contained 384,389 packets, whereas the test

dataset contained 1,315,433 packets. In order to estimate the detection rate we used 18 HTTP-

based buffer overflow attacks. We collected the first 10 attacks from theInternet (e.g., exploits

for IIS 5.0 .printer ISAPI Extension [8], ActivePerl perlIIS.dll [7], UnixWare’s

Netscape FastTrack 2.01a [9], and also [6, 2, 4, 3, 1, 5, 73]). Each of these attacks is made

up of a different number of attack packets. The latter 8 attacks were represented by some of the at-

tacks used in [34], where Fogla et al. constructed a number ofmimicry attacks against PAYL. These

attacks were derived from an exploit that targets a vulnerability in Windows Media Services

(MS03-022) [33]. In particular, we used the originalWindows Media Services exploit used

in [34] before transformation, 6 mimicry attacks derived from this original attack using a polymor-

phic shellcode engine called CLET [26], and one polymorphicblending attack obtained using the

99

100 5. Operating in Adversarial Environment

single byte encodingscheme for the 2-grams presented in [34]. The 6 mimicry attacks obtained

using CLET were created setting different combinations of packet length and total number of attack

packets. The polymorphic blending attack consisted of 3 attack packets and the payload of each

packet was 1460 bytes long. In the following we will refer to the set of attacks described above as

attack dataset. Overall, the attack dataset contained 126 attack packets.

5.4.2 Performance Evaluation

In order to compare the performace of PAYL, the constructed single classifiers, and the overall

anomaly IDS, we use the Receiver Operating Characteristic (ROC) curve and the Area Under the

Curve (AUC). We trained PAYL and the single classifiers for different operational points, i.e., we

constructed different “versions” of the classifiers setting a different rejection rate on the training

dataset each time. This allowed us to plot an approximate ROCcurve for each classifier. Assuming

the training dataset contains only normal HTTP requests, the rejection rate can be interpreted as a

desired false positiverate. In the following we refere to this desired false positive rate as DFP. If

we also assume the test dataset contains only normal HTTP requests, we can use it to estimate the

“real” false positive rate, or RFP. Each point on an ROC curve represents the RFP andthe detection

rate (DR) produced by the classifier. The detection rate is measured on the attack dataset and is

defined as the faction of detected attack packets, i.e., the number of attack packets that are classified

as anomalous divided by the total number of packets in the attack dataset (regardless of the specific

attack the detected packets come from).

We measured the performance of the classifiers for 7 different operational points to compute an

(partial) ROC curve for each classifier. These points are obtained by training each classifier using 7

DFP(%) RFP(%) Detected attacks DR(%)
0.0 0.00022 1 0.8
0.01 0.01451 4 17.5
0.1 0.15275 17 69.1
1.0 0.92694 17 72.2
2.0 1.86263 17 72.2
5.0 5.69681 18 73.8
10.0 11.05049 18 78.6

Table 5.1: Performance of 1-gram PAYL.

100

5.4 Experiments 101

k

ν

10 20 40 80 160
0 0.9660 (0.4180E-3) 0.9664 (0.3855E-3) 0.9665 (0.4335E-3)0.9662 (0.2100E-3) 0.9668(0.4686E-3)
1 0.9842 (0.6431E-3) 0.9839 (0.7047E-3) 0.9845(0.7049E-3) 0.9833 (1.2533E-3) 0.9837 (0.9437E-3)
2 0.9866 (0.7615E-3) 0.9867 (0.6465E-3) 0.9875 (0.6665E-3)0.9887(2.6859E-3) 0.9862 (0.7753E-3)
3 0.9844 (1.2207E-3) 0.9836 (1.1577E-3) 0.9874(1.0251E-3) 0.9832 (1.0619E-3) 0.9825 (0.6835E-3)
4 0.9846 (0.5612E-3) 0.9847 (1.5334E-3) 0.9846 (0.9229E-3)0.9849 (1.5966E-3) 0.9855(0.4649E-3)
5 0.9806 (0.8638E-3) 0.9813 (0.9072E-3) 0.9810 (0.5590E-3)0.9813 (0.8494E-3) 0.9818(0.3778E-3)
6 0.9809 (0.7836E-3) 0.9806 (1.1608E-3) 0.9812(1.6199E-3) 0.9794 (0.3323E-3) 0.9796 (0.4240E-3)
7 0.9819 (1.6897E-3) 0.9854 (0.8485E-3) 0.9844 (1.2407E-3)0.9863 (1.9233E-3) 0.9877(0.7670E-3)
8 0.9779 (1.7626E-3) 0.9782 (1.9797E-3) 0.9787 (2.0032E-3)0.9793(1.0847E-3) 0.9785 (1.7024E-3)
9 0.9733 (3.1948E-3) 0.9775(1.9651E-3) 0.9770 (1.0803E-3) 0.9743 (2.4879E-3) 0.9722(1.2258E-3)
10 0.9549 (2.7850E-3) 0.9587 (3.3831E-3) 0.9597 (3.8900E-3)0.9608 (1.2084E-3) 0.9681(7.1185E-3)

Table 5.2: Performance of single one-class SVM classifiers. The numbers in bold represent the best average AUC for a
fixed value ofν. The standard deviation is reported between parentheses.

DFP, namely 0%, 0.01%, 0.1%, 1.0%, 2.0%, 5.0% and 10.0%. The AUC is estimated by integrating

the ROC curve in the interval of RFP between 0% and 10.0%. The obtained result is then normalized

so that the maximum possible value for the AUC is 1. Accordingto how the AUC is computed, the

higher the value of the AUC, the better the performance of theclassifier in the considered interval

of false positives. For each DFP, we also measured the numberof detected attacks. We consider

an attack as detected if at least one out of the total number ofpackets of the attack is detected as

anomalous. It is worth noting that the number of detected attacks is different from the detection rate

used to computed the ROC curve.

1-gram PAYL. Our baseline is represented by the performance of 1-gram PAYL. As mentioned

before, PAYL measures the occurrence frequency of byte values in the payload. A separate model

is generated for each different payload length. These models are clustered together at the end of

the training to reduce the total number of models. Furthermore, the length of a payload is also

monitored for anomalies. Thus, a payload with an unseen or very low frequency length is flagged as

an anomaly [112].

We trained PAYL using the entire first day of collected HTTP requests. We constructed the

ROC curve by estimating the RFP on the entire test dataset, i.e., the other 4 days of collected HTTP

requests, and the detection rate on the attack dataset. The obtained AUC was equal to 0.73. As

shown in Table 5.1, for DFP=0.1% PAYL produced an RFP=0.15% and was able to detect 17 out of

18 attacks. In particular it was able to detect all the attacks except the polymorphic blending attack.

101

102 5. Operating in Adversarial Environment

Table 5.1 also shows that the polymorphic blending attack remained undetected until RFP> 1.86%.

By performing further experiments, we found out that the minimum amount of RFP for which PAYL

is able to detect all the attacks, included the polymorphic blending attack, is equal to 4.02%, which

is usually considered intolerably high for network intrusion detection.

Single One-Class SVM Classifiers. We constructed several one-class SVM classifiers. We ex-

tracted the features as described in Section 5.3.3 varying the parameterν from 0 to 10, thus obtaining

11 different descriptions of the patterns. Then, for each fixedν, we applied the feature clustering al-

gorithm described in Section 5.3.3 fixing the prior probability P(Co) = 0.01 and setting the number

of desired clustersk equal to 10, 20, 40, 80 and 160. We used a random initialization for the algo-

rithm (i.e., at the first step each feature is randomly assigned to one of thek clusters). The feature

clustering algorithm stops when the information loss in (5.7) becomes minor than 10−4.

For each pair (ν, k) of parameter values we repeated the experiment 5 times. Foreach round

we applied the feature clustering algorithm (using a new random initialization), and we trained a

classifier on a sample of the training dataset obtained from the original training dataset by applying

the bootstrap technique without replacement and with a sampling ratio equal to 10%. We estimated

the AUC by measuring the false positives on a sample of the test dataset obtained using again the

bootstrap technique with sampling ratio equal to 10%, and measuring the detection rate on the entire

attack dataset. Table 5.2 reports the estimated average AUC. The numbers between parentheses

represent the standard deviation computed over the 5 rounds. We discuss the obtained results later

in this section comparing them to the results obtained usingthe MD classification algorithm.

k

ν

10 20 40 80 160
0 0.9965(0.5345E-3) 0.9948 (1.4455E-3) 0.9895 (3.9813E-3) 0.9785(5.1802E-3) 0.9718 (9.9020E-3)
1 0.9752(0.5301E-3) 0.9729 (0.7921E-3) 0.9706 (1.0940E-3) 0.9664(2.2059E-3) 0.9653 (0.3681E-3)
2 0.9755(0.2276E-3) 0.9743 (0.4591E-3) 0.9741 (0.9121E-3) 0.9676(0.1084E-3) 0.9661 (0.4246E-3)
3 0.9749(0.7496E-3) 0.9736 (0.8507E-3) 0.9726 (1.8217E-3) 0.9714(1.2729E-3) 0.9708 (2.6994E-3)
4 0.9761(0.4269E-3) 0.9743 (0.3552E-3) 0.9735 (0.7998E-3) 0.9737(0.3827E-3) 0.9722 (0.9637E-3)
5 0.9735(1.0645E-3) 0.9692 (0.3607E-3) 0.9694 (1.0499E-3) 0.9626(2.4574E-3) 0.9606 (1.9866E-3)
6 0.9737(0.6733E-3) 0.9709 (1.5523E-3) 0.9687 (2.9730E-3) 0.9699(4.1122E-3) 0.9717 (0.5427E-3)
7 0.9687(3.3302E-3) 0.9545 (9.6519E-3) 0.9505 (7.3100E-3) 0.9258(19.923E-3) 0.8672 (50.622E-3)
8 0.9731(0.7552E-3) 0.9721 (0.6001E-3) 0.9717 (0.6799E-3) 0.9715(0.6367E-3) 0.9678 (1.5209E-3)
9 0.9719(1.5743E-3) 0.9695 (1.9905E-3) 0.9700 (2.2792E-3) 0.9662(2.9066E-3) 0.9611 (1.5542E-3)
10 0.9641 (1.6604E-3) 0.9683(2.5370E-3) 0.9676 (1.2692E-3) 0.9635 (1.1016E-3) 0.9598(0.6209E-3)

Table 5.3: Performance of single MD classifiers. The numbers in bold represent the best average AUC for a fixed value
of ν. The standard deviation is reported between parentheses.

102

5.4 Experiments 103

ν

0 1 2 3 4 5 6 7 8 9 10
0.9744 0.9665 0.9711 0.9393 0.9170 0.8745 0.8454 0.8419 0.8381 0.9556 0.9079

Table 5.4: Performance of single MD classifiers for varyingν. No feature clustering is applied. The number in bold
represents the best result.

Single MD Classifiers. Similarly to the experiments with the one-class SVM classifiers, we con-

structed several MD classifiers. For each pair (ν, k) of parameter values, we applied the feature

clustering algorithm with random initialization, and we trained a classifier on a 10% sample of the

training set (using again the bootstrap technique without replacement). The AUC was estimated by

measuring the false positives on a 10% sample of the test dataset and the detection rate on the entire

attack dataset. We repeated each experiment 5 times. Table 5.3 reports the average and the standard

deviation for the obtained AUC. The MD classifier performs extremely well forν = 0 andk = 10.

In this case the MD classifier is able to detect all of the 18 attacks for an RFP around 0.1% and

reaches 100% of detection rate for an RFP around 1%. However,the use of only one classifier does

not improve the hardness of evasion, as discussed in Section5.5.

We also estimated the performance of the MD classifiers without applying the feature clustering

algorithm. In this case each pattern is described by 65,536 features. We trained a classifier for

each value ofν = 0, .., 10 on the entire training dataset and estimated the AUC measuring the false

positives and the detection rate on the entire test and attack dataset, respectively. The obtained

results are reported in Table 5.4. As can be seen from Table 5.3 and Table 5.4, the best performance

for a fixed value ofν are always reached usingk = 10. The only exception is whenν = 10. In

this case the best performance is obtained usingk = 20. The good performance obtained for low

values ofk are probably due to the fact that the MD classification algorithm suffers from the curse

of dimensionality problem. By reducing the dimensionalityof the feature space the MD classifier is

able to construct a tighter decision surface around the target class. For each fixedk the best results

in terms of AUC were obtained usingν = 0. The only exception is whenk = 160. In this case the

best AUC is obtained forν = 4. Nevertheless, the AUC obtained forν = 4 and forν = 0 are really

close, and considering the standard deviation it is not possible to say which classifier performs better

than the other. As we discuss in Section 5.5, the amount of structural information extracted from the

103

104 5. Operating in Adversarial Environment

payload decreases whenν grows. The MD classifier seems to be sensitive to this effect.

By comparing the best results in Table 5.2 and 5.3 (the numbers in bold), it is easy to see that

SVM classifiers perform better than MD classifiers in all the cases except whenν = 0 andν = 10.

Whenν = 10 the best performance are really close, and considering the standard deviation it is not

possible to say which classifier performs better than the other. It is also easy to see that, differently

from the MD classification algorithm, the one-class SVM seems not to suffer from the growing

dimensionality of the feature space obtained by increasingk. This is probably due to the fact that by

using the gaussian kernel the patterns are projected in an infinite-dimensional feature space, so that

the dimensionality of the original feature space becomes less important.

2-gram PAYL. The MD classifier constructed without applying the feature clustering and setting

ν = 0 represents an implementation of 2-gram PAYL that uses one model for all the possible packet

lengths. Table 5.5 reports the results obtained with this classifier. It is easy to see that 2-gram

PAYL performs better that 1-gram PAYL, if we consider the detection rate DR. This is due to the

fact that the simple distribution of 1-grams (i.e., the distribution of the occurrence frequency of the

byte values) does not extract structural information from the payload, whereas the distribution of

2-grams conveys byte sequence information. Nevertheless,2-gram PAYL is not able to detect the

polymorphic blending attack even if we are willing to tolerate an RFP as high as 11.25%. This is

not surprising given that the polymorphic blending attack we used was specifically tailored to evade

2-gram PAYL.

DFP(%) RFP(%) Detected attacks DR(%)
0.0 0.00030 14 35.2
0.01 0.01794 17 96.0
0.1 0.12749 17 96.0
1.0 1.22697 17 97.6
2.0 2.89867 17 97.6
5.0 6.46069 17 97.6
10.0 11.25515 17 97.6

Table 5.5: Performance of an implementation of 2-gram PAYL using a single MD classifier,ν = 0 andk = 65,536.

Classifier Ensembles. We constructed several anomaly IDS by combining multiple classifiers

using the simple majority voting rule. We first combined one-class SVM classifiers. For a fixed

104

5.4 Experiments 105

10
−3

10
−2

10
−1

10
0

10
1

50

55

60

65

70

75

80

85

90

95

100

False Positives (%)

D
et

ec
tio

n
R

at
e

(%
)

Ensemble of One−Class SVM

10

20

40

80

160

Figure 5.3: ROC curves obtained by combining One-Class SVM classifiers using the majority voting rule. Each curve is
related to a different value ofk. Notice that the scales have been adjusted in order to highlight the differences among the
curves.

value of the number of feature clustersk, the output of the 11 classifiers constructed forν = 0, .., 10

were combined. The experiments were repeated 5 times for each value ofk. We also applied the

same approach to combine MD classifiers. The obtained ROC curves are reported in Figure 5.3

and Figure 5.4. The average and standard deviation for the obtained AUC are reported in Table 5.6.

The last row reports the results obtained by combining single MD classifiers for which no feature

clustering was applied (i.e., all the 65,536 features are used). The combination works really well

k Ensemble of SVM Ensemble of MD
10 0.9885 (0.3883E-3) 0.9758(0.4283E-3)
20 0.9875 (2.0206E-3) 0.9737 (0.1381E-3)
40 0.9892(0.2257E-3) 0.9736 (0.2950E-3)
80 0.9891 (1.6722E-3) 0.9733 (0.5144E-3)
160 0.9873 (0.4209E-3) 0.9701 (0.6994E-3)

65,535 - 0.9245

Table 5.6: Average AUC of classifier ensembles constructed using the majority voting rule. The numbers in bold represent
the best result for varyingk. The standard deviation is reported between parentheses.

in case of one-class SVM. As shown in Table 5.6, the overall IDS constructed using ensembles of

one-class SVM always performs better than the best single classifier. The only exception is when

k = 160, but in this case the results are so close that considering the standard deviation it is not

possible to say which one is the best. On the other hand, the combination of MD classifiers is not

as effective as for the ensemble of one-class SVM, and does not improve the performance of the

single best classifier. This is probably due to the fact that although we constructed MD classifiers

105

106 5. Operating in Adversarial Environment

10
−3

10
−2

10
−1

10
0

10
1

50

55

60

65

70

75

80

85

90

95

100

False Positives (%)

D
et

ec
tio

n
R

at
e

(%
)

Ensemble of Mahalanobis Distance based classifiers

10

20

40

80

160

Figure 5.4: ROC curves obtained by combining MD classifiers using the majority voting rule. Each curve is related to a
different value ofk. Notice that the scales have been adjusted in order to highlight the differences among the curves.

that work on different feature spaces, the obtained classifiers are not sufficiently diverse and make

the same errors for new patterns.

DFP(%) RFP(%) Detected attacks DR(%)
0.0 0.0 0 0
0.01 0.00381 17 68.5
0.1 0.07460 17 79.0
1.0 0.49102 18 99.2
2.0 1.14952 18 99.2
5.0 3.47902 18 99.2
10.0 7.50843 18 100

Table 5.7: Performance of an overall IDS constructed using an ensembleof one-class SVM and settingk = 40. The DFP
is referred to the single classifiers of the ensemble.

Table 5.7 shows the results obtained with an overall IDS implemented by combining the 11

single one-class SVM constructed usingν = 0, .., 10 andk = 40. The IDS is able to detect all the

attacks except the polymorphic blending attack for an RFP lower than 0.004%. The IDS is also able

to detect all the attacks, including the polymorphic blending attack, for an RFP lower than 0.5%.

In conclusion, the experimental results reported above show that our IDS constructed using an

ensemble of one-class SVM classifiers and usingk = 40 performs better than any other IDS or single

classifiers we considered. The only exception is the single MD classifier obtained settingν = 0 and

k = 10. However, as mentioned before and as discussed in Section5.5, this single MD classifier

may still be easy to evade, whereas our MCS based IDS is much harder to evade.

106

5.5 Discussion 107

5.5 Discussion

2ν-grams. We discussed in Section 5.3.3 how to extract the features using the 2ν-gram technique.

We also argued that the occurrence frequency of 2ν-grams somehow “summarizes” the occurrence

frequency ofn-grams. This allows us to capture some byte sequence information. In order to show

that the 2ν-grams actually extract structural information from the payload, we can consider the bytes

in the payload as random variables and then we can compute therelative mutual information of bytes

that areν positions apart from each other. That is, for a fixed value ofν we compute the quantity

RMIν,i =
I (Bi; Bi+ν+1)

H(Bi)
(5.11)

whereI (Bi; Bi+ν+1) is the mutual information of the bytes at positioni and (i + ν + 1), andH(Bi) is

the entropy of the bytes at positioni. By computing the average forRMIν,i over the indexi = 1, .., L,

with L equal to the maximum payload length, we obtain the average relative mutual information for

the 2ν-grams along the payload. We measured this average relativemutual information on both the

training and the test set varyingν from 0 to 20. The results are shown in Figure 5.5. It is easy to see

that the amount of information extracted using the 2ν-gram technique is maximum forν = 0 (i.e.,

when the 2-gram technique is used) and decreases for growingν. However the decreasing trend is

slow and the average RMI is always higher than 0.5 untilν = 10. This is probably due to the fact

that HTTP is a highly structured protocol. Preliminary results show that the same property holds for

other text based protocols.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν

A
ve

ra
ge

 R
el

at
iv

e
M

ut
ua

l I
nf

or
m

at
io

n training set

test set

Figure 5.5: Average relative mutual information for varyingν.

107

108 5. Operating in Adversarial Environment

Polymorphic Blending Attack. The polymorphic blending attack we used for our performance

evaluation was presented in [34] as an attack against 2-gramPAYL. The polymorphic blending attack

encodes the attack payload so that the distribution of 2-grams in the transformed attack “looks” like

normal, from the point of view of the model of normal traffic constructed by PAYL. As discussed

in [34], a polymorphic attack against 2-gram PAYL is also able to evade 1-gram PAYL. This is

because the distribution of 1-grams can be derived from the distribution of 2-grams. Thus, if the

distribution of 2-grams in the attack payload “looks” like normal, so does the distribution of 1-

grams.

In order to construct the attack, first of all the attacker needs to monitor part of the traffic towards

the network protected by the IDS [34]. By monitoring this traffic, a polymorphic blending engine

constructs an approximate normal profile for the 2-grams andtransforms the attack payload accord-

ingly. It has been proved that a “perfect” single byte encoding transformation of the attack payload

in order to reflect the estimated normal profile is NP-complete [34]. Therefore, Fogla et al. [34]

proposed an approximate solution to the problem. High frequency 2-grams in the attack payload

are greedily matched via one-to-one byte substitution with2-grams that have high frequencies in

normal traffic. This approximate substitution does not guarantee to find atransformation that brings

the attack payload close to the distribution of normal traffic [34]. The proposed approach could also

be generalized to evade ann-gram version of PAYL. However, because of the way the algorithm

greedily matchesn-grams in the attack payload withn-grams in normal traffic [34], the single byte

encoding algorithm proposed is less and less likely to generate a successful attack payload transfor-

mation, asn grows. This means that although the polymorphic blending attack may still work well

for n = 2, it is likely to fail for n≫ 2.

Hardness of Evasion. In Section 5.4.2 we showed that an MD classifier constructed usingν = 0

(i.e., using the 2-gram technique) andk = 10 achieves very good classification performances (see

Table 5.3). However, the use of only one classifier does not help in hardening the anomaly detector

against evasion attempts. The attacker may easily modify the polymorphic blending attack against

2-gram PAYL in order to evade this one particular classifier.

We constructed our anomaly IDS using multiple classifiers that work on different descriptions of

108

5.5 Discussion 109

the payload. In this case the polymorphic blending attack that mimics the normal distribution of 2-

grams does not work anymore because it can already be detected for a percentage of false positives

as low as 0.5%, as shown by the experimental results reportedin Section 5.4.2. In order for the

attacker to evade our IDS, she needs to devise a substitutionalgorithm that evades the majority

of the classifiers at the same time. Therefore, the attacker needs to transform the attack payload

in order to mimic the distribution of 2ν-grams for different values ofν. Because of the way the

features are extracted using the 2ν-gram technique, this result may be achieved by a polymorphic

transformation that encodes the attack payload to reflect the distribution of then-grams in normal

traffic, with n greater thanmax(ν)+2
2 . Heremax(ν) represents the maximum value ofν used during

the feature extraction process. Thus, in order to evade our IDS the attacker needs to encode the

attack payload mimicking the distribution in normal traffic of 7-grams. This makes it much harder

to evade our IDS, compared to 1-gram and 2-gram PAYL. In theory a hypothetical 7-gram PAYL

would be as hard to evade as our IDS. However, this hypothetical 7-gram PAYL would easily suffer

from the curse of dimensionality and memory consumption problems due to the huge number of

features (equal to 2567). Our anomaly IDS is much more practical.

109

110 5. Operating in Adversarial Environment

110

Chapter 6

Conclusion

Statistical pattern recognition techniques have been successfully applied in many fields. Relatively

recently, researchers have stared to apply pattern recognition to computer and network security,

and in particular to network intrusion detection systems. We believe statistical pattern recognition

will play a more and more important role in the development offuture network IDS. Motivated by

this belief, in this thesis we have studied the main challenges and possible solutions related to the

application of statistical pattern recognition techniques for designing network IDS. Our objective

was to point out strengths and weaknesses of such systems, and to stimulated further research on the

problems and solutions discussed throughout the thesis.

6.1 Our Contribution

In this thesis we focused our attention on three main problems:

a) Learning from unlabeled traffic. We discussed the state of the art in unlabeled network

anomaly detection and the inherent difficulties related to learning from unlabeled data. We

also discussed the base-rate fallacy and how it affects anomaly detection systems, showing

that it is critical to optimize the accuracy of network anomaly detectors in order to increase

the detection rate and, in particular, to decrease the falsepositive rate as much as possible.

To this end, we studied the application of a modular MCS constructed by combining multiple

one-class classifiers. Experiments performed on the KDDCup’99 dataset showed that the

111

112 6. Conclusion

proposed approach improves the accuracy performance, compared to “monolithic” unlabeled

network anomaly detectors proposed by other researchers.

b) Learning in adversarial environment. We studied the consequences of learning from un-

labeled traffic in presence of an adversary who may try to mislead the learning process to

make the obtained IDS ineffective. We briefly discussed some theoretical work on learning

in presence of an adversary that introduces malicious errors in the training dataset. Then,

we presented a case study and showed that this kind of attacksare possible in practice. We

showed how an attacker can inject noise into the training dataset used by automatic signature

generators during the signature learning process, and how this attack may negatively affect

the accuracy of IDS which use the generated signatures to stop the propagation of worms.

We also discussed possible ad-hoc solutions to the noise injection attack, although a generic

solution to the problem of learning in presence of this kind of misleading attack is still to be

found.

c) Operating in adversarial environment. We also studied the problem of launching and de-

tecting mimicry attacks. Mimicry attacks are evasive attacks against anomaly detection sys-

tems. We presented an attack called Polymorphic Blending Attack (PBA), which is able to

evade recently proposed network anomaly detectors based onstatistical pattern recognition

techniques. We analyze the reasons why the attack works and propose a new and robust net-

work anomaly IDS intended to make the PBA unlikely to succeed. Our IDS is constructed

by combining multiple one-class SVM classifiers. Experiments were performed on several

days of normal HTTP traffic of an academic network and on 18 attacks, including “standard”

polymorphic attacks and the PBA. The results show that the proposed IDS is more robust to

the PBA, compared to other recently proposed network anomaly IDS.

6.2 Future Work

Future work is needed on all of the three problems we addressed in this theses. Further improve-

ments are needed regarding the accuracy performance of unlabeled anomaly IDS. We plan to study

different modular MCS schemes in order to further reduce the false positive rate while keeping

112

6.2 Future Work 113

a high detection rate at the same time, thus alleviating the base-rate fallacy problem presented in

Chapter 3. However, in order to achieve this result more workis needed on estimatinga posteriori

class probabilities using one-class classifiers and on effectively combining them to construct a more

accurate multiple one-class classifier system.

Regarding the problem of learning in adversarial environment, the effort the attacker has to do

in case of real applications is mostly unknown. For example,how difficult is it for the attacker

to “move” the decision surface constructed by complex classifiers (e.g., SVM, Artificial Neural

Networks, etc.)? Can the attacker approximate the state of the IDS, i.e., its decision surface, without

having access to the entire training dataset used by the IDS?How much “misleading” traffic does

the adversary has to inject? An answer to these important questions is needed. Moreover, work

is needed on the practical application ofdisinformationand randomizationtechniques to make it

difficult for the attacker to successfully interfere with the learning process implemented by IDS.

Further work is also needed for making anomaly-based network IDS more robust against mimicry

attacks. The combination of multiple models, as proposed inChapter 5, is definitely promising.

However, we need to make mimicry attacks as unlikely to succeed as possible. Because one of the

fundamental assumptions for the success of mimicry attacks, and in particular for the polymophic

bleding attack, is the adversary’s knowledge about the detection algorithm implemented by the IDS,

disinformationandrandomizationtechniques similar to those proposed for the problem of learning

in adversarial environment may be implemented in combination to ensemble methods. This would

make much harder for the adversary to approximate the model of normal traffic used by the IDS,

thus making mimicry attacks very difficult.

113

114 6. Conclusion

114

Bibliography

[1] Mini-SQL w3-msql buffer overflow vulnerabilities, 1999.http://www.securityfocus.

com/bid/898.

[2] Cern HTTPd Proxy, 2000.http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2000-79.

[3] InetServ 3.0 WebMail Long GET request vulnerability, 2000. http://www.

securityfocus.com/bid/949.

[4] Microsoft IIS 4(NT4) and IIS 5(Windows 2k) .asp buffer overflow exploit, 2002.http:

//downloads.securityfocus.com/vulnerabilities/exploits/DDK-IIS.c.

[5] OmniHTTPD Long Request buffer overflow vulnerability, 2002. http://www.

securityfocus.com/bid/5136.

[6] AnalogX Proxy 4.13 buffer overflow vulnerability, 2003.http://www.securityfocus.

com/archive/1/322861.

[7] ActivePerl perlIIS.dll buffer overflow vulnerability, 2006.http://www.securityfocus.

com/bid/3526/.

[8] Microsoft IIS 5.0 .printer ISAPI Extension buffer overflow vulnerability, 2006.http://

www.securityfocus.com/bid/2674/.

[9] Netscape FastTrack Server GET buffer overflow vulnerability, 2006. http://www.

securityfocus.com/bid/908/.

115

116 BIBLIOGRAPHY

[10] D. Anderson, T. Lunt, H. Javitz, and A. Tamaru. Nides: Detecting unusual program behav-

ior using the statistical component of the next generation intrusion detection expert system.

Technical Report SRI-CSL-95-06, Computer Science Laboratory, SRI International, Menlo

Park, CA, USA, May 1995.

[11] J. P. Anderson. Computer security threat monitoring and surveillance. Technical report, James

P. Anderson Co, Fort Washington, 1980.http://seclab.cs.ucdavis.edu/projects/

history/CD/ande80.pdf.

[12] S. Axelsson. The base-rate fallacy and the difficulty of intrusion detection.ACM Transactions

on Information and System Security (TISSEC), 3(3):186–205, 2000.

[13] N. E. Ayat, M. Cheriet, and C. Y. Suen. Automatic model selection for the optimization of

SVM kernels.Pattern Recognition, 38(10):1733–1745, 2005.

[14] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can machine learning be

secure? InACM Symposium on Information, Computer and CommunicationsSecurity, 2006.

[15] G. Batista, R. C. Prati, and M. C. Monard. A study of the behavior of several methods for

balancing machine learning training data.ACM SIGKDD Explorations Newsletter, 6(1):20–

29, 2004.

[16] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient approach to

combat a broad range of memory error exploits. InProceedings of the 12th USENIX Security

Symposium, August 2003.

[17] A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning

algorithms.Pattern recognition, 30(7):1145–1159, 1997.

[18] A. Broder and M. Mitzenmacher. Network applications ofbloom filters: A survey.Internet

Mathematics, 1(4), 2003.

[19] R. Brunelli and D. Falavigna. Person identification using multiple cues.IEEE Transactions

on Pattern Analysis and Machine Intelligence, 17(10):955–966, 1995.

116

BIBLIOGRAPHY 117

[20] C. Chang and C. Lin. LIBSVM: a library for support vectormachines, 2001. Software

available athttp://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[21] R. Chinchani and E.V.D. Berg. A fast static analysis approach to detect exploit code in-

side network flows. InInternational Symposium on Recent Advances in Intrusion Detection

(RAID), 2005.

[22] I. Cohen, F. G. Cozman, N. Sebe, M. C. Cirelo, and T. Huang. Semi-supervised learning of

classifiers: theory, algorithms and their applications to human-computer interaction.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(12):1553–1567, 2004.

[23] W. W. Cohen. Fast effective rule induction. InInternational Conference on Machine Learn-

ing, 1995.

[24] M. Damashek. Gauging similarity with n-grams: Language-independent categorization of

text. Science, 267(5199):843–848, 1995.

[25] D. E. Denning. An intrusion-detection model.IEEE Transactions on Software Engineering,

13(2):222–232, 1987.

[26] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk. Polymorphic shellcode engine

using spectrum analysis.Phrack Issue 0x3d, 2003.

[27] I. S. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic feature clustering

algorithm for text classification.Journal of Machine Learning Research, 3:1265–1287, 2003.

[28] T. G. Dietterich. Ensemble methods in machine learning. In International Workshop on

Multiple Classifier Systems (MCS), 2000.

[29] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. Wiley, 2000.

[30] C. Elkan. Results of the KDD’99 classifier learning contest. ACM SIGKDD Explorations

Newsletter, 1(2):63–64, 2000.

117

118 BIBLIOGRAPHY

[31] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for un-

supervised anomaly detection: Detecting intrusions in unlabeled data. In D. Barbara and

S. Jajodia, editors,Applications of Data Mining in Computer Security. Kluwer, 2002.

[32] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred. Statistical approaches to DDoS

attack detection and response. InDARPA Information Survivability Conference and Exposi-

tion (DISCEX), 2003.

[33] Firew0rker. Windows Media Services remote command execution exploit, 2003. http:

//www.milw0rm.com/exploits/48.

[34] P. Fogla, M. Sharif, R. Perdisci, O. M. Kolesnikov, and W. Lee. Polymorphic blending attack.

In USENIX Security Symposium, 2006.

[35] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless inter-domain routing (cidr): an address

assignment and aggregation strategy,.http://www.ietf.org/rfc/rfc1519.txt, 1993.

[36] G. Giacinto, F. Roli, and L. Didaci. Fusion of multiple classifiers for intrusion detection in

computer networks.Pattern Recognition Letters, 24(12):1795–1803, 2003.

[37] G. Giacinto, F. Roli, and L. Didaci. A modular multiple classifier system for the detection of

intrusions in computer networks. InMultiple Classifier Systems, volume LNCS 2709, pages

346–355, 2003.

[38] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson.CSI/FBI computer crime and

security survey, 2006. Computer Security Institute (http://www.gocsi.com).

[39] M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection: Evasion, traffic nor-

malization, and end-to-end protocol semantics. InUSENIX Security Symposium, pages 115–

131, 2001.

[40] K. Haugsness. Intrusion Detection FAQ: What is polymorphic shell code and what can it

do? SANS Institute. (http://www.sans.org/resources/idfaq/polymorphic shell.

php).

118

BIBLIOGRAPHY 119

[41] A. Jain, L. Hong, and Y. Kulkarni. A multimodal biometric system using fingerprint, face and

speech. InProceeding of the Conference on Audio and Video based PersonAuthentication

(AVBPA), 1999.

[42] A. Jain, A. Ross, and S. Prabhakar. Fingerprint matching using minutiae and texture features.

In International Conference on Image Processing (ICIP), 2001.

[43] A. K. Jain and R. C. Dubes.Algorithms for Clustering Data. Prentice-Hall, 1988.

[44] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical patternrecognition: A review. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

[45] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study.Intelligent

Data Analysis, 6(5):429–449, 2002.

[46] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Counteringcode-injection attacks with

instruction-set randomization. InProceedings of the 10th ACM Conference on Computer

and Communications Security, October 2003.

[47] M. Kearns and M. Li. Learning in the presence of malicious errors.SIAM Journal on Com-

puting, 22:807–837, 1993.

[48] H. Kim and B. Karp. Autograph: Toward automated, distributed worm signature detection.

In Proceedings of the 13th USENIX Security Symposium, August 2004.

[49] S. T. King, P. M. Chen, Y. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch. SubVirt:

Implementing malware with virtual machines. InIEEE Symposium on Security and Privacy,

pages 314–327, 2006.

[50] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining classifiers.IEEE Transactions

on Pattern Analysis and Machine Intelligence, 20(3):226–239, 1998.

[51] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model

selection. InInternational Joint Conference on Artificial Intelligence(IJCAI), 1995.

119

120 BIBLIOGRAPHY

[52] O. Kolesnikov, D. Dagon, and W. Lee. Advanced polymorphic worms: Evading ids by

blending in with normal traffic. Technical report, Georgia Institute of Technology, 2004.

http://www.cc.gatech.edu/∼ok/w/ok pw.pdf.

[53] C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion detection signatures using

honeypots. InProceedings of the 2nd ACM Workshop on Hot Topics in Networks, November

2003.

[54] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating mimicry attacks

using static binary analysis. InUSENIX Security Symposium, 2005.

[55] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection for network intrusion

detection. InACM Symposium on Applied Computing (SAC), 2002.

[56] C. Kruegel and G. Vigna. Anomaly detection of web-basedattacks. InACM Conference on

Computer and Communication Security (ACM CCS), 2003.

[57] L. Kuncheva.Combining Pattern Classifiers. Wiley, 2004.

[58] C. E. Landwehr. Formal models for computer security.ACM Computing Surveys,

13(13):247–278, 1981.

[59] W. Lee. A Data Mining Framework for Constructing Features and Models for Intrusion

Detection Systems. PhD thesis, Computer Science Department, Columbia University, New

York, USA, 1999.

[60] W. Lee and S. Stolfo. A framework for constructing features and models for intrusion detec-

tion systems.ACM Transactions on Information and System Security, 3(4):227–261, 2000.

[61] W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. InIEEE Sym-

posium on Security and Privacy, 2001.

[62] E. Leopold and J. Kindermann. Text categorization withsupport vector machines. How to

represent texts in input space?Machine Learning, 46:423–444, 2002.

120

BIBLIOGRAPHY 121

[63] K. Leung and C. Leckie. Unsupervised anomaly detectionin network intrusion detection

using clusters. InIn 28th Australasian Computer Science Conference, 2005.

[64] Z. Liang and R. Sekar. Automatic generation of buffer overflow attack signatures: An ap-

proach based on program behavior models. InProceedings of the 21st Annual Computer

Security Applications Conference, December 2005.

[65] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. The 1999 darpa off-line

intrusion detection evaluation.Computer Networks, 34(4):579–595, 2000.

[66] M. V. Mahoney. Network traffic anomaly detection based on packet bytes. InACM Sympo-

sium on Applied Computing (SAC), 2003.

[67] M. V. Mahoney and P. K. Chan. An analysis of the 1999 DARPA/Lincoln Laboratory evalua-

tion data for network anomaly detection. InInternational Symposium on Recent Advances in

Intrusion Detection (RAID), 2003.

[68] Matthew V. Mahoney and Philip K. Chan. Learning nonstationary models of normal network

traffic for detecting novel attacks. InACM SIGKDD international conference on Knowledge

discovery and data mining, 2002.

[69] J. McHugh. Intrusion and intrusion detection.International Journal of Information Security,

1(1):14–35, 2001.

[70] J. McHugh. Testing intrusion detection systems: A critique of the 1998 and 1999 darpa

intrusion detection system evaluations as performed by lincoln laboratory.ACM Transactions

on Information and System Security, 3(4):262–294, November 2006.

[71] J. McHugh, A. Christie, and J. Allen. Defending yourself: The role of intrusion detection

systems.IEEE Software, pages 42–51, Sept./Oct. 2000.

[72] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the slammer

worm. IEEE Security& Privacy, pages 33–39, July-August 2003.

121

122 BIBLIOGRAPHY

[73] D. Moore, C. Shannon, and J. Brown. Code-red: a case study on the spread and victims of

an internet worm. InProceedings of the Internet Measurement Workshop (IMW), November

2002.

[74] S. Mukkamala, G. Janoski, and A. Sung. Intrusion detection using neural networks and

support vector machines. InInternational Joint Conference on Neural Networks (IJCNN),

2002.

[75] D. Mutz, G. Vigna, and R.A. Kemmerer. An experience developing an ids stimulator for

the black-box testing of network intrusion detection systems. InProceedings of the Annual

Computer Security Applications Conference (ACSAC), 2003.

[76] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating signatures for

polymorphic worms. InProceedings of the IEEE Symposium on Security and Privacy, May

2005.

[77] J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature learning by training

maliciously. InInternational Symposium on Recent Advances in Intrusion Detection (RAID),

2006.

[78] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and

signaturegeneration of exploits on commodity software. InProceedings of the 12th Network

and Distributed System Security Symposium, February 2005.

[79] A. One. Smashing the stack for fun and profit.Phrack, 7(49), 1996.

[80] S. Peddabachigari, A. Abraham, and J. Thomas. Intrusion detection systems using decision

trees and support vector machines.International Journal of Applied Science and Computa-

tions, 11(3):118–134, 2004.

[81] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Misleading worm signature generators

using deliberate noise injection. InIEEE Symposium on Security and Privacy, 2006.

[82] R. Perdisci, G. Giacinto, and F. Roli. Alarm clusteringfor intrusion detection systems in

computer networks.Engineering Applications of Artificial Intelligence, 19(4):429–438, 2006.

122

BIBLIOGRAPHY 123

[83] B. Pfahringer. Winning the KDD’99 classication cup: Bagged boosting. ACM SIGKDD

Explorations Newsletter, 1(2):65–66, 2000.

[84] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data using clustering.

In ACM CSS Workshop on Data Mining Applied to Security, 2001.

[85] T. Ptacek and T. Newsham. Insertion, evasion, and denial of service: Eluding network intru-

sion detection, 1998. Secure Networks, Inc. (http://www.nai.com/services/support/

whitepapers/security/IDSpaper.pdf).

[86] Symantec Security Response. W32.spybot.worm.http://securityresponse.

symantec.com/avcenter/venc/data/w32.spybot.worm.html.

[87] Symantec Security Response. W32.welchia.c.worm.http://securityresponse.

symantec.com/avcenter/venc/data/w32.welchia.c.worm.html.

[88] Symantec Security Response. W32.sasser.worm.http://securityresponse.symantec.

com/avcenter/venc/data/w32.sasser.worm.html, 2004.

[89] Symantec Security Response. W32.zotob.a.http://securityresponse.symantec.com/

avcenter/venc/data/w32.zotob.a.html, 2005.

[90] M. Roesch. Snort - Lightweight intrusion detection fornetworks. InUSENIX Systems Ad-

ministration Conference, pages 229–238, 1999.

[91] S. Rubin, Somesh Jha, and Barton P. Miller. Automatic generation and analysis of nids

attacks. InProceedings of the 20th Annual Computer Security Applications Conference (AC-

SAC), 2004.

[92] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the

support of a high-dimensional distribution.Neural Computation, 13:1443–1471, 2001.

[93] F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys,

34(1):1–47, March 2002.

123

124 BIBLIOGRAPHY

[94] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. InPro-

ceedings of the ACM/USENIX Symposium on Operating System Design and Implementation,

December 2004.

[95] Sniphs. Snot.http://www.stolenshoes.net/sniph/index.html, 2003.

[96] D. Song. Fragroute.http://www.monkey.org/∼dugsong/fragroute/, 2005.

[97] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the internet in your spare time. In

USENIX Security Symposium, 2002.

[98] K.M.C. Tan, K.S. Killourhy, and R.A. Maxion. Undermining an anomaly-based intrusion

detection system using common exploits. InInternational Symposium on Recent Advances

in Intrusion Detection (RAID), 2002.

[99] Y. Tang and S. Chen. Defending against internet worms: Asignature-based approach. In

Proceedings of the 24th Annual Conference IEEE INFOCOM 2005, March 2005.

[100] D. M. J. Tax.One-Class Classification, Concept Learning in the Absence of Counter Exam-

ples. PhD thesis, Delft University of Technology, Delft, Netherland, 2001.

[101] D. M. J. Tax and R. P. W. Duin. Combining one-class classifiers. In International Wokshop

on Multiple Classifier Systems (MCS), 2001.

[102] D. M. J. Tax and R. P. W. Duin. Support vector data description. Mchine Learning, 54(1):45–

66, 2004.

[103] T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract payload execution.

In International Symposium on Recent Advances in Intrusion Detection (RAID), 2002.

[104] A. Valdes and K. Skinner. Probabilistic alert correlation. In International Symposium on

Recent Advances in Intrusion Detection (RAID), 2001.

[105] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer. Comprehensive approach to intru-

sion detection alert correlation.IEEE Transactions on Dependable and Secure Computing,

1(3):146–169, 2004.

124

BIBLIOGRAPHY 125

[106] L. G. Valiant. A theory of the learnable.Communications of the ACM, 27(11):1134–1142,

1984.

[107] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[108] G. Vigna, W. Robertson, and D. Balzarotti. Testing network-based intrusion detection signa-

tures using mutant exploits. InACM Conference on Computer and Communication Security

(ACM CCS), pages 21–30, 2004.

[109] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems. InACM

Conference on Computer and Communication Security (ACM CCS), 2002.

[110] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: Vulnerability-driven network

filters for preventing known vulnerability exploits. InACM SIGCOMM Conference, 2004.

[111] K. Wang, J. J. Parekh, and S. Stolfo. Anagram: A contentanomaly detector resistant to

mimicry attack. InInternational Symposium on Recent Advances in Intrusion Detection

(RAID), 2006.

[112] K. Wang and S. Stolfo. Anomalous payload-based network intrusion detection. InInterna-

tional Symposium on Recent Advances in Intrusion Detection(RAID), 2004.

[113] K. Wang and S. Stolfo. Anomalous payload-based worm detection and signature generation.

In International Symposium on Recent Advances in Intrusion Detection (RAID), 2005.

[114] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system calls: alter-

native data models. InIEEE Symposium on Security and Privacy, pages 133–145, 1999.

[115] C. Wong, C. Wang, D. Song, S. Bielski, and G. R. Ganger. Dynamic quarantine of internet

worms. InInternational Conference on Dependable Systems and Networks, July 2004.

[116] Y. Yang and F. Ma. An unsupervised anomaly detection patterns learning algorithm. In

International Conference on Communication Technology (ICCT), 2003.

[117] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An architecture for generating semantics-

aware signatures. InProceedings of the 14th USENIX Security Symposium, August 2005.

125

126 BIBLIOGRAPHY

[118] S. Zanero and S. M. Savaresi. Unsupervised learning techniques for an intrusion detection

system. InACM Symposium on Applied Computing (SAC), 2004.

[119] C. C. Zou, W. Gong, and D. Towsley. Worm propagation modeling and analysis under dy-

namic quarantine defense. InACM CCS Workshop on Rapid Malcode, 2003.

126

