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Abstract

Intrusion Detection Systems (IDS) aim at detecting andipbyspreventing the execution of attacks
against computer networks, thus representing a fundainema@ponent of a network defence-in-
depth architecture. Designing an IDS can be viewed patgern recognitionproblem. Pattern
recognition techniques have been proven successful initgaconcepts from example data and
constructing classifiers that are able to classify new dadtfa lmigh accuracy. In network intrusion
detection the main objective is to design a classifier thatbie to distinguish between normal
and attack triiic, therefore several researchers have used statistitafpatcognition and related

techniques to accomplish this task showing promising tesul

We explore several aspects of the application of statlgpiadern recognition to network intru-
sion detection from a practitioner point of view. Our inté&nto point out significant challenges and
possible solutions related to designing statistical pattéassification systems for network intrusion
detection. In particular, we discuss three problems: ajrieg from unlabeled tif&ic; b) Learning
in adversarial environment; c) Operating in adversariairenment. Because of thefficulties in
constructing labeled datasets of networkiica unlabeled learningechniques have recently been
proposed to construct anomaly-based network IDS. In thée,dhe tréfic used for learning is usu-
ally directly extracted from the live network to be protettend does not undergo any labeling
process. Unfortunately, learning from unlabeled dataheiantly dificult. As a consequenam-
labeled anomaly IDSufer from a relatively high number of false positives. We prspa new
unlabeled anomaly IDS based on a modular Multiple Class#figtem (MCS), and show that the
proposed approach improves the accuracy performance cecthfma‘monolithic” IDS proposed by

other researchers. As the networkffiaused for training unlabeled IDS is directly extracted from
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the network, an adversary may try to pollute the trainingslt by sending properfly craftedftia

to the protected network. The adversary’s objective is tdifgdhe distribution of training data, so
that future attack instances will not be detected. Usingse saudy we show that such attacks are
possible in practice and then we discuss possible couteumea Also, assuming the adversay does
not interfere with the learning process, she may try to “etdde IDS during the oprational phase.
We show how an attack may be transformed to blend in hormiictréhus reaching the protected
network unnoticed. Afterwords, we present a strategy whints to harden anomaly-based network

IDS by combining multiple classifiers, makifdending attacksnore dificult to succeed.
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Chapter 1

Introduction to Intrusion Detection

1.1 Computer Security

Ever since the birth of multi-levghulti-user computers in 1960s, computer security has asguan
fundamental role. A multi-level computer supports accesgrol policies which aim to guarantee
limited access to resources. The access decision is baste atassification of both the user’s
privileges and properties of the object the user wants tessc[58, 69]. Because of the very limited
or absent networking, in multi-level computers the primespcern was related to legitimated users
who try to access resources without having proper auth@izaAfterwards, along with the growth
in popularity of personal computers and the developmenteflhternet in 1990s, the scenario
changed and the primary concern became the potential alditier of computer systems in face of
attacks from anonymous remote users [69].

The first known internet-wide attack and penetration oamliin November 1988. The attack
was in the form of a self-propagating program that spreagutin the network using a variety of
propagation techniques [69]. The attack was named “MorrisridV, after his author Robert T.
Morris Jr. The “Morris Worm” exploited common misconfiguicat in sendmail, a Mail Transfer
Agent (MTA) software. In 1996 the online magaziRbrackpublished an article by Aleph One [79]
discussing the details of how to perform intrusions by eiiplg buffer-overflow vulnerabilities.
Today, attacks that exploit Her-overflow vulnerabilities (usually referred to lagfer-overflow at-

tackg are among the most common antleetive, given the large number of newflar-overflow

1



1. Introduction to Intrusion Detection

vulnerabilities discovered every year and that a succkatiack has a high probability of yielding
administration privileges on the attacked machine [69]nc8iearly 1990s, attacks against com-
puter systems have significantly increased in number anbistagation. At the same time, the
development and release afitomatic attackools on the Internet has caused the skills necessary
for launching computer attacks to dramatically decreasesh@wn in Figure 1.1. On the other
hand, whereas in the beginning attacks were performed lysamh way to prove attacker's own
skills, today the motivations behind attacks against caemsystems are becoming more and more
criminal-driven [71]. As a consequence of computer crimanyncompanies have lately undergone
major financial losses [38].

One of the first studies on computer security is “ComputeruBgcThreat Monitoring and
Surveillance”, by J. P. Anderson, published in 1980 [11]himwork, Anderson discussed a frame-
work for investigation of intrusions and intrusion deteati In particular, he gave a definition of
fundamental terms lik&hreat Risk Vulnerability, Attack andPenetration from a computer secu-
rity perspective. The definition of these terms as given bgekaon in [11] are reported below:

Threat The potential possibility of a deliberate, unauthorizéérapt to:
(a) Access information
(b) Manipulate information

(c) Render a system unreliable or unusable

Risk Accidental or unpredictable exposure of information, iotation of op-
erations integrity due to malfunction of hardware or incéstg or in-

correct software design.

Vulnerability. A known or suspected flow in the hardware or software desigipera-
tion of a system that exposes the system to penetrationioforsnation

to accidental disclosure.
Attack A specific formulation or execution of a plan to carry out eett.

Penetration A successful attack; the ability to obtain (unauthorizadgess to files

and programs or the control state of a computer system.
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Figure 1.1: The evolution of attack sophistication and devolution ¢tdekers’ skills [69].

1.2 Intrusion Detection

According to Anderson’s terminology, intrusion detectaims at detecting and possibly preventing
the execution of both penetrations (or intrusions) ancclks#tai.e., both successful and unsuccess-
ful attacks. In the beginning, intrusion detection was performed tgtomanual analysis of audit
records by security experts. This was particularly impdrfar early computer-assisted financial
transactions and for the protection of military systemsteAfards, because of the growth of the
volume of financial transactions and military informaticenkled by computer systems, it was ev-
ident that an automatic way to perform security audit wasiade Dorothy Denning’s paper “An
Intrusion Detection Model” [25] is one of the first and modtuential papers on intrusion detection.
Denning assumes the attacks are distinguishable from hasess’ behavior. Therefore, the main
task for constructing anfiective Intrusion Detection System (IDS) is to find an appiaiprway

of modeling the normal activities and suitable metrics taasuee the distance between attacker’s
activities and the model of normal behavior. Denning’s wbds inspired many researchers and

represents the base for several commercial products [71].

1Although detecting intrusions is the most important objegtgathering information about unsuccessful attacks is i
general useful as well because it allowes security expegstimate where the major threats come from and what are the
targeted machines in the protected network
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1.2.1 Misuse-based vs. Anomaly-based Intrusion Detection

The intrusion detection problem can be viewed as an instahttee general signal-detection prob-
lem [71]. Intrusive activitiescan be viewed as the signal to be detected whareawal activities
can be considered to be noise. In classical signal-deteapproaches, the distribution of both the
signal and the noise is known or approximated. The decisioogss consists in distinguishing be-
tween noise and signal-plus-noise in the communicationméla Unlike classical signal-detection,
in which both a model of the noise and the signal are used teraalecision, IDS typically base
their decision on either a model of the signal (i.e., a modelttack activities) or a model of the
noise (i.e., the normal behavior). IDS which construct a ehofithe attacks to make a decision are
usually referred to amisuse-basetDS. Misuse-based IDS often use a set of rules (or signgtures
as attack model, with each rule usually dedicated to detdifferent attack. In this case IDS are
commonly referred to asignature-basedDS. A rule can be as simple as a string of consecutive
byte values that matches a part of a network packet sentgitirenexecution of the attack the rule
refers to. On the other hand, when a model of normal activisaised to make a decision, IDS are

usually referred to asnomaly-basedDS.

Despite the anomaly-based approach was the first to be iteokcby Denning in [25], sighature-
based IDS are the most deployed. This is in part due to théifacsignature-based IDS arextive
in detecting known attacks and usually produce less falenal (i.e., a normal event erroneously
flagged as attack) compared to anomaly-based IDS. An exarhpleely deployed signature-based
IDS is Snort [90], an open source software project that has receiveddd &itention during the last
few years. However, although signature-based IDS have jr@sen to be quitefective, they are
inherently unable to detect unknown attacks or even nevantwriof known attacks [71]. Moreover,
the signature-generation process is usually a slow (seraiial process. This means that a window
of vulnerability exists even after the attack is released laought to the attention of the computer
security research community. Conversely, anomaly-ba3&dare in theory able to detect any know
or unknown attack. However, designing a model of normal iehand suitable metrics that allow
to clearly separate attacks or anomalous activities frormabactivities is in general non trivial and

the resulting IDS are usually prone to false alarms.

4
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1.2.2 Host-based vs. Network-based Intrusion Detection

Based on the type of events or data the IDS analyze in ordegterdintrusions, it is also possi-
ble to distinguish between host-based and network-basg8dHDst-based IDS are installed on and
protect single hosts, usually by inspecting system log.d&ta example, the audited system log
data may be sequences of system é4ll§4]. Host-based IDS can also monitor single applications
For example, an host-based IDS protecting a web server maitonthe logs produced by thetp
serversoftware looking for anomalous http request patterns. @mther hand, network-based IDS
analyze packets crossing an entire network segment. Netwased IDS have the advantage of
being able to protect a high number of hosts at the same tiroeeiker, they can ster from per-
formance problems due to the large amount dfitdahey need to analyze in real-time and possible
attacks that exploit ambiguities in network protocols aadse the exhaustion of the memory and
computational resources of the IDS [39]. Furthermore, pdtviased IDS cannot easily monitor
encrypted communications and are inherently unable to tmointrusive activities that do not pro-
duce externally (with respect to a single host) observalildgeace. On the other hand, host-based
IDS have access to detailed information on system eventaéybe disabled or made useless by an
attacker who successfully gains administrative privikega the protected machine. Intrusions that
bring to the installation of so calledot kits® [49] are an example of such attacks. Oncertiat kit

is installed, it is usually possible for the attacker to govee traces of malicious activities by, for
example, cleaning the system logs, hiding information &bmalicious processes at the kernel level,

etc.

1.2.3 Practical Aspects of Intrusion Detection

IDS must be considered as just one piece of the defensepih-dtrategy of an organization. A
precise plan is needed before the deployment of any detestinsor. In particular, decisions have
to be made regarding where to place the sensors in order tonizaxthe security of critical net-

work assets, how to configure the IDS so that the general ise@alicies of the organization are

2System calls are calls to functions provided by the opegatirstem kernel
3A root kit is a piece of software that installs itself as pdrtie operating system kernel and is able to hide traces of
anomalous system activities
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respected, and how to react to alarms raised by the IDS [71].

In case of large networks, it may be necessary to deploy phelllDS to protect dferent seg-
ments of the network. Moreover, given the complementarfiityetwork-based and host-based IDS,
deploying multiple IDS of dferent types may help in raising the bar against network sidns.
However, managing multiple IDS requires a significaffibee. Furthermore, although collecting and
correlating information from multiple sensors would hetpdonstructing a thorough view of the
network, this process is not straightforward. Some work been done on correlation of alarms
generated by multiple IDS, along with information genedaly firewalls, authentication servers
and other devices used to enforce security [104, 105, 82vader, alarm correlation is still in its

infancy.

1.3 Attacks Against Intrusion Detection Systems

The objective of IDS is to detect attacks against machinsteldy the protected network. However,
IDS themselves can be the target of attacks. If the attackimsgnformation about the IDS that
protects the network (e.g., through social engineerinusive employee, etc.), she may tray to
attack the IDS in order to disable it or to make it unable t@detuture intrusion attempts. Besides,
alike many other kinds of software, commercial and reseld&hoften have security vulnerabilities
resulting from flawed design or coding errors.

In [85] three diferent attacks against network-based IDS are discussedovBielel packet
forgery, it is possible to construct networkftia in order to producénsertion evesionandDenial
of Servicg(DoS) attacks. Insertion attacks exploit the fact that oghdDS may accept packets that
the destination machine will reject. An attacker may useritien of unrelevant packets to prevent
the signature matching algorithm of a signature-based tb&:tect an ongoing attack. Similarly,
an evasion attack exploits the fact that the IDS may negkachgts that the real destination machine
will accept as valid. For example, an attacker may split IBkpts using overlapping fragments.
Some IDS may not be able to correctly reconstruct and anahaeriginal IP packet, whereas
the destination machine may be able to reconstruct thenatigi® packet correctly. If the original

packet contains an attack, the destination machine maydbeted while the IDS would produce a

6



1.4 Outlook of this Thesis 7

false negative (i.e., no alarm is raised). On the other htmedpbjective of DoS attacks is to cause
IDS’ resource exhaustion. It is easy to see that reassegnbligmented packets may be a CPU
and memory intensive task, given that the fragments of a getieet may arrive unordered and in
different time instants. As network-based IDS have to monitgel&olumes of trfiic in real-time,
the attacker may try to generate large amountseif-craftedfragmented packets in order to cause
the IDS to reach 100% of CPU usage or to consume the/[R&®ack biffer, so that the IDS will not
be able to process new packets until part of the resourced (CPhemory) are freed. This means
that an DoS attack against the IDS may be used to hide animris a machine in the protected
network.

Attackers may also ugelymorphismandmetamorphisnio evade detection [40]. The objective
of these techniques is to modify the code of a given attackyeiree the attack is launched against
a new victim. This makes signature-based IDSfeetive, because theftkrent instances of the
attack do not share any common features, or the common ésatue not dicient to generate
an dfective signature. On the other hand, anomaly-based IDS maple to detect polymorphic
attacks because they usually lookisuently different from normal tréiic. However, a number of
attacks, often referred to asmicry attackshave been proposed that can evade both network-based
and host-based anomaly detectors [98, 109, 34]. The ideadeahimicry attacks is to craft the
attack so that it looks like “normal” from the point of view e IDS, while still being able to
exploit the targeted vulnerability.

Another class of attacks has been recently proposed agamiarning phase implemented by
some IDS. When machine learning techniques are impleméatednstruct the IDS, the attacker
may try to pollute the learning data on which the IDS is trdin€he attack is launched by forcing
the IDS to learn from properly crafted data, so that durirggdperational phase the IDS will not be

able to detect certain attacks against the protected nlefdidr 81, 77].

1.4 Outlook of this Thesis

As anticipated above, and as we hope will be clearer by theogtids thesis, designing a network

IDS is a very complicated task. Current commercial and rebeaetwork IDS often dftier from

7



1. Introduction to Intrusion Detection

relatively poor accuracy in detecting attacks against théepted network. Moreover, as discussed
in Section 1.3, network IDS themselves may be vulnerablefferént types of attacks.

Designing an IDS can be viewed agattern recognitionproblem. Pattern recognition tech-
nigues have been proven successful in learning conceptsdrample data and constructing clas-
sifiers that are able to classify new data with high accurbcgarticular, statistical pattern recogni-
tion has been successfully applied in many fields. In netwurkision detection the main objective
is to design a classifier that is able to distinguish betwemmmal and attack tfiic. Several re-
searcher have used statistical pattern recognition aatetetechniques to accomplish this task (e.qg.,
[59, 37, 31, 112]). The obtained results show that the agiitin of statistical pattern recognition is

promising and may lead to significant advances in intruseteation.

1.4.1 Our Contribution

In this thesis we focus on the application of statisticatgratrecognition techniques for the devel-
opment of network-based IDS. We explore several aspectisfask from a practitioner point of

view. Our intent is to point out significant challenges andgiole solutions related to designing
statistical pattern classification systems for networkusibn detection. In particular, we discuss

three problems:

a) Learning from unlabeled traffic. Many pattern classifiers are constructed usisgervised
learningapproach. To this end, a dataset containing a representatimber of labeled exam-
ples of both normal and (fierent types of) attack tfiac is needed. Unfortunately, in network
intrusion detection it is very hard and expensive to comstsuch a labeled dataset. In order
to overcome this problenunsupervisear unlabeled learningechniques have recently been
proposed to construct anomaly-based network IDS. Howésaming from unlabeled data
is inherently dfficult. As a consequence, these systems oftéieisérom a relatively high
number of false positives, thus making the IDS unlikely taibed in real scenarios. In order
to improve the performance of unlabeled anomaly-basedarktildS, we propose a modu-
lar Multiple Classifier System (MCS). We discuss how such siesy can be designed and
we show that the proposed modular approach improves thetideteccuracy, compared to

unlabeled anomaly detectors proposed by other researchers

8



1.4 Outlook of this Thesis 9

b) Learning in adversarial environment. As mentioned above, the process of labeling network
data is often very hard and expensive. Therefore, unladebkstiing has been proposed to
overcome this problem. Usually, in unlabeled network ID®dain amount of tréic is col-
lected from a live network and used (after filtering) to fit atistical model. The obtained
model is then used for classification of newfiiig i.e., to distinguish between normalftia
and attacks. In the process of collecting and learning frataheled tréfic it is fundamental
to account for an adversary which may try to interfere with lBS’ learning process. The
objective of the adversary is to modify the distributiontod training data used to fit the detec-
tion model, so that future attacks will passed unnoticed.bviiefly discuss some theoretical
scenarios in which this could happen, and present a caseiatudhich we show how this type
of attacks are possible in practice. The objective is totpoin the weaknesses of the learn-
ing phase implemented by certain IDS. We also discuss somsslpe (partial) solutions to
the problem of learning in adversarial environment, altffowe believe a generic and sound

solution to this problem is still to be found.

c) Operating in adversarial environment. Assume the adversary is not able or simply chooses
not to interfere with the learning process of an IDS. Aftex tBS has been trained and de-
ployed, the adversary may still be able to evade the IDS.itmvadtacks have been demon-
strated to be successful against both misuse-based andrbased systems. In particular,
as discussed in Section 1.3, a class of attacks referrednonaisry attackshas been proven
successful against host based anomaly detection systemsvillAshow that such mimicry
attacks are also possible against recently proposed rlet®& which are designed using
statistical pattern recognition techniques. The mainaeasghy such attacks are possible is
due to the simplicity of the statistical model used by som8.IDhis simplicity derives from
a trade-@ between the computational performance of the IDS and itaracg. In order to
make mimicry attacks less likely to succeed we propose a edwank anomaly IDS based on
a multiple classifier system. The proposed architectuneases the robustness of statistical

based anomaly IDS, while adding low overhead compared &tiegidetection systems.

9



10 1. Introduction to Intrusion Detection

1.4.2 Thesis Outline

This thesis is structured as follows. In Chapter 2 we intoedstatistical pattern recognition tech-
niques and briefly report how researchers have so far apihled to network intrusion detection.
Supervised and unsupervised learning approaches areylpteiented, and the reasons why un-
supervised or unlabeled learning approaches seem to besmiteble for addressing the intrusion
detection problem are discussed. In Chapter 3 we preseattugacy challenges to be faced when
designing an anomaly detection system based on unlabeleurlg approaches. In particular, we
discuss thébase rate fallacyproblem and propose a modular approach based on Multiplesicla
fier Systems (MCS) for improving the accuracy performancersupervised anomaly detectors.
Chapter 4 presents the problem of learning in adversanal@ment. We discuss how the attacker
may, in theory, mislead a learning algorithm in order to evélte resulting detection model. We
also present a case study, showing how such kindiskeading attacksan be successfully devised
and launched in practice. Possible ad-hoc solutions tceadshg attacks are discussed, although a
generic solution remains an open research problem. Chaptesents an attack call@dlymorphic
Blending Attack The Polymorphic Blending Attack is a mimicry attack dedisegainst anomaly
detection systems which use simple payload statisticsdardo construct a model of normal net-
work traffic. The objective of the attacker is to transform a generaxcitinto a polymorphic variant
which looks like normal triic from the point of view of the IDS, yet maintaining the sam@eit
semantic. The Polymorphic Blending Attack points out thalilties related to operating in ad-
versarial environment. As a possible solution to the Polphiz Blending Attack we propose an
anomaly detector constructed by using an ensemble of @ss-8VM classifiers, which makes the

attack less likely to succeed. Then, we briefly conclude inpZér 6.
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Chapter 2

Pattern Recognition for Network

Intrusion Detection

This chapter is divided in two parts. In the first part we byiefthd informally introducdPattern
Recognition with particular focus orstatistical Pattern Classificatigrwhereas in the second part
we discuss the most significant work on the application digpatrecognition and related techniques

to the problem of network intrusion detection.

2.1 Pattern Recognition

Pattern recognition studies “how machines can observertieoement, learn how to distinguish
patterns of interest from their background, and make sondd@asonable decisions about the cat-
egories of the patterns” [44]. A pattern can be for examplengefiprint image, a human face,
a voice signal, a text document, a network packet, etc. fatézognition techniques have been
proven successful in learning concepts from example datacanstructing classifiers that are able
to classify new data with high accuracy. In particular,istial pattern recognition techniques have
been the most studied and applied in practice [44]. Baseti@tetrning approach, pattern recog-
nition techniques can be divided supervisedand unsupervised Supervised pattern recognition

approaches are able to learn concepts from labeled examples label attached to each example

1In this thesis we do not discuss regression problems, wefoolys on classification.
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2. Pattern Recognition for Network Intrusion Detection

supervised unsupervised

Feature extraction

,,,,,,,,,,,,,,,,,,,, - A

Classifier (or model)
selection

,,,,,,,,,,,,,,,,,,,,, -

Feature selection
and extraction

Selection of the
Clustering Algorithm

Cluster validation

Classifier training

,,,,,,,,,,,,,,,,,,,,, -

Performance
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Figure 2.1: The process of designing a Pattern Recognition System

pattern represents the class (or category) the pattermdgmlo. During the operational phase the
supervised pattern recognition system assigns new psitizenpredefined class. On the other hand,
unsupervised approaches deal with learning concepts frdabeled data. In unsupervised classifi-
cation new patterns are assigned to a hitherto unknown d$sAn alternative approach, called
semi-supervisechas also been proposed, whereby both labeled and unlatedeaples are used

during the learning process [22].

2.1.1 Designing a Statistical Pattern Recognition System

A high level view of the process of designing a pattern regagnsystems is depicted in Figure 2.1.
Once the problem to be solved has been defined, the first siepadect example data that will be
pre-elaborated and fed to the learning system. In ordehéocollected data to be used by the pattern
recognition system, a number fefatureshave to be measured. The features are used to describe the
patterns. For examplepinutiaepoints are common features used to describe fingerprintémimg

fingerprint recognition [42]. As mentioned in Section 2lg tearning problem may be addressed

12



2.1 Pattern Recognition 13

using the supervised or unsupervised approach.

When the supervised approach is used, the problem of uaddisy if all the measured features
are useful has to be address. In theory, the higher the nuaildeatures, the easier to precisely
distinguish between patterns belonging tffatient classes. In practice, when a high number of
features is used and a limited number of example patterngaitable for learning, the curse of
dimensionality problem may arise and the performance oféhegnition system may degrade [29,
44]. Feature selection and extraction technigues aim aiciag the dimensionality of the feature
space in order to improve the accuracy of the classifier.rfieds, a suitable learning algorithm has
to be chosen. The training and test phase allow the desigreamistruct and estimate the accuracy
of a classifier. As deciding a priori that a certain learnifgpethm is the most suitable for the
problem at hand is usually not easy, model selection is pedd by constructing several classifiers
using diferent learning algorithms, comparing the performance ohed them and choosing the
one that performs the best [57]. If the results are not satisfy, it may be necessary to go back and
redesign part of the recognition system in order to imprénseperformance, for example by using

different feature reduction techniques or a new learning akgori

Clustering algorithms are usually applied when the avil&xample patterns are not labeled.
Clustering aims at identifying and grouping patterns that cose to each other according to a
certain metric [43]. The results of the clustering processthen usually validated by an expert on
the problem at hand. A cluster may be representative of addynunknown class of patterns. For
example, clustering is often applied in marketing analysisrder to discover classes (or groups)
of customers that have meaningful characteristics (frompthint of view of marketing analysts) in

common.

2.1.2 Multi-Class Pattern Classification

A pattern classifier can be viewed as a function

C:R"->Q, Q={w,ws,.,w)l (2.1)

13



14 2. Pattern Recognition for Network Intrusion Detection

wherew;, i = 1, ..,1 represent the possible classes. Given a paketine classifielC assigns it to a
classC(x) = w* € Q. Given a dataset of labeled patterns=D)(x1, L(X1)), (X2, L(X2)), .., Xm, L(Xm))},
whereL : R" — Qs a (unknown) function that assigns a patterto itstrue classwy 2, supervised
learning algorithms aim at constructing a classifiethat can correctly classify new patterns. We
say thatC is trained on D.

OnceC has been trained, a generic new patterg D can be classified using. As an interme-
diate step towards the classificationzpfC computes thesupportsor scoresui(2),i = 1, ..,1, where
eachy;(2) represents how strongly believes thar € wj. Afterwards, a decision rule is applied on

the supportg(2),i = 1, ..I, in order to assign a label to the patterriTypically, the decision rule is
arg_nl1a>|(,ui(z)) =k = zew (2.2)
1=1,.,

2.1.3 One-Class Pattern Classification

Most supervised learning algorithms work well when thenirag dataset ibalanced i.e., when it
contains approximately the same number of examples fromaass. In the presence of unbalanced
datasets, technigues such as undersampling of the mossegped class, oversampling of the least
represented class, and other similar techniques are ya@lied [45, 15]. However, in case of
two-class problems for which one of the classes of objectgelssampled, whereas the other one
is severely undersampled or not represented (e.g., due fac¢hthat it is too dficult or expensive
to obtain a significant number of training patterns for tHass), resampling the dataset might not
improve the performance and might not even be possible. isncdsespone-class classification
approaches may be applied

One-class classifiers aim at constructing a decision sudemund the example patterns belong-
ing to the most represented class while leaving out the noatteelonging to the least represented
one [100]. The goal is to distinguish between a seiaofet objectsand all the other possible ob-
jects, referred to agutliers Therefore, during the operational phase, if a new patlies inside the

constructed decision surface it will be classified as tag&erwise it will be classified as outlier.

2For simplicity, we are not consider the problem of learniranf noisyexamples.
*Novelty detectiomndoutlier detectionare other terms used in the pattern recognition literaturefer to one-class
classification
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Figure 2.2: Three fundamental reasons why an MCS may work better thasirigée best classifier in the ensemble [28].

2.1.4 Multiple Classifier Systems

A Multiple Classifier System (MCS) is an ensemble of classfighose individual decisions are
combined in some way to make a final decision about new patfef) 57]. For example, a simple
and straightforward way to combine the decision of multiplessifiers is by the application of
the majority voting rule [50, 57]. Assume we want to solve @-wlass problem for which we
constructed three fierent classifiersCq, C,, andCs. Let w; andw; be the two classes. We can
construct an MCS based on the majority voting rule so thatt@ez is assigned to, say, clagg

if at least two out of three classifiers assigrzdd w1, otherwisez is labeled as belonging tos.

It has been shown in many applications that MCS are much nootea@e than any of the single
classifiers they combine. As discussed by Dietterich in,[RBprder for the MCS to perform better
than the single classifiers in the ensemble, the combineditikers need to be accurate and diverse,
in the sense that they need to perform better than the ranaosting algorithm and makeftierent

errors on new patterns. Dietterich [28] explained threesaaa why accuracy and diversity are
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16 2. Pattern Recognition for Network Intrusion Detection

desired (see Figure 2.2). LEt: R" — Q, be the (unknown) function that correctly assigns any
patternz to its true classv,, and assume to havedifferent classifiersi1, Ho, .., Hp, in @ hypothesis
spaceH, constructed so that they approxim&teThe first reason given by Dietterich is statistical.
A learning algorithm can be seen as a search algorithm fieattty find a functiorH € # as close
as possible td=. When the size of the training dataset D is small comparetidsize ofH, the
algorithm may find many dierent functiongH;}i-1 » € H which all have the same accuracy on D.
By combining the output of the classifiglid;}i-1 n, the obtained MCS reduces the risk of choosing
a single classifier that may have poor performance on new @iatasecond reason is computational.
Many learning algorithms have a stochastic component aridrpesome sort of search with random
initialization within 4. These algorithms may get stuck in a local optima. An ensermdhstructed
by running the learning algorithm usingfi@irent initializations may provide a better approximation
of F. The third reason is representational. In many real cesgsH, i.e.,F cannot be represented
by the learning algorithm. By combining thefidirent hypothesiéH;}i—1., € H, it may be possible

to “expand” the spac#{ and find a solution which is closer .

2.1.5 Classification Performance Evaluation

As mentioned in Section 2.1.1, model selection is an imponteart of the process of designing
pattern recognition systems. In order to perform modelctiele, we need a way to compute and
compare the accuracy offterent classification algorithms. The accuracy of a clas<ifie defined

as (1-Perr), wherePerris the probability of error, i.e., the probability of a patie be misclassified

by C. The accuracy can be directly estimated as the fraction wectly classified patters. For
example, assuming the classifiérhas been trained using a training dataset D, given a labeled
dataset of test examples {(z1, L(z1)), (z2, L(22)), ... (zn,», L(zn,))}, with T # D, the accuracy can

be computed as

Accuracy(C) = N%Z 1(C(2) = L(2)) (2.3)

zeT
wherel is the indication function, wherehlya) = 1 if ais true, otherwisé(a) = 0. This method for
estimating the accuracy is callbdld-out Another method, calleld-fold cross-validationis often

used to estimate the accuracy when a limited amount of ldlgdéa is available. In this case the
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2.1 Pattern Recognition 17

training dataset D is divided ik portions, O, .., Dy, of equal size. The classifier is trained on the
union of k — 1) portions and the accuracy is estimated on the one potti@nhias not been used
during training. This process is repeatetimes, testing on a ffierent portion for each iteration.
Thek accuracy measures are then averaged to obtain a moreeativhate of the real accuracy.
For many classification problems the accuracy is not a deitaeasure. For example, consider
a two-class problem for which a class is well representetlandst set, whereas the other one is not
(see Section 2.1.3). Formally, Ibk be the number of test patters of the first class, Badbe the
number of test patterns of the second class. In the condidgaample we havél; > Ny, and the
test dataset is said to leghly unbalanced Suppose now that a classifi€ralways classifies the

patterns as belonging to the first class. In this case

N
Accuracy(C) = N +1N2 =1 (2.4)

It is easy to see that according to the estimated accuracgldissifier performs almost perfectly,
although in fact it will always make a mistake on objects frili@ second class.

Another way to evaluate and compare the performance of aifiasC is by means of the
Receiver Operating Characteristic curve (ROC) and the Aheder the ROC Curve (AUC) [17].
Assume we have again a two-class problem. We can refer to fotie @lasses, say), as the
positiveclass, and the other, say, as thenegativeclass. LetN, be the number of patterns from
classwy, (i.e., the positive classN, be the number of patterns from class(i.e., the negative class),
theFalse PositivesF P, be the number of patterns from the negative class that e drroneously
classified as positive patterns By and theTrue PositivesT P, be the number of patterns from the
positive class that have been correctly classified as pegitatterns. According to the definition
above we can compute the false positive and true positieeatﬁ%, andL—E respectively.

As mentioned in Section 2.1.2, given a test patigi@ computes the supporis(z),i = p, n, for

the positive and negative class. A possible decision rule is
Zewp © up(2)>6 (2.5)

whered is a constant. By varying the threshddt is possible to “tune” the false positive and
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18 2. Pattern Recognition for Network Intrusion Detection

true positive rates generated By The ROC curve is a two dimensional curve. The coordinates
(x,y) of the points on the ROC curve represent the false positieketaue positive rate generated
by C using diferent values of the threshold The ROC curve represents a good way to visualize
a classifier’'s performance and helps in choosing a suitgideating point, i.e., a suitable value of
the decision threshold for the classifierC for which the desired tradefiobetweenFP and TP
is attained. However, when comparingfdient classification algorithms it is often desirable to
obtain a number, instead of a graph, as a measure of claseffiggerformance [17]. Therefore,
the AUC is used as an estimate of classification performambe.highest the AUC, the better the
classification performance of a classifter In particular, the AUC is an estimate of the probability
Pup(zp) > up(zn)), wherez, € wy represents a generic positive pattern, apnc w, represents
a generic negative pattern. Therefore, the AUC is an estioathe probability that the classifier
scores the positive patterns higher than the negative daigés [

Many other methods for estimating and comparing the peidioca of classifiers exist. We
suggest the reader to refer to [51, 29, 44, 57] for a more cetmpgliscussion and for the details on

estimating classification accuracy and performing modeksion.

2.2 Application of Statistical Pattern Recognition to Netvork Intru-

sion Detection

As mentioned in Section 1.2.1, signature-based IDS are Inletta detect really new attacks or
even variants of already known attacks. This is mainly duthéofact that theattack signatures

are usually (semi-)manually written. It isfiicult for security experts to write generic signatures
capable of detecting variants of attacks against a knowmevability. Attempts to manually write
such signatures may easily make the IDS prone to false aldtteckers are aware of this problem
and are constantly developing new attack tools with theativje to evadesignature-based IDS. For
example, techniques based on metamorphism and polymorris used to generate instances of
the same attack that look syntacticallyfdrent from each other, yet retaining the same semantic and
therefore the samefect on the victim [108]. In principle this problem could béveal by designing

vulnerability-specificsignatures [110] that capture the “root-cause” of an ajtduks allowing the

18



2.2 Application of Statistical Pattern Recognition to Netvwork Intrusion Detection 19

IDS to detect all the attacks that try to exploit the same exdhility. This type of signatures usually
works well when implemented as part of host-based IDS. Hewaet is difficult to implement
vulnerability-specific signatures for network-based ID@ do computational complexity problems
related to the high volume of events to be analyzed.

The main motivation in using pattern recognition technifoe IDS is their generalization abil-
ity, i.e., the ability to correctly classify new patternshish may support the recognition of variants
of known attacks and unknown attacks that cannot be detbgtsthnature-based IDS. In the fol-
lowing we briefly report how supervised and unsupervisedniag approaches have been so far

applied to network-based intrusion detection.

2.2.1 Supervised Network IDS

A number of supervised learning approaches for constmieigtwork IDS have been proposed in
the literature, for example [59, 30, 74, 80, 37, 36]. In [5@klLproposed a framework based on data
mining techniques to find a suitable set of features for dléisgy network connections and construct
network IDS. Lee’s analysis brought to the constructiorhef KDDCup’'99 datasehtp: //kdd.
ics.uci.edu/databases/kddcup99/kddcup99.html), which is part of the UCI KDD archive
(http://kdd.ics.uci.edu/). In the KDDCup’'99 each pattern represents a network cdrorec
which is described by 41 features. For example, the numbleytek transmitted by the source and
the destination of the connection, the duration in term®obads, the number of connections to the
same destination machine in a certain time window, are arttengsed features. The features where
derived in order to distinguish between normal connectiand a number of dierent computer
attacks grouped in four categories. RIPPER [23], a ruleniagralgorithm, is used by Lee [59] to
infer classification rules that distinguish between normetivork connections and féerent types

of attacks. Each RIPPER rule consists of a conjunction oflitimms to be tested on values of
attributes that describe network connections. In [30] Elgpesented the results of the KDDCup'99
classifier learning competition. The competition consiste constructing a classification system
capable of distinguishing between legitimate and illegiie network connections. The dataset
used for the competition was derived from the work of Lee [B@ntioned above. Among the 24

participants, the winning classification system [83] wasVlDS constructed using decision trees
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20 2. Pattern Recognition for Network Intrusion Detection

and a combination obaggingand boosting[57]. In [74] artificial neural networks and support
vector machine are compared on the task of classifying m&teannections, whereas [80] compares
decision trees and support vector machines on the sameltaf36, 37] Giacinto et al. proposed
a modular MCS for supervised misuse-based detection ofankteonnections. Each module is
responsible for detecting attacks that use a certain (godupervice(s) as attack vector. Multiple
classifiers are trained on descriptions of network conaestbbtained using fierent subsets of the
set of attributes (or features) proposed by Lee [59]. Thewtudf the obtained classifiers are then
combined using various techniques in order to decide if ameoction is normal or if it is an attack.

In order to apply supervised learning techniques a datasehnining examples of attack pat-
terns as well as normal tifec is needed. In 1998 and 1999 the MIT Lincoln Laboratory wdrke
on a project funded by DARPA for evaluating IDS [65], whichl e the construction of two la-
beled datasets of network ffi@ containing both normal and attackftie. These datasets contain
the traces of several weeks offtia in the (simulated) computer network of an air force basevHo
ever, the obtained datasets, usually referred DARPA 1998ndDARPA 1999have been largely
criticized [70, 67]. The main critique is concerned with fhet that the simulated tfiéc contained
in the DARPA datasets cannot be considered representdteve@eal network tréic. In particular,
the percentage of attack ffi@ contained in the dataset is way larger than the percentagiack
traffic expected for a real network. Moreover, a large part of thenabtrafic was artificially pro-
duced using automatic scripts that cannot accurately simtihe tréfic generated as a consequence
of human behavior. On the other hand, creating a labeledelatd trdfic directly extracting the
raw data form a real network and then analyzing it in ordersgigmn a label to each packet or con-
nection is very hard and expensive. Moreovelfitaraces from dferent networks have fierent
characteristics, therefore the labeling process shoulgeated for each new network we want to

protect. For these reasons, the supervised approacfiicsitiito apply in the general case.

2.2.2 Unlabeled Network IDS

In order to overcome the problems related to supervisedatktiDS, unsupervisedr unlabeled
approaches for constructing anomaly-based network ID8 haen recently proposed [84, 31, 55,

66, 116, 118, 112, 63, 113, 111]. Here there is an ambiguitydEn the terms “unsupervised”
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and “unlabeled” that should be clarified. In the intrusiortedéon literature these two terms are
often used as synonyms, whereas according to the pattesgniéion terminology this may create
confusion. Unfortunately, we were not able to find a clearnitéfn of the diference between the
two terms and the techniques they refer to. We think a passiéfinition that solves the ambiguity
may be the following. We refer tansupervised learning those cases when the (unlabeled) training
patterns are used to find hitherto unknown classes [44], edisewe refer tanlabeled learningn
those cases when the $&bf possible classes is already known and we want do find aifitasion
functionC : R" +— Q using unlabeled examples. As the objective of anomalyébaseusion
detection is to distinguish between two known classes, n@mal and anomalous ffe, in the

following we will refer tounlabeledanomaly detection.

In unlabeled intrusion detection, theffia is directly extracted from the computer network to be
protected and used without the necessity of a labeling peacEhe onlya priori knowledge about
the data is usually represented by two assumptions thatlyisidd in practice: a) the extracted
dataset contains two classes of data, hormal and anomadfiics, b) the numerosity of the anoma-
lous trdfic class is by far less than the numerosity of the normdli¢ralass. In case when these
assumptions are true, novelty detection, outlier-dedactir one-class classification techniques can
be applied to construct anomaly-based network IDS. As roeatl in Section 1.2.1, anomaly-based
IDS have the advantage of being able (at least in theory)textiboth known and never-before-seen
attacks. This ability supports the main motivation (disagsabove) for applying pattern recognition

techniques to develop intrusion detection systems.

NIDES [10] is one of the first unlabeled anomaly detectiontesys. It monitors TCRIDP
ports and source and destination IP addresses. NIDES lauitdsdel of network behavior over a
long-term period, which is assumed to contain a very low amoti(or no) attacks. During the op-
erational phase, NIDES raises and allarm if a network peagigeificantly deviates from the normal
behavior profile. In [68], Mahoney et al. proposed a nonstatiy anomaly detection systems. The
proposed detection systems is made up of two componentspRiid ALAD. PHAD monitors the
traffic on a packet basis. It constructsi@mal modebf 33 fields from the Ethernet, IP, and trans-
port layer packet header. Instead of monitoring single e;KALAD monitors TCP connections. It

constructs a model of normal connections using informatimsource and destination IP addresses
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22 2. Pattern Recognition for Network Intrusion Detection

and TCP ports, TCP header flags, a&mywords which represent the first word on a line of input
for a certain application protocol. The detection algaritis devised in order to assign a high score
to an event , i.e., an attribute having a particular valuapifiovel values have been seen for a long

time for that event [68].

In [84] a variant of the single-linkage clustering algonithis used to discover outliers in the
training dataset. A pattern vector represents a connect@nce the normal patterns are sepa-
rated from outlier patterns, the clusters of normal datauaesl to construct a supervised detection
model. Tests are performed on the KDDCup'99 dataset. In, [B&kin et al. presented a geo-
metric framework to perform anomaly detection. The patteare mapped from a feature spa&ce
to a new feature spade’ and anomalies are detected by searching for patterns éhat Sparse
regions ofF’. Three diferent classification technique are used, a clustering ithgor a k-NN al-
gorithm and a SVM-based one-class classifier. Experimeatpexformed on the UCI KDD dataset
(http://kdd.ics.uci.edu/), both on the portion containing network fiia, and on the portion

containing sequences of system-calls.

The anomaly detectors proposed in [55, 112, 113, 111] aedhgtrdfic on a packet basis. The
focus is on detecting attack packets that carry executalgle.cThis approach is particularly useful
against bifer overflow attacks, which are frequently seen in the wild55] Kruegel et al. proposed
a service specific anomaly detection systems. The main idba base of the proposed approach is
to include information about the protocol into the model ofmal trafic. To this end, they describe
the network packets using three (sets of) features, narhelytype of request (i.e., the protocol
and the type of request for that particular protocol), thekpalength, and an approximation of the
distribution of byte values in the payload. The histograpresenting the distribution of the byte
values in normal payloads is sorted in a discending orddr mspect to the occurrence frequency
of the byte values, and split in 6 bins. An overall anomalyeés computed by combining anomaly
scores computed on the type of the request from the cliehttedrver, the length of the request and
by a measure of similarity between the distribution of bydées in the packet under test and the
distribution in normal tréfic. A variant of the Perasonig test is used to compute this similarity.
Kruegel et al. also proposed a similar model to detect wedgdbattacks through the analysis of

URI strings [56] related to HTTP GET requests. In this caseodehis learned for each specific
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2.2 Application of Statistical Pattern Recognition to Netvwork Intrusion Detection 23

web application hosted on a web server. The length and deardistribution of the parameters
passed to the web application through the URI are analyze@ aetection model is constructed in
a way which is very similar to the one proposed in [55]. Théhatg also propose to combine this
statistical model to a structural model of the URI based omkig\a models. Mahoney et al. [66]
proposed an anomaly detector that uses the first 48 bytesmddkets as features to describe the
network trdfic. Nine diferent network protocols are considered and a separate isaagistructed

for each one of them. The detector assigns a high anomalg szoare events.

In [116], Yang et al. proposed an anomaly detection measltedcEWIND and an unsuper-
vised pattern learning algorithm that uses EWIND to findieuitonnections in the data, whereas
Leung et al. [63] presented a new density-based and grieldbelastering algorithm to perform un-
labeled network anomaly detection. In [118] a two-layer IB$resented. The first layer uses a
clustering algorithm to “compress” the information extestfor network packets, whereas the sec-
ond layer implements an anomaly detection algorithm tosdiaghe patterns received from the first

layer.

Wang et al. [112, 113, 111] develop on the idea presentedShdbd propose a more precise
way to model the distribution of byte values in the payloadchofmal packets. In [112, 113] they
propose to consider the entire distribution of byte valugsaut any binning. A model is trained for
each dfferent service running onfiiérent server hosts in the protected network. For each packet
the frequency of the byte values in the payload (i.e., tha gattion of the packet) is measured
and a simple Gaussian model is trained. The detection of aloas packets is performed by using
a simplified Mahalanobis distance between the packets and the modelrofahdrefic. As the
distribution of single byte values in the payload do not astrstructural information, they also
propose to generalize the detection model by measuringishébdtion ofn-grams, i.e., sequences
of n consecutive bytes in the payload. In [111] a new way to mduehiormal tréfic is presented.
The authors propose to use a Bloom filter [18] to store infaiwnaabout the distribution of n-
grams [24] in the payload. Compared to [112, 113], the tephmpresented in [111] provides a way
to ficiently store structural information extracted from thglpad and improves the classification
accuracy. The authors first propose an unlabeled learnipgbagh, whereby a model of normal

traffic is trained on a dataset of payloads which are consideretdynmasmal. Then they propose to
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24 2. Pattern Recognition for Network Intrusion Detection

improve the detector by adding a supervised learning pluaseristruct a model of known attacks.

Statistical models of normal tiiéc are also used to detect Distributed Denial of Service (DDoS
attacks. In [32], for example, the authors propose to measrdistribution of a number of fields in
IP packet headers in order to create a model of normfildeassing through a router. A statistical
distribution of the values is estimated for a number of fiaddsing a period of lengtW. This
distribution is considered asreormal profileof traffic. Future tréfic is compared to the obtained
distributions by means of g statistical test. Trdic which is significantly dferent from the normal
profile is considered anomalous and possibly generate by @dtack. Therefore, a response is
activated in order to reduce the impact of the detectedlatt@r anomalies) [32].

It is worth noting that some of the work briefly presented heitebe described in more details

in the next chapters.

2.2.3 Feature Extraction for Network Intrusion Detection

In the pattern recognition literature, the term “featurdraotion” often refers to the process of
projecting the patterns from an original feature spade a new feature spade’ with the objective

of reducing the dimensionality of the feature space. Inodases the term “feature extraction”
refers to the measurement of the features themselves. SJoilesrwise specified, in the remainder
of this thesis we refer to feature extraction as the “featoeasurement” process, namely the process
through which the features used to describe the patters @asured.

The feature extraction process is a fundamental part oféseyd of a pattern recognition sys-
tem. Because the features describe the patterns to bdieldsshoosing the wrong features usually
heavily influences the results of the learning phase, arglttirioverall performance of the recogni-
tion system. The choice of what features might be the mottldei often involves a broad expertise
on the problem at hand. It is worth noting that in networkuston detection the features to be
measured are strictly related to what kind offiathe IDS is going to analyze and to what kind of

attacks we want to detect, as discussed in Section 2.2.Ing®ekction 2.2.2.
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Chapter 3

Unlabeled Anomaly Detection

As mentioned in Section 2.2.1, the application of supedvigarning approaches for designing
network IDS is hampered by the problems in obtaining a remtasive labeled dataset of network
traffic. For this reason, unlabeled anomaly detection approdwhes been recently proposed, for
example in [84, 31, 112, 111].

In this chapter we discuss unlabeled anomaly detectiomigabs that aim to learn how to dis-
tinguish between normal and attack (or anomalous) netwankections from unlabeled examples.
We will first give a precise definition of the problem. Aftemda, we will present some related
work on the topic and some of the challenges related to ulddeEnomaly detection in general.
Because learning from unlabeled is inherently hard, réce@nbposed unlabeled anomaly detectors
tend to be prone to a high rate of false alarms. We will proopessible solution to the unlabeled
anomaly detection problem based on a modular Multiple @iesSystem (MCS), and show that
the proposed approach improves the classification accu@mpared to approaches proposed by

other researchers.

3.1 Problem Definition

The trdfic over a TCHP network consists of packets related to communicatiohsd®n hosts. The
exchange of packets between hosts usually fits irclieat-serverparadigm, whereby a client host

requests some informatiortered by a service running on a server host. The set of pacated
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26 3. Unlabeled Anomaly Detection

to the communication established between the client ardsgivice running on) the server forms
a connection Each connection can be viewed as a pattern to be classifeethametwork-based

anomaly detection problem can be formulated as follows:[36]

Given the information about connections between pairs stdhaassign each connection to the

class of either normal or anomalous ffia.

3.2 Difficulties in Unlabeled Anomaly Detection

Learning from unlabeled data is mordifiiult than learning from labeled data [43]. Due to the
inherent dfficulties in learning from unlabeled data, unlabeled anordatgction systems usually
sufer from a relatively high false positive rate. It turns ouatthigh false positive rates cause a
significant decrease in the Bayesian detection rate, asrshothe following. As we will discuss
later in this chapter, it is extremely important to improte performance of anomaly detectors in

order to attain a very low false positive rate and a high detecate at the same time.

3.2.1 The Base-rate Fallacy

The base-rate fallacy is a logical fallacy that occurs wheking a probability judgment without
taking into account priori probabilities. As an example, consider e medical Te§br a disease
D which is 99% accurate, i.e., the probabilB(T = positivdD) that the result ofT is positive
given that the patient is sick, and the probabiRRgT = negativé-D) thatT is negative given that
the patient is not sick are both equal to 0.99. Given a patidmt was found to be positive to the
medical tesfT, we want to know what is the probabilitg(D|T = positive) that the patient really
sufer from the diseasP. A quick (but wrong) judgment may bring us to believe thatdinswer is
P(D|T = positive) = 0.99. This answer does not take into account the incidenceeoflidease in
the population, i.e., tha priori probabilities. Now, leP(D) = 10~ be the rate of incidence @ in

the population under study, al{-D) = 1 — P(D). We can easily compute the correct answer by
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3.2 Difficulties in Unlabeled Anomaly Detection 27

means of the Bayes formula

P(T = positivgD) - P(D)

P(D|T = positive)= P(T = positiveD) - P(D) + P(T = positivg-D) - P(=D)

(3.1)

which gives
" 0.99-10%
P(D|T = positive)= = 0.0098 (3.2)
0.99-104+0.01-(1-10%

This means that even if the the test is 99% accurate, the Ipititpaf the patient being sick is less

than 1%.

The same reasoning applies to the intrusion detection @mblin [12], Axelsson presents a
simple example considering a hypothetical installaticet thcludes a few tens of computers. Let
assume this computers produce adidit records per day through logging. He also hypothesis th
given the limited number of computers, the number of attapekdays is limited to just a few. If we
assume, say, 2 intrusions attempts per day and 10 audidregported per intrusion, the priori
probabilities of an audit record being related to an attd(k), and to normal activitiesP(=lI),
would be 2- 10°° and 099998, respectively. Assume we deployed an IDS which mmnite audit
records mentioned above. LE(A|l) be the probability that the IDS raises an alarm given that an
intrusion occurred, i.e., the detection rate, 844|-I1) be the probability that the IDS raises an alarm
given that no intrusion occurred, i.e., the false alarm.ratee probabilityP(l|A) that an intrusion

really occurred given that the IDS raised an allarm is

P(AI) - P(T)
P(AIl) - P(I) + P(A-l) - P(=l)

P(I|A) = (3.3)

It is easy to see that the factor governing the detection R(1§ = 2 - 107>, is completely over-
whelmed by the factor governing the false positive r&tg;l) = 0.99998. This is what causes the
fallacy to arise [12]. As an example, assume a (unrealiptichect detection rat€(All) = 1.0, and

a very low false positive ratd?(A|-1) = 1-107°. In this case the Bayesian detection rate is only
P(1]A) = 0.66, that is there is a 34% chance that no intrusion occurred #nough the IDS raised an
alarm. Figure 3.1 shows how the base-rdfecisP(1|A) for varying detection rate and false allarm

rate.
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Figure 3.1: The base-rate fallacy problem [12].

In the applications we consider in this chapter we are comckwith analyzing network connec-
tions instead of system logs. The problem presented ab@leso this case as well, given that we
expect the number to network connections related to iringsio be overwhelmed by the number of
normal connections. The only way to mitigate the base-redblpm seems to be the improvement
of the classification accuracy of the IDS in order to make ttlase as possible to the ideal situation

of 100% detection rate and 0% false positive rate, thus miaiimP(1|A).

3.3 State of the Art

In Section 2.2.2 we briefly reported the most relevant workiabeled anomaly detection. Among
the studies described in Section 2.2.2, the closest to oare mresented in [84] and [31], which
are described in more detail in the following. Both in [84[d4d81] the authors assume that the
traffic is extracted from the computer network to be protected anohiabeled. The onlg priori
knowledge about the data is represented by two assumptianhsisually hold in practice: a) the
extracted dataset contains two classes of data, normalraomdadous tréic; b) the numerosity of
the anomalous tfAc class is by far less than the numerosity of the norméidtralass.

In [84], Portnoy et al. used an online clustering algorittergtoup similar network connec-
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tions. Given a metridM and a cluster widthv, instances (i.e., network connections) are picked up
one by one from the training dataset. AccordingMa distance is measured between the instance
and the centroid of the already existing clusters. The it&tds assigned to the closest cluster if
the minimum distance is less than otherwise the instance initializes a new cluster. Aftétlad
instances in the training dataset have been grouped thmethtelusters are labeled. According to
the assumption that the numerosity of the anomaloudBdrelass is by far less than the numerosity
of the normal tréfic class, the clusters are labeled by numerosity and theslaoges are labeled
as “normal” until a certain percentage of instances arereayend the rest of the clusters are then
labeled as “anomalous”. During the detection phase a distsxmeasured between the instance
under test and the centroids of the clusters obtained dird@iging. The instance is classified ac-
cording to the label associated to the closest cluster. trpats are performed on the KDDCup’99
dataset. The approach proposed by Portnoy is “monolitii¢hé sense that one detection model is

constructed for all the possible network protocols.

In [31], Eskin et al. propose to project the patterns from dgiwal feature spack to a suitable
feature spacé&’, and then to apply outlier detection algorithmsHhin order to isolate the attack
patterns from the normal ones. The proposed detectionitilger are based on the dot product
among pattern vectors, therefore kernel functions may peapy and there is no need to explicitly
map the patterns frori to F’. Assuming that the numerosity of the class of normal conmest
is by far higher than the numerosity of the class of anomatmmnections, the authors propose
three diferent algorithms for anomaly detection. The first algoritarcluster-based. Given a
patternx, the algorithm estimates the local density arouny counting the number of patterns
in a hypersphere of radius centered irx. Points that are in low density regions are classified as
anomalous. The second algorithm is based on a variant dé-Mid algorithm. If the sum of the
distances betweexand itsk nearest neighbors is greater than a certain threskakiconsidered
anomalous. The third algorithm is the one-class SVM by &b et al. [92]. Similarly to [84] the
anomaly detection algorithms are applied using a “moniclitapproach, i.e., one detection model

is constructed which takes into account all the possibleort protocols.
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30 3. Unlabeled Anomaly Detection

3.4 Performance Improvement Using a Modular MCS

As discussed in Section 3.3, the anomaly detection systeop®ged in [84] and [31] are based on
a “monolithic” approach. A single classifier is constructedrder to distinguish between normal
and attack connections, regardless of the network praté®keach network protocol hasfitirent
characteristics, it is hard to construct a precise modebofal trafic by using a single classifier.
In the following we propose a modular approach. Accordinght diferences among protocols,
one or multiple classifiers are constructed in order to madeahal connections related tofidirent
(groups of) protocols. We then compare the obtained resultsthe results obtained by using a

“monolithic” approach.

3.4.1 Assumptions

As in [84] and [31], we assume that theffrais directly extracted from the computer network to be
protected, and used without need of a labeling process. filyeagriori knowledge about the data

is represented by two assumptions that usually hold in joeact) the extracted dataset contains
two classes of data, normal and anomalouSitrab) the numerosity of the anomalousflraclass

is by far less than the numerosity of the normafiicaclass. The latter assumption is usually true
unless Distributed Denial of Service attacks (DDoS) or ntoerdinated attacks are occurring while
the trdfic is snifed from the network. However, as DDoS attacks usually hageotijective of
exhausting the network resources, thedteets are in general easy to detect. We then need to be
careful and use only the tifec we believe was not sffied during such attacks. Assumption b) is also
supported by the fact that signature-based IDS can be uggdrie known attacks from the #i@d

traffic in order to reduce the numerosity of the attack class inrthirihg dataset.

3.4.2 Modular Architecture

As mentioned in Section 3.1, each connection is related tarécplar service. Oterent services
are characterized by fierent peculiarities, e.g., the fii@ related to the HTTP service isftrent
from the trdfic related to the SMTP service. Besides, dedént services involve fierent soft-

ware applications, attacks launched again§edent services manifestftrent characteristics. We
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Figure 3.2: Modular architecture

propose to divide the network services imtogroups, each one containing a number of “similar”
services [37]. Thereforen modules are used, each one modeling the normgéiidnalated to one
group of services. The intuitive advantage given by the radapproach is supported by the results
in [61], where Lee et al. used information theory to meashes*tomplexity” of the classification
task. The subdivision of services into groups turns into@ekese of the entropy of each subset of
data, which in general coincides to the ability to consteuctore precise model of the normalffra

An example of how the services can be grouped is shown in &ig§L#, where the groupings refer
to the network from which the KDD-Cup 1999 dataset was ddr{gee Section 3.5). In Figure 3.2,
a “miscellaneous” group is used to aggregatéedent services that are rarely used in the computer
network at hand. It is worth noting that the number of groups the type of services in each group
depend on the network to be protected, dedent networks may provide féerent services with

different characteristics.

3.4.3 Overall vs. Service-Specific False Alarm Rate

Anomaly detection requires setting an acceptance threégheb that a trific patternx is labelled

as anomalous if its similaritg(x, M) to the normal modeM is less theri. The similarity measure

s depends on the particular technique chosen to implememhtdel of normal tréic M. As we

use diferent modules (i.e., fferent models) for dierent services, a method to tune the acceptance
threshold for each module is necessary. In order to solgeddlk, we propose an heuristic approach
whereby given a fixed tolerable false alarm rate for the ID8 dverall detection rate is optimized.

Let m be the number of service-specific modules of the IBEAR be the overall tolerable false
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32 3. Unlabeled Anomaly Detection

alarm rateF AR be the false alarm rate related to thth moduletj be the acceptance threshold for
thei-th module;P(M;) = nj/n be the prior distribution of the patterns related to itk group of

services (i.e., the moduldyl; in the training data, wheng is the number of patterns related to the
services for which the modull; is responsible and is the total number of patterns in the training

dataset. Accordinglyi-ARis defined as

m

FAR= Z P(M;) - FAR (3.4)

i=1

Given a fixed value of the tolerable false alarm ra#&R for the IDS, there are many possible
ways to “distribute” the overalF AR on them modules. A value oFAR has to be chosen for
each modulaVi; so that Equation (3.4) is satisfied. Oncd-AR has been set for each module
M;, the thresholds; can be chosen accordingly. As a first choice, we could~¢d® = FAR for
each moduleVi;. This choice satisfies Equation (3.4) and appears to bemabkn given that no
service is seemingly penalized. Nevertheless, this chmiesents two drawbacks. One drawback
is related to the actual number of false positives genelagezhch service. As the number of false
positives is proportional t&(M;), the group of services (i.e., the module) accounting ferl#ngest
portion of the tréfic produces a number of false alarms that is by far larger thamne produced
by poorly represented services (i.e., those services wdnietrarely, or not so often used in the
network). This behavior is not adequate as the modules diBehat produce an overwhelming
number of false alarms could be “turnefi”doy the network administrator. The other drawback is
related to the relation betwedmPAR and the detection rate of theh service,DR,. We observed
experimentally that for a fixed value 6fAR, the corresponding value &iR; strongly dipends on
P(M;). In particular, the largeP(M;) the largeDR;. This dfect can be explained as follows. Small
values ofP(M;) are related to services rarely used in the network, whesebmaller training set
for M; can be extracted and the corresponding classifier(s) inrglemdl not be able to adequately

model the normal tif&c.

According to the considerations reported above, given d fi#®Rwe propose to compufeAR

as
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1

AR (3.5)

This choice satisfies Equation (3.4) and allows us to attaihigher overall detection raeR
than that attained by choosing a fixed valugR = FARfor each module.

In order to set an acceptance threshpkdr the moduleM;, to obtain the false alarm rafeAR
computed as in Equation (3.5), we propose the followingikdar Let us first note that for a given
value oft;, the fractionpy, (t;) of patterns rejected byl; may contain both patterns related to attacks
and false alarms. Let us denote wghi(t;) the fraction of rejected attack patterns using the thrieisho
t;, and with far(t;) the related fraction of false alarms. It is easy to see thafallowing relation

holds:

Pri(t) = pa () + fari(t) (3.6)

We want to set; so thatfar;(t;) is equal to the desired false alarm r&t&R (computed by using
(3.5)). As for a given value df the only measurable quantity in Equation (3.6) is the rajadatate
pr, (i), we need some hypothesis pg(ti) so that we can estimater;(t) = pr,(t) — pa(ti), and
therefore we can choggein order to obtainfar;(tj)) = FAR. We propose to assungg, (t) = Pa,
whereP,, is the expected attack probability for théh servicé. In other words, we assume that for
a given threshold value, the rejected patterns are made alb thie attacks related to that service
contained in the training set, plus a certain number of nbpaterns. Thus, having fixed the value
of py(ti)) = P4, we can tung; in order to obtainfar;(t) = FAR.

It is easy to see that the computed threshaldestimated according to the heuristic described
above) produce the required over@AR (see Equation (3.4)) only if the fraction of patterns regeict
by each module actually contains all the attaoks P,, wheren; is the total number of training
patterns for the modul®l;. If this is not the case and the rejection rgieincludes just a portion
of the attacks, a larger number of false alarfas (t)) > FAR will occur. However, if the training

dataset is a good sample of the real networlfitawve expect most of the attacks will “look ftierent

2In practice, if the network is already protected by “staddaecurity devices (e.g., firewall, signature-based IDS,
etc.), we may be able to estimefg from historical data related to attacks to the network serivihat occurred in the
past.
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from normal trdfic and will be likely deemed outliers and rejected by the model

3.4.4 Service-Specific MCS

Lee et al. [60] proposed a framework for constructing theéufiess used to describe the connections
(the patterns). The derived set of features can be subdivite two groups: i) features describ-
ing each single connection; ii) features related to staistneasures on “correlated” connections,
namely diferent connections that have in common either the type ofcgetivey refer to or the des-
tination host (i.e., the server host). The latter subseg¢atifres is usually referred tgffic features

On the other hand, the first group of features can be furthedigided into two subsets, namely
intrinsic featuresandcontent featuresThe intrinsic features are extracted from tieadersof the
packets related to the connection, whereas the contenirésatre extracted from thpayload(i.e.,
the data portion of the packets). We cilthe entire set of features amdC andT the subsets of

intrinsic, contentandtrayfic features respectively, so thlat=1 UC U T.

As explained in Section 3.4.2, our IDS is subdivided into enbar of modules. Each module
implements a model of the normal fiia related to a group of services, so that a module can be
viewed as aervice-specifitDS. The problem of modeling the normalfiia for each module of the
IDS can be formulated essentially in twdldrent ways: i) a “monolithic” classifier can be trained
using all the available features to describe a patternuldssts of features from the three groups
described above can be used separately to tréi@rdnt classifiers whose outputs can be combined.
Depending on the dimensionality of the feature sphaad the size of the training set, one approach
can outperform the other. In particular, a multiple classifipproach can betfective when the use
of a “monolithic” classifier sffers from the “curse of dimensionality” problem, i.e. thdrinag set
n; is too small with respect td [29]. We propose to use, when needed, a MCS that consistthef ei
two or three classifiers, depending on the modulenve consider. When a two-classifiers MCS is
used, the module is implemented by training two classifiarswo different features subsets, namely
lUC andl UT. On the other hand, when a three-classifiers MCS is used, ddelmis implemented
by training a classifier on each single subset of featuraaghaone classifier is trained by using the

subset, one by usingC and one by using (see Figure 3.3).
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Figure 3.3: Feature subsets for service-specific MCS

3.4.5 One-Class Classification

One-class classification (also referred to as outlier detgctechniques are particularly useful in
those two-class problems where one of the classes of oligagtdl-sampled, whereas the other one
is severely undersampled due to the fact that it is tdicdit or expensive to obtain a significant
number of training patterns. The goal of one-class classifio is to distinguish between a set of
target objectsand all the other possible objects, referredbasiers [101, 100]. A number of one-
class classification techniques have been proposed inténatlire. Following the categorization
of one-class classifiers proposed by Tax [100], they can bdigded into three groups, namely

density methods, boundary methods and reconstructionaaigth

We decided to use one classification method from each cgtégomplement the service-
specific MCS modules described in Section 3.4.4 in order topaoe diferent approaches that
showed good results in other applications. In particula chose the Parzen density estimation [29]
from the density methods, theSVC [92] from the boundary methods and the Kameans algo-
rithm [43] from the reconstruction methods. These onesotéassifiers exhibited good performance
on a number of applications [100]. Besides, the output oktheeans ana-SVC classifiers can be
redefined as class-conditional probability density fuortdi so that they can be correctly combined
with the output of the Parzen classifier (see Section 3.¥\@)also trained the clustering technique
proposed by Eskin et al. [31] in order to compare the resfifssocombination of “standard” pattern

recognition techniques with an algorithm tailored to thé&abeled intrusion detection problem.
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Parzen Density Estimation

The Parzen-window approach [29] can be used to estimateetisity of the target objects distribu-

tion

P = = > oo (2 @7)
i=1

wheren is the total number of training patterns belonging to thgedarclasswy, X; is thei-
th training patterny is a kernel functionh is the width of the Parzen-window amx|w) is the

estimated class-conditional probability density disttibn. When the Gaussian kernel

o) = =g el 51 @9

)2

is used,p(x|wt) can be written as

n 112
Pixlw) = £ % g exp(- L ) s=h?. (3.9)
i=

and the one-class Parzen classifier can be obtained by ssafilpg a threshold whereby a

patternz is rejected (i.e., deemed an outlier)pfz|w;) < 6 [100].

k-means

Thek-means classifier is based on the well-kndwmeans clustering algorithm [43]. The algorithm
identifiesk clusters in the data by iteratively assigning each pattertné nearest cluster. This
algorithm can be used as a one-class classifier by clustérngaining set and then computing the

distanced(z, w;) of a test patterz from the target distribution; as

d(z, wr) = min |iz - uil (3.10)

wherey; represents thieth cluster center. If the distance is larger than a thraestidhe pattern
will be rejected [100]. It is hard to map the distardie, w;) into a probability density distribution

and thus the combination of themeans one-class classifier with density-based classféays the
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Parzen classifier) may produce unreliable results, as wihplained in Section 3.4.6. In order to
allow this algorithm to produce an output that can be inegu as a probability density function,

we propose to use all tHedistances between the test patteiand the centroidg; as follows

— 112
i=

(3.11)

s=avg llwi —ujll, 1,j=12,..k
1)

In other words, we model the distribution of the target claga mixture ofk normal densities,
each one centred on a centrpid An heuristic is used to compusas the average distance between
the k centroids. As for the one-class Parzen classifier, the ss-&-means classifier based on
Equation (3.11) can be obtained by setting a threstaltlereby a patternis rejected ifp(zjw;) < 6.

It is worth noting that the same number of distanies uj|| have to be computed both in (3.10) and
(3.11). Besides, the number of centroids is in general chtwsbe low, therefore can be éiciently
computed. This means that the proposed probability derstynate does not add appreciable

complexity to the classifier.

y-SVC

Thev-SVC classifier was proposed by Scholkopf et al. in [92] anidispired by the Support Vector
Machine classifier proposed by Vapnik [107]. The one-cldassdication problem is formulated
to find an hyperplane that separates a desired fraction dfrdiéing patterns from the origin of
the feature spacB. This hyperplane cannot always be found in the originaluieaspace, thus a
mapping functiond : F — F’, from FF to a kernel spac&’, is used. In particular, it can be proven

that when the Gaussian kernel

Ul
K(x,y) = O(x) - D(y) = exp(—”x 2sy” ) (3.12)

is used, itis always possible to find a hyperplane that saheeseparation problem. The problem

is formulated as follows:
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Mifw g, (3 IWIE = p + 55 Za)
|
(3.13)
W-o(xi)zp-&i, &0 Vi=1.,l
wherew is a vector orthogonal to the hyperplaneiepresents the fraction of training patterns
that are allowed to be rejected (i.e., that are not sepafedadthe origin by the hyperplane); is
thei-th training pattern| is the total number of training patternsz= [£1, ..,&]" is a vector of slack

variables used to “penalize” the rejected pattegnsgpresents the margin, i.e., the distance of the

hyperplane from the origin.
The solution of (3.13) brings to the decision function, fayemeric test pattern, formulated as

fovd2) = | (; aiK (xi,2) > p), Y =1 (3.14)

wherel is the indicator functioh and the parameters andp are provided by the solution of
(3.13). According to (3.14), a pattemis either rejected iffs,(z) = 0 or accepted as target object if

fsvdz) = 1. When the Gaussian kernel (3.12) is used, the output of-8M¥C can be formulated in

terms of a class conditional probability by

lIx-x{lI?
p(Xlw) = —L7 3 @i - KX, %) = 2 ai—L1 e (3.15)
(2r-9)2 (2r9)2

which respects the constraiyﬁg,j p(X|wy)dx = 1.
It is worth noting that in general only a small number of €méentsq; will be different from
zero, thusp(x|w¢) can be éiciently computed. The training patterrswhereby the related; # O

represent the support vectors for th&VC. The acceptance threshold can be rewritten as

p=—t (3.16)
(2r- 9

so that a pattera will be considered an outlier ip(zlw;) < p’.
It is worth noting that Tax et. al [102] independently formmgd a SVM-based one-class classi-

31(X) = 1if xis true, otherwisé(x) = 0
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fier whose solution is identical to the one of h&VC when the Gaussian kernel is used.

3.4.6 Combining One-Class Classifiers

Traditional pattern classifiers can be combined by usingymd#ferent combination rules and meth-
ods [57]. Among the combination rules, then, max meanandproductrules [50] are some of the

most commonly used. These combination rules can be easiliedpvhen the output of the clas-
sifiers can be viewed as anposteriori probability P(w;|x), wherep; refers to the output of the

i-classifier, whereasj is the j-class of objects. In case of a two-class problem,ahgosteriori

probability can be written as

pi (Xlw;j)P(wj) _ pi (Xlwj)P(wj)
pi(X) pi(Xlw1)P(w1) + pi(Xlw2)P(w2)’

Pi(wjlx) = j=12 i=1.L (317)
whereL is the number of classifiers. Unfortunately, in case of dasscclassifiers in general it
is not possible to reliably estimate the probability dimition of one of the two classes, namely the
probability density of the outlier objects (i.e., one of teems in the denominator in (3.17)). Tax et
al. [101] proposed to consider the distribution of the @utto be constant in a suitable region of the
feature set, so that tteeposterioriprobability for the target class, for example, can be appnaied

as

Pi (Xlwt) P(wt)

PilalX) = R )P(@) + 6 - Plag)’

=1,.,L (3.18)

wherew; represents the target clagsg, represent the outlier class aads the uniform density
distribution assumed for the outlier patterns. Let’s cdasinow the traditionaineancombination

rule. We need to compute

p(wilx) = % i1 Pi(wilX)
(3.19)

H(wolX) = % ZiL:;L Pi(wolX)

and the decision criterion is
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xis an outlier & u(wlx) < pu(welX) (3.20)

If we assumep;(x) ~ p(x), Vi, we can write

(o) Plw) _ 1P
H(wjlx) = L— p(xug&) @) _ i é(c;?)) ~1 Pi(Xlwj) (3.21)

wherej =t,0(i.e., (3.21) is applied to both the target and the outliass). In this case we can

compute
1 L
YavglX) = T ) PilXlwr) (3.22)
i=1
g _ Po) 1 S
= ) EZ; (3.23)

and the decision criterion (3.20) becomes simply

x is an outlier & yayg(x) < ¢ (3.24)

which means that we can combine the class-conditional pilityadensity functions, instead
of the a posteriori probabilities estimated by each classifier. The obtaigg(x) can be used as
a standard one-class classifier output and the threshaidn be independently tuned to attain the
desired traded between false positives (i.e., target objects classifieltiers) and false negatives
(i.e., outliers classified as belonging to the target cla$h)s approach is (almost) exactly like the
one proposed in [101] and [100] and can be extended tmthemaxandproductrules.

Another approach is to estimaR(w:|x) and P;(we|X) so that the decision criterion (3.20) can
be used directly. For each one-class classifiee have

! _ Pi (Xlwt) P(wt)
Pi(t) = 5rwre4 Fog

(3.25)

X — 9i'P( o)
Pi(wolx) = pi (Xlwt)P(wSJWi -P(wo)

and, setting; = 6; - FF’,((“:)O)), the decision criterion for the classifiecan be written as
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3.4 Performance Improvement Using a Modular MCS 41

X is an outlier & pi(Xlwy) < T (3.26)

It is worth noting thatr; represents the decision threshold applied on the outputssifieri.

According to (3.25) we can write

_ _ pi(Xlwr) 3
Pi(wi|x) = e+ 1,.,L (3.27)
Tj o
Pi(wolX) = ) -1 =1.,L (3.28)

In practice, we can set the threshotgso that a given rejection rate is produced by each single
one-class classifier. Once the threshatdsi = 1,.., L, have been set, the posterior probabilities
can be estimated using (3.27) and (3.28), and the rule (8&0)e applied. This approach can be
extended to thenin, maxandproductrules by computing:(w|x) andu(we|X) according to the new
rule and then applying (3.20).

As mentioned in Section 3.4.5, it is not possible to directlgke use of the output of one-
class classifiers that implement boundary or reconstmuetiethods in (3.22), (3.27) and (3.28). In
order to solve this problem, Tax et al. [101] proposed anikgtiapproach to map the output of

“distance-based” classifiers to a probability estimate

P(Xlwr) = exp(—@) (3.29)

wherep(x|wt) is the output to be mapped (e.@(Xlwt) = mMini—1 kX — will, if the k-means
classifier is considered). However, in gendPaloes not repsect the integral constraint for a density

probability distribution, whereby

f P(X|wy)dx # 1 (3.30)
Rd

This fact may produce some problems, especially when thmubuf “distance-based” one-class
classifiers is combined with density-based classifiers, (#g Parzen classifier described in Section

3.4.5), which respect the integral constraint by definitiom the other hand, the methods proposed
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in Section 3.4.5 to compute the output of #ieneans ana-SVC classifiers do not $ier from this

problem and the decision criterion (3.24) can be used withather output transformations.

3.5 Experimental Results

Experiments were carried out on a subset of the DARPA 1998&sdatistributed as part of the
UCI KDD Archive (http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html). The
DARPA 1998 dataset was created by the MIT Lincoln Laboraggmgup in the framework of the
1998 Intrusion Detection Evaluation Prograibnt{p://www.1ll.mit.edu/IST/ideval). This
dataset was obtained from the networktitaproduced by simulating the computer network of an
air-force base. It consists of seven weeks dticalata for training purposes, and two weeks of data
for testing. A subset of the tfiic of the DARPA 1998 dataset has been mapped to a pattern recog-
nition problem and distributed as the KDD-Cup 1999 datagke training set is made of 494,020
patterns, and the test set contains 311,029 patterns. Edighnrprepresents a network connection
described by a 41-dimensional feature vector accordingecet of features illustrated in Section
3.4.2. In particular, 9 features were of the intrinsic typ8,features were of the content type, and
the remaining 19 features were of thefi@type. Each pattern of the data set is labelled as be-
longing to one out of five classes, namalyrmal trgfic and four diferent classes of attackrobe
Denial of ServicdDoS),Remote to LocalR2L), andUser to Roo{U2R). The attacks belonging to

a certain attack class are designed to attain the séi@et by exploiting diferent vulnerabilities of
the computer network.

The DARPA dataset has been widely criticized [67, 70]. Thennaaiticism is related to the
fact that the tréiic traces reported in the dataset are not representativesaf agtwork scenario. In
particular, it is worth noting that the prior probabilitieéthe attack classes included in the DARPA
1998 dataset (and thus in the KDD-Cup 1999) cannot be caesidepresentative of the ffe in
a real network. This fact has been clearly pointed out integoe of the DARPA corpus of data by
McHugh [70]. Although this dataset has been criticizeds iturrently used by researchers because
it is the only reference dataset that allows the designecsiapare results obtained usindfdrent

intrusion detection techniques.
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In order to perform experiments witinlabeledintrusion detection techniques, we removed the
labels of all the training patterns to simulate thdabeledcollection of network triic. Besides, we
relabeled the patterns of the test set as belonging eitliee tiormal trgfic class or to the “generic”
attackclass, thus discarding thefiirent labels assigned to attack patterns relatedfierdnt classes
of attack. Nominal features have been converted into nwalevalues according to the procedure
in [31]. Given a nominal feature witNl possible distinct values, it is mapped to a vector of length
N, i.e., the vector contains one coordinate for every possiblue of the feature. When a particular
value of the feature is mapped on the vector, the coordirategponding to the value of the feature
is set to YN, whereas the other coordinates (i.e., the ones correspptalithe otheN — 1 possible
values for the feature) are set to zero.

According to the description of the modular architecturespnted in Section 3.4.2, we divided
the trdfic of the data set into six subsets, each one related to “sinsitavices: HTTP, containing
the trdfic related to the HTTP protocoETP, containing the tréiic related to the control flow and
data flow for the FTP protocol, and the fiia related to the TFTP protocoNlail, containing the
traffic related to the SMTP, POP2, POP3, NNTP, and IMAP4 prototGIgiP, containing the triic
related to the ICMP protocoPrivate&Other, containing the tréiic related to TCRJDP ports higher
than 49,152;Miscellaneous containing all the remaining tfiac. For each module, the features
taking a constant value for all patterns have been discanledided that these features have a
constant value by “definition” for that service, and not byabe. For example, the intrinsic feature
“protocoltype” is always constant and equal to the value “TCP” for hitip, and mail services,
thus for those services it can be discarded. As a result,gch enodule we used a subset of the
41 available features, namely: 29 features for#HielrP module; 34 features for thETP module;

16 features for théCMP module (in particular, the content features were discaedeithey have no
meaning for the ICMP tiéic); 31 features for th&lail module; 37 features for thiiscellaneous

module; 29 features for tHerivate&-Other module.

3.5.1 Training Set Undersampling

As mentioned above, the prior probabilities of the attaelssés in the training portion of the KDD-

Cup 1999 dataset cannot be considered representative wéfifiein a real network. The analysis
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HTTP FTP Mail ICMP Private & Others | Miscellaneous
Normal 61,885 4,172 9,677 1,288 12,998 7,257
(96.55%) | (78.16%) | (99.83%) | (0.46%) (81.27%) (98.33%)
Attacks 2,208 1,166 16 28,1250 2,996 123
(3.45%) | (21.84%) | (0.17%) | (99.54%) (18.73%) (1.67%)

Table 3.1: Composition of the training set before the undersamplirgsph

HTTP FTP Mail ICMP Private & Others | Miscellaneous
Normal 61,885 4,172 9,677 1,288 12,998 7,257
(99.83%) | (96.60%) | (99.83%) | (69.66%) (96.09%) (98.33%)
Attacks 106 147 16 561 529 123
(0.17%) (3.40%) (0.17%) | (30.34%) (3.91%) (1.67%)

Table 3.2: Composition of the training set after the undersamplingspha

of the training set confirmed that it contained a large faactf attacks compared to normalftia
patterns, as show in Table 3.1. This violates the first assampehind unlabeled techniques, i.e.,
connections containing attacks should account for a srodliqm of the network triiic. As typical
network trdfic satisfies this assumption [84], we filtered the trainingseethat the selected data
satisfied this assumption. To this end, for each service taged all the normal connections, while
we sampled the attack patterns so that they accounted fer df3he total tréfic. This sampling
procedure is similar to the one performed by other reseesd&d, 31]. Let us recall that each
attack classs made up of connections related to a number fiedentattack typeseachattack type
designed to produce the sameet of all the attacks in the same class. For each type ofkatsac
different number of patterns is available because each attpekptpduces a fferent number of
connections, and because of the simulations carried oirtgitire DARPA programme. A number
of techniques can be used to sample a set of data such thasthiémg subset is representative of
the whole data [15].

In the reported experiments we reduced the percentageaukatby reducing the number of
those attacks accounting for a number of connections largar 973, which is 1% of the total

normal connections. In particular we proceeded as follows:

a) 10 subsets, each one containing 101 patterns, are extnartdomly from eachttack type
(this “magic” number was chosen in order to attain a totaceetage of attacks equal to

1.5%);
b) for each subset, we trained&5VC classifier, and computed the error attained by using the
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HTTP FTP Mail ICMP Private & Others | Miscellaneous
Normal 39,247 1,170 3,222 380 12,930 3,644
(95.04%) | (38.22%) | (25.50%) | (0.23%) (16.35%) (43.53%)
Attacks 2,050 1,891 9,412 164,591 66,145 4,727
(4.96%) | (61.78%) | (74.50%) | (99.77%) (83.65%) (56.47%)
Table 3.3: Composition of the test set
HTTP FTP Mail ICMP | Private & Others | Miscellaneous
y-SVC F 0.995 | 0.894 | 0.971 | 0.862 0.992 0.987
1-SVC - max rule lTUC+I1UT 0.956 | 0.918 | 0.960 - 0.911 0.975
[+C+T 0.807 | 0.566 | 0.956 | 0.929 0.918 0.939
1-SVC - min rule lUC+I1UT | 0.948 | 0.967 | 0.855 - 0.921 0.953
I+C+T 0.773 | 0.973 | 0.954 | 0.913 0.904 0.944
/-SVC - mean rule lTUC+I1UT 0.952 | 0.962 | 0.970 - 0.957 0.965
[+C+T 0.865 | 0.972 | 0.953 | 0.879 0.921 0.988
y-SVC - product rule lUC+I1UT | 0.951 | 0.961 | 0.857 - 0.919 0.963
I+C+T 0.865 | 0.971 | 0.953 | 0.879 0.921 0.945

Table 3.4: Performance attained by theSVC classifier on the six modules in terms of AUC. For each uledhe best
performance is reported in bold.

remaining patterns of that attack type as a test set;

c) the subset with the smallest error is selected, as it carohsidered representative of the

entire set of available connections for that attack type.

Table 3.2 shows the composition of the training set obtaaftst the preprocessing phase. It can
be observed that attacks are not distributed uniformly apifierent services. While the overall
percentage of attacks has been reduced so that it is equab%o df all the training trfiic, the
percentages of attacks related téfelient services range from the 0.17% of tH€TP and Mail
traffic, to the 30.34% of théCMP traffic. The high percentage of attacks in l@MP traffic can
be explained by observing that the available training setained a very small number of normal
ICMP connections compared to attacks, so that the proposedti@uwt the number of attack
patterns left théCMP traffic data unbalanced.

It is worth noting that the distribution of tfidc reported in Table 3.2 was used to compute
the prior probabilities related to theffiirent modules of the IDS, according to the discussion in
Section 3.4.3.

Table 3.3 shows the composition of the test set. As showndrtahle, the test set contains
a very large fraction of attacks, as it was designed to tesp#rformance of IDS and not to be

representative of a realistic networkftia. It is worth noting that we did not apply any changes on
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HTTP FTP Mail ICMP | Private & Others | Miscellaneous
k-means F 0.978 | 0.820 | 0.899 | 0.736 0.918 0.955
kmeans - max rule IUC+I1UT | 0.864 | 0.874| 0.926 - 0.917 0.974
I+C+T 0.872 | 0.335| 0.930 | 0.913 0.917 0.889
kemeans - min rule lUC+I1UT 0.353 | 0.830 | 0.826 - 0.903 0.909
[+C+T 0.814 | 0.926 | 0.630 | 0.750 0.907 0.284
kmeans - mean rule IUC+I1UT | 0.859 | 0.778 | 0.913 - 0.965 0.932
I+C+T 0.961 | 0.850 | 0.929 | 0.740 0.920 0.947
k-means - product rul lUC+I1UT 0.858 | 0.777 | 0.913 - 0.965 0.932
[+C+T 0.965 | 0.851 | 0.929 | 0.740 0.920 0.951

Table 3.5: Performance attained by themeans classifier on the six modules in terms of AUC. For eamtiute, the best
performance is reported in bold.

HTTP FTP Mail ICMP Private & Others | Miscellaneous
Parzen F 0.977 | 0.878 | 0.932 | 0.743 0.921 0.982
Parzen - max rule IUC+IUT 0.854 | 0.904 | 0.568 - 0.905 0.900
I+C+T 0.858 | 0.368 | 0.581 | 0.872 0.903 0.909
Parzen - min rule IUC+IUT 0.987 | 0.868 | 0.940 - 0.921 0.974
1+C+T 0.982 | 0.914 | 0.940 | 0.704 0.864 0.698
Parzen - mean rule IUC+IUT 0.854 | 0.904 | 0.828 - 0.991 0.900
I+C+T 0.858 | 0.867 | 0.582 | 0.872 0.910 0.909
Parzen - product rul IUC+IUT 0.857 | 0.913 | 0.839 - 0.977 0.906
1+C+T 0.959 | 0.924 | 0.941| 0.725 0.888 0.898

Table 3.6: Performance attained by the Parzen classifier on the six le®éuterms of AUC. For each module, the best
performance is reported in bold.

the test set.

3.5.2 Performace Evaluation

We divided the performance evaluation experiments intoghases. In the first phase, we evaluated
the performance of one module of the IDS at a time. In padictibr each module the performance
of a “monolithic” classifier is compared to the performanttaiaed by combining classifiers trained
on distinct feature subsets (see Section 3.4.4). In thenslegioase, the modules related téfelient
services are combined, and the performance of the over&lid@valuated. Performance evaluation
has been carried out by ROC curve analysis, i.e., by congpthmdetection rate as a function of the
false alarm rate. Dierent ROC can be compared by computing the Area Under theeGAIC).
AUC measures the average performance of the related obissiithat the larger the value of AUC
of a classifier the higher the performance [100]. It is wordhimg that AUC usually measures the
average performance of classifiers considering the emtivger of variation of the false positive rate.
For some ranges of the false alarm rate the classifier witkralest AUC value may provide the

highest detection rate. Therefore, it may be better to nmregbe AUC in the interval [(g], where
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HTTP FTP Mail ICMP | Private & Others | Miscellaneous
Cluster F 0.967 | 0.839 | 0.891 | 0.739 0.847 0.973
Cluster - max rule I[UC+I1UT | 0.965 | 0.705 | 0.949 - 0.843 0.253
1+C+T 0.740 | 0.478 | 0.949 | 0.918 0.390 0.141
Cluster - min rule IlUC+I1UT 0.922 | 0.782 | 0.802 - 0.903 0.875
[+C+T 0.970 | 0.809 | 0.814 | 0.856 0.848 0.936
Cluster - mean rule I[UC+I1UT | 0.932 | 0.829 | 0.962 - 0.915 0.876
1+C+T 0.983 | 0.874 | 0.970 | 0.872 0.847 0.958
Cluster - product rule IlUC+I1UT 0.924 | 0.802 | 0.802 - 0.903 0.875
[+C+T 0.980 | 0.809 | 0.814 | 0.872 0.947 0.943

Table 3.7: Performance attained by the Clustering algorithm propasé¢81] on the six modules in terms of AUC. For
each module, the best performance is reported in bold.

HTTP FTP Mail ICMP Private & Others | Miscellaneous
y-SVC v-SVC y-SVC y-SVC Parzen v-SVC
Best F min rule F max rule min rule mean rule
I+C+T I +T lTUC+IUT I+C+T

Table 3.8: Summary of the best results in terms of AUC attained for eactiute.

a < 1 represents the maximum expected false positive rate. Howie is not always possible to
know in advance the working point (or the set of possible warlpoints) on the ROC curve that
will be actually used during the operational phase. Moreoveour application the overall false
positive rate is “distributed” in dierent percentages onfidirent modules in order to optimize the
performance of the IDS (see Section 3.4.2). In these casaskobwna the AUC measured in the

interval [Q 1] is a valuable indicator of the performance of the classifie

Evaluation of Service-Specific Modules

The first phase of the performance evaluation consistedeé axperiments for each of the six mod-
ules. The first experiment was designed to assess the parioenof individual one-class classifiers,
i.e., they-SVC, the k-means, and the Parzen classifier when the patieendescribed by using the
entire set of available featurés The performance of the clustering algorithm describe®1rj have
been also computed for comparison purposes. The secondregpewas designed to assess the
performance attained by combining classifiers trained andistinct feature subsets, i.e. the subset
of intrinsic and tréfic featured U T, and the subset made of intrinsic and content featuss (see
Section 3.4.4). In particular, each classifier has beenddausing the two feature subsets, and then
they have been combined by using fouffelient combination rules, i.e. tmeaxrule, theminrule,

themeanrule, and theproductrule. The third experiment was designed to assess the pefame
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Best Modules in terms of AUC v-SVC Bestv-SVC modules in terms of AUC

False Alarm Rate | Detection Rate | False Alarm Rate | Detection rate | False Alarm Rate | Detection Rate
0.87% 75.34% 0.91% 67.31% 0.88% 79.27%
2.10% 80.35% 2.06% 75.61% 2.07% 89.45%
2.64% 80.80% 2.65% 77.10% 2.66% 89.67%
4.00% 85.67% 3.20% 86.31% 3.28% 89.92%
5.49% 94.12% 4.51% 92.25% 4.82% 93.02%
6.86% 94.27% 6.72% 93.91% 6.49% 94.16%
8.25% 94.32% 8.09% 94.12% 8.05% 94.26%
10.44% 94.38% 9.62% 94.25% 9.49% 94.31%

Table 3.9: Results attained by the proposed three modular systems.

attained by combining classifiers trained on three disfieature subsets, i.e. the intrinsic features
I, the trdfic featuresT, and the content featur€s(see Section 3.4.4) by using again fouffelient

combination rules.

When combining classifiers trained orffdrent feature spaces, we used both the combination
approaches described in Section 3.4.6. We noted that for 8\¢C, the k-means, and the clustering
algorithm proposed in [31], the best performance was obthlyy estimating the posterior proba-
bilities for the target class as in (3.27) and then compatiege probabilities to a varying threshold
in order to compute the ROC curves. For the Parzen classifiecombination of class conditional

probabilities, using (3.22) and the decision criteria 43, ®roduced the best results.

In the following, we discuss the results obtained by apgiyiime best combination approach
for each single classifier. Therefore, we present the esilitained by combining the posterior
probabilities for the-SVC, the k-means, and the clustering algorithm, and thalteesbtained by

combining the class conditional probabilities for the lRarzlassifier.

Tables 3.4, 3.5, 3.6, and 3.7 summarize the performancé#gesuthe test set in terms of AUC,
for the v-SVC, thek-means, the Parzen classifier, and the clustering algonitoposed in [31],
respectively. For each algorithm, the parameters have e on the training set. It is worth
noting that in the case of tHE€EMP protocol only intrinsic and tific features were available, thus
only the third kind of experiment could be performed by comtng two one-class classifiers trained

on intrinsic and tréic features, respectively.

The obtained results are discussed in Section 3.6.
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Evaluation of Overall IDS

In order to analyze the performance of the overall IDS, wé buiee systems:

1) An“optimal” system made up, for each module, of the cfassion techniques that provided

the highest value of AUC, according to Table 3.8.

2) A system made up of one “monolithig-SVC for each module. We chose to us&VC
classifiers because on average they provide better relsatidhie other considered classifiers,

as discussed in Section 3.6.

3) As in the second system, we chose to us®VC classifiers. Then, for each module we
chose between a “monolithic” versus a MCS approach, acogtdi best performance results
reported in Table 3.4. It is worth noting that for tMiscellaneousnodule the performance
of the “monolithic” classifier is really close to the best foemance result. Therefore, it
is difficult to conclued which approach really performs better ttrenother. We chose to
construct a system made up of one “monolithieSVC for theHTTP, Mail, Miscellaneous
and Private&Other modules, and a MCS for theTP and ICMP modules (we will further
discuss the motivation for this choice in Section 3.6). @RTP module we used an MCS
constructed by using threeSVC classifiers, namely one trained on the subset of feature
one on the subsé& and one on the subs&t For thelCMP module we constructed a MCS
using twov-SVC classifiers, namely one trained on the subset of featuaed one on the
subsefl. In particular, for the=TP module, theminrule was used, whereas theaxrule was

used for thdCMP module.

In order to evaluate the performance of the three IDS systemascomputed some working
points according to the heuristic proposed in Section 3.4.Be attained results are reported in
Table 3.9. The motivation for the choice of the three proddfxs systems and the attained results

are further discussed in Section 3.6.
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3.6 Discussion

The results reported in Section 3.5.2 clearly show thatvt8/C algorithm provides the highest
AUC value for all services, when classifiers are trainedgisiththe available features. Thefiiir-
ence between the performanceveébVC and that of the other algorithms is very small in the adse

theHTTPand theMiscellaneougraffic, while it is larger for the other services.

Tables 3.4, 3.5, 3.6, and 3.7 show that combining classifraieed on distinct feature sets
does not always improve performance, with respect to thtiaeéed by classifiers trained on the
entire feature set. In particular, it can be seen that fontB& C, k-means, and Parzen classifiers,
the use of distinct feature sets clearly outperforms theofighe entire feature set F only for the
FTP, andICMP modules. In the case of the clustering algorithm, the usestindt feature sets
clearly outperforms the use of the entire feature set F arlyhieMail, ICMP, andPrivate&Others
modules. In all other cases theffdrences in performance are small, thus the superiority ef on
technique against the others cannot be concluded. Ungiglyn results show no regularity. For
this reason, it is diicult to explain the behavior of fierent classifiers and combination rules on
different modules. On the other hand, results clearly show #wdt module should be carefully and
independently designed by making a decision about theifitad®on algorithm to be used, and by

choosing between an individual classification techniqueethe MCS approach.

Summing up, reported results allow us to conclude thatt8&/C algorithm performs better
than the other ones, on average. Further, it is easy to seéhthaombination of distinct feature
representations usually provides significantly highefgrarance, with respect to just one classifier
trained on the entire feature set, only for tHEP andICMP modules. These observations have been

used in Section 3.5.2, where thredfeient overall IDS made up of six modules are described.

In order to compare the performance of the modular systeomoped in Section 3.5.2 to the
approach used by Eskin et al. [31], we trained the clustesiggrithm proposed in [31] and the
v-SVC on the entire training set obtained after subsampling.worth noting that this approach is
the same used in [31]. Besides, our test set is the same asdhesed in [31], and we also used an
approach similar to the one proposed in [31] to adjust thaitrg dataset. The performance results

obtained on the test set are reported in Tables 3.10 and r&édgdectively. It is easy to see that if
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Clustering
False Alarm Rate | Detection Rate
1% 18.37%
2% 26.80%
3% 27.21%
4% 92.21%
5% 92.24%
6% 92.25%
7% 92.25%
8% 92.29%
9% 92.29%
10% 92.68%

Table 3.10: Results attained by applying the “monolithic” approachgshe clustering algorithm proposed in [31].

y-SVC
False Alarm Rate | Detection Rate
1% 17.91%
2% 66.44%
3% 78.40%
4% 78.85%
5% 86.07%
6% 92.53%
7% 92.57%
8% 92.60%
9% 92.63%
10% 92.91%

Table 3.11: Results attained by applying the “monolithic” approacgshey-SVC classifier.

the false alarm rate is set to 1%, the algorithms trained erttire training set provide a detection
rate near 18%, while the proposed modular approaches graldtection rates from 67% to 79%
(see Table 3.9). As thdfectiveness of IDS depends on the capability of providind figtection
rates at small false alarms rates, the proposed modulanagipes are veryfective compared to the
“monolithic” approaches. At 4% false alarm rate, the "mathat” clustering algorithm provides
better results than the modular approaches, in terms ottimterates. However, for higher false
positive rates, the clustering algorithm does not providdgumance improvements, whereas the
proposed modular IDS reaches definitely better detectitas raith respect to the ones obtained at
low false positive rates. It is worth noting that, from a piread point of view, the working point of
anomaly detectors are usually tuned to produce a low fatsenaiate (e.g., equal to 1% or lower).
Reported results clearly show that the proposed modulaoapb outperforms the “monaolithic”
approaches in the range of low false positive rates, dues toaipability of allowing dierent false
positive rates on dlierent modules. This result is even more evident if we compfaeBayesian

detection rates for the fdierent approaches at a false positive fa¢a|—1) = 0.01. Thea priori
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probabilities areP(l) = 0.985 andP(=l) = 0.015. In case of the monolithic approach using the
clustering algorithm proposed in [31], the detection R{a|l) = 0.1837 and the Bayesian detection
rate isP(I|A) = 0.2186. In case of the monolithie-SVC, P(A]l) = 0.1791 and the Bayesian
detection rate i$(1|A) = 0.2143. On the other hand, in case of the modular approachw&{C
classifiersP(All) = 0.6796', and the obtained Bayesian detection rat®(gA) = 0.5085, which

is much higher than the Bayesian detection rate attaineduke monolithic approach. Although
more work has to be done in order to further increase the Bayeatetection rate, the modular
approach is promising and should be considered as a bagmscfor the development of more

accurate anomaly detection systems.

1This number was obtained by linear interpolation betweerptiints (00091, 0.6731) and (@206 0.7561)
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Chapter 4

Learning in Adversarial Environment

As discussed in Chapter 3, learning from unlabeleffitralirectly extracted from a live network
is an inherently dficult pattern recognition problem. Besides théidilties that characterize the
unlabeled learning problem itself, we need to take into astbow an adversary (i.e., an attacker)
could interfere with the learning process. As thdficadoes not undergo any labeling process
(e.g., by a human expert) attackers may try to pollute thaitrg traffic with properly crafted data
(e.g., packets or connections) in order to mislead the ilegralgorithm and make the resulting
detection model, and therefore the IDS itself, uselesshdridllowing we present fierent strategies
the adversary may use to interfere with the learning prodbe# theoretical fects, and possible
countermeasures. We then present a case study which shosegiaa example of how an adversary
may dfect the accuracy of intrusion detection schemes which asigled to protect against fast
propagating worms. We analyze automatic signature geaeralgorithms which aim at learning
“worm signatures” from (unlabeled) examples of worm flowheTenerated signatures are used by
worm detection systems in order to stop the propagationeofvtirm. We show how the attacker may
inject properly crafted noise in the training dataset ireotd mislead the signature learning process
and make the generated signaturedfawtive. In particular, we present an instance of the noise
injection attack that can evade Polygraph [76], a recentbp@sed signature generation system.
Polygraph is of particular interest for two reasons: a) ialide to generate signatures for worms
that use a high level of polymorphism, and b) it constructay®s signatures” which represent

a statistical model of worm tfc and therefore can be used as the detection model for network
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54 4. Learning in Adversarial Environment

IDS based on statistical pattern recognition. We also pitegessible ad-hoc countermeasures to
the proposed noise injection attack and discuss the reagioynsve believe a thorough and robust

solution to this type of attacks remains an open researdbigmro

4.1 Learning in Presence of Malicious Errors

To the best of our knowledge, the most significant theorétidyson learning in adversarial environ-
ment is [47]. Within the context of Valiant's Probably Appimately Correct (PAC) learning [106],
Kearns et al. [47] analyze the problem of learning in the gmee of an adversary that may introduce
malicious errors in the data. The authors studydpgmal malicious errori.e., the largest value
of the probability of error on the training data that can héetated by any learning algorithm for
a certain representation cla8sg[47]. They show that there exist representation classewlfibch
the optimal malicious erromrate can be achieved using simple polynomial-time algarith Their
analysis is based on two-class problems. They refer to onleeoflasses agositiveclass and to
the other asegativeclass, and prove that algorithms that learn from labeledngkes of both the
classes can tolerate more errors in the data compared tdtlfgs that learn form labeled examples

of only one of the classes [47].

In [14], Barreno et al. discuss the security of machine liegralgorithms applied to the devel-
opment of IDS. They first propose a taxonomy of attacks agasning algorithms. According to
the proposed taxonomy, they distinguish betweausativeandexploratoryattacks [14]. Causative
attacks aim to alter the training process by influencing fhgidution of training data. Exploratory
attacks do not aim to alter the training process, but aim $oadier information about the learning
algorithm through probing techniques. Within the class afisative attacks, the authors further
distinguish betweeintegrity and availability attacks. The objective afausative integrityattacks
is to mislead the learning algorithm in order to prevent b8 ko detect future intrusions. On the
other handcausative availabilityattacks aim to force the IDS to make dfstient amount of errors,
so that it becomes useless and will be likely turnéiby the administrator. Afterwards, an exam-
ple of causative integrity attack against an anomaly detdzased on a simple anomaly detection

algorithm is described. The simplicity of the learning altfon allows the authors to analytically
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Attack
Locations

OQutliers o

Figure 4.1: Causative attack against a learning algoriti@randG’ represent two dierent attack instances. The training
dataset is polluted by placing data points along the liné ¢banects the center of the sphereGandG’. Different
amounts of well crafted data points are needed to misleadlgfugithm and shift the decision surface so Bdtrst, and
thenG’, are not detected as anomalous [14].

study the problem of learning from polluted ffia and find a bound on thefert required by the
attacker to mislead the IDS so that future attacks will notdbtected. The considered anomaly
detection algorithm constructs a hypersphere around titealaata. During the operational phase,
the instances that lay outside the sphere are classifiedoasadéwus [14]. As shown in Figure 4.1,
the objective of the attacker is to pollute the training datahat eventually an attack instar@evill

lay inside the sphere, which means that the attack is not@etdy the IDS. Assuming the attacker
knows the set of features used to describe thédrdahe learning algorithm, and the current state of
the IDS, the attack strategy is to inject properly craftestances in the tfac in order to force the

hypersphere to shift towards, until it lays inside the decision surface [14].

Barreno et al. [14] also propose possible countermeasortde icausative attacks. For example
they propose to implemeinlisinformationand randomizationstrategies. Disinformations consists
in somehow lying to the attacker, whereas randomizatioitsétdaroducing some level of random-
ization in the paprameters used to train the model of nornaéiid, so that it is diicult for the
attacker to learn or guess the actual state of the IDS (iJleerevthe decision surface is placed).
This may make launching causative attacks moficdit. However, we believe countermeasures

are application dependent and are not always applicablfemtiee, as we discuss in Section 4.6.
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4.2 Case Study: Misleading Worm Signature Generators

In the last few years, large worm outbreaks have pointed fmiirtadequacy of today’s network
security systems. The now famous Code Red worm, releasedlyirt001, infected more than
360,000 hosts in less than 14 hours [73], whereas the Slamorar, released in January 2003, was
able to infect more than 90% of the vulnerable populatioressthen 10 minutes [72]. More recent
worms are able to propagate through multiple vectors [8Ta86 to use mutation techniques in
an attempt to create variants which aréidult to detect by using traditional signature-based IDS
[108, 26]. In 2002, Staniford et al. discussed the riskgeel#o the realistic ability of an attacker to
gain control of an enormous number of Internet hosts andipated the concept of “flash-worms”,

which would be able to infect the entire vulnerable popuolain tens of seconds [97].

A number of techniques have been proposed in order to tryrib the propagation of aggres-
sive worms, including anomaly detection [103, 113], dyrmampuarantine [119, 115], automatic
signature generation [53, 48, 94, 76, 117, 78, 99], addessesand instruction-set randomization
[16, 46]. Among these, automatic signature generatioresysthave recently gained substantial

interest within the computer security research community.

Signature generation is a key step in the defense againsh wmpagation. Most of the sig-
natures used by firewalls or signature-based intrusiorctietesystems (IDS) are created using a
manual analysis of worm tfiac flows. This is usually a time-consuming process, and thoaaa
keep pace with rapidly spreading worms. Manual analysi®mes even harder and more time-
consuming if the worms use metamorphism and polymorphisihnigues. Automatic signature
generation is a promising alternative. The goal is to autmaidy, and thus very quickly, learn

worm signatures by extracting the invariant parts of exaspf worm flows collected in the wild.

Early approaches [53, 48, 94] are based on syntactic asalysiuspicious tiéc flows. These
approaches have limited abilities to learn (or extractiabdé signatures from truly polymorphic
worms. Newsome et al. recently proposed two approachesdresslithis problem [76, 78]. Poly-
graph [76] is based on syntactic analysis of suspiciouidrilows, and implements threefldirent
types of signature generation algorithms. Taint analy&83 s a semantic analysis approach based

on the execution of possible vulnerable applications msigrotected environment.
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We will focus on signature generation systems that aim atraatically learning and deploying
signatures that could be used by firewalls or network IDSe©O#utomatic signature generators are
based on the extraction bist-basedsignatures that need to access the execution or application
environment they are trying to protect in order to lieetive, as proposed for example in [64].
We do not discuss these systems here. We will examine thidesbidf syntactic-based automatic
signature generators in the face of advanced polymorphionaehat not only spread using a high
level of polymorphism but also deliberatetyisleadthe learning process in order to prevent the

resulting signatures from stopping its propagation.

Using Polygraph [76] as a case study, we introduce a classtarfka whereby a worm can
combine polymorphism and misleading behavior in order terfare with the learning process and
disrupt the generation of reliable signatures. We will shbat this result can be achieved by in-
tentionally injecting properly crafted noise into the tiaig dataset of suspicious flows used by
syntactic-based signature generators to learn worm sigggat We will present a specific instance
of the attack that can mislead Polygraph, and then we widludis how such noise injection attacks
are general in that fiierent attacks can be devised to mislead other recently peopautomatic
signature generators. According to the taxonomy in [144, dltacks we present are causative at-
tacks against signature-based IDS which use automatigatigrated worm signatures to stop worm

propagation.

The system architecture of Polygraph includes a flow classifiodule and a signature genera-
tion module [76]. The flow classifier collects the suspicians the innocuous flows from which the
signatures are learned. The authors assumed that the flssifidacan be imperfect and that it can
introduce some noise into the pool of suspicious flows, digas of the classification technique used
by the flow classifier. The authors then proposed some tegbsitp cope with the noise during the
signature generation process. This design characteigstismmon to most of the syntactic-based
automatic signature generators. That is, little or no &tiaris paid to filtering the noise during the
suspicious flow gathering process. This is a serious shartgpthat can be exploited by combining
polymorphism and misleading behavior. We will show hown&leading polymorphic worroan
create and senfdike anomaloufiows during its propagation to deliberately pollute theafdtows

used to extract the signatures. Polygraph’s authors gtatetieir system is resilient to (at least)
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80% of noise into the set of suspicious flows [76]. We will shibzvat by constructing well-crafted
fake anomalou$lows, a worm can mislead the signature generation algosithyninjecting much
less than 80% of noise into the set of suspicious flows, thexsepting the generation of useful sig-
natures. We would like to emphasize that although we demaiadhe &ects of the noise injection
attack on Polygraph, which is used as a case study here, geseral attack on all the syntactic-
based signature generation systems proposed in theliteta¢cause they do not addresses directly
the problem of intentional pollution of the dataset of saipis flows. In particular, we will discuss
how the attack can be generalized to defeat other recennatitosignature generation systems, and

why it cannot always be prevented by eswsamantic-basedpproaches similar to [78].

4.3 Noise Injection Attack

Alarms

Intrusion Detection System

Signature $1,52):44Sn Signature
- "
Learning Matching
7 N
Suspicious Innocuous
Flows Flows

Flow
Classifier

Crafted Noise

Live Network Traffic

Figure 4.2: Worm signature generation and detection scheme.

Noise injection attack works by polluting the training sesaspicious tréfic flows, orsuspicious
flow pool[48, 76], used by automatic signature generators in theaiiga learning (or extraction)
process (see Figure 4.2). The attack aims to mislead thatsigngeneration algorithms by injecting
well-craftednoise to prevent the generation of useful signatures. Ifoll@ving sections we briefly
survey the most common techniques used by a “flow classifeiCotlect the suspicious flows.

We then show how the worm can inject noise withaypriori knowledge about the classification
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technique in use. To accomplish the task of misleading theasiire generation algorithms, the
noise has to be crafted in a suitable manneffddeént noise injection attacks can be implemented
by crafting the noise in dierent manners. We first demonstrate how this attack can Hermepted
against Polygraph [76], and then analyze the possifike®s of noise injection attack on Nemean
[117], another recently proposed automatic signature rggmre Different implementations of the

attack can be devised to mislead other signature generators

4.3.1 Collecting Suspicious Flows

A few techniques have been proposed to accomplish the tasklleicting the suspicious flows,
which represent (part of) the training dataset used fomlagrthe signatures. Honeycomb [53]
uses a simulated honeynet. Any flow sent towards the honéyieterted into the suspicious flow
pool. Nemean [117] uses a similar approach combining redksanulated hosts. In [99] a double
honeynet is proposed. In this case a first-layer honeynetdenof real hosts. Whenever a first-
layer honeypot is infected by a worm, its outgoindfiais redirected to a second-layer simulated
honeynet and inserted into the suspicious flow pool. Aufdyrd8] implements a classification
approach based on port-scanning detection. Each valid Boivisy a scanner to a valid IP address
is inserted into the suspicious flow pool. Anomaly-based tBSalso be used as flow classifiers. For
example, PAYL [112] uses the byte frequency distributiothefnormal packets to detect anomalies,
and can be used as a flow classifier.

There are other techniques that are not considered in ody.skarlybird [94] extracts all the
possible substrings of a given fixed lengtlirom each packet to compute the content prevalence.
B cannot be reduced to just a few bytes due to computationaplexity and memory consump-
tion problems. As shown in [76], a polymorphic worm can coniavariants that are just two or
three bytes long, potentially evading Earlybird. Since study focuses omisleadingpolymorphic
worms that try to mislead signature generators, we musnasshat the flow classifier can detect
polymorphic worm instances as suspicious flows. Approadbesun-time detection of injected
code, e.g., [78, 64, 46, 16] are not considered because thégrgely limited toapplication-based
worms (e.g., CodeRed [73], Slammer [72], etc.) and are fliettve againsDS-basedvorms (e.g.,

Sasser [88], Zotob [89], etc.). We are concerned with géipengpose worms. More importantly,
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these approaches are “host-based” while almost all theraito signature generators presented in

literature use “tric-based” flow classifiers.

4.3.2 Injecting Noise into The Suspicious Flow Pool

Suppose a worm has infected a host in netwddnd is now trying to infect some hosts in network
B. Suppose also that each time the worm sends a polymorphianoesto a host i, it also sends
afake anomaloudlow to the same host, as shown in Figure 4.3. Section 4.3\dd&® details on
the creation ofake anomalouflows. For now consider that tieke anomaloufiow does not need
to exploit the vulnerability and thus can be crafted in a vilxible manner to appear like the real
worm in all but the invariant parts (which are necessary @akthe vulnerability). For example
afake anomalouflow can be crafted so that it contains the same protocol frerieas the worm
(e.g., a GET request) and the same byte frequency distriipuaind at the same time not containing
the real worm’s invariants.

Suppose the network B is monitored by a ffrecbased” flow classifier. The worm and feke
anomaloudflow must both be stored in the suspicious flow pool in order islend the signature
generation algorithm. This is possible with the flow class#fiwe consider (see Section 4.3.1). We

describe how this can be accomplished with each of the flogsiflars below:

e Honeynet In this case the vulnerable host that the worm is trying fedhcan be a real or
simulated honeypot. Since both the real worm andféike anomalou$low are sent to the
same destination at (roughly) the same time, they will baltdnsidered suspicious by the

honeypot and stored into the suspicious flow pool.

¢ Double honeynet In this case the real worm will infect a first-layer honeypshereas the
fake anomaloufiow will not, and will be disregarded. However, only the onitey trafic will
be redirected to the second-layer simulated honeypot aneidsinto the suspicious flow pool.
Given that the outgoing tfAc generated by the worm instance at the first-layer honeyjot w
again contain both a real worm flow and another fake anomdlowsthey will be stored into

the suspicious flow pool together.
e Port-scanning detection If the worm scans more thasmunused IP addresses, the source of
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the scanning (i.e., the infected hostAp will be considered a scanner. Therefore, each flow
sent by the infected host ivtowardsB after the scanning phase will be considered suspicious.
Given that the real worm and thake anomalou$low originate from the same source host,

they will be both inserted into the suspicious flow pool.

¢ Byte frequency-based classifierThefake anomalouflow can be easily crafted to match the
byte frequency distribution of the real worm flow (as disassi Section 4.3.3). This means
that if the real worm flow is flagged as anomalousfatee anomaloufiow will very likely be
flagged as anomalous, too. Thus, both the worm andiatkes anomaloufiow will be stored

into the suspicious flow pool.

Note that each copy of the worm could craft and send more thafakie anomaloufiow at the
same time. In this case the real worm flow and alfatee anomaloufiows will be inserted into the
suspicious flow pool together. The discussion above sugtfest without a semantic-based analysis

it is not possible to distinguish between the real worm flod &s fake anomalous flows.

4.3.3 Crafting the Noise: A Case Study Using Polygraph

In this section we present a noise injection attack devisemhislead Polygraph [76]. In order to

explain how the noise can be crafted to mislead Polygraphrated@scribe the high level structure
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of a polymorphic worm and how Polygraph extracts worm sigrest.

High Level Structure of A Polymorphic Worm
As discussed in [52] and in [76], a polymorphic worm is madéheffollowing components:

¢ Protocol framework. In many cases the vulnerability is associated with a pagiexecution
path in the application code. In turn, this execution pathlsaactivated by one (or just a few)
particular request type(s). Therefore, the protocol fraork is usually common to all the
worm variants. However, in some cases it may still be posgibimodify the attack vector,

thus reducing the number of invariants.

e Exploit’s invariant bytes. These bytes have a fixed value that cannot be changed because

they are absolutely necessary for the exploit to work.
¢ Wildcard bytes. These bytes can assume any value withdfigicéing the exploit.

e Worm’s body. It contains the instructions the worm executes once theevability has been
exploited. If the worm uses a good polymorphic engine, thBges can assume ftirent
values in each worm copy. Common techniques to achieve tsitli¢ode) polymorphism
include register shling, equivalent instruction substitution, instructioromering, garbage
insertions, and encryption. Bérent keys can be used in encryption fdfelient instances of

the attack to ensure that the body’s byte sequencdfiereit every time.

¢ Polymorphic decryptor. It contains the first instructions to be executed after tiieerability
has been exploited. The polymorphic decryptor decodes dnenis body and then jumps to it.
Obviously, the decryptor itself cannot be encrypted. Havgpolymorphism of the decryptor

can be achieved using various code obfuscation techniques.

Note that this is a simplified view.

Polygraph’s Signature Generation Module

Polygraph consists of several modules [76]. A flow classifierforms flow reconstruction and

classification on packets received from the network. Thedldeemed suspicious are stored into
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a suspicious flowpool, whereas the flows deemed innocuous are stored iniarecuous flow
pool. The signature generator module uses both pools dtirengignature generation process. The
objective of Polygraph [76] is to extract the invariant paof a polymorphic worm using three

different signature generation algorithms. We briefly sumradr@v these algorithms work.

e Conjunction signatures. During the preprocessing phase the substrings common tioeal
flows in the suspicious flow pool are extracted. These sulgstrare calledokens A con-
junction signature is made of an unordered set of tokens. v ffil@tches the signature if it

contains all the tokens in the signature.

¢ Token-Subsequence sighatuteAs with the conjunction signatures, the set of tokens incom
mon among all the suspicious flows are extracted. Then, asgicsous flow is rewritten as
a sequence of tokens separated by a special chasact#&rstring alignment algorithm cre-
ates an ordered list of tokens that is present in all the sizgs flows. A token-subsequence
signature consists of the obtained ordered list of tokenflovx matches the signature if the

ordered sequence of tokens is in the flow.

e Bayes signaturesAll the tokens of a minimum length that are common to at leaktout of
the total numbeN of suspicious flows are extracted. Then, for each takeaft;|S uspicious floyw
andp(t|Innocuous flow, the probabilities of finding the token in a suspicious flowd én an

innocuous flow, respectively, are computed. A score

1=1o p(ti|S uspicious floy
T p(ti[Innocuous flowy

is then assigned to each tokenThe probabilityp(tj|S uspicious floyis estimated over the
suspicious flow pool, whereagt;|Innocuous flowis estimated over the innocuous flow pool.
During the match process, the scongdor the tokeng; contained in the flow under test are
summed. The flow matches the signature if the obtained tctaés exceeds a precomputed
thresholdd. This threshold is computed during the signature genergitocess. Given a
predetermined acceptable percentage of false positiveéds chosen so that the signature

produces less thanfalse positives and minimizes the number of false negatvélse same
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time.

The conjunction and token-subsequence signatures aresibémt to noise in the suspicious
flow pool. For example, if just one noise flow that does not aimnthe worm'’s invariants appears in
the suspicious flow pool, the worm’s invariants will not béragted during the preprocessing phase
because they are not presenalhof the flows. For this reason Polygraph [76] applies a hidviaed
clustering algorithm during the generation of conjunctand token-subsequence signatures in an
attempt to isolate the worm flows from the noise. Each clustesists of a set of suspicious flows
{a1, a2, .., an}, and the signaturs, extracted from the set. That is, each cluster can be regesken
as a pair {az, a2, .., an}, Sa)- The similarity between two clusters is based on ghecificityof the
signatures, namely, the number of false positives (medsawer the innocuous flow pool) produced
by the new signature obtained by merging the two clusters. ekample, the similarity between
two clusters {as, ap, .., an}, Sa) and by, by, .., b}, &) is computed as the number of false positives
produced by the signaturg extracted from the merged set of flowas, ay, .., an, b1, by, .., b}
The algorithm starts withN clusters, one for each suspicious flow, and then proceemdivigy to
merge pairs of the (remaining) clusters. At each step, ¢rdyohe pair of clusters that upon merging
produce the signature with the lowest false positive rageatually merged. The algorithm proceeds
until all the “merged” signatures produce an unacceptableber of false positives or there is only
one cluster left.

From a statistical pattern recognition point of view, thketas represent the features used to
describe network flows. In case of conjunction and tokerssgbence signatures a flow is described
using binary features which encode the presence or absétueens in the flow, whereas in case of
Bayes signatures the value of each feature representseagmoputed according to the probability
of finding a token in normal and worm flows, as described ab&w&gnature represents a prototype

to which network flows are compared during the detection€oognition) phase.

Misleading Conjunction and Token-Subsequences Signatuse

A signature is useful if it contains at least a subset of thariant substrings of the worm. The hi-

erarchical clustering algorithm implemented by Polygregpgreedy [76]. This choice is motivated
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by the fact that a non-greedy clustering algorithm would @@ putationally expensive. This prop-
erty can be exploited by injecting well-crafted noise toverd the generation of a useful signature.

Below, we describe how to craft the noise to mislead Polyjgrap

Suppose that a polymorphic worm propagates using the scesuwgibed in Section 4.3.2 (see
Figure 4.3). Suppose also that tlake anomaloudlow is crafted so that it has some substrings in
common with the real worm, but does not contain titue invariant parts of the worm, as shown in
Figure 4.4. We call' | (True Invariants) the set dfue invariant substrings, anfél (Fake Invariants)
the set of substrings in common between the worm and its fakenalous flow. Suppose now
that the suspicious flow pool contains three copies of thanyand then also three corresponding
fake anomaloudlows. We callw; thei-th copy of the worm in the suspicious flow pool afdts
fake anomalous$low. Note thatFI; is different for diferent pairs ofw; and f; because each fake
anomalous flow is crafted specifically according to a worm flamd each worm flow is ffierent

due to polymorphism.

The clustering algorithm starts (at step 0) by constructing signature for each (single) flow
in the suspicious flow pool. During the first step of the cltistg process, whenever a worm flow
w; and the corresponding fake anomalous flGvare considered together, a signature containing
the common substringsl; will be generated. It is worth noting that the generated aligre in this
case will not contail |. Whenever two worm flowsy; andw; are considered together, a signature
containingT | will be generated. Whereas, whenever two fake anomalous flicand f; or a worm
flow w; and a fake anomalous flofy (j # i, i.e, it is from a diferent worm flow) are considered
together, the generated signature will contain just siggtrextracted from the protocol framework
PF (and possibly other substrings that are in common just byiadla Obviously, a signature
containing mostly tokens extracted from the protocol frenmridx would produce a high number of
false positives because the norfiralocuous flows will also need to use the protgapplication and
thus can also contain substrings of the protocol framew®Herefore, pairs ofy; and f; and pairs
of fi and f; (i # j) will not be merged. Now, the question is whether a paiwpnd f; (resulting
in a signature containingl;) or a pair ofw; andw; (resulting in a signature containifigl) will be

merged.

Let p(false positivig-1;) andp(false positivel 1) be the probabilities that a signature contain-
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ing Fl; and a signature containingl will produce a false positive, respectively. If the fakedriv
antsFl; had been “well-crafted” by the worm during propagation sat {i( false positiveg-1;) <
p(false positivel I), the “merged” signature,;, produced by the first step of the clustering algo-
rithm (see above) will contaif|; but will not containT |. That is, a worm flow and its correspond-
ing fake anomalous flow, saw; and f; will be merged. Of course, the question is how to obtain
p(false positivé-1;) < p(false positivel I). In Section 4.3.3, we will describe how to produce,
in practice, a fake anomalous flow that corresponds to a timrenvilow. For now, we state that
the FI; tokens are made of random bytes and that the total numbehandrtgths of tokens iRl;

are greater than the number and the lengths of tokefid.imMs a result,p(false positivig-1;) <
p(false positivel 1) will be very likely to hold. To show this, leps(b) be the probability of a byte
b, contained in a fake invariant token, to appear in an innosulow, andp(b) the probability of a
byte b, contained in a true invariant token, to appear in an innosdtow. Let the cardinalities of
the setsl; andT1 be x = |FI;| andy = [T ||, respectively, and the lengths of a tokgne Fl; and

a tokent;, € T belk andhy, respectively. Assuming the bytes of a token to be extrafttad a

uniform random distribution and assuming the tokens to ékstically independent, we can write:

p(false positivi1;) = [T, 1%, pr(b)
(4.1)

p(false positivel 1) = T}_, HTil pr(bx.j)

whereby j is the j-th byte of thek-th token. Now, if we assume that the bytgg have the same
probability, p, to be present in an innocuous flow, so tpatby j) = pi(bj) = P, Vkj, itis easy to
see that ifx - avg(Ix) > y - ava(hg) we can obtairp(false positivi-1;) < p(false positivel'l).

Now, returning to the clustering process. At this pointréhis one cluster, say{w, f1}, s1),
and two worm flows and two fake anomalous flows. Consider allcdndidates for merging. We
already know from the above discussion that if we only cagrsithie four clusters containing a
single flow, the only acceptable merging will be between amvliow and its corresponding fake
anomalous flow, say, and f,, resulting in a signature containirfig». Butw, (or f») can also merge
with the existing cluster, resulting in a g@t1, f1, w»} (or {wy, f1, fo}). By extracting the substrings

common to all the three flows the algorithm would obtain omlgens belonging to the protocol
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framework (and possibly other small substrings that aremmomto all three flows just by chance).
We callCS;j the signature extracted frofw;, fi, w;} (or {w, fi, fj}). Note thatT| ¢ CS;;. Again,
p(false positiveFl;) < p(false positiviCS;;) will very likely hold given thatCS;; will mostly
contain just tokens from the protocol framework. Thereftine only acceptable cluster{ia., f}.
The algorithm continues and finally there will be three @uost namelyw,, f1}, {w», fo} and
{ws, f3}, and three corresponding signatures. At this point, theteting algorithm will consider
merging the clusters, say, to forftwy, f1}, {wo, f»}}. But the set of substrings in common among all
the four flows will not containl 1. Once again, the signature will mostly contain invariaeiated
to the protocol framework, and as a result will likely produchigh number of false positives. Thus,
this cluster is not acceptable, and the clustering algoritias to terminate.
In conclusion, the noise injection attack misleads Polglgred generate signatures containing

the fake invariant stringgH(;), rather than a useful signature containing the true iavdsi{ |).

Misleading Bayes Signatures

To generate Bayes signatures, Polygraph first extractolens of a minimum length that are
common to at leasK out of a total number oN suspicious flows. 1K = 0.2 x N, as suggested
in [76], an attacker can mislead the Bayes signatures bylgiprpgramming the worm so that it
sends five fake anomalous flows per worm variant becausesigdlsie the true invariant$ () occur
in less than 20% of the suspicious flows and will not be ex¢i@iased. It seems then that for a low
value ofK the worm needs to flood the suspicious flow pool with a largelyanof fake anomalous
flows. However, we show how the worm can craft the fake anousallows so that just a few (one
or two) of them per worm variant will be ficient to mislead the generation of Bayes signatures.
If a worm crafts the fake anomalous flows as described in @eai3.3, the Bayes signature
generation algorithm will very likely generateuaefulworm signature containing tokens related to
the protocol frameworlPF and the true invariant tokefsl. The tokend?F will be present in 100%
of the suspicious flows, whereas the toka&nswill be present in 50% of the suspicious flows if one
fake anomalous flow per worm variant is used. The fake inugsigl are specific for each worm
variant and its fake anomalous flow. This means daihwill, in general, be present less th&n

times in the suspicious flow pool (unleikss very small) and will not be used to generate the Bayes
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signatures. In short, the technique described in Secti®® 4annot mislead Bayes signatures.

As described in Section 4.3.3, during the generation of &Bajgnature a scorg is computed
for each token; in the signature. During the matching process, the scoresatéhed tokens are
summed. The technique we develop here is to insert a setigsin the fake anomalous flows in
such a way that the generated signatures contains toketnwithecore an innocuous flow higher
than a true worm flow, thus making it very hard to set a propesstiold valued) to obtain both low

false positive and false negative rates.

Consider now a length string of bytesy = (v1, Vo, ..vy) that appears in the innocuous flow pool
(but does not appear in the worm flows) with a probabifitthat is neither too low nor too high, for
examplep; = 0.05 < p(viinnocuous floyw < 0.20 = py. If vis injected into the fake anomalous
flows generated by each variant of the worm, this string vpiiear in at least 50% of the suspicious
flows. This means that the stringwill be considered as a token in the Bayes signature. We have
p(visuspicious floyw> 0.5 andp; < p(viinnocuous floy < po, thus the tokew would receive a
scorel, betweerlog(0.5/p2) andlog(0.5/p1). If we split the stringv to all the possible substrings of
lengthm < n, we will obtainn—m+1 different substringg; m = (V1, V2, ..Vin), Vo1 = (V2, V3, ..Vims1),
veos Ve zn = (Vnemi1, Vo—me 2, --Vin). Suppose now the worm injects all of the- m+ 1 substrings
randomly (with respect to the position for each substrimgg¢ach fake anomalous flow, instead of
injecting the entire string. All of the substrings o¥ will be present in at least 50% of the suspicious

flows in the suspicious flow pool and will therefore be addetbkens into the Bayes signature.

If mis not much lower than, we can expect thai(v; j+m-1/lnnocuous floywwill be not much

higher thanp(viinnocuous flow. In turn, we expect the scork, ... , associated with each of the

joj+m-
n—m+ 1 substrings o¥ to be not much lower than the scotg This results in a multiplying féect
on the score of because a flow that contaimsalso contains all of its substrings. We will refer to

the stringsvj j+m-1, j = 1..(n— m+ 1) asscore multiplier strings

The Bayes signatures now incluBé&, T | and the score multiplier strings. During the matching

phase, the total score for a real worm flow is:

S= Z ApF, + Z ATy, (4.2)
| h

68



4.3 Noise Injection Attack 69

Here ATy, is the score of a worm’s true invariant tokén, andApf, is the score of a protocol
framework tokerPF, (note that the worm will not contaiv).

On the other hand, the total score for an innocuous flow coing is at least

n—m+1

A= Z A1 (4.3)
=1

The innocuous flow containg and thus all of its substrings, which are tokens in the Bayes
signatures (the flow can also contdd tokens etc.) If the attacker choosesand m such that
A > S, it will be impossible to set a threshottfor the Bayes signatures that will produce a low
false positive rate and low false negative rate at the same tirhis is because if < S (and then
alsof < A) the signature will generate a high number of false pogtifeom around 5% to 20%
for the proposed example(® < p(viinnocuous flow < 0.20), due to the presence afand then
of all its substrings, into a non-negligible percentage aimal trafic. On the other hand, & > A
(and then als® > S) the Bayes signature will produce around 100% false negmtiv

In conclusion, the attacking technique described heregnmtethe generation of a useful signa-
ture. We will discuss in Section 4.4 how the attacker canraatizally extract a set afandidate
stringsv (and therefore itscore multipliersubstrings) from network tfac traces. The obtained

candidate strings can be used to obtain the multiplyiifigce explained above.

Crafting The Noise

Before propagating to the next victim the worm must first ta#em polymorphic copy of itsely;.

Then it can create the associated fake anomalousfflaging the following algorithm:

a) fi(o) = clongw;): Create a copy ofv;.

b) £* = randomlyPermuteBytegf®): Permute the bytes of® but leaving the protocol

framework bytes unchanged.

c) a ] = extractFakelnvariants(w; ,k,1): Copyk substrings of length from w; into an arraya,
choosing them at random, but do not copy substrings thaatoptotocol framework or true

invariant bytes.
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PF1  PFz Vas

PFz
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[ Protocol Framework [ Randomly permuted bytes
£ Fake Invariant [ Score multiplier strings

Figure 4.5: An example of fake anomalous flow

d) @ = injectFakelnvariants (" a[ ]): Copy the fake invariant substrings inf$" but do not

overwrite bytes belonging to the protocol framework (segufé 4.4).

e) 1% = injectScoreMultiplierStrings (£ v): Injectscore multiplier stringsn (2 by splitting

a stringv as explained in Section 4.3.3. The stringan be chosen from a set of candidate
strings obtained by means of an analysis of normal netwafkditraces performed using the
algorithm explained in [81]. The attacker could embed a subkthe candidate strings into
the worm’s code. The decision on which stringp use can be based on time. For example,
the worm could embed the time of its first infection into itsdecand then use afikrent
string v periodically (e.g., every 10 minutes for a fast-propaggiivorm). This is necessary
because the worm and its fake anomalous flows can arrive #iothelassifiers from multiple
infected hosts. Given that trecore multiplier stringshave to be present in a high fraction
of the total number of fake anomalous flows into the suspgipool, the worm cannot just
pick v at random each time it propagates to a new victim. Insteadh \ehas to be used for a

period of time.

f) fi(4) = obfuscateTruelnvariants( fi(3)): This is necessary becaus@ could still contain some
true invariant strings, even though just by chance. Thesuafiion process assures tﬁéﬁ)

will not contain the worm’s true invariants.

Here £ represents an “update” df"™"). The final fake anomalous flo#* and the worm
variantw; are sent together to the next victim. An example of the appba of the above algorithm
is reported in Figure 4.5. The fake anomalous flow has bedtedrasingk = 3 fake invariants of
lengthl = 4. The stringv is 6 bytes long and the length of teeore multiplier substringss m = 3.

It is worth noting that the resultinfpke anomaloufiow does not contain the true invariant tokens.
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If the byte frequency distribution of; and f; are not very close (due to the injection of the score
multiplier strings) a simple padding technique could beligdpto make the two byte frequency

distribution closer.

Combining Noise Injection and Red Herring Attacks

In Section 4.3.3 we presented how the fake anomalous flowbeamafted to mislead the gener-
ation of Conjunction and Token-subsequences signatures.su€h attack to be successful, fake
anomalous flows generated byffdrent worm variants should not contain common substringse. T
attacking method presented in Section 4.3.3 to misleadéhergtion of Bayes signatures violates
this constraint because all the fake anomalous flows in thgicious flow pool have to contain the
samescore multiplier strings However, this turns out not to be a problem. During the aailbn

of the hierarchical clustering algorithm, whenever twoefaiomalous flowd; and f; are involved

in a merge, the extracted tokens will be either part of thegoa framework orscore multiplier
substrings. Therefore, the generated signature will ieeyyl produce a high number of false pos-
itives and the flows will not be kept in the same cluster. Ithisrt very likely to see (following
the analysis in Section 4.3.3) that the only acceptablgersisre{w;, fi}. Thus, the attack against
Bayes signatures described in Section 4.3.3 does noten¢anfith the attack against Conjunction or
Token-subsequence signatures. It follows that craftiaddke anomalous flows as described in Sec-
tion 4.3.3, the attack isfiective against the threeftirent types of Polygraph signature generation
algorithms.

However, the results of the attack are not deterministiqadédictable. As mentioned in Section
4.3.3 it is possible that a set of flows contains some sulgstiihat are common just by chance to
all the flows in the set. For example it could happen that twonmveariantsw; andw; present (by
chance) a common substrimg;, besides the protocol framework and true invariant tokeFtsis
means that to avoid; andw; being kept in the same cluster, the constraifftalse positivg-l) <
p(false positivel' I, ¢; j) needs to be verified. Given that; is unknown, it is not easy to craft the
set of fake invariant& | to assure that this constraint is satisfied. Besides, evba Worm crafts|
so thatp(false positive1) is close to zero, it can also happen tipétalse positivell,¢;j) = 0.

In this case there is no way to determine which signature iserapecific than the other, and we
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assume the merged cluster to be kept is chosen at random.

We will show in Section 4.4 that in practice the probabiliiysoiccess for the noise injection
attack is fairly high. To further increase the success chanthe noise injection attack, it is possible
to combine it with thered herring attack discussed by Polygraph’s authors in [76]. The worm
variants could include somemporary true invariantghat change over time. If the Conjunction
and Token-subsequence signature generation algoritrodsige (by chance) a useful signature, this
signature would become useless over a certain period of #fter this period of time Polygraph
could try to generate again new Conjunction and Token-sjules®e signatures to detect the worm.
Nevertheless, this time Polygraph may not be as “fortunasethe first time in generating a useful
signature. Besides, if themporary true invariantsvere chosen among high frequency strings (e.g.,
extracted from network traces using the algorithm preskm§81] setting the probability between
0.8 and 1), the related tokens would receive a low score gtin@ generation of the Bayes signature
and therefore would not interfere with the noise injectittack against Bayes signatures. The final
result is that the attacker has a very high probability tacead in misleading all the three types of

signatures at the same time.

4.3.4 Hfects of the Noise on Other Automatic Signature Generators

We have performed experiments only on Polygraph. Howeverpossible to evaluate théfects
of different noise injection attacks on other systems basing thklsas on the description of the
signature generation algorithms. We present an analysiseopossible fects of noise injection
attack on Nemean [117].

Nemean is a recently proposed automatic signature gendhatiouses a semantic analysis of
the network protocols and two types of signatures, nameipection and session signatures [117].
It uses a honeynet to collect the suspicious flow pool. Thappties a clustering algorithm to group
similar connections irconnection clusterand similar sessions igession clusters Each cluster
contains the observed variants of the same worm. Even thNeghean is suitable for generating
signatures for worms that use limited polymorphism [11f/ihtroduces interesting features such as
semantic protocol analysis and connection and sessiotechgs. For this reason, it is interesting to

discuss how it could be misled using the noise injectiorchtta

72



4.4 Experiments 73

Nemean represents a connection by a vector containing #tebdtion of bytes, the request
type and the response codes that occurred in the networjbth Thefake anomalouglows
can be injected into the suspicious flow pool as explainedeicti®n 4.3.2. Given that thiake
anomalousflows can be crafted to have the same protocol framework dntbéa perfectly) the
same distribution of bytes as the worm variant they derigenfrthefake anomalou$lows and the
worm variants will be very likely considered in the same aartion cluster. If thdake anomalous
flows are crafted by applying a random permutation of the vimibgites (see Section 4.3.3), the
signature generation algorithm will not be able to discasignificant invariant parts common to
the flows in a cluster, and the extracted connection sigestwill be useless because they will
likely produce a high number of false positives. This noigedtion attack will &ect the session
signatures as well, given that they are constructed basdidearesults produced by the connection

clustering process [117].

4.4 Experiments

In our experiments we tried to have an experimental setufiasito the one reported in [76] in
order to make the results comparable. Polygraph softwanetipublicly available, therefore we

implemented our own version following the description @ ttigorithms in [76].

4.4.1 Experimental Setup

Polygraph setup We performed all the experiments setting the minimum toleegtha = 2
and the token-extraction threshold for Bayes signatureigeion to be 20% of the total size of the
suspicious flow pool. We also set the minimum cluster sizedao@the maximum acceptable false
positive rate for a signature to be 0.01 during the appbcatif the hierarchical clustering algorithm
for Conjunction and Token-subsequences signatures.
Polymorphic worm. We considered the Apache-Knacker exploit reported in §&fhe attack

vector for the worm. We simulated an ideal polymorphic eadiollowing the same idea used
by Polygraph’s authors, keeping the protocol frameworkhefattack and the first two byte of the

return address fixed and filling the wildcard and code byt&®umly at random. Each worm variant
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matches the regular expression:
GET .* HTTP/1.1\r\n.*\r\nHost: .*\r\n.*\r\nHost: .*\xFF\xBF.*\r\n

Datasets We collected several days of HTTP requests taken from ticgblmsme of a busy
aggregatedl16 and/17 academic network (i.e., CIDR [35] blocks of the foenb.8.0/16 and
c.d.e.0/17) hosting thousands of machines. The collecteffitraontains requests towards thou-
sands of dierent public web-servers, both internal and external wagpect to our network. The
network trdfic traces were collected between October and November 2004 plit'the tréfic traces
to obtain three dferent datasets which are described below.

Innocuous flow pool The innocuous flow pool was made of 100,459 flows related toPHT
requests towards 898ftkrent web-servets Among these, 7 flows matched the same regular ex-
pression as the polymorphic worm. Thus, in absence of noigeisuspicious flow pool, a generated
signature that matched the worm invariants would result@urd 0.007% of false positives on the
innocuous flow pool. These 7 flows were the only ones to cotit@ixFF\XBF string. Very similar
to our trdfic data, the xFF\xBF string was present in 0.008% of the evaluation flows usedddy-
graph’s authors to perform their experiments [76]. In [#8 {xFF\XBF token caused the Bayes
signature to produce 0.008% of false positives.

Test flow pools We used two sets of test flows in our experiments. The firsivastmade of
217,164 innocuous flowsextracted from the tiffic traces. We inspected this test set to ensure that
it did not include any flow containing thexFR\xBF string. The second test set was made of 100
simulated worm variants. We used the first test set to medlsar@alse positive rate and the second
to measure the false negative rate produced by the sigsaiNme that we obtained the innocuous
flow pool and the test set made of innocuous flows from tvifedint slices of the network traces.

Score multiplier strings. We used a dataset made of 5,000 flows to extract the scorglieult
strings. We analyzed the flows using the algorithm preseimefB81]. We extracted all the sub-
strings of length from 6 to 15 bytes having an occurrenceueegy between 0.05 and 0.2, obtaining
around 300 dferent strings. Many of them were strings related to HTTRibefelds introduced by
certain browsers, such as “Cache-Control’, “Modified-8ihn¢Firefox/0.10.1", “Downloadef6.3”,

1The flows were “innocuous” in the sense that they did not doritee considered worm.
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etc. The extracted strings are the candidate strings timbeaised to obtain a score multiplying
effect to force Bayes signatures to generate a high numberss faisitives, as explained in Sec-
tion 4.3.3. It is worth noting that the flows used to extraet$kiore multiplier strings contained both
inbound and outbound HTTP requests taken from the perinoéteur network. The flows were
related to requests among a large number ffeént web-servers and clients. For these reasons
we expect the obtained strings and occurrence frequerclas general and not specific just to our
network.

Fake anomalous flows We crafted the fake anomalous flows using the algorithmeprtes! in
Section 4.3.3. We usekd= 2 fake invariants of length = 5 for all the fake anomalous flows. We
used several combinations of score multiplier stringpy splitting them in diferent ways to obtain
a different number of substrings for each test. For each fake doom#ow, we chosé of the

obtained substrings at random and injected them into the’ flow

4.4.2 Misleading Bayes Signatures

In [15] Polygraph’s authors state that Bayes signaturesesikent to the presence of noise into the
suspicious flow pool until the noise level reaches at lea%t 80the total number of flows. In our
experiments we found that if the fake anomalous flows aregqutpprafted, just 50% of noise in the
suspicious flow pool (i.e., 1 fake anomalous flow per wormargjican make the generated signature
useless. We performed several experiments using 10 woiantsand 1 or 2 fake anomalous flows
per variant in the suspicious flow pool. The fake anomalousdlaere crafted as explained in
Section 4.3.3 and 4.4.1. We report the results of two groupsi$ below.

Case 1 We obtained the best result using “Firef@x.0.1” (12.2%) and “shockwave-flash”
(11.9%) as score multiplier strings. The percentages lmtywarenthesis represent the occurrence
frequencies of the strings (see Section 4.4.1). We splitvtloescore multiplier strings to obtain all
the possible substrings of sine= 9 (e.qg., “Firefox0”, “irefox/0.”, “refox/0.1", etc.).

As described above, we simulated two attack scenarios dsamgl 2 fake anomalous flows per

2The extracted strings could obviously preseffiedient occurrence frequencies over time. Neverthelesssiagonable
to assume that the attacker could perform a similar anatystsdfic traces collected just a few weeks or even days before
launching the attack.

3Thus, the fake anomalous flows did not always contain the satef substrings.
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Figure 4.7: Case 1. The false positives are measured over the test
flow pool

worm variant, respectively. Therefore, the suspicious fimel was made of 20 flows during the
first attack scenario and of 30 flows during the second one. &Wergted the Bayes signature on
the suspicious flow pool and measured the false positive @iahe innocuous flow pool and the
test flow pool made of innocuous fii@. The results are shown in Figure 4.6 and Figure 4.7. Please
note that the graphs are represented die@int ranges of false positives to highlight thiatience
between the two attack scenarios. The plots representlfiegasitives and false negatives produced
by the signature while varying the threshdaldstarting from 0.0 and incrementing it using a 0.5
increment step. A threshold equal to 0.0 obviously produd$o of false positives and 0% of
false negatives. By incrementing the threshold, the péagenof false positives decreases. The

arrows indicate the coordinates related to the maximumevadthe threshold that produces no false
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Figure 4.8: Case 2. The false positives are measured over the innocesupdbl

negatives. The Bayes signature generated during the sscendrio is reported in [81].

In Section 4.3.3 we discussed how Polygraph optimizes teshioldd for Bayes signatures. It
is easy to see from Figure 4.6 that the noise injection apaekents the thresholgito be optimized.
Consider for example the graph related to the injection @k fanomalous flow per worm variant.
If 6 = 9.5, the signature generates 11.74% of false positives andf@&tse negatives. In order to
decrease the number of false positives the threshold wadd to be incremented further. However,
as soon as the threshold exceeds 9.5 the signature prodi@¥sdf false negatives.

Case 2 In this case “Pragma: no-cache” (9.4%) and “-powerpoiiit0%o) were used as score
multiplier strings. We split these two strings to obtainta# substrings of lengtim = 4. Again, the
suspicious flow pool contained 10 worm variants and 1 or 2 éal@malous flows per variant. The
results are reported in Figures 4.8 and 4.9. Please notealjain, the graphs are represented on
different ranges of false positives to highlight théetience between the two attack scenarios. The
Bayes signature generated during the second scenariog2afaknalous flows per worm variant) is

reported in [81].

4.4.3 Misleading All The Three Signatures at The Same Time

The objective of the noise injection attack is to prevent geaeration of useful signatures. In
order to achieve this result the attack needs to preventehergtion of useful conjunction, token-

subsequences, and Bayes signatures at the same time. Ass#éiddn Section 4.3.3, the results of
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Figure 4.9: Case 2. The false positives are measured over the test fldw poo

1 fake anomalous flow 2 fake anomalous flows
Conjunction 73.3% 88.9%
Token-subsequences 60.0% 73.3%
Bayes 100% 100%
All three signatures 44.4% 62.2%

Table 4.1: Percentage of successful attacks (using “Forwarded-Fat™&lodified-Since”)

the attack are not deterministically predictable. In ondeestimate the probability of success we
simulated the noise injection attack multiple times. Wesidered an attack successful if Polygraph
did not generate a conjunction or token-subsequence signtiat would match the worm and if
the Bayes signature produced more than 1% of false positiessured over the innocuous flow
pool. Even though a false positive rate around 1% is seesniogl, we consider it intolerable for
a blocking signature. We report the results with fake anomalous floafent using two dferent
combinations of score multiplier strings. We divided thstgeinto two groups. The first group
of tests were performed using “Forwarded-For” (11.3%) aktbdified-Since” (15.2%) as score
multiplier strings, splitting them into substrings of léhgn = 5. The second group of test were
performed using “Cache-Control” (15.1%) and “Range: byt&.9%), splitting them in substrings
of lengthm = 4. For each group of tests we simulated two noise injectitacltscenarios using
1 and 2 fake anomalous flows per worm variant, respectively udéd 5 worm variants in the
suspicious flow pool for both the first and the second scen®generated the signatures 45 times
for the first group of tests and 20 times for the second groupe rEsults are shown in Table 4.1

and Table 4.2. The reported percentages represent how nmaey the attack was successful in
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1 fake anomalous flow 2 fake anomalous flows
Conjunction 65% 95%
Token-subsequences 40% 90%
Bayes 90% 100%
All three signatures 20% 85%

Table 4.2: Percentage of successful attacks (using “Cache-Contnol™Range: bytes”)

avoiding the generation of useful signatures. The firstehioevs report the percentage of success
computed for each type of signatures, individually. Théda® represents the percentage of attacks
that succeeded in misleading Polygraph so that it could @égate any useful signature, regardless
of the signature type. Itis worth noting that in both expents, when using 2 fake anomalous flows
per worm variant, the attack has a higher probability to ead¢ and further, it prevents Polygraph

from generating a useful Bayes signature 100% of the time.

4.4.4 Analysis of the Results

Polygraph’s authors showed that their system is resilierthé presence of as much as 80% of
“normal” noise in the suspicious flow pool [76]. However, wewed that if the noise is properly
crafted, just 50% of noise could prevent Polygraph from ggtimeg useful signatures a majority
of the times. As shown above, if the detection threshold fayd® signatures is set in order to
produce a low amount of false positives, we obtain almosed 00 false negatives. According to
the attack taxonomy in [14], we can interpret this as theltefua successfutausative integrity
attack because the learning phase is influenced so that futurekattell not be detected. On the
other hand, if the detection threshold is set so that a lowbmuraf false negatives are produced, the
signatures generate too many false positives. If the sigestvere deployed they would produce a
self-Denial of Servicattack. We can interpret this as the result of a succesafigative availability
attack

In addition, as explained in Section 4.3.3, the noise igecittack can be easily combined with
the red herring attack discussed in [76]. The combinatich@fwo attacks increases the probability
that the worm will prevent the generation of a useful sigreatu

We also conducted preliminary experiments on NETBIOSitrdo extract score multiplier

strings that can be used by a worm that uses this protocoltaskatector. We chose NETBIOS
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because it is an attack vector for most of @8-basedvorms. We analyzed more than 5,000 NET-
BIOS flows, searching for strings of length from 6 to 15 byted an occurrence frequency between
0.05 and 0.2. We found 29 candidate strings in “TCP-basedTBIDS trdfic and 58 candidate

strings in “UDP-based” requests. This experiment suggbatour noise injection technique using

“score multiplier” strings can work for a variety of protdso

4.5 Attack Against Semantic-based Signature Generators

In [78] Newsome et al. propose dynamic taint analysis fopmuatic signature generation. The
idea consists in running (potentially) vulnerable netwapplications in a virtual machine. This
gives full control on the instructions executed by the aggilon. The method aims to detect the
memory location to which the execution of the applicatiohijacked while under attack. Assume,
for example, an application running in the virtual machioetgaint analysis has a Her overflow
vulnerability [79]. Assume also a new worm has been devel@perder to exploit this vulnerability.
While running in the virtual machine, all the data arrivirythe vulnerable application from the
network are labeled as tainted, and every attempt to hifaekpplication’s execution flow to execute
code contained in tainted data is detected. As soon as thma ¥low tries to force the application
to execute the worm’s code, the application is stopped amdaimt analysis engine registers the
address where the worm code resides in memory. As there sira jimited number of possible
address locations the worm could use, part of the registedeldess (e.g., the first two bytes) is
likely shared by all the (polymorphic) variants of the wormdamay be used to help Polygraph
in generating a more robust worm signature [78]. Accordmthe description of fake anomalous
flows given above, the noise injection attack we presentaddwaot work in this case, because the
fake anomalous flows do not attempt to exploit the vulneitgtaind are then filtered out by the taint
analysis engine. On the other hand, we can imagine of a nusetion attack for which the fake
anomalous flows are constructed to actually exploit the enalbility and hijack the application’s
execution flow to a random memory address. In this case itfiswli to distinguish between a real
worm and a fake anomalous flow. This means that the fake ano#bws cannot be easily filtered

out, unless further and more expensive semantic analygisrfermed. The only shortcoming of
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this attack is represented by the fact that the worm propagatould slow down. Given that each
new worm instance and its fake anomalous flows are sent toektevictim in a random order, it

might happen that the first flow to be received by the appticais a fake anomalous flow. In this
case, because the fake anomalous flow actually exploitsutmenability, the attacked application
may crush due to the attempt to hijack the execution to a rantemory address. This prevents
the worm flow, which arrives later, to be executed and infeet mmachine. On the other hand,
whenever the worm flow is the first to be received, the mactsnafected and contributes to the

worm propagation.

4.6 Possible Countermeasures

A possible defense against our implementation of the nojgetion attack is to use a white list to
attempt to filter out flows that contain the score multipliebstrings. However, this is not straight-
forward and may not even be possible. As shown in Sectiod 4tdere are a very large number
of strings that a worm can potentially use. The set of candidtrings extracted from the ffe
are determined by the occurrence frequency ranges, andtthefsubstrings are determined by the
string length value. These are chosen by the attacker andoatenowna priori to the signature
generator. Further, the strings actually used by a wornamts to create fake anomalous flows can
change over time. As a result, a reliable way to filter out tileefanomalous flows is to look for
occurrences of all possible substrings of a very large sstrofgs. This can be very expensive.
Further, such aggressive filtering may prevent the system firoducing useful worm signatures
that happen to contain such substrings.

Another possible countermeasure against the score meitgitings technique is to modify the
detection algorithm for Bayes signatures. For exampleyyeme a test flow matches a token, the
related bytes in the flow should be marked to prevent them fgarticipating” in matching another
token of the same signature. This means that the score ferltgfect described in Section 4.3.3
cannot be achieved anymore. However, the attack may stilk wanultiple candidate stringy
(see Section 4.3.3) are carefully chosen and if they are wjilhout overlap, although now the

induced false positive rate may be much less than the on@aedtduring the experiments reported
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in Section 4.4.2.

Even if the above countermeasures happen to work in soms, thedundamental problem still
exists: without an accurate and robust flow classifier thapeavent the injection of fake anomalous
flows, syntactic-based automated signature generatokaibmerable. The noise injection attack we
have described above is proof-of-concept. We suspect drerenany other similar attacks which
may also defeat semantic-based signature generatorss@ghee in Section 4.5, and believe that a

robust solution to the noise injection attack is still anmpesearch problem.
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Chapter 5

Operating in Adversarial Environment

In the previous chapter we discussed how an adversary méay imerfer with the learning process
used by IDS. In this chapter we describe another challengsurie no interference was present
during the training of the IDS. After deployment, the adagysmay still try to launch sophisticated
attacks which are crafted in order to “evade” the IDS, so tlwaglarm is raised. In the following
we focus onevasive attacksigainst anomaly-based IDS. Evasive attacks of this typeisually
referred to as mimicry attacks. We present a recently pexpaosimicry attack against payload-
based anomaly IDS, first, and then we present a possiblé@olat make payload-based anomaly

IDS more robust by means of a Multiple Classifier System (MCS)

5.1 Payload-based Anomaly Detection

Recent work on unlabeled anomaly detection focusetigh speedtlassification based on simple
payload statistics [55, 66, 112, 113, 111]. For example, PAYL [1123]lextracts 256 features
from the payload. Each feature represents the occurrergedncy in the payload of one of the
256 possible byte values. A simple model of normatfitas then constructed by computing the
average and standard deviation of each feature. A payloemhisidered anomalous ifsimplified

Mahalanobis distancéetween the payload under test and the model of normflictrexceeds a

1The payload is the data portion of a network packet.
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predetermined threshold. Wang et al. [112] also proposedra generia-grant version of PAYL.
In this case the payload is described by a pattern vector B6&@mensional feature space. The
n-grams extract byte sequence information from the payladich helps in constructing a more
precise model of the normal ffec compared to the simple byte frequency-based model. The ex-
traction ofn-gram statistics from the payload can be performgégiently and the IDS can be used
to monitor high speed links in real time. However, given tkpamentially growing number of ex-
tracted features, the higheithe more diicult it may be to construct an accurate model because of
the curse of dimensionality and possible computationalptexrity problems. In order to overcome
the high dimensionality problem, Wang et al. recently pgggtbANAGRAM [111], an anomaly IDS
that uses Bloom filters to “compress” the dimensionalityhaf feature space. First they propose a
single Bloom filter to model only (unlabeld) normal fiia, and then they propose a second filter
which models known attacks. During detection, tligrams are extracted from the payload and
matched against both the normal and attack models. Therawtlsn discuss the ability of ANA-
GRAM to detect polymorphic blending attacks (which we dgcin Section 5.2.3) constructed to
evade 1-gram PAYL.

Other anomaly detection systems based on more complexdsdbave been proposed [103,
21]. These anomaly detectors involve the extraction ofsyaind semantic information from the
payload, which is usually a computationally expensive.tdsterefore, it may not be possible to use

this approaches in order to analyze networlittaon high speed links in real time.

5.2 Evading Detection

Since IDS started to become popular, researchers begarirgiutie robustness of IDS against so-
phisticated attacks which are constructed with the ohjeaf exploiting the targeted vulnerability
without being detected. This type of attacks are usuallgrretl to agvasive attacksResearchers
in this area have used T@P transformations to demonstrate IDS evasions [85], addesd weak-
nesses created by ambiguities in network protocols [39]mé&hous tools have been created for

evading IDS, includingfragroute [96], snot [95], andmucus [75]. Some authors have inves-

2Here anmn-gram represents consecutive bytes in the payload
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tigated techniques to automate the generation of evasiaekat For example, in [108], the au-
thors identified mutation operations to generate variatmmknown exploits. Similarly, the authors

in [91] modeled attack transformations to derive new vaet on known attacks.

5.2.1 Polymorphic Attacks

In Section 4.3.3 we presented a high level structure of anpolphic worm. Polymorphism can be

applied to generic attacks using the same high level streictAs a consequence, a polymorphic
attack is an attack that is able to change its appearancecwdtly instance. Therefore, there may
be no fixed or predictable signature for the attack whichdda used by signature-based IDS. As
a result, polymorphic attacks have a high chance of evaditgcton because most of the current

intrusion detection systems and anti-virus systems aragige-based.

5.2.2 Mimicry Attacks

It has been demonstrated that many anomaly detection systam be evaded bmimicry at-
tacks [109, 54, 26, 34]. A mimicry attack is an evasive attagkinst a network or system vul-
nerability. The attack is carefully crafted so that the clttpattern, i.e., the representation of the
attack used during the classification process, lies insidadecision surface that separates the nor-
mal patterns from the anomalous ones (i.e.,dh#iers. A successful mimicry attack is able to
exploit the targeted vulnerability while causing the anbmBS to produce a false negative (i.e.,
no alarm is raised). Mimicry attacks by meansevfasive polymorphisrhave been recently ex-
plored [26, 34]. These attacks aim to evade payload-basethaly detectors. CLET [26], an
advanced polymorphic engine, performs spectrum analysith® payload in order to evade IDS.
Given an attack payload, CLET adds padding bytes in a seper@ainming bytezone (of given
length) to make the byte frequency distribution of the &ttelose to the model of normal ftifec.

In [34], Fogla et al. showed how to construct a mimicry atfaaledpolymorphic blending attack
that can evade 1-gram (i.e., thimgle-byte frequencyersion) and 2-gram PAYL. Using byte substi-
tution and padding techniques, the polymorphic blenditgcktencodes the attack payload so that
the obtainedransformedattack is classified as normal by PAYL, while still being atdexploit the

targeted vulnerability. We discuss the details of the pagwhic blending attack in Section 5.2.3.
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5.2.3 Polymorphic Blending Attack

Polymorphic attack instances usually look veryfelient from normal tréic. For example, the
polymorphic decryptor and encrypted shellcode (Secti@33.may contain characters that have
very low probability of appearing in normal packets. Thusaaomaly-based IDS may detect the
polymorphic attack instances by recognizing their deviafrom the normal profile. For example,
Wang et al. [112, 113] showed that the byte frequency digidh of an (polymorphic) attack is
quite diferent from that of normal tfic, and can thus be used by PAYL to detect polymorphic
attacks.

Clearly, if a polymorphic attack can “blend in” with (or lodike) normal, it can evade detection
by an anomaly-based IDS. Normalffia contains a lot of syntactic and semantic information, but
only a very small amount of such information can be usedhigh speechetwork-based anomaly
IDS. This is due to fundamentalfficulties in modeling complex systems and performance oeerhe
related to real-time monitoring. For example, the netwaakit profile used by PAYL [112, 113] in-
cludes simple statistics such as maximum or average sizeagadf packets, frequency distribution
of bytes in packets, and range of tokens diedent dfsets. The simplicity of PAYL makes it fast
and suitable for real-time detection in high speed linkswkler, very low structural information is
extracted from the payload and used to construct the modwirofial trdfic.

Given the incompleteness and imprecision of the normallpsbiased on simple ftiic statis-
tics, it is quite feasible to launch what we cptilymorphic blending attackd'he main idea is that,
when generating a polymorphic attack instance, care caaldes o that its payload characteristics,
as measured by the anomaly IDS, will match the normal profier example, in order to evade
detection by PAYL [112, 113], the polymorphic engine carebfalty choose the characters used in
encryption and pad the attack payload with a chosen set chctesis, so that the resulting byte fre-
guency of the attack instance will closely match the normefile and thus be considered as normal
by PAYL.

From the point of view of statistical pattern recognitiohe tpolymorphic blending attack can
be seen as a transformatidnwhich modifies an attack in order to move its representatian, (
its pattern vector) inside the decision surface constdubtethe IDS, as depicted for example in

Figure 5.1.
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Anomalous

Figure 5.1: Polymorphic Blending Attack. After transformation theaatt lies inside the decision surface constructed
around normal tréic.

Attack Scenario

Figure 5.2 shows a possible scenario for the polymorphicditey attack. There are a few assump-

tions behind this scenario:

e The attack program has already compromised a Kaeside a networkA which communi-
cates with the target ho3tinside networkB. Network A and hostX may have poor security

so that the attack can penetrate without getting detectdtiece is a colluding insider.

e The attack program has knowledgel@fSg. This might be possible using a variety of ap-
proaches, e.g., social engineering (e.g., company saj@scnase data), or fingerprinting, or
trial-and-error. We argue that one cannot assume that tBeddployment is a secret and se-
curity by obscurity is never reliable. We assuhiiSg is a payload-based anomaly detection

system (e.g., PAYL [112]).

e Given some packet data froi to Y, the attack program will be able to generate its own
version of the statistical normal profile used I)ySg. This is feasible if we assume that the

IDSg is known and hence its algorithm for learning a normal pragilelso known.

o A typical anomaly IDS has a threshold setting that can besagluto obtain a desired false
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<+——  Normal Traffic

4— — — — —» Attack Traffic

Figure 5.2: Polymorphic Blending Attack scenario [34]

positive rate. We assume that the attack program does nat treexact value of the thresh-
old used byiDSg, but has an estimation of the generally acceptable falsgiyeoand false
negative rates. With this knowledge, the attack programestimate the error threshold when

crafting a new attack instance to match the IDS profile.

Once the attack program has control of h&stt observes the normal fitic going fromXtoY.
The attacker builds (estimates) a normal profile for thiffitaising the same modeling technique
that IDSg uses. This profile is calledrtificial profile [34]. With it, the attack program creates
a mutated instance of itself in such a way that the statigidhie mutated instance matches the
artificial profile. WhenlDSg analyzes these mutated attack packets, it is unable torditioem
from normal trdfic because the artificial profile can be very close to the agdadle in use by
IDSg. Thus, the attack successfully infiltrates the netwB&nd compromises host

The polymorphic blending attack has three basic steps:e@dlthe IDS normal profile; (2)
encrypt the attack body; (3) and generate a polymorphicygéar.

Learning the Normal Profile

The task at hand for the attack program is to observe the rdrafidc going from a host, sa¥, to
another host in the target network, sdyand generate a normal profile close to the one used by the

IDS at the target network, salpSg, using the same algorithm used by the IDS.
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A simple method to get the normal data is byfBng the network triic going from networkA
to hostY. This can be easily accomplished in a bus network. In a segt@nvironment it may be
harder to obtain such data. But the attack program knowsyiedf service running at the target
host. It may then simply generate normal request packetéeand the artificial profile using these
packets.

In theory, even if the attack program learns a profile front pusingle normal packet, and
then mutates an attack instance so that it matches thetiskat$ the normal packet perfectly, the
resulting polymorphic blended attack packet should not &ggikd as an anomaly bipSg if the
normal packet does not result in a false positive in the flestgp On the other hand, it is beneficial
to generate an artificial profile that is as close to the nopnaile used by DSg as possible so that
if a polymorphic blended attack packet matches the artifpriafile closely, it has a high chance of
evadinglDSg. In general, if more normal packets are captured and uselebgttack program, it

will be able to learn an artificial normal profile that is close the normal profile used PP Sg.

Attack Body Encryption

After learning the normal profile, the attack program createew attack instance and encrypts (and
blends) it to match the normal profile. For simplicity, a ghaforward byte substitution scheme
followed by padding can be used for encryption. The main likya is that every character in the
attack body can be substituted by a character(s) obsemettifre normal triic using a substitution
table. The encrypted attack body can then be padded with soane garbage normal data so
that this polymorphic blended attack packet can match tmenaloprofile even better. To keep the
padding (and hence the packet size) minimal, the subdititack body should already match the
normal profile closely. We can use this design criterion twdpce a suitable substitution table.

To ensure that substitution algorithm is reversible (fargpting and running the attack code), a
one-to-one or one-to-many mapping can be used. A singkedutstitution is preferred over multi-
byte substitution because multi-byte substitution willate the size of attack body after substitution.
An obvious requirement of such encryption scheme is thaettoeypted attack body should con-
tain characters from only the normal fita. Although this may be hard for a general encryption

technique (because the output typically looks random} &n easy requirement for a simple byte
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substitution scheme. However, finding an optimal subsitutable that requires minimal padding
is a complex problem. In [34], the authors show that for ¢gertases this is a very hard problem.
Therefore, a greedy method is proposed to find an acceptaltitsition table. The main idea is to
first sort the statistical features in the descending orfifreofrequency for both the attack body and
normal trdfic. For each unassigned entry with the highest frequencyeiattiack body, map it to an

available (not yet mapped) normal entry with the highesjdency. Repeat this until all entries in
the attack body are mapped. The feature mapping can bearathdb a character mapping. Then
a substitution table can be created for encryption and géory purposes. For the details of the

greedy algorithm see [34].

Polymorphic Decryptor

Once the vulnerability has been exploited, the decryptst famoves all the extra padding from the
encrypted attack body and then uses a reverse substitatibe (or decoding table) to decrypt the
attack body to produce the original attack code (shellcode)

The decryptor is not encrypted but can be mutated using pheilierations of shellcode poly-
morphism processing (e.g., mapping an instruction to arvelgnt one randomly chosen from a
set of candidates). To reverse the substitution done ditergling, the decryptor needs to look up
a decoding table that contains the required reverse magpifige decoding table for one-to-one
mapping can be stored in an array whereitlie entry of the array represents the normal charac-
ter used to substitute attack charadgteSuch an encoding table contains only normal characters.
Unused entries in the table can be used for padding. On tlee b#nd, storage of decoding tables
for one-to-many mapping or variable-length mapping is clicaged and typically requires larger

space [34].

Incorporating Attack Vector and Polymorphic Decryptor in B lending

The attack vector, decryptor and decryption table are notypted. Their addition to the attack
packet payload alters the packet statistics. The new tatatimay deviate significantly from the
normal profile. If the changes are significant, the normalfilerdias to be adjusted through an

iterative blending process [34].

90



5.3 Hardening Payload-based Anomaly Detection Systems 91

5.3 Hardening Payload-based Anomaly Detection Systems

In order to make it harder for the attacker to evade the ID$naprehensive model of the normal
traffic is needed. Furthermore, the modeling technique needsdtsberactical andficient. We
address these challenges using an ensemble of classifierssifier ensembles, often referred to
as Multiple Classifier Systems (MCS), have been proved téegetbetter accuracy in many ap-
plications, compared to the best single classifier in themide. A number of security related
applications of MCS have been proposed in the literature. ekample, MCS are used in multi-
modal biometrics for hardening person identification [18], 4nd in misuse-based IDS [37, 36] to
improve the detection accuracy. To the best of our knowledgewvork has been presented so far
that explicitly addresses the problem of increasinghiglness of evasioof anomaly-based IDS
using multiple classifier systems. We propose a new apprtmachnstruct éhigh speedpayload-
based anomaly IDS by combining multiple one-class SVM diass. Our approach is intended to
improve both the detection accuracy and the hardness abevakhigh speed anomaly detectors.
MCS attain accuracy improvements when the combined clessiéire “diverse”, i.e., they make
different errors on new patterns [28]. A way to induce diversityoi combine classifiers that are
based on descriptions of the patterns ifftedent feature spaces [57]. We propose a new technique
to extract the features from the payload that is similar so2kgram technique. Instead of measur-
ing the frequency of the pairs of consecutive bytes, we @epo measure the features by using a
sliding window that “covers” two bytes which avepositions apart from each other in the payload.
We refere to this pairs of bytes as-@rams. The proposed featrue extraction process do not add
any complexity with respect to the traditional 2-gram téghe and can be performedfieiently.
We also show that the proposed technique allows us to “suine@ighe occurrence frequency of
n-grams, withn > 2, thus capturing byte sequence information while limitthg dimensionality

of the feature space. By varying the parametewe construct a representation of the payload in
different feature spaces. Then we use a feature clusteringthigasriginally proposed in [27] for
text classification problems to reduce the dimensionalitthe different feature spaces where the
payload is represented. Detection accuracy and hardnesagibn are obtained by constructing our

anomaly-based IDS using a combination of multiple onesclB¥M classifiers that work on these
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different feature spaces. Using multiple classifiers forceattaeker to devise a mimicry attack that
evades multiple models of normal fiig@ at the same time, which is intuitively harder than evading
just one model. We compare our payload-based anomaly IDBetotiginal implementation of
1-gram PAYL by Columbia University, to an implementationzsffram PAYL, and to an IDS con-
structed by combining multiple one-class classifiers basethesimplified Mahalanobis distance

used by PAYL.

In the following, we present two fierent one-class classification algorithms that we used to
perform our experiments, namely a classifier inspired tdsigport Vector Machine (SVM) [107],
and a classifier based on the Mahalanobis distance [29]. Adisgass in Section 5.3.3, there is an
analogy between anomaly detection based-gnam statistics and text classification problems. We
chose the one-class SVM classifier because SVM have beemsb@eghieve good performances in
text classification problems [93, 62]. We also describe tlahdanobis distance based classification
algorithm because it is the same classification algorithed usy PAYL [112], a recently proposed

anomaly detector based orgram statistics.

5.3.1 One-Class SVM

We use the classifier described in Section 3.4.5, which waggsed by Scholkopf et al. in [92].
Because we combine multiple classifiers using the simplernitajoting rule, as described in Sec-
tion 5.3.3, here we do not use Equation 3.15 to transform thpub of the classifier into class

conditional probabilities estimates. Therefore, we symge the Gaussian kernel

K(x,y) = ®(x) - ©(y) = exp(~ylix - yI?) (5.1)

and compute the output of the classifier according to Equétid4.
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5.3.2 Mahalanobis Distance-based Classifier

Given a training datasd = {X1, X», .., Xm}, the averag®; and standard deviatiam; are computed

for each feature as

i = 5 Ties X
(5.2)

01 = |k S (% - 612
wherex is thei-th feature of a patterrceD andmis the total number of training patterns. We call
M(#, o) the model of normal tiic, whereg = [¢1,d2,...,¢] ando = [01,02,..,09]. Assuming
the features to be uncorrelatedsienplified Mahalanobis distanéd112] A(z, M(¢, o)) between a
generic patterz = [z, 2, .., ] and the modeM(¢, o) can be computed as

1z — il

o t+ta

|
AZ M@ ) = ) (5.3)
i=1

where« is a constansmoothing factorintroduced in order to avoid division by zero. Given a

thresholdg, the decision rule for the classifier can be written as
Az, M(¢,0)) > 08 = zis an outlier (5.4)

The threshold) can be computed during training so that a chosen rejectier raf patterns inD
is left outside the decision surface, i.e., the classifiedpces a false positive rateon the training

dataseD, if we assuméD contains only examples extracted from the target class.

5.3.3 Payload Classification
Feature Extraction

The detection model used by PAYL [112] is based on the fregudistribution of then-grams (i.e.,

the sequences af consecutive bytes) in the payload. The occurrence frequehthe n-grams is

3The simplified Mahalanobis distana#o not involve square operations, which would slow down th@gutation of
the distance.
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94 5. Operating in Adversarial Environment

measured by using a sliding window of length The window slides over the payload with a step
equal to one byte and counts the occurrence frequency iretylega of the 256 possiblen-grams.
Therefore, in this case the payload is represented by apagetor in a 256-dimensional feature
space. It is easy to see that the highethe larger the amount of structural infomation extracted
from the payload. However, using= 2 we already obtain 65,536 features. Larger values arfe
impractical given the exponentially growing dimensiotyabf the feature space and the curse of
dimensionality problem [29]. On the other hand, by measgutire occurrence frequency of pairs
of bytes that are positions (i.e.y bytes) apart from each other in the payload, it is still pgassio
extract some information related to thegrams, withn > 2. We call such pairs of bytes-grams
In practice, the occurrence frequency of thegams can be measured by using @ 2) long sliding
window with a “gap” between the first and last byte.

Consider a payloa® = [by, by, .., In], whereb; is the byte value at position The occurrence

frequency in the payloaB of ann-gramg = [B1, 82, .., 8n] ,» With n < |, is computed as

# of occurrences @8 in B
[-n+1

f(BIB) = (5.5)

where the number of occurrencesgah B is measured by using the sliding window technique, and
(I — n+ 1) is the total number of times the window can “slide” o®erf (8|B) can be interpreted as
an estimate of the probabilitg(B|B) of finding then-gramg (i.e., the sequence of consecutive bytes

[B1,82, .., 5n]) in B. Accordingly, the probability of finding a,2gram{31, 8,2} can be written as

PBLA2IB) = > P(IBL. B2 Brs1. Bra2lB) (5.6)
ﬂ2s--sﬂv+l

It is worth noting that for = 0 the 2-gram technique reduces to the “standard” 2-gram technique
Whenv > 0, the occurrence frequency in the payload of,ayam {8, 8,.2} can be viewed as a
marginal probability computed on the distribution of theH 2)-grams that start witjg; and end
with 8,.,2. In practice the frequency of g-gram somehow “summarizes” the occurrence frequency
of 256" n-grams, withn = v + 2.

From the occurrence frequency of thegrams it is possible to derive the distribution of the

(n - 1)-grams, § — 2)-grams, etc. On the other hand, measuring the occurreaqadncy of the
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2,-grams does not allow us to automatically derive the distidim of 2,_1)-grams, 4,_2)-grams,
etc. The distributions of,2grams with diterent values of give us diterent structural information
about the payload. The intuition is that, ideally, if we absbmehow combine the structural infor-
mation extracted using flerent values of = 0, .., N we would be able to reconstruct the structural
information given by the distribution af-grams, withn = (N + 2). This motivates the combination
of classifiers that work on flfierent descriptions of the payload obtained using thgram technique

with different values of.

Feature Reduction

Payload anomaly detection based on the frequencygrams is analogous to a text classification
problem for which the bag-of-words model and a simple univeid raw frequency vector represen-
tation [62] is used. The flierent possible-grams can be viewed as the words, whereas a payload
can be viewed as a document to be classified. In general foclessification only the words that
are present in the documents of the training set are comsidefhis approach is not suitable in
case of a one-class classification problem. Given that #ieitig set contains (almost) only target
examples (i.e., “normal” documents), we cannot concludé dhword that have a probability equal
to zero to appear in the training dataset will not be disgrant. As a matter of fact, if we knew of
a wordw that has probabilityp(wl|d;) = 0, Vd;eC;, of appearing in the class of target documetits
and p(w|dy) = 1, Ydo,eCg, of appearing in documents of the outlier cl&s it would be sifficient
to measure just one binary feature, namely the presence of mgin the document, to construct a
perfect classifier. This is the reason why we choose to takeaiccount all the 286n-grams, even
though their occurrence frequency measured on the tragehis equal to zero. Using the-gram
technique we still extract 256eatures. This high number of features could makefitatilt to con-
struct an accurate classifier, because of the curse of diamatisy [29] and possible computational
complexity problems related to learning algorithms.

In order to reduce the dimensionality of the feature spacpdgload anomaly detection, we ap-
ply a feature clustering algorithm originally proposed hlyillon et al. in [27] for text classification.
Given the number of desired clusters, the algorithm iteeitiaggregates the features until the infor-

mation loss due to the clustering process is less than arcéntashold. This clustering algorithm
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has the property to reduce the within cluster and amongearkisiensen-Shannon divergence [27]
computed on the distribution of words, and has been showalpdbtain better classification accu-
racy results with respect to other feature reduction tegres for text classification [27]. The inputs

to the algorithm are:

1. The set of distribution$p(Cilw;) : 1<i<m, 1<j<l}, whereC; is thei-th class of documents,
m is the total number of classes; is a word and is the total number of possibleftirent

words in the documents.
2. The set of all the priorgp(w;), 1<j<I}.
3. The number of desired clustdes

The output is represented by the set of word clustées (Wi, Wy, .., Wi}. Therefore, after clustering

the dimensionality of the feature space is reduced fraork. The information loss is measured as

QUWhfy) = Z P} )KL(P(CIw;), p(CIWh)) (5.7)

k
h=1 wje
whereC = {Ci}i-1..m, andKL(py, p2) is the Kullback-Leibler divergence between the probapbili
distributionsp; and p,.

In the originall-dimensional feature space, tlh feature of a pattern vectar represents the
occurrence frequencl(w;j|d;) of the wordw; in the document;. The new representatiot of d; in

thek-dimensional feature space can be obtained by computinigéteres according to

f(Whid)) = Z f(wjld), h=1,..k (5.8)

wjeWh

where f (Wh|d;) can be interpreted as the occurrence frequency of theeclostwordsW, in the

document,.

In case of a one-class problem= 2 and we can calT; the target class ard, the outlier class.
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The posterior probabilitiegp(Cilw;) : i = t, 0, 1<j<I} can be computed as
INTARE P(w;ICi)p(Ci)
PCilW)) = SR+ ptw CoIRCy)
(5.9)
i=to0, I<j<l
and the priorgp(wj), 1<j<l} can be computed as
p(w;j) = pw;IC)P(Cy) + p(W;ICo)P(Co), 1<l (5.10)

The probabilitiesp(w;|C;) of finding a wordw; in documents of the target cla€g can be reliably
estimated on the training dataset, whereas itfisodit to estimatgp(w;|C,), given the low number
(or the absence) of examples of documents in the outlies ElgsSimilarly, it is difficult to reliably
estimate the prior probabilitieg(C;) = % i = t,0, whereN; is the number of training patterns of
the classCi andN = N; + N, is the total number of training patterns. Given thakN; (or even
No = 0), the estimated priors aC,) ~ 0 andp(C;) ~ 1, which may be very dierent from the
real prior probabilities.

In our application, the words; are represented by the Z5gossible dferent 2-grams (with a
fixedv). In order to apply the feature clustering algorithm, weneate p(w;|C;) by measuring the
occurrence frequency of theg-gramsw; on the training dataset and we assume a uniform distribu-
tion p(w;|Co) = Il of the 2-grams for the outlier class. We also assup(€,) to be equal to the

desired rejection rate for the one-class classifiers, acardimgly p(C;) = 1 — p(Cy).

Combining One-Class Classifiers

Multiple Classifier Systems (MCS) have been proved to impi@assification performaces in many

applications [28]. MCS achieve better performance thamb#st single classifier when the classifiers
of the ensemble are accurate and diverse, i.e., mdlara@ht errors on new patterns [28]. Diversity

can be intuitively induced for example by combining class#fithat are based on descriptions of the
patterns in dierent feature spaces [57].

Several techniques have been proposed in the literatureofabining classifiers [57]. To the
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best of our knowledge, the problem of combining one-classsifiers has been addressed only
by Tax et al. in [101] and in [100]. We use a simple majorityingtrule [57] to combine one-
class classifiers that work onftirent descriptions of the payload. Suppose we have a datset
payloadsT = {1, 7, .., mm}. Given a payload, we extract the features as discussed in Section 5.3.3
obtaining L different descriptions;xf(l),xf(z),..,x(kL)} of nx. L one-class classifier are constructed.
The h-th classifier is trained on a datade{" = {x(lh),x(zh), X" obtained fromT using theh-th
description for the payloads. During the operational phaspayload is classified as target (i.e.,
normal) if it is labeled as target by the majority of the clfisess, otherwise it is classified as outlier

(i.e., anomalous).

5.4 Experiments

In this section we compare and discuss the classificatiofonpeaince of four dferent anomaly
IDS. We compare the performace obtained using the originplémentation of 1-gram PAYL [112]
developed at Columbia University, an implementation ofr@sg PAYL, and two anomaly IDS we
built by combining multiple one-class classifiers. One @i two IDS was implemented using an
ensemble of one-class SVM classifiers, whereas the otheimyAsmented using an ensemble of
Mahalanobis Distance-based (MD) one-class classifiersal¥éeshow and discuss the performance
of the single classifiers used to construct the ensembleghelbest of our knowledge, no public
implementation of 2-gram PAYL exists. We implemented oundaimplified) version of 2-gram

PAYL in order to compare its performance to the other comsidl@nomaly IDS.

5.4.1 Experimental Setup

It is easy to see that the accuracy of the anomaly detect&tersyg we consider can be considerably
influenced by the values assigned to a number of free paresnéelaning all the free parameters
in order to find the optimal configuration is affittult and computationally expensive search task.
We did not perform a complete tuning of the parameters, buugerl a number of reasonable
values that should represent an acceptable suboptimalooation. For 1-gram PAYL we used

the default configuration provided along with the softwaF@r all the MD classifiers and our 2-
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gram PAYL we set the smoothing factar= 0.001, because this is the same default valueafor
used by 1-gram PAYL (which also uses the MD classificatioroitigm). We used.ibSVHM [20]

to perform the experiments with one-class SVM. For all the-olass SVM classifiers we used
the gaussian kernel in (5.1). Some techniques for the opdition of the parameter have been
proposed in the literature [13]. Simple tuning is usuallyfpened iteratively changing the value of
v and retraining the classifier [20], which results in a comafiahally expensive process in case of
multiple classifiers. Therefore, in order to choose a sldtablue fory we performed a number of
pilot experiments. We noted that setting- 0.5 the one-class SVM classifiers performed well in all
the diferent feature spaces obtained by varying the parametard the number of feature clusters
k during the feature extraction and reduction processepgctigely (see Section 5.3.3). Having
fixed the values for some of the parameters as explained atvevperformed several experiments
varying the “gap”v and the number of feature clustées The values we used for this parameters

and the obtained results are discussed in detail in Sect#b.5

We performed all the experiments using 5 days of HTTP requestards our department’s
web server collected during October 2004. We assumed thébeied tréic to contain mainly
normal requests and possibly a low fraction of noise, i.eonzalous packets. We used the first
day of this trdfic to train the IDS and the last 4 days to measure the falseiysdte (i.e., the
false alarm rate). In the following we refer to the first daytiaffic astraining dataset and to
the last 4 days atest dataset The training dataset contained 384,389 packets, wheheatest
dataset contained 1,315,433 packets. In order to estirhatedtection rate we used 18 HTTP-
based bffer overflow attacks. We collected the first 10 attacks fromltiternet (e.g., exploits
for IIS 5.0 .printer ISAPI Extension [8], ActivePerl perlIIS.dll [7], UnixWare’s
Netscape FastTrack 2.01a[9], and also [6, 2, 4, 3, 1, 5, 73]). Each of these attacks idema
up of a diferent number of attack packets. The latter 8 attacks weregepted by some of the at-
tacks used in [34], where Fogla et al. constructed a numhmirafcry attacks against PAYL. These
attacks were derived from an exploit that targets a vulnkfsatn Windows Media Services
(MS03-022) [33]. In particular, we used the origindtindows Media Services exploit used
in [34] before transformation, 6 mimicry attacks derivedrfr this original attack using a polymor-

phic shellcode engine called CLET [26], and one polymorfiending attack obtained using the
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single byte encodingcheme for the 2-grams presented in [34]. The 6 mimicry ledtabtained
using CLET were created settinglgirent combinations of packet length and total number otltta
packets. The polymorphic blending attack consisted of &ktpackets and the payload of each
packet was 1460 bytes long. In the following we will refer e tset of attacks described above as

attack datasetOverall, the attack dataset contained 126 attack packets.

5.4.2 Performance Evaluation

In order to compare the performace of PAYL, the construciedls classifiers, and the overall
anomaly IDS, we use the Receiver Operating CharacterBR@J) curve and the Area Under the
Curve (AUC). We trained PAYL and the single classifiers fdfatient operational points, i.e., we
constructed dferent “versions” of the classifiers setting dfelient rejection rate on the training
dataset each time. This allowed us to plot an approximate B@e for each classifier. Assuming
the training dataset contains only normal HTTP requestsrdjection rate can be interpreted as a
desired false positiveate. In the following we refere to this desired false pwusitiate as DFP. If
we also assume the test dataset contains only normal HT TRty we can use it to estimate the
“real” false positive rate, or RFP. Each point on an ROC curve represents the RRRaddtection
rate (DR) produced by the classifier. The detection rate iasored on the attack dataset and is
defined as the faction of detected attack packets, i.e. uhwar of attack packets that are classified
as anomalous divided by the total number of packets in tlaglattataset (regardless of the specific
attack the detected packets come from).

We measured the performance of the classifiers fofférdint operational points to compute an

(partial) ROC curve for each classifier. These points arainbtl by training each classifier using 7

DFP(%) | RFP(%) | Detected attacks| DR(%)
0.0 0.00022 1 0.8
0.01 0.01451 4 17.5
0.1 0.15275 17 69.1
1.0 0.92694 17 72.2
2.0 1.86263 17 72.2
5.0 5.69681 18 73.8
10.0 11.05049 18 78.6

Table 5.1: Performance of 1-gram PAYL.
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k
10 20 40 80 160

0 | 0.9660 (0.4180E-3) 0.9664 (0.3855E-3)  0.9665 (0.4335E-3).9662 (0.2100E-3) 0.9668(0.4686E-3)
1 | 0.9842 (0.6431E-3) 0.9839 (0.7047E-3) 0.9845(0.7049E-3)  0.9833 (1.2533E-3)  0.9837 (0.9437E-3)
2 | 0.9866 (0.7615E-3) 0.9867 (0.6465E-3)  0.9875 (0.6665E-3) 9887(2.6859E-3)  0.9862 (0.7753E-3)
3 | 0.9844 (1.2207E-3) 0.9836 (1.1577E-3) 0.9874(1.0251E-3) _ 0.9832 (1.0610E-3) _ 0.9825 (0.6835E-3)
4 | 0.9846 (0.5612E-3) 0.9847 (1.5334E-3)  0.9846 (0.9229E-3).9849 (1.5966E-3) 0.9855(0.4649E-3)

Y 75 | 0.9806 (0.8638E-3) 0.9813 (0.0072E-3) _ 0.9810 (0.5590E-3).0813 (0.8494E-3) 0.9818(0.3778E-3)
6 | 0.9800 (0.7836E-3)  0.9806 (1.1608E-3)0.9812(1.6199E-3)  0.9794 (0.3323E-3)  0.9796 (0.4240E-3)
7 | 0.0810 (1.6807E-3) 0.0854 (0.8485E-3)  0.0844 (1.2407E-3).9863 (1.9233E-3) 0.9877(0.7670E-3)
8 | 0.0779 (1.7626E-3) 0.9782 (1.O797E-3)  0.9787 (2.0032E-3) 9793(1.0847E-3) _ 0.9785 (1.7024E-3)
9 | 0.0733 (3.1048E-3) 0.9775(1.9651E-3) 0.9770 (1.0B03E-3)  0.0743 (2.4879E-3)  0.Q122258E-3)
10 | 0.9549 (2.7850E-3)  0.9587 (3.3831E-3) _ 0.9597 (3.8900E-3).0608 (1.2084E-3) 0.9681(7.1185E-3)

Table 5.2: Performance of single one-class SVM classifiers. The nusnbevold represent the best average AUC for a
fixed value ofv. The standard deviation is reported between parentheses.

DFP, namely 0%, 0.01%, 0.1%, 1.0%, 2.0%, 5.0% and 10.0%. THe i& estimated by integrating
the ROC curve in the interval of RFP between 0% and 10.0%. Btereed result is then normalized
so that the maximum possible value for the AUC is 1. Accordmgow the AUC is computed, the
higher the value of the AUC, the better the performance otthssifier in the considered interval
of false positives. For each DFP, we also measured the nuailmitected attacks. We consider
an attack as detected if at least one out of the total numbpackets of the attack is detected as
anomalous. It is worth noting that the number of detecteatkst is dfferent from the detection rate

used to computed the ROC curve.

1-gram PAYL. Our baseline is represented by the performance of 1-graniPAY¥ mentioned
before, PAYL measures the occurrence frequency of byteegdluthe payload. A separate model
is generated for eachftirent payload length. These models are clustered togethiee &nd of
the training to reduce the total number of models. Furtheemthe length of a payload is also
monitored for anomalies. Thus, a payload with an unseenrgrio® frequency length is flagged as
an anomaly [112].

We trained PAYL using the entire first day of collected HTTHuests. We constructed the
ROC curve by estimating the RFP on the entire test datasetihie other 4 days of collected HTTP
requests, and the detection rate on the attack dataset. bifamed AUC was equal to 0.73. As
shown in Table 5.1, for DFF0.1% PAYL produced an RFE®.15% and was able to detect 17 out of
18 attacks. In particular it was able to detect all the ataicept the polymorphic blending attack.
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Table 5.1 also shows that the polymorphic blending attagiaieed undetected until REP1.86%.
By performing further experiments, we found out that theimimm amount of RFP for which PAYL
is able to detect all the attacks, included the polymorpheading attack, is equal to 4.02%, which

is usually considered intolerably high for network intarsidetection.

Single One-Class SVM Classifiers. We constructed several one-class SVM classifiers. We ex-
tracted the features as described in Section 5.3.3 varlggngdrameter from 0 to 10, thus obtaining
11 different descriptions of the patterns. Then, for each fixeuke applied the feature clustering al-
gorithm described in Section 5.3.3 fixing the prior probiaibiP(C,) = 0.01 and setting the number
of desired clusterk equal to 10, 20, 40, 80 and 160. We used a random initializdtiothe algo-
rithm (i.e., at the first step each feature is randomly assign one of thé clusters). The feature
clustering algorithm stops when the information loss i7\Becomes minor than 16

For each pairy k) of parameter values we repeated the experiment 5 timeseasatr round
we applied the feature clustering algorithm (using a nevdoam initialization), and we trained a
classifier on a sample of the training dataset obtained flaotiginal training dataset by applying
the bootstrap technique without replacement and with a Bagngatio equal to 10%. We estimated
the AUC by measuring the false positives on a sample of thedttaset obtained using again the
bootstrap technique with sampling ratio equal to 10%, andswmeng the detection rate on the entire
attack dataset. Table 5.2 reports the estimated average AbCnumbers between parentheses
represent the standard deviation computed over the 5 roMidgliscuss the obtained results later
in this section comparing them to the results obtained usiadvD classification algorithm.

k

10 20 40 80 160
0 | 0.9965(0.5345E-3)  0.9948 (1.4455E-3)  0.9895 (3.9813E-3)  0.9BAEBO2E-3)  0.9718 (9.9020E-3)
1 | 0.9752(0.5301E-3) 0.9729 (0.7921E-3)  0.9706 (1.0940E-3)  0.9862050E-3)  0.9653 (0.3681E-3)
2 | 0.9755(0.2276E-3)  0.9743 (0.4501E-3) 0.9741 (0.9121E-3) 0.967P0BAE-3)  0.9661 (0.4246E-3)
3 | 0.0749(0.7496E-3)  0.9736 (0.8507E-3)  0.0726 (1.8217E-3) 0.112729E-3)  0.9708 (2.6994E-3)
4 | 0.9761(0.4260E-3) 0.9743 (0.3552E-3)  0.0735 (0.7998E-3)  0.9033B27E-3)  0.9722 (0.9637E-3)
V" 75 | 0.9735(1.0645E-3)  0.9692 (0.3607E-3)  0.9694 (1.0499E-3)  0.9@2674E-3)  0.9606 (1.9866E-3)
6 | 0.9737(0.6733E-3) 0.9709 (1.5523E-3)  0.9687 (2.9730E-3) 0.9@9BI22E-3) 0.9717 (0.5427E-3)
7 | 0.9687(3.3302E-3)  0.9545 (9.6519E-3)  0.9505 (7.3100E-3)  0.9258923E-3)  0.8672 (50.622E-3)
8 | 0.9731(0.7552E-3) 0.9721 (0.6001E-3) 0.9717 (0.6799E-3)  0.9016867E-3)  0.9678 (1.5209E-3)
9 | 0.9719(1.5743E-3) 0.9695 (1.9905E-3)  0.9700 (2.2792E-3)  0.9862066E-3)  0.9611 (1.5542E-3)
10 | 0.9641 (1.6604E-3) 0.9683(2.5370E-3) 0.9676 (1.2692E-3) 0.9635 (1.1016E-3)  0.90909E-3)

Table 5.3: Performance of single MD classifiers. The numbers in boldesgnt the best average AUC for a fixed value
of v. The standard deviation is reported between parentheses.
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4
0 1 2 3 4 5 6 7 8 9 10
0.9744 0.9665 0.9711 0.9393 0.9170 0.8745 0.8454 0.8419 0.8381 556.9 0.9079

Table 5.4: Performance of single MD classifiers for varying No feature clustering is applied. The number in bold
represents the best result.

Single MD Classifiers. Similarly to the experiments with the one-class SVM classifi we con-
structed several MD classifiers. For each pajk) of parameter values, we applied the feature
clustering algorithm with random initialization, and waeitred a classifier on a 10% sample of the
training set (using again the bootstrap technique witheplacement). The AUC was estimated by
measuring the false positives on a 10% sample of the tedetaad the detection rate on the entire
attack dataset. We repeated each experiment 5 times. T&8legworts the average and the standard
deviation for the obtained AUC. The MD classifier performs&remely well forv = 0 andk = 10.

In this case the MD classifier is able to detect all of the 18ck& for an RFP around 0.1% and
reaches 100% of detection rate for an RFP around 1%. Howtbeeuse of only one classifier does

not improve the hardness of evasion, as discussed in Sécton

We also estimated the performance of the MD classifiers withpplying the feature clustering
algorithm. In this case each pattern is described by 65,6386ufes. We trained a classifier for
each value of = 0, .., 10 on the entire training dataset and estimated the AUC miegsihne false
positives and the detection rate on the entire test andkattataset, respectively. The obtained
results are reported in Table 5.4. As can be seen from Tablarsl Table 5.4, the best performance
for a fixed value ofy are always reached usikg= 10. The only exception is when = 10. In
this case the best performance is obtained ukirg20. The good performance obtained for low
values ofk are probably due to the fact that the MD classification athorisufers from the curse
of dimensionality problem. By reducing the dimensionatifythe feature space the MD classifier is
able to construct a tighter decision surface around thetatgss. For each fixddthe best results
in terms of AUC were obtained using = 0. The only exception is wheln= 160. In this case the
best AUC is obtained for = 4. Nevertheless, the AUC obtained fioe 4 and forv = 0 are really
close, and considering the standard deviation it is notiplesto say which classifier performs better

than the other. As we discuss in Section 5.5, the amountuwdtsiral information extracted from the
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payload decreases whemgrows. The MD classifier seems to be sensitive to thisoe

By comparing the best results in Table 5.2 and 5.3 (the nusnibdpold), it is easy to see that
SVM classifiers perform better than MD classifiers in all thses except when= 0 andyv = 10.
Whenvy = 10 the best performance are really close, and consideragtémdard deviation it is not
possible to say which classifier performs better than therothis also easy to see thatfférently
from the MD classification algorithm, the one-class SVM sgemt to stfer from the growing
dimensionality of the feature space obtained by incredsiridnis is probably due to the fact that by
using the gaussian kernel the patterns are projected irfiaitérdimensional feature space, so that

the dimensionality of the original feature space becom&silaportant.

2-gram PAYL. The MD classifier constructed without applying the featuustering and setting
v = 0 represents an implementation of 2-gram PAYL that uses ardehior all the possible packet
lengths. Table 5.5 reports the results obtained with thassifier. It is easy to see that 2-gram
PAYL performs better that 1-gram PAYL, if we consider theed¢ion rate DR. This is due to the
fact that the simple distribution of 1-grams (i.e., the milisition of the occurrence frequency of the
byte values) does not extract structural information fréwm payload, whereas the distribution of
2-grams conveys byte sequence information. Neverthelegsam PAYL is not able to detect the
polymorphic blending attack even if we are willing to toleran RFP as high as 11.25%. This is
not surprising given that the polymorphic blending attackuged was specifically tailored to evade
2-gram PAYL.

DFP(%) | RFP(%) | Detected attacks| DR(%)
0.0 0.00030 14 35.2
0.01 0.01794 17 96.0
0.1 0.12749 17 96.0
1.0 1.22697 17 97.6
2.0 2.89867 17 97.6
5.0 6.46069 17 97.6
10.0 11.25515 17 97.6

Table 5.5: Performance of an implementation of 2-gram PAYL using alsildD classifier,y = 0 andk = 65, 536.

Classifier Ensembles. We constructed several anomaly IDS by combining multipkessifiers

using the simple majority voting rule. We first combined a&ss SVM classifiers. For a fixed
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Ensemble of One-Class SVM
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Figure 5.3: ROC curves obtained by combining One-Class SVM classifigrgithe majority voting rule. Each curve is
related to a dierent value ok. Notice that the scales have been adjusted in order to pigtthe diferences among the
curves.

value of the number of feature clustégghe output of the 11 classifiers constructedifer O, .., 10

were combined. The experiments were repeated 5 times forwedoe ofk. We also applied the
same approach to combine MD classifiers. The obtained RO&s\ware reported in Figure 5.3
and Figure 5.4. The average and standard deviation for tiaéneldl AUC are reported in Table 5.6.
The last row reports the results obtained by combining sid@D classifiers for which no feature
clustering was applied (i.e., all the 65,536 features aesllus The combination works really well

k Ensemble of SVM | Ensemble of MD
10 0.9885 (0.3883E-3) 0.9758(0.4283E-3)
20 0.9875 (2.0206E-3) 0.9737 (0.1381E-3)
40 0.9892(0.2257E-3)| 0.9736 (0.2950E-3)
80 0.9891 (1.6722E-3) 0.9733 (0.5144E-3)
160 0.9873 (0.4209E-3) 0.9701 (0.6994E-3)

65,535 - | 0.9245

Table 5.6: Average AUC of classifier ensembles constructed using therityavoting rule. The numbers in bold represent
the best result for varying. The standard deviation is reported between parentheses.

in case of one-class SVM. As shown in Table 5.6, the overall tbnstructed using ensembles of
one-class SVM always performs better than the best singksifier. The only exception is when
k = 160, but in this case the results are so close that considéran standard deviation it is not
possible to say which one is the best. On the other hand, tinbioation of MD classifiers is not
as dfective as for the ensemble of one-class SVM, and does nobimghe performance of the

single best classifier. This is probably due to the fact tthbagh we constructed MD classifiers
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Ensemble of Mahalanobis Distance based classifiers
T T T
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Figure 5.4: ROC curves obtained by combining MD classifiers using theonitgjvoting rule. Each curve is related to a
different value ok. Notice that the scales have been adjusted in order to pigtthe diferences among the curves.

that work on dfferent feature spaces, the obtained classifiers are fitisntly diverse and make

the same errors for new patterns.

DFP(%) | RFP(%) | Detected attacks| DR(%)
0.0 0.0 0 0
0.01 0.00381 17 68.5
0.1 0.07460 17 79.0
1.0 0.49102 18 99.2
2.0 1.14952 18 99.2
5.0 3.47902 18 99.2
10.0 7.50843 18 100

Table 5.7: Performance of an overall IDS constructed using an enseafldee-class SVM and settirig= 40. The DFP
is referred to the single classifiers of the ensemble.

Table 5.7 shows the results obtained with an overall IDS emgnted by combining the 11
single one-class SVM constructed using 0, ..,10 andk = 40. The IDS is able to detect all the
attacks except the polymorphic blending attack for an RKRtdhan 0.004%. The IDS is also able
to detect all the attacks, including the polymorphic blegdattack, for an RFP lower than 0.5%.

In conclusion, the experimental results reported abovevghat our IDS constructed using an
ensemble of one-class SVM classifiers and ukirgd0 performs better than any other IDS or single
classifiers we considered. The only exception is the sindledissifier obtained setting= 0 and
k = 10. However, as mentioned before and as discussed in Séchothis single MD classifier

may still be easy to evade, whereas our MCS based IDS is muderita evade.
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5.5 Discussion

2,-grams. We discussed in Section 5.3.3 how to extract the features) tise 2-gram technique.
We also argued that the occurrence frequency, aframs somehow “summarizes” the occurrence
frequency ofn-grams. This allows us to capture some byte sequence infmman order to show
that the 2-grams actually extract structural information from thglpad, we can consider the bytes
in the payload as random variables and then we can computel#tiee mutual information of bytes
that arev positions apart from each other. That is, for a fixed value we compute the quantity

I (Bi; Bity+1)

"Mbi = )

(5.11)

wherel (B;; Bi;,+1) is the mutual information of the bytes at positioand { + v + 1), andH(B;) is
the entropy of the bytes at positionBy computing the average f&M|,; over the index = 1, .., L,
with L equal to the maximum payload length, we obtain the averdgtvemutual information for
the 2,-grams along the payload. We measured this average retatial information on both the
training and the test set varyingrom 0 to 20. The results are shown in Figure 5.5. It is easgé s
that the amount of information extracted using thegPam technique is maximum for= 0 (i.e.,
when the 2-gram technique is used) and decreases for growiHgwever the decreasing trend is
slow and the average RMI is always higher than 0.5 until 10. This is probably due to the fact
that HTTP is a highly structured protocol. Preliminary fesshow that the same property holds for

other text based protocols.
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Figure 5.5: Average relative mutual information for varying
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Polymorphic Blending Attack. The polymorphic blending attack we used for our performance
evaluation was presented in [34] as an attack against 2-Bfafh. The polymorphic blending attack
encodes the attack payload so that the distribution of gigiia the transformed attack “looks” like
normal, from the point of view of the model of normalftia constructed by PAYL. As discussed
in [34], a polymorphic attack against 2-gram PAYL is alsoeatd evade 1-gram PAYL. This is
because the distribution of 1-grams can be derived from itelulition of 2-grams. Thus, if the
distribution of 2-grams in the attack payload “looks” likermal, so does the distribution of 1-

grams.

In order to construct the attack, first of all the attackerdsee monitor part of the tfac towards
the network protected by the IDS [34]. By monitoring thisfiig a polymorphic blending engine
constructs an approximate normal profile for the 2-gramstemd$forms the attack payload accord-
ingly. It has been proved that a “perfect” single byte enngdransformation of the attack payload
in order to reflect the estimated normal profile is NP-congp[8%]. Therefore, Fogla et al. [34]
proposed an approximate solution to the problem. High fequ 2-grams in the attack payload
are greedily matched via one-to-one byte substitution @itframs that have high frequencies in
normal trdfic. This approximate substitution does not guarantee to firmhaformation that brings
the attack payload close to the distribution of normdfittd34]. The proposed approach could also
be generalized to evade argram version of PAYL. However, because of the way the allyori
greedily matches-grams in the attack payload withgrams in normal tréic [34], the single byte
encoding algorithm proposed is less and less likely to gdaex successful attack payload transfor-
mation, as grows. This means that although the polymorphic blenditecktmay still work well

forn = 2, itis likely to fail for n > 2.

Hardness of Evasion. In Section 5.4.2 we showed that an MD classifier construcsétgw = 0

(i.e., using the 2-gram technique) akd= 10 achieves very good classification performances (see
Table 5.3). However, the use of only one classifier does riptihdhardening the anomaly detector
against evasion attempts. The attacker may easily modifyptiymorphic blending attack against

2-gram PAYL in order to evade this one particular classifier.

We constructed our anomaly IDS using multiple classifieas Work on diferent descriptions of
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the payload. In this case the polymorphic blending attaek thimics the normal distribution of 2-
grams does not work anymore because it can already be defecte percentage of false positives
as low as 0.5%, as shown by the experimental results report8ection 5.4.2. In order for the
attacker to evade our IDS, she needs to devise a substitalimmithm that evades the majority
of the classifiers at the same time. Therefore, the attackedsito transform the attack payload
in order to mimic the distribution of ,2grams for diterent values of. Because of the way the
features are extracted using thegtam technique, this result may be achieved by a polymorphi
transformation that encodes the attack payload to reflectligtribution of then-grams in normal
traffic, with n greater thar{%. Heremax) represents the maximum valuewiised during
the feature extraction process. Thus, in order to evade @8rthe attacker needs to encode the
attack payload mimicking the distribution in normalffra of 7-grams. This makes it much harder
to evade our IDS, compared to 1-gram and 2-gram PAYL. In thadnypothetical 7-gram PAYL
would be as hard to evade as our IDS. However, this hypo#iatigram PAYL would easily sier
from the curse of dimensionality and memory consumptiorbleras due to the huge number of

features (equal to 235 Our anomaly IDS is much more practical.
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Chapter 6

Conclusion

Statistical pattern recognition techniques have beenesstally applied in many fields. Relatively
recently, researchers have stared to apply pattern rdemgnd computer and network security,
and in particular to network intrusion detection system® Mlieve statistical pattern recognition
will play a more and more important role in the developmenfutdire network IDS. Motivated by
this belief, in this thesis we have studied the main chaksngnd possible solutions related to the
application of statistical pattern recognition technigjdier designing network IDS. Our objective
was to point out strengths and weaknesses of such systetdis strmulated further research on the

problems and solutions discussed throughout the thesis.

6.1 Our Contribution

In this thesis we focused our attention on three main prosiem

a) Learning from unlabeled traffic. We discussed the state of the art in unlabeled network
anomaly detection and the inherenffidulties related to learning from unlabeled data. We
also discussed the base-rate fallacy and hoviféicés anomaly detection systems, showing
that it is critical to optimize the accuracy of network andyndetectors in order to increase
the detection rate and, in particular, to decrease the faisgive rate as much as possible.
To this end, we studied the application of a modular MCS canttd by combining multiple

one-class classifiers. Experiments performed on the KD8Bugataset showed that the
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b)

c)

proposed approach improves the accuracy performance,arethfp “monolithic” unlabeled

network anomaly detectors proposed by other researchers.

Learning in adversarial environment. We studied the consequences of learning from un-
labeled tréfic in presence of an adversary who may try to mislead the legmiocess to
make the obtained IDS iffiective. We briefly discussed some theoretical work on learni
in presence of an adversary that introduces malicious imothe training dataset. Then,
we presented a case study and showed that this kind of ataeksossible in practice. We
showed how an attacker can inject noise into the trainingsgdtused by automatic signature
generators during the signature learning process, and hisvattack may negativelyftect

the accuracy of IDS which use the generated signatures potlséopropagation of worms.
We also discussed possible ad-hoc solutions to the noisetion attack, although a generic
solution to the problem of learning in presence of this kifdnisleading attack is still to be

found.

Operating in adversarial environment. We also studied the problem of launching and de-
tecting mimicry attacks. Mimicry attacks are evasive &saagainst anomaly detection sys-
tems. We presented an attack called Polymorphic Blendingckt(PBA), which is able to
evade recently proposed network anomaly detectors basethtstical pattern recognition
techniques. We analyze the reasons why the attack worksrapdge a new and robust net-
work anomaly IDS intended to make the PBA unlikely to succe®dr IDS is constructed
by combining multiple one-class SVM classifiers. Experitsemere performed on several
days of normal HTTP tiific of an academic network and on 18 attacks, including “statida
polymorphic attacks and the PBA. The results show that tbhpgsed IDS is more robust to
the PBA, compared to other recently proposed network anotba.

6.2 Future Work

Future work is needed on all of the three problems we additdsstnis theses. Further improve-

ments are needed regarding the accuracy performance dfaledbanomaly IDS. We plan to study

different modular MCS schemes in order to further reduce the fadsitive rate while keeping
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a high detection rate at the same time, thus alleviating #sepate fallacy problem presented in
Chapter 3. However, in order to achieve this result more vi@rieeded on estimatirgyposteriori
class probabilities using one-class classifiers andfatt@/ely combining them to construct a more
accurate multiple one-class classifier system.

Regarding the problem of learning in adversarial enviromimiihe dfort the attacker has to do
in case of real applications is mostly unknown. For exampéy difficult is it for the attacker
to “move” the decision surface constructed by complex diass (e.g., SVM, Atrtificial Neural
Networks, etc.)? Can the attacker approximate the stateed)S, i.e., its decision surface, without
having access to the entire training dataset used by the HB8?much “misleading” tric does
the adversary has to inject? An answer to these importargtigns is needed. Moreover, work
is needed on the practical applicationd$informationand randomizationtechniques to make it
difficult for the attacker to successfully interfere with thehéiag process implemented by IDS.

Further work is also needed for making anomaly-based n&tilx® more robust against mimicry
attacks. The combination of multiple models, as propose@hapter 5, is definitely promising.
However, we need to make mimicry attacks as unlikely to seit@s possible. Because one of the
fundamental assumptions for the success of mimicry attakd in particular for the polymophic
bleding attack, is the adversary’s knowledge about thectletealgorithm implemented by the IDS,
disinformationandrandomizationtechniques similar to those proposed for the problem ohlagr
in adversarial environment may be implemented in comhinatt® ensemble methods. This would
make much harder for the adversary to approximate the mddarmal trdfic used by the IDS,

thus making mimicry attacks veryftcult.
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