
Università degli Studi di Cagliari

Facoltà di Ingegneria

Dipartimento di Ingegneria Elettrica ed Elettronica

Conception, Analysis, Design and Realization

of a Multi-socket Network-on-Chip architecture

and of the Binary Translation support for a VLIW

core targeted to Systems-on-Chip

Ing. Gianni MEREU

Tesi per il conseguimento del Dottorato di Ricerca

in Ingegneria Elettronica ed Informatica

Relatore: Prof. Ing. Luigi RAFFO

Corso di Dottorato di Ricerca in Ingegneria Elettronica ed Informatica

XIX ciclo

Contents

1

List of Figures 2

1 Presentation of the Thesis 4

1.1 Introduction . 4

1.2 Research effort in the Computation field 5

1.3 Research effort in the Communication field 5

1.4 Overview of the thesis . 6

I SoC communication architectures: Multi-socket support
in STNoC architecture. 7

2 Traditional on-chip communication architectures 8

2.1 State of the art bus-based interconnection systems 8

2.1.1 AMBA Bus . 9

2.1.2 IBM CoreConnect . 10

2.1.3 OCP Bus . 13

2.1.4 AMBA AXI . 15

2.1.5 STMicroelectronics STBus . 17

1

CONTENTS

3 Network-on-Chip technology overview 20

3.1 NoC: an unifying concept . 20

3.2 NoC basic concepts . 22

3.2.1 Network Abstraction . 23

3.3 NoC Research . 24

3.3.1 Network Adapter . 25

3.3.2 Network Level . 26

3.3.3 Link Level . 34

3.4 STNoC� Network-on-Chip . 35

4 Single socket and multiple socket NoC based SoCs. 37

4.1 Network Adapter research. 37

4.2 Multiple socket NoC based SoCs. 38

4.3 Standard STNoC� Network Adapter. 39

5 Multi-socket support in STNoC� architecture 42

5.1 Introduction . 42

5.2 Comparison between STBus and AMBA AXI protocols 43

5.2.1 Support of the separate Read and Write channels of AMBA

AXI protocol . 43

5.2.2 Differences about the meaning of the Size of a transaction . . 44

5.2.3 Addressing Modes . 45

5.2.4 Choice of the primitive operations to support inside the network. 45

5.2.5 Proposed format of the Transport Layer Opcode of the STNoC� packet

header. 46

5.2.6 The response signals. 47

5.2.7 Multi-socket STNoc� packet. 48

5.2.8 Interruptibility of STBus and AXI transactions. 48

5.3 Main hurdles towards compatibility 50

5.3.1 Unaligned Addresses. 50

5.3.2 AXI transaction sizes not directly supported by STBus. 52

2

CONTENTS

5.3.3 ID information. 53

5.3.4 Complexity of the AMBA AXI-STBus mapping problem. . . . 55

5.4 Mapping algorithms for AMBA AXI and STBus traffic integration. . 58

5.4.1 AXI-to-STBus traffic. 58

5.4.2 AXI-to-AXI traffic. 62

5.4.3 STBus-to-AXI and STBus-to-STBus traffic. 63

5.5 Implementation, results and future work. 65

II SoC computation architectures: Extension of ST230
architecture to binary compatibility with ARM ISA. 66

6 Computation paradigms for Systems-on-Chip. 67

6.1 From the Embedded and General Purpose computing paradigms to

the single System-on-Chip computing domain 67

6.2 System-on-Chip computing models. 68

6.3 Advanced processor architectures: Superscalar and VLIW. 70

6.4 VLIW processors. 73

6.4.1 Code generation for V LIW processors. 73

6.4.2 Introduction to binary compatibility. 76

6.4.3 Analysis of VLIW microarchitecture. 78

6.4.4 Compression of VLIW programs in memory. 80

7 ST230 architecture. 84

7.1 Fetch Packet. 85

7.2 Software load speculation. 86

7.3 Management of the Program Counter. 86

7.4 Lx Architecture and binary compatibility with ISA ARM. 86

3

CONTENTS

8 Hardware and software techniques for binary translation of Instruc-

tion Sets. 88

8.1 Overview of binary translation techniques. 88

8.2 Supporting binary compatibility in hardware. 93

8.2.1 Hardware Binary Translation in superscalar processors. 94

8.2.2 Trace Cache. 97

8.2.3 Microcode sequencers. 98

8.3 Software-oriented approaches for binary compatibility. 100

8.3.1 DEC FX!32. 103

8.3.2 Examples of binary translation techniques in the context of

VLIW processors. 104

9 Extension of ST230 architecture to binary compatibility with ARM

ISA. 109

9.1 Analysis of architectural choices. 109

9.2 Implementation. 114

9.2.1 Examples of ARM ISA description with the Chorizo grammar. 115

9.3 Results and future work. 119

Appendix 121

A Selection of traffic scenarios generated by implementation of Multi-

socket STNoC� algorithms. 121

Bibliography 137

4

List of Figures

2.1 Typical AMBA system. 9

2.2 Multiplexor Interconnection. 11

2.3 CoreConnect vs AMBA 2.0 features. 12

2.4 CoreConnect vs AMBA 2.0 features. 13

2.5 System Showing Wrapped Bus and OCP Instances. 14

2.6 Channel architecture of reads. 17

2.7 Channel architecture of writes. 18

2.8 STBus protocol layers. 19

3.1 Examples of communication structures in SoC. a) bus-based, b) ded-

icated point-to-point links, c) chip area network. 21

3.2 4-by-4 grid structured NoC. 22

3.3 Flow of data from source to destination across abstraction layers. . . 23

3.4 NoC research area classification. 24

3.5 The Network Adapter. 25

3.6 Typical network topologies. 26

3.7 Irregular network topologies. 27

3.8 Spidergon� topology. 27

3.9 Generic Router model. LC= link controller. 29

3.10 Store-and-forward packet propagation. 30

3.11 Wormhole packet propagation. 31

3.12 Virtual cut-through packet propagation. 31

5

LIST OF FIGURES

3.13 Virtual Channels. 33

3.14 Streams of different VCs can proceed even if another stream sharing

some of the links is stalled. 33

3.15 Spidergon� topology. 35

3.16 High Level view of STNoC� Network Adapter. 36

4.1 System with single socket protocol. 39

4.2 Ideal system with multiple socket protocols. 39

4.3 Worst case system with multiple socket protocols. 40

4.4 High-level representation of standard STNoC� Network Adapter. . . 40

4.5 STNoC� packet layering. 41

5.1 AXI Write and Read channel sequentialization. 44

5.2 Comparison of available addressing mode options. 46

5.3 Interpretation of AXI response opcode. 47

5.4 Interpretation of STBus response opcode. 48

5.5 Proposed mapping between AXI and STBus response opcode values. 48

5.6 Proposed STNoC Response Packet Opcode. 49

5.7 STNoC request packet. 49

5.8 STNoC response packet. 49

5.9 Header at transport layer in request and response packets. 50

5.10 Propagation of packets generated by STBus Masters. 52

5.11 Propagation of packets generated by AXI Masters. 53

5.12 Packet splitting in AXI-to-STBus traffic scenarios. 54

5.13 Possible values for AXI SIZE and LENGTH parameters. 55

5.14 Splitting and reconstruction of incoming packets. 55

5.15 Generation of STNoC� ID information in case of AXI Masters. . . . 56

5.16 Structure of the SOURCE ID field of STNoC� request header. 56

5.17 Process of Mapping Selection. 57

5.18 Kernel of AXI-to-STBus wrapped algorithm 61

5.19 Synthesis data. 65

6

LIST OF FIGURES

6.1 Computing platforms for Systems-on-Chip. 69

6.2 Logic block diagram of a Superscalar processor. 71

6.3 VLIW processor. 73

6.4 Scheduling across different basic blocks. 76

6.5 Selection of a Trace and scheduling of the instructions inside. 77

6.6 Substitution of the Trace with the Schedule and analysis of the situ-

ation at the edges. 78

6.7 Generation of the compensation code at the edge of the Trace. 79

6.8 Selection of the next Trace. 80

6.9 Execution lanes in a V LIW processor. 81

6.10 Example of centralized architecture. 82

6.11 Example of architecture Clustered. 82

6.12 Format of the Fetch Packet for the TIC6XXX. 82

6.13 Possible configuration for the Fetch Packet of a TIC6XXX. 83

6.14 Schedule that results from the preceding pattern. 83

7.1 High level block diagram of ST230. 85

8.1 Conceptual representation of the operation of an emulator. 89

8.2 CISC to RISC ISA conversion in hardware in modern x86 processors. 91

8.3 Hardware approach to the binary conversion with software support

for corner cases. 92

8.4 Binary conversion in the context of VLIW processors. 93

8.5 Front-end of a modern superscalar processor. 94

8.6 Typical parallel decoder. 95

8.7 Detailed block diagram of a parallel decoder. 96

8.8 Binary decoding with Trace Cache. 98

8.9 Micro Sequencer. 99

8.10 Managing control flow inside the microsequencer with branch uops. . 99

8.11 Managing control flow in microsequencer with next uop address field. 100

8.12 Simple two level ROM. 101

7

LIST OF FIGURES

8.13 Micro Sequencer with intermediate instruction format. 101

8.14 General view of a software binary translation platform. 102

8.15 Block diagram of DEC FX!32. 104

8.16 Daisy’s structure. 105

8.17 VMM control flow diagram. 106

8.18 Trace and treeregion . 107

9.1 Mapping options for ARM architectural state. 112

9.2 Binary translation system architecture. 114

9.3 Development flow for emulation routines. 116

8

Chapter 1

Presentation of the Thesis

1.1 Introduction

The Challenges of today’s Systems-on-Chip design complexity call for resorting to

the old divide and conquare problem solving approach. It is no longer possible to un-

dertake the design task in a monolithic way but there is the need to identify aspects

of the design that can be approached and solved independently, without of course

compromising the quality and performance of the overall result. There are two ba-

sic aspects the drive today’s Systems-on-chip technology: 1) Computation and 2)

Communication. Computation regards all the functionality that inside a SoC ful-

fills the system’s requirements in terms of raw processing power. In this category fall

components as microprocessor, digital signal processors, ASIPs, multimedia acceler-

ators, etc. Communication deals with all the aspects of a System-on-Chip related to

the distribution of the information across the chip. To achieve the best performance

it is required to match the best of the two worlds. Availability of high performance

processing resources would be worthless if not supported by an equally high per-

formance interconnect system. At the same time an high performance interconnect

system needs a great amount of processing power to meet the requirements of today’s

power hungry software applications. The evolution of IC manufacturing technology,

which brings almost endless availability of silicon resources but at the same time

brings new problems as the Deep Submicron Effects (DSM), is leading SoC design

in a direction where Computation resource design becomes more and more indepen-

dent from Communication resource design.In the course of this thesis have been

investigated advanced solutions for improving technology both in the Computation

and Communication fields. Both the research efforts have been conducted in part-

nership with the AST (Advanced System Technology) STMicroelectronics research

9

1.2. Research effort in the Computation field

labs.

1.2 Research effort in the Computation field

The investigation conducted in this area has been focused on the extension of the

architecture of an industrial VLIW processor, the STMicroelectronics ST230 proces-

sor, with the objective of providing binary compatibility among execution of native

VLIW code and the execution of ARM code on the same processing core. The

problem of binary translation of Instruction Sets, where already much effort has

been spent in the field of high-performance general purpose computer architectures,

is quite new in the context of Systems-on-Chip. The strong real time constraints

that must be respected by processors in the context of SoC based systems require

a completely new research effort in understanding which techniques and solutions

for binary compatibility are best suited for the new environment. The purpose of

the work accomplished in the context of the thesis is therefore to make a contribu-

tion in this direction, even with all the restrictions imposed by the strong industrial

setting of the project. For confidentiality reasons much of the products and results

which came out after this research effort cannot be disclosed. Anyway a detailed

description of the solutions employed and of the reasons behind them has been given.

1.3 Research effort in the Communication field

The background of this part of the work stands on a new technology paradigm in the

field of communication architectures for Systems-on-Chip, that is called Network-

on-Chip. Network-on-chip architectures try to provide a better solution to the com-

munication requirements of modern SoCs making extensive use of concepts like

modularity and scalability. The extensive amount of research work that has been

conducted in the last years in this area both in the academic and industrial commu-

nity shows that the Network-on-Chip approach can bring real benefits to commu-

nication in the context of SoCs. The work conducted in this field in the context of

the present thesis has focused on improving the already good modularity and scal-

ability properties of Network-on-Chip architectures. In particular the objective of

this part of the work has been to improve the architecture of an industrial Network-

on-Chip, STMicroelectronics STNoC�, in order to reach higher performance levels

in conditions were the underlying System-on-chip includes IP cores and subsystems

which have heterogeneous legacy socket protocols. This is a quite sensitive topic in

10

1.4. Overview of the thesis

the industry and has already received attention by the research community, but no

ideal solutions have been already found. Therefore the goal of this part of the work

has been to investigate the performance of an innovative approach to the so called

multi-socket compatibility problem in the context of Networks-on-chip. As in the

above case much of the product and the results of this work cannot be disclosed for

confidentiality reasons. Again, all the architecture of the proposed solution is ex-

posed, and some results regarding simplified configurations of the systems developed

have been shown.

1.4 Overview of the thesis

The thesis is split in two parts. The first deals with the effort in the SoC Commu-

nication field, while the second deals with the SoC Computation field. Each one of

the two parts starts with chapters introducing the state of the art in the field and

the concepts behind that particular technological sector and ends with a chapter de-

scribing the architectures developed. At the end of the document has been included

an appendix were some of the network traffic scenarios resulting from the applica-

tion of the solutions developed in the context of the multi-socket NoC architecture

problem have been placed.

11

Part I

SoC communication architectures:

Multi-socket support in STNoC

architecture.

12

Chapter 2

Traditional on-chip

communication architectures

2.1 State of the art bus-based interconnection sys-

tems

In today’s SoC designs the model of interconnection architecture most widely used

is the shared bus, in some of its variants. Usually not all the IP Cores inside a chip

are interfaced to a single bus, but they are partitioned in terms of speed. One bus

domain is typically used for example to connect cores that must sustain an high data

rate, while cores with less demands are coupled through a slower bus. In this case the

two bus domains are put in communication by means of a Bridge that allows data to

pass from one domain to the other. This kind of architecture is called hierarchical

bus. In a modern SoC there can be even much more that two bus domains. There

are many examples of shared bus architectures available in the market. Among them

AMBA [2](ARM bus architecture), widely adopted thanks to the strong presence of

ARM processors in SoCs, in all its versions from APB to AHB and AXI [1]. There

are also other bus architectures as STBus [5], STMicroelectronics proprietary bus

system, IBM CoreConnect [6], OCP (Open Core Protocol)[4]. Each one of the bus

architectures listed above is characterized by its own bus protocol (interface signals

and handshake mechanism). There are many similarities among these protocols, like

supported type of transactions, basic handshake mechanism, but in general every

protocol is different from each other. These protocol differences are a legacy of the

past, when almost often every vendor fabricated its chips using proprietary com-

ponents. The exchange of components between different vendors was very limited.

13

2.1. State of the art bus-based interconnection systems

The move that we have seen in the last couple of years where SoCs, which in the

past where mainly custom built for a specific application, are becoming more and

more full featured computer platforms embedding components as general purpose

processors, digital signal processors, peripherals, multimedia hardware accelerators,

has significantly increased the exchange of components among different vendors.

For this reason there is the need to provide some means to bridge the protocol gap.

Protocol converters are required which often degrade system performance. Today

there are many efforts across the industry targeted at solving completely the proto-

col mismatch problem through the use of standards to overcome what many people

in the industry calls ”protocol madness”. In the following paragraphs an overview

of a selection of bus the most widely used protocols available today in the market is

given. The major properties of the protocols are listed and their major differences

are highlighted.

2.1.1 AMBA Bus

The Advanced Microcontroller Bus Architecture (AMBA 2.0) bus represents the

first generation of interconnect systems developed by ARM[2]. The AMBA system

is actually a collection of buses. There are three AMBA bus protocols: AHB, ASB

and APB. The AHB bus is a high performance system. Supports high operating

frequency. ASB is an alternative bus which can be used when the high performance

features of AHB are not needed. The APB bus is optimized for minimal power

consumption and reduced interface complexity. It can be used in conjunction with

either of the preceding versions of AMBA.

Figure 2.1: Typical AMBA system.

14

2.1. State of the art bus-based interconnection systems

The AMBA AHB bus protocol is designed for being used with a central mul-

tiplexor interconnection scheme. Using this scheme all bus masters drive out the

address and control signals indicating the transfer they wish to perform and the

arbiter determines which master has its address and control signals routed to all

of the slaves. A central decoder is also required to control the read data and re-

sponse signal multiplexor, which selects the appropriate signals from the slave that

is involved in the transfer. AMBA AHB provides support for:

� burst transfers

� split transactions

� single cycle bus master handover

� single clock edge operation

� non-tristate implementation

� wider data bus configurations (64/128 bits)

2.1.2 IBM CoreConnect

The IBM CoreConnect [6] architecture provides three buses for interconnecting

cores, library macros, and custom logic:

� Processor Local Bus (PLB)

� On-Chip Peripheral Bus (OPB)

� Device Control Register (DCR) Bus

The CoreConnect architecture shares many similarities with the Advanced Mi-

crocontroller Bus Architecture (AMBA) from ARM Ltd, as shown in Fig. 2.3. Both

architectures support data bus widths of 32-bits and higher, utilize separate read

and write data paths and allow multiple masters. CoreConnect and AMBA 2.0

provide both high performance features including pipelining, split transactions and

burst transfers. Many custom designs utilizing the high performance features of the

CoreConnect architecture are available in the marketplace today.

Figure (REF) illustrates how the CoreConnect architecture can be used to inter-

connect macros in a PowerPC 440 based SOC. High performance, high bandwidth

15

2.1. State of the art bus-based interconnection systems

Figure 2.2: Multiplexor Interconnection.

blocks such as the PowerPC 440 CPU core, PCI-X Bridge and PC133/DDR133

SDRAM Controller reside on the PLB, while the OPB hosts lower data rate pe-

ripherals. The daisy-chained DCR bus provides a relatively low-speed data path for

passing configuration and status information between the PowerPC 440 CPU core

and other on-chip macros.

The PLB and OPB buses provide the primary means of data flow among macro

elements. Because these two buses have different structures and control signals,

individual macros are designed to interface to either the PLB or the OPB. Usually

the PLB interconnects high-bandwidth devices such as processor cores, external

memory interfaces and DMA controllers. The PLB addresses the high performance,

low latency and design flexibility issues needed in a highly integrated SOC through:

16

2.1. State of the art bus-based interconnection systems

Figure 2.3: CoreConnect vs AMBA 2.0 features.

� Decoupled address, read data, and write data buses with split transaction

capability

� Concurrent read and write transfers yielding a maximum bus utilization of

two data transfers per clock

� Address pipelining that reduces bus latency by overlapping a new write request

with an ongoing write transfer and up to three read requests with an ongoing

read transfer.

� Ability to overlap the bus request/grant protocol with an ongoing transfer

� non-tristate implementation

In addition to providing a high bandwidth data path, the PLB offers designers

flexibility through the following features:

� Support for both multiple masters and slaves

� Four priority levels for master requests allowing PLB implementations with

various arbitration schemes

� Deadlock avoidance through slave forced PLB rearbitration

� Master driven atomic operations through a bus arbitration locking mechanism

� Byte-enable capability, supporting unaligned transfers

17

2.1. State of the art bus-based interconnection systems

Figure 2.4: CoreConnect vs AMBA 2.0 features.

� A sequential burst protocol allowing byte, half-word, word and double-word

burst transfers

� Support for 16-, 32- and 64-byte line data transfers

� Read word address capability, allowing slaves to return line data either se-

quentially or target word first

� DMA support for buffered, fly-by, peripheral-to-memory, memory-to-peripheral,

and memory-tomemory transfers

� Guarded or unguarded memory transfers allow slaves to individually enable

or disable prefetching of instructions or data

� Slave error reporting

� Architecture extendable to 256-bit data buses

� Fully synchronous

2.1.3 OCP Bus

The Open Core Protocol (OCP) [4] delivers the only non-proprietary, openly li-

censed, core-centric protocol that comprehensively describes the system-level inte-

gration requirements of intellectual property (IP) cores. The OCP supports very

18

2.1. State of the art bus-based interconnection systems

high performance data transfer models ranging from simple request-grants through

pipelined and multi-threaded objects. Higher complexity SOC communication mod-

els are supported using thread identifiers to manage out-of-order completion of mul-

tiple concurrent transfer sequences. The OCP defines a point-to-point interface

between two communicating entities such as IP cores and bus interface modules

(bus wrappers). One entity acts as the master of the OCP instance, and the other

as the slave. Only the master can present commands and is the controlling entity.

The slave responds to commands presented to it, either by accepting data from the

master, or presenting data to the master. For two entities to communicate in a

peer-to-peer fashion, there need to be two instances of the OCP connecting them

- one where the first entity is a master, and one where the first entity is a slave.

Figure 2.5 shows a simple system containing a wrapped bus and three IP core enti-

ties: one that is a system target, one that is a system initiator, and an entity that

is both.

Figure 2.5: System Showing Wrapped Bus and OCP Instances.

The characteristics of the IP core determine whether the core needs master,

slave, or both sides of the OCP; the wrapper interface modules must act as the

complementary side of the OCP for each connected entity. A transfer across this

system occurs as follows. A system initiator (as the OCP master) presents command,

control, and possibly data to its connected slave (a bus wrapper interface module).

The interface module plays the request across the on-chip bus system. The OCP does

not specify the embedded bus functionality. Instead, the interface designer converts

the OCP request into an embedded bus transfer. The receiving bus wrapper interface

module (as the OCP master) converts the embedded bus operation into a legal OCP

command. The system target (OCP slave) receives the command and takes the

19

2.1. State of the art bus-based interconnection systems

requested action. Each instance of the OCP is configured (by choosing signals or bit

widths of a particular signal) based on the requirements of the connected entities

and is independent of the others. For instance, system initiators may require more

address bits in their OCP instances than do the system targets; the extra address

bits might be used by the embedded bus to select which bus target is addressed by

the system initiator. Main features of the OCP interface are:

� Point-to-Point Synchronous Interface

� Bus Independence

� Pipelining

� Separation between requests and responses

� Support of Bursts through annotation of transfers with burst information

� Support for transmission of in-band information. A typical use of in-band

extensions is to pass cacheable information or data parity

� Out-of-order request and response delivery using multiple threads and tags

2.1.4 AMBA AXI

The AMBA AXI protocol (AMBA 3.0) [1] is targeted at high-performance, high-

frequency system designs and includes a number of features that make it suitable

for a high-speed submicron interconnect. The objectives of the latest generation

AMBA interface are to:

� be suitable for high-bandwidth and low-latency designs

� enable high-frequency operation without using complex bridges

� meet the interface requirements of a wide range of components

� be suitable for memory controllers with high initial access latency

� provide flexibility in the implementation of interconnect architectures

� be backward-compatible with existing AHB and APB interfaces.

The key features of the AXI protocol are:

20

2.1. State of the art bus-based interconnection systems

� separate address/control and data phases

� support for unaligned data transfers using byte strobes

� burst-based transactions with only start address issued

� separate read and write data channels to enable low-cost Direct Memory Access

(DMA)

� ability to issue multiple outstanding addresses

� out-of-order transaction completion

� easy addition of register stages to provide timing closure

As well as the data transfer protocol, the AXI protocol includes optional exten-

sions that cover signaling for low-power operation. The AXI protocol is burst-based.

Every transaction has address and control information on the address channel that

describes the nature of the data to be transferred. The data is transferred between

master and slave using a write data channel to the slave or a read data channel to

the master. In write transactions, in which all the data flows from the master to the

slave, the AXI protocol has an additional write response channel to allow the slave

to signal to the master the completion of the write transaction. The AXI protocol

enables:

� address information to be issued ahead of the actual data transfer

� support for multiple outstanding transactions

� support for out-of-order completion of transactions

Fig. 2.6 shows how a read transaction uses the read address and read data chan-

nels.

Each of the five independent channels consists of a set of information signals and

uses a two-way VALID and READY handshake mechanism. The information source

uses the VALID signal to show when valid data or control information is available on

the channel. The destination uses the READY signal to show when it can accept the

data. Both the read data channel and the write data channel also include a LAST

signal to indicate when the transfer of the final data item within a transaction takes

place. Read and write address channels Read and write transactions each have their

own address channel. The appropriate address channel carries all of the required

address and control information for a transaction. The AXI protocol supports the

following mechanisms:

21

2.1. State of the art bus-based interconnection systems

Figure 2.6: Channel architecture of reads.

� variable-length bursts, from 1 to 16 data transfers per burst

� bursts with a transfer size of 8-1024 bits

� wrapping, incrementing, and non-incrementing bursts

� atomic operations, using exclusive or locked accesses

� system-level caching and buffering control

� secure and privileged access

The AXI protocol supports also a number of advanced features. It offers support

for three different burst types, suitable for normal memory accesses, wrapping cache

line bursts and streaming data to peripheral FIFO locations. The cache support

signal of the AXI protocol enables a master to provide to a system-level cache

the bufferable, cacheable and allocate attributes of a transaction. Three levels of

protection unit support ar provided, enabling both privileged and secure accesses.

The AXI protocol defines also mechanisms for both exclusive and locked accesses.

Moreover, to enhance the performance of the initial accesses within a burst, the AXI

protocol supports unaligned burst start addresses.

2.1.5 STMicroelectronics STBus

The STBus [5] is a set of protocols, interfaces, primitives and architectures specify-

ing an interconnect subsystem, versatile in terms of performance, architecture and

22

2.1. State of the art bus-based interconnection systems

Figure 2.7: Channel architecture of writes.

implementation. The STBus is the result of the evolution of the interconnect sub-

system developed for microcontrollers dedicated to consumer application, such as

set top boxes, ATM networks, digital still cameras and others. Such an interconnect

was born from the accumulation of ideas converging from different sources, such as

the transputer (ST20), the Chameleon program (ST40, ST50), MPEG video pro-

cessing and VCI (Virtual Component Interface) organization. Today the STBus is

not only a communication system characterized by protocol, interfaces, transaction

set and IPs, but also a technology allowing to design and implement communica-

tion networks for Systems On Chip with the support of a development environment

including tools for system level design and architectural exploration, silicon design,

physical implementation and verification. Three different types of the STBus proto-

cols exist, each having a different level of complexity in terms of both performance

and implementation:

� Type1 is the simplest and is intended to be used for peripherals registers access.

No pipeline applies. It acts as a RG protocol. Load/store on 1/2/4/8 bytes

are supported.

� Type 2 adds pipelines features. It is equivalent to the basic RGV protocol.

It supports all operation code for ordered transactions. The number of the

requesting cells (i.e. in a packet) is the same than the number of the response

23

2.1. State of the art bus-based interconnection systems

ones.

� Type 3 is an advanced protocol implementing split transactions for high band-

width requirements (high performance systems). It supports out of order ex-

ecutions. The packet response size might be different than the packet request

size (the number of cells differs between request and response). The interfaces

maps the STBus transaction set on a physical set of wires defined by this

interface.

Figure 2.8: STBus protocol layers.

Fig. 2.8 describes the layered architecture of STBus protocol. First of all a single

transaction is composed by a request phase and by a response phase. Each one of

these transaction phases is in turn composed by a particular number of cells, or

bus cycles. Depending on the Type of the STBus protocol, the number of cells for

request and response transactions can be the same or not. At the lowest possible

layer cells are transmitted by means of specific flow control and physical encoding.

24

Chapter 3

Network-on-Chip technology

overview

3.1 NoC: an unifying concept

Chip design has four distinct aspects: computation, memory, communication and

I/O. As processing power has increased and data intensive applications have emerged,

the challenge of the communication aspect in single-chip systems, SoC, has attracted

increasing attention. This Chapter treats an important concept for communication

in SoCs known as Network-on-Chip (NoC). As will become clear in the following

paragraphs, NoC does not constitute an explicit new alternative for intrachip com-

munication but is rather a concept which presents a unification of on-chip commu-

nication solutions. The major driving factors for the development of global commu-

nication schemes are the ever increasing density of on-chip resources and the need

to utilize these resource with a minimum of effort as well as the need to take into

account the physical effects of DSM technologies. The preferred solution is to try

taking advantage of economies of scale in the system design, dividing the processing

resource into smaller pieces and reusing them as much as possible inside the overall

design. This strategy helps also reducing design cycle time, since the entire chip de-

sign process can be divided into almost independent subproblems. The partitioning

of the design allows also to use modular verification methodologies. Verification is

performed at lower level of abstraction for the elementary modules and then verifi-

cation at a more abstract level is performed for the design as whole. Working at an

higher level of abstraction leads to a differentiation of local and global communica-

tion. As intercore communication is becoming the performance bottleneck in many

multicore applications , there is a shift in design focus from a traditional processing-

25

3.1. NoC: an unifying concept

centric to a communication-centric one. NoCs interconnection paradigm provides a

standardized global communication scheme that coupled with the use of standard

communication sockets for the IP cores would make a Lego brick-like plug-and-play

design style possible, allowing good use of the available resources and fast product

design cycles.

Figure 3.1: Examples of communication structures in SoC. a) bus-based, b) dedi-

cated point-to-point links, c) chip area network.

Since the introduction of the SoC concept in the 90s, the solutions for SoC com-

munication structures have generally been characterized by a mixture of buses and

poit-to-point links, as depicted in Fig. 3.1. The major drawback of bus architec-

tures is that in highly interconnected multicore systems it can quickly become a

communication bottleneck. In fact, it is not ultimately scalable, since as more units

are added to it, the power dissipation for bus access grows as a consequence of

the increased capacitive load. Dedicated point-to-point links are optimal in terms

of performance, but the number of links required increases exponentially with the

number of cores, leading to a potential area and routing problem. For maximum

flexibility and scalability it is generally accepted that a move towards a shared seg-

mented global communication structure is needed. This definition leads in turn to

a data-routing network consisting of communication links and routing nodes that

are implemented on the chip. Such a distributed communication media scales well

with chip size and complexity. Additional advantage include increased aggregated

performance by exploitation of parallel operation. Interestingly, a similar solution

is suggested also by silicon technology issues. In DSM chips long wires must be

segmented in order to avoid signal degradation. The next natural step is to increase

throughput by pipelining these structures. Wires become pipelines and bus-bridges

become routing nodes. Therefore the distinction between different communication

solutions is fading. In this context NoC can be considered as a unifying concept

26

3.2. NoC basic concepts

rather than an explicit new communication model.

3.2 NoC basic concepts

Figure 3.2: 4-by-4 grid structured NoC.

The three fundamental blocks found inside Networks-on-Chip are:

� Network Adapters. They implement the interface by which every single

IP core connects to the NoC. Their function is to decouple computation (the

cores) from communication (the network).

� Routing Nodes. They route data according to chosen protocols and imple-

ment the routing strategy.

� Links. Connect the nodes, providing the raw bandwidth. They may consist

of one or more logical or physical channels.

Fig. 3.2 shows a sample NoC structured as a 4-by-4 grid which provides global chip

level communication. In general, SoCs do not necessarily exhibit such a regular

27

3.2. NoC basic concepts

architecture. System composition can be categorized by means of the degree of

homogenity and granularity of the IP cores. The architecture of the communication

network has to take into account the actual system composition. Therefore NoC-

based systems implement a very high degree of variety in composition and in traffic

diversity. This is different from what happens in traditional parallel computers,

where the architecture is typically homogeneous and coarse grained.

3.2.1 Network Abstraction

In today’s research the term NoC is used in a very broad sense, including topics

that span from gate level physical implementation , across system layout aspects

and applications, to design methodologies and tools. The major reason that stands

behind the widespread adoption of typical network terminology lies on the readily

available and widely accepted abstraction models of networked communications.

The OSI model for layered network communication can be in fact easily adapted

to NoCs, as done in [10]. To properly understand the research work done today

in relation to NoC architectures is convenient to partition the spectrum of NoC

research into four areas: 1) system, 2) network adapter, 3) network and 4) link

research. Fig. 3.3 shows the relation between these research areas, the fundamental

components of NoCs and the OSI layers.

Figure 3.3: Flow of data from source to destination across abstraction layers.

The system area deals with applications (processes) and architecture (cores and

network). At this level most of the implementation details are hidden. The Network

Adapter bridges the gap between cores and network. It handles the end-to-end flow

28

3.3. NoC Research

control, through encapsulation of the messages generated by the IP core. These

data are broken into packets, which may have or not information about their desti-

nation. In the latter case there must be a path setup phase prior of the actual packet

transmission. The Network Adapter is the first level that is network aware. The

network consists in the routing nodes and links defining the topology and imple-

menting protocol and the nod-to-node flow control. The lowest level of abstraction

is the link level. The basic datagrams at this level are flits (flow control units), from

which packets are made up. Sometimes is defined also a further subdivision of flits

into phits (physical units), which are the minimum piece of information that can be

transmitted simultaneously on a link. Most commonly flits and phits are equivalent.

Link-level research deals with encoding and synchronization issues. In general, in a

NoC the abstraction layers are more closely bound than in a macronetwork. Issues

at a physical level of abstraction affect to a great extent also the highest abstraction

layers. Also, NoCs benefit from the system composition being completely static.

This very often leads to higher performance.

Figure 3.4: NoC research area classification.

3.3 NoC Research

In this section is provided a review of some of the approaches found in literature,

listed according to the layers defined in the previous paragraph.

29

3.3. NoC Research

3.3.1 Network Adapter

The function of the Network Adapter is to interface the IP core to the network,

managing at the same time to make communication services available with little

effort from the core.

Figure 3.5: The Network Adapter.

Fig. 3.5 shows that the component exposes a core interface (CI) to the core and

a Network Interface (NI) to the network side. The ultimate purpose of the NA is

to provide the communication services needed by the core by means of primitive

services provided directly by the network hardware. In this way the NA decouples

the core from the network, enabling the implementation of a layered system design

approach. The level of decoupling can significantly vary. Accordingly the core can

be made more or less network aware. In the first case design and resource reuse

are maximized, while in the latter there is the potential to make optimal use of

the network resources. Typically the CI of the Network Adapter is implemented

to adhere to a SoC socket standard. Socket standards are almost always identified

with some legacy bus protocols, as the ones described in Chapter 2. Implementing a

given socket standard as the CI of the Network Adapter allows in principle to attach

to the network any IP core compliant to that given socket (a particular bus proto-

col). The Network Adapter performs encapsulation of the traffic for the underlying

communication media. This may include global addressing and routing tasks, re-

order buffering and data acknowledgement, buffer management to prevent network

congestion, packet creation in a packet based NoC. The design of the Network

30

3.3. NoC Research

Adapter is a critical task in the overall NoC design process. Often this component

handles tasks as frequency conversion and data size conversion between core side

and network size, in order to improve flexibility.

3.3.2 Network Level

The role of the network is to provide the resources needed to deliver messages from

their source to their destination. This is done giving hardware support for the basic

communication primitives. On-Chip networks are mainly defined by their Topology

and Protocol. The network’s Topology describes how nodes and links are connected.

Protocol specifies how these nodes and links are used.

Topology

Figure 3.6: Typical network topologies.

A simple way to distinguish different regular topologies is in terms of k − ary

n−cube, where k is the degree of each dimension and n is the number of dimensions.

The k − ary tree and the k − ary n − dimensional fat tree are two alternate

regular networks explored in NoC (see Fig. 3.6). Most NoCs implement topologies

that can be easily laid out on a chip surface. For example , k-ary 2-cube, typical

grid topologies. Another topology used in the context of NoC is Spidergon� [12],

developed by STMicroelectronics (Fig. 3.8). Spidergon� topology is derived by a

ring by addition of more links. The new links are used to connect each node of the

ring to the node directly across the ring’s diameter. A more sound description of

Spidergon� and of STMicroelectronics Network-on-Chip technology will be given

in the following paragraphs. Irregular forms of topologies are derived by mixing

different forms in a hierarchical, hybrid or asymmetrical fashion, as seen in Fig. 3.7.

31

3.3. NoC Research

Figure 3.7: Irregular network topologies.

Networks where every node is connected to a source or a sink for the messages are

called direct networks, while topologies that have a subset of nodes that are not

connected to any source or sink are called indirect networks.

Figure 3.8: Spidergon� topology.

Protocol

The protocol governs the way data is moved through the NoC. The protocol encom-

passes the concepts of switching, which is the mere transport of data, and routing,

which determines the path followed by the data across the network. In the following

will be discussed these and other aspects of protocol relevant for NoC.

32

3.3. NoC Research

Circuit vs packet switching. In circuit switching an entire circuit is setup from

source to destination until the transport of data is complete. Packet switched

traffic on the other hand flows on a per-hop basis. Each packet contains routing

information as well as data.

Deterministic vs Adaptive routing. In deterministic routing the path for

the packet is entirely specified by source and destination addresses. Popular

deterministic routing strategies are source routing and X-Y routing. In source

routing is the source core that specifies the path to destination. In X-Y routing the

packet flows first on the horizontal direction and then in vertical direction, or vice

versa. With adaptive routing the routing decision is taken at each hop. Adaptive

mechanisms involve dynamic arbitration mechanisms, where the arbiter takes into

account the local state of the network, for example the local link congestion. This

results in a more complex router implementation but often offers benefits like load

balancing.

Minimal vs nonminimal routing. A routing algorithm is minal if it chooses

only among shortest paths between source and destination, otherwise is nonmin-

imal.

Delay vs Loss. In the delay model datagrams (flits, phyts) are never lost. The

worst thing that can happen is that the arrival of data is delayed. In the loss model

instead, datagrams can be dropped. In this case means for data retransmission

are required at the level of routers, introducing significant overhead. There are

however some advantages with this model. For example dropping flits can be used

for resolving network congestion.

Central vs distributed control. In centralized control systems routing decision

are taken globally, for example by means of an arbiter. In distributed control

instead routing decisions are made locally. NoCs usually employ the latter solution

.

All the aspects involved in the network protocol described above have a direct

impact on the node (router) implementation. Fig. 3.9 shows the major components

of any routing node: buffers, switch, routing and arbitration unit and link controller.

The switch connects input buffers to output buffers, while the routing and arbi-

tration unit implement the algorithm that endorses the routing policy. In centralized

control systems the routing and arbitration unit would be common to all the nodes.

In some cases [19] the routers include explicit time division multiplexing mechanisms,

sometimes called TDN (Time Disjoint Networks). Packet that are in different TDN

are guaranteed to not collide. As already said before the optimal design of a router

33

3.3. NoC Research

Figure 3.9: Generic Router model. LC= link controller.

is strictly related to the services it is supposed to provide. For example, support

for adaptive bandwidth control can be provided simply adding to the basic archi-

tecture of Fig. 3.9 an additional bus, allowing to bypass the crossbar switch when

congestion occurs. Some estimations say that in this case the router throughput

can be improved by something around 27%. Many investigations in literature have

focused on a comparison of the performance of adaptive versus deterministic pro-

tocols. A widespread opinion is that while adaptive protocol can speedup delivery

of particular packets, deterministic protocols are superior by a global poit of view.

The reason for this is that application of adaptive protocols tends to concentrate

traffic in the center of the network, increasing congestion there. The most success-

ful trends in NoC research today include packet switching, in contrast with circuit

switching, and delay-based transmission, since the overhead of data retransmission

is often considered unacceptable. The most common forwarding strategies studied

in literature are: 1) store-and-forward, 2) wormhole and 3) virtual cut through.

These will now be explained.

Store-and-forward. It is a packet switched protocol where any node stores the

entire packet before forwarding it to the next node along the route. To find out

to which output the data must be propagated the node looks to the header of the

packet. This implies that transmission can be stalled when the node downstream

does not have sufficient space on its internal buffers to hold the entire packet. See

34

3.3. NoC Research

Fig. 3.10 for a time space diagram of a packet switched message propagated with

the store-and-forward algorithm.

Figure 3.10: Store-and-forward packet propagation.

Wormhole. The major difference with store-and-forward is that in this case

data propagation happens on a flit by flit basis. When a new packet arrives to a

node the switch makes the routing decision upon the header information, usually

placed inside the first flit. Subsequent flits are forwarded along the same route as

soon as they arrive to the node. This implies that a single packet can span many

nodes across the network, behaving somehow like a worm. The packet is actually

pipelined through the network. Latency on the single node is significantly reduced

in respect of that of store-and-forward. The major drawback is that stalling the

packet has the unpleasant effect of stalling all the links occupied by the packet

along the path. In the following we will see that the use of V irtual Channels

can significantly alleviate this problem. Fig. 3.11 shows a time space diagram of

a packet switched message propagated with the wormhole algorithm.

Virtual cut-through. Virtual cut-through has a forwarding mechanism similar

to wormhole. The only difference is that the header is propagated to the next

node only if the node itself guarantees to have enough space to hold all the packet.

Otherwise propagation is stalled and all the packet is gathered at the current node.

When the node down stream has enough room, the header and the following flits

are forwarded as soon as they arrive. The advantage of this solution is that

when the packet is stalled no links along the route are blocked. Fig. 3.12 shows

a time space diagram of a packet switched message propagated with the virtual

cut-through algorithm.

35

3.3. NoC Research

Figure 3.11: Wormhole packet propagation.

Figure 3.12: Virtual cut-through packet propagation.

For NoC the prevailing routing scheme is wormhole, while for macronetworks

it is store-and-forward the preferred solution. The major advantages offered by

wormhole are the low latency, no need to wait for the entire packet at each node,

and the significant reduction in buffer space required at each node, which is the

dominant cost factor for the implementation of routing nodes.

Flow Control

Flow control is the mechanism that determines the packet movement along the net-

work path [20]. The basic purpose of flow control policies is to ensure correctness in

the packet propagation process. In addition flow control deals also with optimiza-

36

3.3. NoC Research

tion of network resource usage, and with the offering of predictable performance to

the network users. In the following a selection of the topics related to flow control

will be discussed.

Virtual Channels. The concept of V irtual Channels deals with the sharing of

a physical channel by several logically separated channels, which have individual

and separated buffer queues (see Fig. 3.13). Some estimations specify that the

number of VCs that can be used for a particular physical channel can be in

the range between 2 and 16. Usage of V irtual Channels can cause significant

implementation overhead, expecially for the hardware cost of additional buffer

queues and the more sophisticate control logic of the physical channel, but it

offers a number of important advantages. Among these are:

� Deadlock avoidance. It is possible to exploit the fact that VCs are not

mutually dependent. In fact, adding VCs to links and choosing appropriately

the routing policy it is possible to break cycles in the resource dependency

graph [15].

� Optimization of wire utilization. In the future wire cost will dominate

transistor cost [7]. Having several logical channels actually using a single

physical channel enables a more efficient wire utilization. Also to mention the

reduction in leakage power and wire routing congestion.

� Performance improvement. VCs minimize the possibility to have interre-

source dependency in the network. Some investigations have also shown [14]

that dividing a fixed buffer size across a number of VCs improves the network

performance at high loads.

� Support for differentiated services. VCs can be used to implement Quality-

of-Service (QoS), by specifying different priorities for the different VCs tied to

a single physical channel.

The most important task of any flow control mechanisms is to ensure deadlock

and livelock avoidance. Deadlock is the situation that occurs when some of the

resources inside the network are suspended waiting for other resources to be re-

leased, in a cyclic fashion. This situation occurs when one path is blocked waiting

for another blocked as well. This condition can be avoided by breaking cyclic depen-

dencies in the resource dependency graph. Actually this condition can be relaxed,

as shown by [16]. It is in fact enough to require the existence of a channel subset

37

3.3. NoC Research

Figure 3.13: Virtual Channels.

which defines a connected routing subfunction with no cycles in the extended chan-

nel dependency graph. Livelock occurs when packets continue flowing around the

network without ever reaching their final destination. Sometimes this can occur as

a side effect of some forms of nonminimal adaptive routing policies. Fig. 3.14 shows

how using VCs is sometimes possible to avoid stalls due to packets already blocked

inside the network.

Figure 3.14: Streams of different VCs can proceed even if another stream sharing

some of the links is stalled.

Quality of service

Quality of Service (QoS) in the context of NoC architectures defines the quantifi-

cation of a particular service offered from the network to the cores. These services

could be low latency, high throughput, low power, bounds on jitter, etc. Usually,

two different QoS classes are identified: 1) Best Effort (BE) services, which of-

fer no commitment and 2) Guaranteed Services which otherwise do. Also various

38

3.3. NoC Research

levels of commitment can be defined: 1) correctness of result, 2) completion of the

transaction, 3) bounds on performance. In the NoC literature however traffic is

defined as BE when only correctness and completion are guaranteed, while with

GS additional guarantees are given, usually some bound on the performance of a

transactions. The guarantees offered by NoC systems are almost always hard guar-

antees. In macronetworks instead service guarantees are often of statistical nature.

Implementation of GS communication requires the allocation of resources that must

be logically independent from other traffic in the system. In this case connections

are instantiated as virtual circuits which use logically independent resources. The

virtual circuits in turn can be implemented as V irtual Channels, time-slots, par-

allel switch fabric, etc. Most of NoCs that implement hard GS use variants of time

division multiplexing (TDM).

3.3.3 Link Level

Link-level research studies the architectures of node-to-node links. These links con-

sist of one or more channels, which can be virtual or physical. In the following will

be presented two of the areas of interest in link-level research: 1) synchronization

and 2) implementation.

Synchronization. For link-level synchronization in multiclock SoCs the crucial

components are the multi-clock FIFO buffers. The design of these components

is very critical. It is very important for the multi-clock FIFOs to be partic-

ularly robust with regards to metastability. Often reaching this goal requires

losing something in terms of latency. In the context of link-level synchronization

there is another concept that is gaining very much attention. It is the concept

of Globally Asynchronous Locally Synchronous (GALS) design. In the GALS

model, a system is built putting together a number of blocks that communicate

with each other by means of asynchronous links, while internal communication is

fully synchronous with a given local clock. There are examples of NoCs featur-

ing asynchronous inter-node links [8]. Asynchronous logic implies some area and

power overhead with respect to synchronous logic, due to the need to implement

local handshake control. On the other hand, no power is consumed when the links

are idle. One of the most widespread solutions for asynchronous links is the 1-of-4

encoding [9].

Implementation Issues. DSM physical issues (already described in one of the

preceding paragraphs) have great impact on link delays and power consumption,

which are both degraded. A number of techniques have been proposed in liter-

39

3.4. STNoC� Network-on-Chip

ature to improve the performance of NoC node-to-node links in the context of

DSM technology. The first of these techniques is wire segmentation. A common

solution has been for sometime to apply repeaters at regular intervals, in order

to keep the delay linearly dependent on the length of the wire. Another tech-

nique widely used is pipelining of wire links. In this way the link throughput is

effectively increased. Use of pipelining implies some overhead in terms of area,

since pipeline stages are more complex that simple repeaters. But as in future

DSM technology wire effects tend to dominate on area occupation, the overhead

associated to pipelining is supposed to decrease.

3.4 STNoC� Network-on-Chip

STNoC� is an on-chip interconnection micro network designed to be a scalable and

low overhead solution to the increasing SoC communication requirements. The vast

majority of the solutions implemented in STNoC� have been optimized for hardware

efficiency. This can be seen for example looking at the way the routing algorithm is

specified inside the router. Instead of using power and latency hungry routing tables,

STNoC� resorts to a direct combinational logic implementation within the router in

order to decode the path that has to followed by the packet. The STNoC� routing

scheme is deterministic and it is based on Spidergon� topology, already introduced

in one of the preceding paragraphs but repeated in Fig. 3.15 for convenience.

Figure 3.15: Spidergon� topology.

The packet decoding scheme is light in terms of gate count, thanks to the high

symmetry and regularity of the topology. In STNoC� each router has a unique

address I in the network, 0 ≤ I ≤ N , where N is the network size in nodes. Since the

40

3.4. STNoC� Network-on-Chip

STNoC� routing algorithm is local, identical for all router nodes, and the topology is

both vertex and edge transitive, is possible to describe the routing algorithm at any

node. For confidentiality reasons, the details of STNoC� router microarchitecture

and arbitration mechanism cannot be unveiled here. STNoC� router proved to be

a really cost effective solution, allowing clock frequency up to 1Ghz in 90nm ST

technology, with a per link bandwidth of 8GB/sec. One of the best properties

of on chip networks is to hide the interconnect specific implementation details to

the IP resources interfaced. All that is needed for an external IP to transmit data

through the network is a specific designed Network Adapter. The architecture of

the STNoC� Network Adapters, as the architecture of the overall NoC, has been

designed for modularity. It has two main components, shell and kernel. The

shell handles the processing activity related to the signals coming from the IP

resource side, while the kernel takes care of the activity related to the NoC side

of the Network Adapter. Data and control passing between shell and kernel and

viceversa happens basically through FIFOs. This partitioned NA architecture has

been mainly conceived to minimize the effort needed to port the Network Adapters

to IP resources compliant with different bus protocols. In fact in this way the only

part that needs to be changed is the shell.

The architecture of the STNoC� Network Adapters supports kernel and shell

subsystems running at totally unrelated frequencies. The control circuitry of the

FIFOs embedded inside the NIs allows for data to be read from one side and written

from the other at completely unrelated frequencies (see Fig. 3.16). Depending on

the bus domains that need to be interfaced to the NoC the internal FIFOs can be

one or more. STNoC� Network Adapters also support arbitrary data size conversion

between IP and NoC side.

S

H

E

L

L

K

E

R

N

E

L

S
 bits

S
 bits

S
 bits

K
 bits

K
 bits

K
 bits

Figure 3.16: High Level view of STNoC� Network Adapter.

41

Chapter 4

Single socket and multiple socket

NoC based SoCs.

4.1 Network Adapter research.

As already declared in the previous chapters, one of the most important advantages

of Network-on-Chip architectures is that they allow the decoupling of computation

from communication, hiding interconnect specific implementation details to the IP

resources interfaced. The Network Adapter is the component the actually takes

care of separating the IP cores, where computation takes place, from the network,

which provides communication services. Although a great amount of work has been

published in literature in the last years on Network-on-Chip architectures, as par-

tially exposed previously, not so many works focus on high-performance Network

Adapters, which indeed are one of the most critical part of the whole interconnect

system. In [21] a NA implementing standard sockets was presented for the Æthe-

real NoC. The Network Adapter for Æthereal supports both BE (best effort) and

GS (guaranteed service) transaction streams. They also provide compatibility to

more than one bus protocol (AXI, DTL, OCP), thanks to the modular architecture

of the Network Adapter. The NA architecture is claimed to support system con-

figurations that can be arbitrarily heterogeneous, comprising cores compliant with

more that one bus protocol, but is not clear if to do this they have to give up sup-

porting completely the protocols. Anyway, no specific details are disclosed about

the techniques used to solve the issue. In [22] an OCP compliant adapter for the

Xpipes NoC was described. The adapter has low area but supports only a single out-

standing transaction. Both these works describe purely clocked designs. An OCP

compliant Network Adapter for GALS-based SoC Design has been described in

42

4.2. Multiple socket NoC based SoCs.

[11]. This NA enables GALS-type (Globally Asynchronous Locally Synchronous)

SoCs, in that the NA implements synchronization between the clocked OCP sockets

and asynchronous or clockless MANGO NoC. The work in [13] addresses the topic

of packet reordering on NA the support out-of-order transaction. In particular the

work proposes using Gray-code tagging to decrease the overall latency. The paper

from Arteris [17] addresses specifically the problem of V irtual Component compat-

ibility, closely related to much of the work developed in this thesis. Arteris NoC

is claimed to have a transaction layer compatible with AMBA AHB, VCI flavors,

AXI and OCP, but no details are given about the low level mechanisms employed

to provide this support.

4.2 Multiple socket NoC based SoCs.

Configuring a Network-on-Chip in order to support simultaneously traffic coming

from IP cores compliant with different sockets is not simple task. As remarked

in the paper from Arteris[17] ”the intertwining of transaction, transport and

physical levels within the standard interconnects, and the interconnect flexibility

necessary to handle many application designs makes this ideal approach very

difficult”. The problem is that the various sockets (IP bus protocols) have many

incompatibilities in their basic features that need to be carefully addressed upfront

in the NoC transaction layer. Addressing this issues in depth, in order to provide

full protocol inter-operability, requires significant overhead in terms of both power

and area. Fig. 4.1 shows a NoC based System-on-Chip where all the IP cores are

compliant with the same socket (OCP in the figure).

Fig. 4.2 instead shows a system configuration where the IP cores attached comply

with different sockets (AHB, OCP, AXI). But as the paper of Arteris and our

experience suggest this is very close to be an ideal scenario. Typically the system

will end up assuming the configuration depicted in Fig. 4.3.

In the next chapter will be described the work done in the context of the present

thesis to add multi-socket support to the standard STMicroelectronics STNoC� ar-

chitecture, and in particular to the STNoC�Network Adapters. The focus has been

put on adding to STNoC� the simultaneous support of the AMBA AXI protocol

and STBus Type 3 protocol. However the techniques and solutions developed can

be extended also for other IP sockets. Before, a brief, for confidentiality reasons,

description of the standard STNoC� Network Adapter will be given in the next

section. A significant part of the standard STNoC� Network Adapter, supporting

only the STBus protocol socket, has been developed in the context of this thesis [18].

43

4.3. Standard STNoC� Network Adapter.

Figure 4.1: System with single socket protocol.

Figure 4.2: Ideal system with multiple socket protocols.

4.3 Standard STNoC� Network Adapter.

The modular architecture of STNoC� Network Adapter has been already intro-

duced in the previous chapter. The STNoC� Network Adapter architecture is also

44

4.3. Standard STNoC� Network Adapter.

Figure 4.3: Worst case system with multiple socket protocols.

Figure 4.4: High-level representation of standard STNoC� Network Adapter.

45

4.3. Standard STNoC� Network Adapter.

layered, because the Shell takes care of the transport layer of the OSI stack, while

the Kernel takes care of the network layer of the stack. This layered architecture

is reflected also in the structure of the STNoC� packet, which is used to move data

across the network. The detailed representation of the STNoC� packet cannot be

disclosed for confidentiality reasons, but Fig. 4.5 shows its layered nature. At each

layer (Transport, Network, etc), information relevant to that layer is split in header

and payload. In general the header refers to control information relevant at that

particular layer, while payload refers to pure data. Control information that is rel-

evant at a particular layer can be considered instead as simple data at a different

layer, as Fig. 4.5 shows. Take for example the case where Layer n in the picture is

the Transport Layer and Layer (n − 1) is the Network Layer. The only control

information relevant at the Network Layer is the information that specifies the des-

tination of the packet and how to get there. The header at Transport Layer can be

therefore just considered as payload at this layer. This is what is normally referred

to as message encapsulation. The STNoC� Network Adapter provides support for

both frequency and size conversion. This is accomplished through a very advanced

implementation of the FIFO queues placed inside the Kernel block of the Network

Adapter. It is not possible to disclose more information on the STNoC� NA for

confidentiality reasons.

Figure 4.5: STNoC� packet layering.

46

Chapter 5

Multi-socket support in

STNoC� architecture

5.1 Introduction

In this chapter will be disclosed the concepts behind the Multi-socket support in the

STNoC� architecture, with special focus on the problem of providing simultaneous

supports for the sockets listed hereafter:

� AMBA AXI.

� STBus Type 3.

For confidentiality reasons, the actual hardware implementation of the Multi-

socket architecture cannot be disclosed. This is only a first instantiation of the

STNoC� Multi-socket architecture. In the future also support for different sockets

(like OCP) will be added. In Chapter 2 a brief introduction of the AMBA AXI and

STBus socket interfaces (bus protocols) has already been given. For more informa-

tion the reader is invited to refer to AMBA AXI[1] and STBus[5] specifications. In

the discussion that follows the expression Network Interface will be used as syn-

onymous of Network Adapter. The basic assumption that stands behind the work

described hereafter is that to achieve an efficient multi-socket support it is manda-

tory to provide the necessary hooks already at the level of the STNoC� packet

definition. Defining the network packet in a multi-socket aware fashion is the only

way to avoid putting too much overhead inside the Network Interfaces (Network

Adapters). Our approach therefore is twofold, in that it comprises:

47

5.2. Comparison between STBus and AMBA AXI protocols

� Choosing a format for the Network-On-Chip packet that allows to provide from

the ground up the most significant features of the sockets the interconnect

architecture is supposed to support.

� Extending the basic architecture of the Network Interfaces in order to fill

the compatibility gaps that still remain open.

The choice of the Network-On-Chip packet format should rely on the clear iden-

tification of a common semantic subset between the bus-protocols for which simul-

taneous support must be provided. These semantic objects would then be directly

assigned to specific fields of the Transport Layer of the NoC packet.

5.2 Comparison between STBus and AMBA AXI

protocols

5.2.1 Support of the separate Read and Write channels of

AMBA AXI protocol

One of the distinctive features of the AMBA AXI bus-protocol is the availability

of two separate channels for transmitting data, address and handshake information

respectively for Load and Store type transactions. This allows to execute in par-

allel Load and Store transactions, as depicted in Fig. 5.1. This AXI feature is not

supported neither by the STBus protocol nor by the STNoC� Network-On-Chip

internal protocol. It is therefore mandatory to provide means for performing a sort

of serialization of the two channels outputted by a generic AMBA AXI node before

the connection to the ST NoC system can be established. The Load and Store chan-

nels should never be simultaneously active. One possible solution is to serialize the

Load and Store AXI channels inside the AXI Network Interfaces, using for example

a Round-Robin arbiter to manage the allocation of the single output channel either

to Load or Store transactions. It is also possible to use more clever algorithms in

order to take advantage of the internal architecture of the Network Interfaces and

to avoid as much as possible to stop data transmission from the AXI node.

48

5.2. Comparison between STBus and AMBA AXI protocols

AXI
 node

NETWORK INTERFACE
 AXI

store

load

ROUND-ROBIN

ARBITER

MUX

NoC

Figure 5.1: AXI Write and Read channel sequentialization.

5.2.2 Differences about the meaning of the Size of a trans-

action

STBus transactions transmit the information about the whole number of bytes the

transaction itself is going to transfer. This information is encoded into the size field

of the opcode, specifically into bits opc <6:4>. This field represents the maximum

number of bytes that a single STBus transaction can transfer, 128 bytes. If the size

of an STBus transfer is bigger than the size of the databus where the transfer is

supposed to take place a multi-cell transaction will be scheduled. If for example the

STBus transaction is a store16b and the databus has a width of 32 bits, 4 bytes,

the transaction will generate 4 cells of 4 bytes. In AMBA AXI there is not a di-

rect equivalent of the STBus opcode information. However there are two separate

transaction parameters, SIZE and LENGTH, that coupled replace the opcode infor-

mation. The correct names of this signals are BLength <3:0> and BSize <2:0>.

The first specifies the number of transfers, beats, that will occur inside a particu-

lar transaction while the second specifies the size in bytes of every single transfer.

Therefore the overall size of the transaction in the STBus way can be calculated

by making the product of the BLength <3:0> and BSize <2:0> fields. Indeed

the actual number of bytes that a transaction transfers can be different from that,

depending on address alignment issues. The maximum amount of data that can be

transferred with a single AXI transaction is larger by far than the maximum amount

of data that a single STBus transaction can move. A single AXI transaction can

move up to max{BurstSize} × max{BurstLength} .
= 2048 bytes , while a single

STBus transaction can move no more than 128 bytes.

49

5.2. Comparison between STBus and AMBA AXI protocols

5.2.3 Addressing Modes

The AMBA AXI protocol provides a Burst <1:0> signal that encodes the type,

i.e. the addressing mode, of the transaction. The protocol supports three different

addressing modes: incrementing, wrapped and streaming. With the incrementing

addressing mode the address of a transfer is calculated incrementing the previous

one of a fixed number of bytes, the width of the single transfer. In wrapped mode the

addresses are calculated as in the previous case until a fixed threshold is reached.

Above this threshold the address wraps down to a specific starting point. The

threshold value equals the product of the burst width and the burst length, and

therefore the wrapping boundary for AXI transaction is the same used in STBus

transactions to decide if adresses of unaligned transfers must be wrapped or not. In

the last addressing mode, the streaming one, the value of the address for the different

transfers of one transaction remains constant, pointing to a fixed memory location.

Usually this addressing mode is used when accessing peripherals (FIFOs). On the

other hand STBus provides only one default addressing mode that maps exactly into

the incrementing/wrapping modes of AXI protocol. Indeed the wrapping behavior

is hidden to the programmer. It is performed implicitly by the appropriate STBus

interconnect components. AXI bursts that use the wrapped addressing mode are

required to be aligned with the value of the AXI BSize signal and their length can

be only of a power of two, ranging from 2 to 16. Providing support to the full

spectrum of AMBA AXI addressing modes requires allocating 2 bits of information

inside the STNoC� packet format. Fig. 5.2 summarizes the relationship between

AXI and STBus addressing modes.

5.2.4 Choice of the primitive operations to support inside

the network.

The AMBA AXI protocol lacks an explicit opcode field as the one STBus and other

bus-protocols have. This is because the distinction between Load and Store transac-

tions is implicit for the presence of two fully parallel communication channels. The

STBus protocol not only supports Load and Store transactions but also transactions

as RMW and SWAP among others. Every different transaction maps to a particular

configuration of STBus opcode field. An important property of the STBus protocol

is that the behaviour of transactions like RMW and SWAP can be exactly repro-

duced using chunks of Load and Store transactions, where chunks are packets linked

using a special signal named the lock signal. This property enables the Network-

On-Chip to offer primitive support only to Load and Store type transactions. This

50

5.2. Comparison between STBus and AMBA AXI protocols

INCREMENTING

WRAPPED

STREAMING

AXI
 and ST
 NoC

STBus

explicitly

implicitly

Figure 5.2: Comparison of available addressing mode options.

choice allows to allocate only 1 bit of the STNoC� packet header for specifying the

atomic operation. The conversion of the RMW or Swap transactions into chunks

of Load and Store transactions would be in this case performed inside the Network

Interfaces attached to an STBus Master Node.

5.2.5 Proposed format of the Transport Layer Opcode of

the STNoC� packet header.

From the discussions above a first proposal for the format of the Transport Layer

section of the NoC packet can be outlined. The main fields inside the header’s

opcode will be allocated accordingly to what follows:

� 1 bit for Store/Read.

� 2 bits of Address Descriptor.

� 3 bits of SIZE.

� 4 bits of LENGTH.

The main choice that has been made is to keep all the features offered by the

AMBA AXI protocol inside the STNoC� packet, offering a direct mapping for the

51

5.2. Comparison between STBus and AMBA AXI protocols

most significant AXI signals,i.e. BurstType, BurstSize and BurstLength. This so-

lution allows to simplify the support for the majority of traffic conditions that can

occur inside the AXI aware STNoC� system.

5.2.6 The response signals.

The most important signals on the AXI response path are RID <3:0> and RRESP <1:0>.

The first specifies the transaction ID. Its value should match the ID transmitted on

the request phase. The second is used to send feedback information to the Initiator

about the success of the transaction. The RRESP <1:0> signal has 4 possible

values that map to the 4 possible outcomes a transaction can have:

BRESP
[1:0]
 RESPONSE

b00
 OKAY

b01
 EXOKAY

b10
 SLVERR

b11
 DECERR

Figure 5.3: Interpretation of AXI response opcode.

The STBus protocol uses only 1 bit to transmit feedback information about the

success of the transaction (r opc[0]) :

It is therefore mandatory to establish a mapping between the feedback signals

in AXI and those in STBus. The most obvious one is represented in Fig. 5.5.

At the level of STNoC� packet format definition the preferred choice is again

to keep the full AXI semantics, using 2 bits of the response opcode to transmit the

feedback information, as shown in the Fig. 5.6:

52

5.2. Comparison between STBus and AMBA AXI protocols

r
_
opc
[0]
 RESPONSE

b0
 OKAY

b1
 ERROR

Figure 5.4: Interpretation of STBus response opcode.

 AXI
 STBus

OKAY

EXOKAY

SLVERR

DECERR

OKAY

ERROR

Figure 5.5: Proposed mapping between AXI and STBus response opcode values.

5.2.7 Multi-socket STNoc� packet.

With the assumptions made above the format of the overall STNoC� packet varies

slightly in respect of its standard form (single protocol). Figures 5.7, 5.8 and

5.9 show respectively the high level format of request and response packet and the

detailed configuration of the header at Transport Layer.

5.2.8 Interruptibility of STBus and AXI transactions.

AXI transactions cannot be interrupted, even if errors occur. Any transaction char-

acterized by a given BSize and BLength parameters must absolutely complete the

number of transfers the the transaction specifies. No matter if some of them are

meaningless, as is the case in transfers having the write strobes all cleared. Also

STBus transactions cannot be interrupted. Only STBus messages can be optionally

53

5.2. Comparison between STBus and AMBA AXI protocols

 0
1
7

UNDEFINED
 RESP

Figure 5.6: Proposed STNoC Response Packet Opcode.

Figure 5.7: STNoC request packet.

Figure 5.8: STNoC response packet.

54

5.3. Main hurdles towards compatibility

COMMON

AXI

STBus

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

XLCK

NEOM
 PRIORITY

RNW

ADV

OPC
/TR-SIZE

RASTER
 S&
F
 NDA

TRANSACTION ID

18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 62

BURST LENGTH
 BURST TYPE
 A-CACHE
 A-
PROT

ADDRESS
COMMON

AXI

STBus

COMMON

AXI

STBus

0
 1
 2
 3
 4
 5
 6
 7

R-
NEOM

RESP
 R-TRANSACTION ID

R-S&
F

Figure 5.9: Header at transport layer in request and response packets.

interrupted, depending on how the interconnect is configured.

5.3 Main hurdles towards compatibility

From the concepts described above two aspects emerge as posing the major hurdles

towards the achievement of full compatibility. The first is represented by the different

way unaligned addresses are handled in the two protocols. The second is the wide

number of data quantities that a single AXI transaction can transfer, compared to

the relatively small number of choices offered by the STBus protocol. In particular

the number of bytes that a single STBus transaction can transfer is only a small

subset of the amounts an AMBA 3 AXI transaction can transfer. This two aspects

will be further investigated in the following paragraphs.

5.3.1 Unaligned Addresses.

STBus Masters can only generate transactions aligned with their databus size. The

protocol provides support only for transactions aligned with the target node, but

in real systems sometimes this rule is violated, as when some types of size conver-

sions must be taken into account. In those cases the interconnect system must be

able to take appropriate actions. These actions consist in transparently performing

a wrapping of the transaction’s address, in order to avoid sending addresses not

aligned with the size of the target. This wrapping process can be also performed

inside some STBus interconnect IPs as bridges or interfaces. The way AMBA AXI

systems handle unaligned accesses depends on the type of the transaction at hand.

For incrementing transactions AMBA AXI provides full support for unaligned trans-

55

5.3. Main hurdles towards compatibility

actions while for wrapping transactions the starting addresses must be aligned with

the size parameter of the transaction itself, that is not the whole transaction size as

intended in STBus terms. Wrapping AXI transactions must observe also an addi-

tional constraint on the length of the transfers, which must be a power of 2 value

comprised between 2 and 16. If no explicit actions are taken the traffic generated by

nodes that observe different bus protocols can not be integrated. The place where

these corrective actions must be taken is inside some of the Network Interfaces of the

STNoC� system. The architectural extensions of the baseline STNoC� architecture

will enable support for 4 different traffic conditions, listed hereafter:

� Transactions generated by AMBA AXI Masters towards AMBA AXI slaves.

� Transactions generated by AMBA AXI Masters towards STBus slaves.

� Transactions generated by STBus Masters towards AMBA AXI slaves.

� Transactions generated by STBus Masters towards STBus slaves.

Transactions generated by STBus Masters.

The means provided to support unaligned transactions generated by STBus nodes (

Fig. 5.10) consist in flagging these transactions as wrapping at the level of the STBus

Master Network Interface, setting the corresponding field inside the Opcode of the

STNoC� packet Header. If the destination of the packet is another STBus node

this action will produce no side effects, because the wrapping flag will be ignored by

any STBus slave. The overall behavior will be anyway consistent with the meaning

of the original transaction. If on the other hand, the destination is an AMBA AXI

node, marking the incoming packet as of wrapping type would produce some desired

effects. The address will in fact wrap around a threshold aligned with the quantity

SIZExLENGTH. The transaction will therefore exhibit a behavior consistent with

the semantics of the original STBus transaction, even if the Slave is actually an AXI

node. Sometimes the only action of forcing a wrapping behavior for the addresses is

not enough and some other actions are needed, like setting appropriately the values

for the SIZE and LENGTH parameters.

Transactions generated by AMBA 3 AXI Masters.

Providing full support for transactions generated by AMBA AXI masters (Fig. 5.11)

can be much more difficult. In case of unaligned addresses the behavior of the STBus

56

5.3. Main hurdles towards compatibility

STBus

Master

Network

Interface

STBus

Master

Node

ST
 NoC

STBus

Slave

Network

Interface

AXI

Slave

Network

Interface

AXI

 Slave

 Node

STBus

 Slave

 Node

Unaligned
 STBus
 Transactions are

tagged as
 wrapping
 when generating

the ST
 NoC
 packet

Figure 5.10: Propagation of packets generated by STBus Masters.

node would be to force the wrapping of some of the addresses, but this would in

turn violate the original AXI semantics. It is therefore unavoidable to take some

action at the level of the STBus Slave Network Interface. The solution proposed

hereafter is to split the unaligned AXI transaction, that arrives to the slave as an

unaligned STNoC� packet, into 2 or more, depending on the size of the payload,

STBus transactions, as shown in FIg. 5.12. To determine the exact number of

mapping transactions that the Network Interface has to generate it is important

to take into account not only the starting address but also the ratio between the

databus sizes of Master and Slave. When transaction splitting is performed in the

request path the same Network Interface has to provide means to perform the fusion

of all the responses that the slave will generate into a single response packet. When

the Slave is an AXI node instead there is the need to check if size conversion needs to

be performed and if so, depending on the type of transaction, can again be required

to perform transaction splitting and/or address manipulation.

5.3.2 AXI transaction sizes not directly supported by STBus.

The whole amount of bytes transferred by an AMBA AXI transaction is given by

the product of the BurstSize and BurstLength fields. Actually, the number of bytes

transferred can be smaller, in case of address unalignment. The BurstLength field

can assume all the integer values comprised between 1 to 16. The value of the

57

5.3. Main hurdles towards compatibility

AXI

 Master

Network

Interface

AXI

 Master

Node

ST
 NoC

STBus

Slave

Network

Interface

AXI

Slave

Network

Interface

AXI

 Slave

 Node

STBus

 Slave

 Node

Unaligned
 AMBA
 AXI

 Transactions

The ST
 NoC
 packet

generated by the

unaligned
 AXI
 transaction

is
 splitted
 in 2 or more

STBus
 transactions

Figure 5.11: Propagation of packets generated by AXI Masters.

BurstSize field can be a power of two comprised between 1 and 128. The size of

an STBus transaction is, as already said, specified by the value of opcode field.

The sizes allowed are the power of two values between 1 and 128. Therefore the

overall transaction size of STBus transactions maps exactly to the values of the SIZE

parameter of AMBA AXI transactions. This implies that for example an AMBA

AXI transaction with BurstSize=4 and BurstLength=5 can not be mapped directly

to a single STBus transaction.

5.3.3 ID information.

Both the STBus Type 3 interface and the STNoC� packet have a total amount of

12 bits dedicated to convey ID information. These bits are spread across 2 fields,

src <7:0> and tid <3:0>. The src field is used to specify the Node that has

generated the transaction while the tid field is used to identify different transactions

generated by the same Node. The meaning of the src field depends on the actual

configuration of the Initiator Node, i.e. if the Initiator is a single Node or if it is

a Subsystem. In the first case the src field is just an identifier of the Node while

in the second case part of the field is used to identify the Node/Interface that acts

as Initiator towards the interconnect and the remaining bits are used to specify

58

5.3. Main hurdles towards compatibility

11
12
13

14
15
16
17

9
A
B

C
D
E
F

11
12
13
 10

10

Unaligned
 AXI
 transaction:

address:
 0x09

Trans.Size
 : 32 bits

Burst Type: incrementing

Burst Length: 4

First
 STBus
 transaction:

address:
 0x08

Cell Size: 32 bits

Before the
 AXI

Master Network Interface

After the
 STBus

Slave Network Interface

byte masked

with the byte

enable

ST
 NoC

15
16
17
 14

9
8
9

B
C
D
 A

Second
 STBus
 transaction:

address:
 0x10

Cell Size: 32 bits

8

8

Figure 5.12: Packet splitting in AXI-to-STBus traffic scenarios.

which node inside the subsystems generated the transaction in the first place. In

the AMBA AXI protocol things are a little bit different. The AXI Master issues

only 4 bits of ID information inside the fields xID, where x stands for W or R,

respectively in case of write and read transactions. This information is provided

also in the address channel, enabling data interleaving in the Request Path. The

meaning of this field is the same of the tid <3:0> field of STBus and STNoC�. The

AXI interconnect, whenever an AXI Node issues a new transaction, appends a few

ID bits to those directly generated by the initiator. The role of these new bits is

to allow the correct dispatch of the transaction from the Master to the Slave Node.

This implies that the number of ID bits that the Slave Interface sees is actually

bigger than the number handled by the Master. To ensure interoperability of the

STBus and AXI protocols inside the multi-socket system the AXI Master Network

Interface needs to generate the ID information not provided by the AXI Master Node

but required by the STNoC� interconnect system to allow the correct dispatch of

the transaction to the destination Node. That is because the AXI Node can not

relay on an external arbiter that does the job in a standard AXI based interconnect.

The bits the AXI Master Network Interface has to generate correspond to those

of the src <7:0> field of STBus. Part of these bits will be ”Interface Dependent”

and the remaining will be ”Subsystem Dependent”, as shown in Fig. 5.16. The

number of bits that will be of one type or of the other depends on the actual system

59

5.3. Main hurdles towards compatibility

 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Allowed

BurstLength

values

1

2

4

8

16

32

64

128

Allowed

BurstSize

values

Figure 5.13: Possible values for AXI SIZE and LENGTH parameters.

 Original

packet/transaction

1
st

packet/transaction

2
 nd

packet/transaction

Transaction

Splitting

Function

Figure 5.14: Splitting and reconstruction of incoming packets.

configuration, but their sum will never be more than 8, the width of the src field.

For transactions generated from STBus Masters the SOURCE ID field is simply

copied from the src <7:0> field of the incoming STBus transaction.

5.3.4 Complexity of the AMBA AXI-STBus mapping prob-

lem.

For what said above, the Slave Network Interface needs to map the incoming packet,

representation of an AXI transaction, into one or more STBus transactions. The

60

5.3. Main hurdles towards compatibility

AXI

Master

Node

AXI

Master

Network

Interface

ST
 NoC

AXI

Slave

Network

Interface

STBus

Slave

Network

Interface

AXI

Slave

Node

STBus

Slave

Node

TRANSACTION ID field

of ST
 NoC
 Request Header

copied from
 xID
 field.

SOURCE ID field

of ST
 NoC
 Request Header

generated inside the Network Interface.

Figure 5.15: Generation of STNoC� ID information in case of AXI Masters.

 0
x
7

Subsystem Dependent
 Interface
 Dependent

y

Figure 5.16: Structure of the SOURCE ID field of STNoC� request header.

parameters that need to be chosen are the proper command (opcode) of the trans-

action/s, the byte enables and the final address of the outgoing STBus transaction.

It is not possible to find a direct one-to-one mapping between all AMBA AXI and

STBus type 3 transactions. If the incoming packet for example moves a total number

of 12 bytes of data there is not any single STBus transactions that can do the job

alone. In this case instead the Slave STBus Network Interface can take the decision

to generate an 8 byte transaction followed by one of 4 bytes or otherwise can use

3 transactions of 4 bytes each and, just to name a few options. Furthermore the

choice of the proper mapping can be influenced by other features of the incoming

packet and by some other architectural features of the Slave Network Interface itself,

as represented in Fig. 5.17. If for example the depth of the buffers used inside the

Network Interface is not enough to store all the mapping sequence for a given input

packet a good solution could be to avoid issuing STBus transactions which transfer

large numbers of bytes, because the buffer overflow that would occur would require

61

5.3. Main hurdles towards compatibility

Transaction

Type

Downsizing/

Upsizing
 Address

Alignment

Depth of

Network

Interface

Buffers

Choice of the

AXI
 -
 STBus

Mappings

Figure 5.17: Process of Mapping Selection.

stalling the Network Interface, adding significant latency to the transaction. There

are three possible actions that can be taken at the level of the STBus Slave Network

Interface to perform a correct mapping between the incoming STNoC� packet shape

and the STBus transaction/s to transmit towards the Slave. These are Transaction

Splitting, Address Adaptation and Data Adaptation. These actions can be de-

ployed not only separately but also in combination to solve the mapping problem

in critical corner cases. The need to perform Transaction Splitting can arise in a

number of cases: STNoC� packet sizes not supported by STBus, address alignment

problem that requires the splitting of the transaction, size conversion. In each of the

preceding conditions also Address Adaptation and Data Adaptation can be option-

ally required. There are times where Transaction Splitting is not required but one

or both of Address Adaptation and Data Adaptation are. This occurs for example

when the whole size in bytes of the packet would have a direct mapping in one

STBus transaction but for example the packet address is unaligned in respect of the

Slave Node databus size.

62

5.4. Mapping algorithms for AMBA AXI and STBus traffic integration.

5.4 Mapping algorithms for AMBA AXI and STBus

traffic integration.

5.4.1 AXI-to-STBus traffic.

AXI incrementing transactions.

The algorithm that handles AXI transactions of type incrementing basically tries

to approximate the value of the entire packet size by means of the basic bricks

represented by the available STBus transactions. In particular it checks at each

step if it is better to use a transaction slightly smaller or bigger in size of the data

amount that remains to be transferred. This check allows to minimize the total

number of transactions needed to map a given packet (see Algorithm 1 for details).

63

5.4. Mapping algorithms for AMBA AXI and STBus traffic integration.

Algorithm 1: AXI-to-STBus incrementing transactions
Input: PS =Packet Size (SIZEÖLENGTH) ;

IA = Starting Address of incoming packet ;

Tstbus = Set of all STBus transactions ;

TSAi
= Set of all STBus transactions aligned with SAi;

Wi = Number of bytes actually transferred with the ith transaction;

Ri = Number of bytes that remain to be transferred after the (i−)th

transaction;

in SIZE = Value of the size parameter of the incoming packet ;

in LENGTH = Value of the length parameter of the incoming packet ;

in ADD = Address of the incoming packet ;

databus = Value of the size parameter of the incoming packet ;

Output: T0TN = STBus transactions of the mapping sequence ;

SAi = Starting Address of mapping transactions ;

B = Vector of all byte enables for the current packet ;

begin
x ←− IA mod PS;

SA0 ←− IA− x;

index ←− 0;

res ←− PS;

while res ≥ 0 do
Tdown ←− max{T ∈ TSAindex

: res ≥ T};
Ddown ←− res− Tdown;

Tup ←− min{T ∈ TSAindex
: T ≤ res};

Dup ←− Tup − res;

if Ddown ≥ Dup then
Tindex ←− Tup ;

else
Tindex ←− Tdown ;

Windex ←− Tindex − x;

Rindex ←− PS −∑index
k=0 Wk;

SAindex+1 ←− SAindex + Tindex;

res ←− Rindex;

index ←− index + 1;

B ←− [0, 0, . . . , 0x−1, 1, 1, . . . , 1PS+x, 0, 0, . . . , 0Pindex−1
k=0 Tk

] ;

end

64

5.4. Mapping algorithms for AMBA AXI and STBus traffic integration.

AXI wrapped transactions

Wrapping packets produced by AXI Masters which transfer a total number of bytes

(SIZExLENGTH) that matches one of the STBus opcode values and whose initial

address is aligned with the Slave databus size are just propagated to the STBus

Slave, because the natural wrapping behavior of STBus interconnect will reproduce

the desired wrapping semantics. Otherwise there is the need to perform a more

detailed analysis. The number of different initial addresses allowed for a given

wrapping AXI transaction (fixed SIZE and LENGTH parameters) equals the value

of LENGTH. But as the SIZE parameter varies, the magnitude of each address

interval varies at the same pace. For the constraints that the AXI specification

imposes on the initial addresses of wrapped transactions, if we define a quantity

named sig (signature) as: sig = IA mod PS we have that this quantity is invariant

with respect to the SIZE parameter. To take into account the variation of the SIZE

parameter (which does have an impact on the choice of the mapping sequence) a

second quantity can be defined, key, as: key = PS
sig

. For every possible AXI wrapping

transaction (any combination of allowed address, SIZE and LENGTH parameters)

there are only 16 possible values of key. Each one of these values corresponds

to a different parametric sequence of STBus transactions that solves the mapping

problem. Actually the number of independent key values can be further reduced to

9. The 9 parametric sequences of STBus transactions are listed in Fig. 5.18, along

with their appropriate key value. The length of the parametric sequences can go

from 1 to 5 STBus transactions. Every possible AXI wrapping transaction maps to

one of the nine key values and therefore to a unique STBus mapping sequence (see

Algorithm 2 and Fig. 5.18).

65

5.4. Mapping algorithms for AMBA AXI and STBus traffic integration.

¥
key= infinity

key=2

key=4
 key=1.33

key=1.6
 key=8

key=2.66
 key=1.142

key=5.33
 key=1.45

key=2.285
 key=1.066

key=1.23
 key=3.2

key=1.77
 key=16

L
/S[PS]

IA
0

L
/S[PS/2]

IA
0

L
/S[PS/2]

IA
1
=(
IA
0
+PS/2)
modPS

L
/S[PS/4]

IA
0

L
/S[PS/2]

IA
1
=(
IA
0
+PS/4)
modPS

L
/S[PS/2]

IA
2
=(
IA
1
+PS/2)
modPS

L
/S[PS/8]

IA
0

L
/S[PS/4]

IA
1
=(
IA
0
+PS/8)
modPS

L
/S[PS/2]

IA
2
=(
IA
1
+PS/4)
modPS

L
/S[PS/8]

IA
3
=(
IA
2
+PS/2)
modPS

L
/S[PS/8]

IA
0

L
/S[PS/2]

IA
1
=(
IA
0
+PS/8)
modPS

L
/S[PS/4]

IA
2
=(
IA
1
+PS/2)
modPS

L
/S[PS/8]

IA
3
=(
IA
2
+PS/4)
modPS

L
/S[PS/16]

IA
0

L
/S[PS/4]

IA
1
=(
IA
0
+PS/8)
modPS

L
/S[PS/2]

IA
2
=(
IA
1
+PS/4)
modPS

L
/S[PS/8]

IA
3
=(
IA
2
+PS/2)
modPS

L
/S[PS/16]

IA
4
=(
IA
3
+PS/8)
modPS

L
/S[PS/16]

IA
0

L
/S[PS/2]

IA
1
=(
IA
0
+PS/16)
modPS

L
/S[PS/4]

IA
2
=(
IA
1
+PS/2)
modPS

L
/S[PS/8]

IA
3
=(
IA
2
+PS/4)
modPS

L
/S[PS/16]

IA
4
=(
IA
3
+PS/8)
modPS

L
/S[PS/16]

IA
0

L
/S[PS/8]

IA
1
=(
IA
0
+PS/16)
modPS

L
/S[PS/2]

IA
2
=(
IA
1
+PS/8)
modPS

L
/S[PS/4]

IA
3
=(
IA
2
+PS/2)
modPS

L
/S[PS/16]

IA
4
=(
IA
3
+PS/4)
modPS

L
/S[PS/16]

IA
0

L
/S[PS/8]

IA
1
=(
IA
0
+PS/16)
modPS

L
/S[PS/4]

IA
2
=(
IA
1
+PS/8)
modPS

L
/S[PS/2]

IA
3
=(
IA
2
+PS/4)
modPS

L
/S[PS/16]

IA
4
=(
IA
3
+PS/2)
modPS

1

1
2

1
2
3

1
2
3
4

1
2
3
4

1
2
3
4

4

4

4

5

5

5

5

3

3

3

2

2

2

1

1

1

WHEN APPLICABLE, THE BYTE ENABLE SIGNALS MUST BE CALCULATED COHERENTLY WITH THE INITIAL ADDRESS AND THE SIZE OF THE TRANSACTION AND

OF THE
DATABUS
.

Figure 5.18: Kernel of AXI-to-STBus wrapped algorithm

Algorithm 2: Prologue of AXI-to-STBus wrapped algorithm
Input: IA =Initial Address of incoming packet ;

SS = Slave Databus size ;

in SIZE = SIZE of incoming packet ;

in LENGTH = LENGTH of incoming packet ;

Output: out TRANSACT = Opcode of current STBus transaction emitted;

out ADDR = Address of STBus transactions emitted ;

begin

if (is STBus(in SIZEÖin LENGTH)&&(IA mod SS == 0)) then
out ADDR ←− IA ;

out TRANSACT ←− in SIZEÖin LENGTH ;
else

GOTO the kernel part of the algorithm ;

end

66

5.4. Mapping algorithms for AMBA AXI and STBus traffic integration.

AXI fixed transactions.

Every single transfer of an AXI fixed transaction that arrives to the STBus Slave

Network Interface needs to be considered as an independent transaction. Therefore if

one or more of these atomic transfers requires adaptation because of alignment or size

conversion problems the standard algorithms for handling incrementing transactions

will be applied.

5.4.2 AXI-to-AXI traffic.

The algorithm for mapping AXI-to-AXI traffic across the AXI aware STNoC� is the

same for incrementing and wrapping transactions. It takes also into account both

downsize as well as upsize conversion ratios between the Master and Slave nodes.

Indeed the mapping strategy employed in case of upsize conversion ratios comes out

to be a special case of the one that provides support to downsize conversion ratios.

The behavior of the AXI Slave Network Interface depends on two different features

of the incoming transaction. The first is the ratio between the SIZE parameter

of the incoming ST NoC packet and the size of the databus at the Slave interface

side. The second is the value of the LENGTH parameter. If the SIZE parameter is

equal or smaller than the databus the properties (LENGTH, SIZE, TYPE) of the

transaction pass through unchanged across the Network Interface and propagate to

the slave Node, that is the SIZE and LENGTH parameters as well as the address

of the AXI transaction the Network Interface issues to the slave Node are the same

of the incoming ST NoC packet. On the other hand, if the SIZE parameter of

the incoming STNoC� packet is bigger than the databus attached to the slave, and

therefore can not be just copied, the SIZE parameter of the outgoing AXI transaction

is fixed to the width of the databus. Since the overall size, in bytes transferred, of

the AXI transaction must be kept constant, if we reduce the SIZE parameter we

must increment in the same proportion the LENGTH parameter. So for example

if we have an incoming packet SIZE of 8 and the databus is 4 bytes wide we are

reducing the SIZE by a factor of 2 and we need to enlarge the LENGTH by the same

factor. This can be done without any problem until the final value that we get for

the LENGTH parameter is no more than 16. In case this condition is not met we

are forced to perform some splitting on the incoming transaction, because 16 is the

maximum available value for LENGTH. The fact that upsize conversion is included

in the treatment of downsize conversion depends on the fact that when there is an

upsize ratio between the Master and the slave, Slave bigger, the condition of having

an incoming SIZE parameter bigger than the databus can never occur and then we

67

5.4. Mapping algorithms for AMBA AXI and STBus traffic integration.

fall in the first of the scenarios described above.

AXI-to-AXI fixed transactions.

As usual for the handling of AXI fixed transactions traffic each fixed burst transfer

is considered by the AXI slave Network Interface as an independent transaction. If

no size conversions applies to the transfer the properties of the transfers will not

vary. If instead size conversion needs to be accomplished the techniques developed

for AXI-to-AXI incrementing traffic will be applied to emulate each single original

transfer.

Additional considerations on AXI-to-AXI traffic support.

For the AXI-to-AXI mapping algorithm to work properly at least the AXI Master

Network Interface needs to be aware of the databus size of the slave node that is

sending data. This requirement can be satisfied providing every Master Network

Interface with a small lookup table where for each possible destination node the

size of its databus is reported. Knowing the exact size of the slave node is required

because the STNoC� response path does not provide byte strobe signal lines and

slaves with different databus width transmit a different payload despite the fact that

the actual transaction is the same. The ARM official documentation on AMBA AXI

interconnect systems as well as documentation on Synopsys Design Ware model for

AXI interconnect modules describes only system configurations where only downsize

conversion ratios between Masters and Slaves are allowed. Upsize conversion seems

to be never required. The mapping algorithm described above supports also sce-

narios where upsize conversion do occur. In those cases the mapping policy is just

borrowed from downsizing scenarios. One possible reason that justifies the choice to

avoid recurring to upsize conversion in AXI interconnect systems is that whenever

upsize conversion occurs also in our AXI aware STNoC� systems the best possible

databus usage for the slave databus is reduced to 50%. This is because the smallest

size ratio that we can have is 2, and the mapping algorithm in case of upsize con-

version prescribes to keep the AXI transaction properties (i.e. SIZE,LENGTH and

initial address) unchanged from Master to Slave.

5.4.3 STBus-to-AXI and STBus-to-STBus traffic.

Support for these two traffic types requires no special actions.

68

5.4. Mapping algorithms for AMBA AXI and STBus traffic integration.

69

5.5. Implementation, results and future work.

area
 max.
freq

AXI
 MS
 0.067843
 mm
2
 856
 Mhz

AXI
SL
 0.074532
 mm
2
 797
 Mhz

STBus
 MS
 0.058823
 mm
2
 888
 Mhz

STBus
 SL
 0.105642
 mm
2
 678
 Mhz

Figure 5.19: Synthesis data.

5.5 Implementation, results and future work.

A parametric VHDL model for the various Network Adapter encompassed by the

preceding architectural specification has been implemented. For confidentiality rea-

sons, neither the precise microarchitecture at the RTL level nor the actual VHDL

source code can be disclosed. A number of synthesis runs have been conducted on

simplified models of the Network Adapter in order to estimate the performance of

the components. The simplifying assumptions include a full synchronous design,

while the complete multi-socket NA architecture supports completely unrelated op-

eration frequencies at the IP and network side. Moreover, traffic across the network

is considered to be address aligned. This simplifies some of the mapping algorithms.

The synthesis runs have been done with Synopsys Design Compiler and with the

Virtual Silicon UMC 0.13 (normal conditions) library. Fig. 5.19 shows the synthe-

sis data, area and timing, respectively for AXI Master NA, AXI Slave NA, STBus

Master NA and STBus Slave NA.

The data shows as expected that the most challenging implementation is that of

the STBus Slave NA which, as explained earlier in the chapter is in charge of per-

forming the complex transaction splitting task. The need to support the complex

State Machines required justifies the degradation in performance in respect of the

other NAs. Implementation of the mapping algorithms in the most complex traffic

scenarios needs to be further optimized. Future work will investigate the possible

extension of the multi-socket support to other socket protocols (OCP). Furthermore

techniques for the reduction of burstness of the traffic along the links will be inves-

tigated. Also a further optimized implementation of the Asynchronius FIFOs used

inside the NA will be considered.

70

Part II

SoC computation architectures:

Extension of ST230 architecture to

binary compatibility with ARM ISA.

71

Chapter 6

Computation paradigms for

Systems-on-Chip.

6.1 From the Embedded and General Purpose com-

puting paradigms to the single System-on-

Chip computing domain

In the last years the scenario related to the embedded computation platforms has

traversed deep changes. Actually to some years ago the aspects that assumed great

relief were certainly those legacies to the choice of the components to integrate and

to the scrupulous job of debugging general of the systems. Good part of the com-

ponents were realized custom to be integrated inside a particular system and every

change or evolution it often asked for times of at tended very long and an intense

job of development. The field of embedded systems was completely separated by

that of the personal computing, for which the exchange of technologies among the

two fields was not very intense. Today embedded systems are definitely more ”pro-

cessor centric” and much more similar to the platforms employed in general purpose

computing. Times where embedded systems didn’t ask for sophisticated memory

hierarchies, support for sophisticated operating systems, high level of interactivity

with sophisticated user interfaces seem by now distant. Today those just listed

are often essential characteristics inside many embedded systems, especially in the

wireless and mobile computing fields. If from one side therefore it is assisted to

a progressive convergence of embedded and personal computing worlds, from the

other embedded systems maintain some distinctive prerogatives, as for example the

great importance that inside them they assume again the occupation of area and the

72

6.2. System-on-Chip computing models.

dissipation of power over that the pure performances, that instead decidedly assume

preponderant importance in the systems for personal computing. Anyway, these

comparisons have to be handled with care, considering that for example power dis-

sipation is assuming increasing importance also for personal computing systems. As

a result, the technology of embedded systems is more and more approaching that of

platforms for general purpose computing. However many architectural choices will

be subject to specific restrictions. In the past, another property that distinguished

embedded systems and personal computing systems was in the degree of integration

required among the various components of the system. While in embedded was often

necessary to integrate all on a single chip, in personal computing integration among

the various parts of the system happened at board level. I single chip was usually

reserved for the processor alone. In the last years however a technological drift is

leading both the computing areas, embedded and general purpose, towards a sin-

gle technological platform, the System-on-Chip platform. More and more systems

designed for general purpose computing are now including on the same chip not

only the processor but also first and second level cache memories, external memory

controller, graphics accelerators, etc. Technologies that were originally developed

for one of the above mentioned and once well separated domains are now converging

on the field of System-on-Chip computing.

6.2 System-on-Chip computing models.

The architecture of the computing platforms available for System-on-Chips can vary

depending on the application domain at hand. There are applications were only the

management of sensors and primitive communication terminals is needed. For tasks

like this is normally sufficient a simple microcontroller, with monitoring functions.

In these cases the processor is not demanded to perform onerous computations.

When instead the application requires higher levels of performances it is tradition-

ally possible to resort to a number of different solutions, each of which has its own

advantages and disadvantages that must carefully be evaluated in the design space

exploration phase. In Systems-on-Chip are frequent the applications where is neces-

sary to conduct some complex computations on some data that the system acquires

in input at high rate, as is the case wireless systems for example. The solutions

that can be adopted are usually three: 1) choose an high performance processor, 2)

add a programmable coprocessor adapted for the execution of the task that requires

more computational effort or 3) design an ASIC coprocessor specifically targeted to

the execution of the critical task. These just listed represent only the traditional

73

6.2. System-on-Chip computing models.

solutions. There are also hybrid solutions, mainly based on the paradigm of the

”customization” of flexible computation platforms that can be each time adapted

to the requirements of the application at hand. This is the case for example of the

reconfigurable coprocessors, that exhibit an highly modular architecture, that al-

lows to not only vary its properties in substantial way in the design phase but often

also at run-time. Another example is given by the ”customizable” processors. They

can be fine tuned both from the point of view of the microarchitecture and from

that of the Instruction Set. These systems are highly modular, which advantages

are twofold: 1) offer a good solution for the application at hand and 2) be flexible

enough to be easily adapted if the systems requirements or the application change.

The figure 1 illustrates many of the solutions described above.

Microcontroller

Memory

Peripheral1

Peripheral2

A)

PeripheralN

Microcontroller

Memory

Peripheral1

Peripheral2

B)

PeripheralN

DSP

Microcontroller

Memory

Peripheral1

Peripheral2
C)

PeripheralN

ASIC

Microcontroller

Memory

Peripheral1

Peripheral2
D)

PeripheralN

Reconfigurable

 Coprocessor

Customizable

 Processor

Memory

Peripheral1

Peripheral2
E)

PeripheralN

Figure 6.1: Computing platforms for Systems-on-Chip.

In the majority of the cases the programmable coprocessors are named Digital

Signal Processors (DSP). Not always the distinction between a general purpose pro-

74

6.3. Advanced processor architectures: Superscalar and VLIW.

cessor and a DSP is neat. A DSP represents a processor optimized for the execution

of particular tasks, usually some algorithm of digital signal processing. The opti-

mization is achieved both through the addition of custom functional units dedicated

to the accelerated execution of particular operations, and sometimes also through an

extension of the instruction set, providing additional support for instructions par-

ticularly suited for the speed up of a given computational kernel. The spectrum of

available solutions for handling computation tasks in the context of Systems-on-Chip

is very diverse. At the same time the demand for computing power is continuously

increasing, and probably is not going to stop in the future. Another property that

computation platforms for future Systems-on-Chip must absolutely have is good

scalability. The most promising way to increase the processing power available to

SoCs seems to be that of taking full advantage of the various sources of parallelisms

embedded in any software program and in particular in the software programs tar-

geted to embedded applications. In the following paragraphs some ideas about the

possible ways for the exploitation of this parallelism will be given.

6.3 Advanced processor architectures: Superscalar

and VLIW.

Leaving for a moment the embedded field and focusing on general purpose computing

were is definitely raw performance the principal requirement, the most widely used

processor architecture is the Superscalar architecture. Superscalar processors are

able to execute more than one instructions in parallel. To do this is necessary

to modify the intrinsic order execution of computer programs, which is strictly

sequential. At the same time there is the need to make sure that even if the order of

execution of some of the instructions is changed the correctness of the program must

not be compromised. A group of instructions can be executed in parallel only if there

is not any dependence among them. Once the instructions potentially executable in

parallel have been selected the need to be appropriately dispatched to the functional

units available inside the processor. Usually the first task is called dependency check

and the second instruction scheduling. In today’s Superscalar processors also

other techniques are used to improve the overall performance, optimizing the two

aforementioned tasks. To perform an analysis of instruction dependencies there is

the need to implement inside the processor structures able to maintain a ”window”

of instructions on which the analysis must be performed at run-time. This normally

requires resorting to large memory buffers. Increasing the number of instructions

that can be dynamically ”watched” inside the instruction window it is more likely

75

6.3. Advanced processor architectures: Superscalar and VLIW.

the possibility to find a subset of them that can be executed in parallel . For

what just said there is a trade off that must be carefully considered at design time

between the performance expected from the system and the overhead in terms of

area, latency and power consumption that can be afforded. In fact, large buffers as

those needed to implement the instruction window and the dependency check can

be very demanding in terms of resources. Unfortunately, in Superscalar processor

there are not so many other ways to improve performance, if not incurring significant

overheads. This certainly represents one of the greatest elements of weakness of

Superscalar processors.

Decoding

Logic

Dependency

check

logic

Scheduling

Logic

Instruction

window
 Issue

Logic

Functional

Unit

1

Functional

Unit

2

Functional

Unit

N

Retire

Logic

Fetched

Instructions

Figure 6.2: Logic block diagram of a Superscalar processor.

The process of extracting from the software program instructions to be executed

in parallel can lead to a condition where the execution of one or more instructions

does not respect anymore the original order (out− of − order execution). However,

there are moments where the order of instruction execution as seen from outside

(the programmer) must match exactly the original sequential order. This occurs

for example when handling interrupts and exceptions. For this reason in most of

Superscalar processors there is a functional unit called Retire Unit, but which is

often referred to as Reorder Buffer, which is placed downstream of the functional

units that has the sole purpose to guarantee that the system’s architectural state, i.e.

memories and registers, is changed only accordingly to the native sequential order

of the program. Only in this way the processor can safely respect the condition of

Precise Interrupts. Implementation of the Retire Unit is very expensive in terms

of hardware resources and power dissipation. This is a further demonstration of the

susceptibility of the efficiency of Superscalar architectures to implementation pa-

76

6.3. Advanced processor architectures: Superscalar and VLIW.

rameters. These problems explain why until now Superscalar processors have not

being successfully introduced in embedded systems. They are very hungry of hard-

ware resources and in embedded systems, in Systems-on-Chip, hardware resources

are really expensive. Furthermore the waste of hardware resources in Superscalar

processors does not scale very well with performance. Often to get only a small

increase in performances the overhead in terms of hardware resources becomes un-

acceptable. For the problems described above, to solve the increasing performance

hunger of Systems-on-Chip other solutions must be sought of. Superscalar archi-

tectures are not the only ones following the approach of pursuing more efficiency

exploiting the inner parallelism of software programs. There are also other architec-

tural processor models that try to exploit the same parallelism, just in a different,

and maybe more efficient, way. These other processor architectures try to match the

performance of Superscalar architectures without incurring in the significant over-

head that characterizes their implementation. One of the best promising solutions

in this context is represented by V LIW (Very Long Instruction Word) architectures.

The basic approach followed in V LIW processors is to get a suitable exploitation of

the parallelism assigning its discovering not at hardware resources but the software

compilation tool chain . In this way the processor microarchitecture is freed from

many the complexities typical of Superscalars, accepting to pay a little price in

terms of performance, as will be better explained later. It is not required anymore

to use large buffers for placing the instructions on which to conduct the dependency

analyses on-the-fly. Moreover, instruction execution in hardware happens now in a

strictly sequential order. In fact, the final execution sequence of instructions (the

schedule) has been generated by the compiler. The processor core has to just strictly

follow the execution schedule without taking any other action. Widespread adoption

of this processor architecture in Systems-on-Chip has been until now prevented by

the great level of complexity of the software tool chain that is required to support

this particular processor architecture. Significant breackthrughts made recently in

this field have allowed to overcame these difficulties. Since in VLIW processors much

of the work is left to the compiler and optimization software, the quality of these

components determines to a large extent the quality of the system as a whole. If for

some reason the compiler is not good enough to extract all the available parallelism

from the program and to put it in a fashion suitable for the optimal execution by the

VLIW core, the core itself cannot do much more to improve performance. Another

oddity of VLIW processors regards the way programs are stored in memory. A single

instructions is actually the concatenation of a number of primitive operations that

equals the number of independent execution lanes available in the hardware. These

compound instructions usually take the name of Long Words, molecules or bundles.

77

6.4. VLIW processors.

Primitive operations belonging to a same macro-instruction are scheduled for exe-

cution in the same clock cycle. During the Fetch phase the processor withdraws

a Long Word from the memory. Considering that it is now the compiler to give

guarantees on the absence of bonds of dependence among the primitive operations

of a single Long Word there is no need for dependency check in hardware, even if

hardware could still directly manage specific types of conflicts. Direct consequence

of the characteristics exposed above it is the possibility to use a more slender and

rational microarchitecture compared to that required by Superscalar processors.

Fetch Unit

Dispatch Unit

Long Word

Functional Unit 1

Functional Unit 2

Functional Unit 3

Functional Unit 4

Functional Unit 5

Figure 6.3: VLIW processor.

6.4 VLIW processors.

6.4.1 Code generation for V LIW processors.

Every software program is composed of a number of elementary bricks called basic

blocks. A basic block consists in a code fragment which does not embed any instruc-

tions that can determine variations of the control flow. At the same time this code

fragment must have single-entry, it can be reached only by another basic block, but it

is Multiple-exit, it can transfer control to more than one different basic blocks. The

number of instructions included in a basic block varies according to the particular

application domain. In general purpose applications basic blocks are usually formed

at the most from 5-6 instructions. In software for embedded systems the length of

the basic blocks is much bigger. The reason for this must be sought in the fact

78

6.4. VLIW processors.

that the general purpose applications are often much more branch-intensive than

those for embedded systems. Among instructions belonging to different basic blocks

exists an implicit dependency relation. If two instructions belong to different blocks

it means that the basic block downstream is not necessarily executed every time

the execution of the BB upstream is triggered. Therefore, execution of instructions

belonging to different BB cannot be scheduled in the same cycle. However in mod-

ern compilers for V LIW is indeed possible to produce some schedules which have

instructions of different BB scheduled in the same cycle, but this is made possible

only by the use of advanced optimization techniques consisting in manipulating the

original program through the insertion of additional instructions that allow to guar-

antee the respect of the original program semantics under all conditions, also those

less probable. One of the most successful optimization techniques implemented in

advanced VLIW compilers is the scheduling across branches. Different flavors of

scheduling across branches exist, that differ mainly for the type of macroblocks that

is produced when different BB are merged. The basic approach in all the techniques

of basic block fusion consists in making a number of assumptions on the dynamic

behavior of the program. After the most likely behavior of a given program frag-

ment has been established, the program execution is optimized across this path, also

called program hot spot. In practice, performance in the most likely case is increased

at the expense of performance in the less likely one. At any given branch point in-

side a program, a point where a change in control flow can take place, the compiler

assigns a statistical weight. These weights are determined performing a profiling of

the program. All this process happens statically, off line, no run time information is

available at this stage. This techniques enable the compiler to look for instructions

to execute in parallel along an entire hot spot, well beyond the boundaries of a single

BB. This greatly enhances the likelihood of finding more parallel instructions.

There is one optimization technique based on scheduling across branches that

has received particular success and that has been widely adopted in V LIW avail-

able today in the market. It is the Trace Scheduling technique. The purpose of

the TS algorithm is to extract from a program fragment the segments which have

higher execution probability, and then to perform an aggressive optimization of those

fragments, taking care at the same time of the insertion of some form of recovery

mechanism that deals with the need to take into account also the least frequent case

in which the dynamic execution stream of the program abandons one of the hot

spots. The Trace Scheduling has the strong merit to be able to treat effectively

code fragments of different types, and in particular to be useful also in areas of code

full of branches. Hereafter the basic principles behind TS will be explained. Af-

ter the front-end compiler optimizations have been performed and the instructions

79

6.4. VLIW processors.

have assumed the form of machine language the CFG (Control Flow Graph) of the

program is passed to the TS (Trace Scheduler). The TS annotates the CFG with

information regarding the execution statistics of the program, gathered by means of

profiling runs. Then, the Trace Scheduler begins to execute the loop comprised of

the following phases:

A. A sequence of instructions to be inserted inside the Schedule is selected. This

sequence is called trace. The length of a single trace can be determined by various

constraints: 1) end of functions (return / entry), 2) end of loops and 3) collision

with fragments of code already scheduled.

B. The trace is removed from the CFG and passed to the Scheduler.

C. When the Scheduler emits the Schedule, it is inserted back into the CFG,

exactly where the original Trace was placed. To take into account also the case

where the assumptions made in building the trace need to be discarded, part of

the scheduled instructions is replicated in the CFG.

D. The process is repeated until every instruction has been inserted in one of

the Traces and that every trace has been replaced by the corresponding partial

schedule.

E. The best possible order for the object code is chosen and the binary file is

generated.

The best possible order for the object code is chosen and the binary file is gen-

erated.

Figs. 6.4, 6.5, 6.6, 6.7 and 6.8 describe the concepts just listed.

In Trace Scheduling, the final product of all the compilation and optimization

process is the Schedule, the detailed execution plan for the instructions in the VLIW

core. The core has only to execute the schedule with the best possible efficiency. As

already said earlier Superscalar processors generate internally the schedule. Now

that the details of the VLIW model of execution have been introduced is possi-

ble to answer to the following question: with reference to a sample fragment of

code, is better the schedule generated by the compiler for a VLIW processor or

the schedule generated in hardware by a Superscalar Processor ? The answer is

that the process of profiling the software application for determining the execution

statistics to plugged inside the Software schedule in case of VLIW processor is in-

herently inaccurate, because it does not take into account the dynamic behavior of

the program. Aspects like the variation of the inputs cannot be predicted with ac-

curacy. The instruction window hardwired inside a Superscalar processor instead

80

6.4. VLIW processors.

Figure 6.4: Scheduling across different basic blocks.

has access to the instructions just right before their execution. The only source

of ambiguity in this latter case is due to the possible inclusion of instructions that

have to be executed in a speculative way. On the other hand the V LIW approach

has the advantage that the code optimizations are performed on a large window of

instructions, larger by far than the number of instruction a Superscalar processor

can analyze in hardware, at least if the cost in terms of hardware resources must

be kept into reasonable bounds. If a program has plenty of intrinsic parallelism

the V LIW approach is superior, while the Superscalar approach wins when the

available parallelism is less.

6.4.2 Introduction to binary compatibility.

The VLIW model of computation assumes that the code generation and optimization

tool chain has access to detailed information about the hardware microarchitecture of

the processing core. The definition of the instruction schedule is completely up to the

81

6.4. VLIW processors.

Figure 6.5: Selection of a Trace and scheduling of the instructions inside.

compiler and this can be done only if the compiler is fully aware of many of the details

about the processor’s microarchitecture. To establish that no resource conflict can

exist between two arbitrary instructions, for example, the compiler needs to have

complete knowledge of the latencies of each of the functional units inside the core.

Without this information for the compiler would not be possible to find a schedule

that is both correct and optimal for a given code fragment. A direct side effect of

this important property is that a program compiled for a VLIW core having a given

set of latencies for its functional units cannot in principle be executed correctly in a

different core where some of the latencies of the functional units have been changed.

This property of VLIW architectures poses serious concerns about the possibility to

reuse binary code across different generation of the same processor family. Concerns

like this will be better discussed in the continuation of this thesis, because these

are exactly the issues that have been dealt with in the course of the thesis work.

Moreover, for the optimization algorithms to be really effective, the compiler needs to

have the best possible knowledge of the hardware core. Thus, there is again the need

to find a good trade off between accuracy of the hardware representation available

to the compiler and ease of porting of the binary code to other generations of the

82

6.4. VLIW processors.

Figure 6.6: Substitution of the Trace with the Schedule and analysis of the situation

at the edges.

processor’s microarchitecture. In the light of what just said is possible to understand

why adaption of VLIW architectures has started in embedded systems and not in

general purpose systems. The reason is that in embedded systems recompilation

of the software has rarely been a problem, while in the general purpose sector the

capacity to execute legacy code is a must. However, in the last years issues like

code reuse and binary compatibility are increasingly important also in the context

of Systems-on-Chip, because also for SoCs the possibility to exchange compiled

code across different platform and processor families is becoming an advantage as

perceived by the market.

6.4.3 Analysis of VLIW microarchitecture.

In principle, a V LIW processor is represented by a number of parallel lanes, each

one dedicated to the execution of one of the many primitive operations (uops) that

included inside a single Long Word fetched from memory.

83

6.4. VLIW processors.

Figure 6.7: Generation of the compensation code at the edge of the Trace.

To fully exploit the parallelism inside a program fragment, the VLIW compiler

needs to count on a large number of registers. Many registers are needed because two

instructions can be considered to not conflict only if the registers sets they access in

read or write mode are disjoint. Since optimization algorithms have to be applied

to large windows of instructions, the demand for registers to assign to operands and

results is very high. At the same time, from an hardware perspective having to deal

with large monolithic register files poses serious treats to the system’s performance.

For this reason sometimes VLIW cores resort to using clustered register file con-

figurations. Clustered VLIW configurations are considered to scale better with the

performance required. Fig. 6.10 and Fig. 6.11 show respectively a monolithic and a

clustered VLIW core.

In clustered architecture there is the need to provide some means to exchange

data across the different register files. This can be done using specific uops or provid-

ing some hardwired mechanism inside the processor core. The intrinsic modularity

of Clustered architectures allows to speed up the retargeting of the processor core for

a different application domain, or just to increase the processing power. Changing

84

6.4. VLIW processors.

Figure 6.8: Selection of the next Trace.

the number of clusters inside the core the designer can meet different performance

and application requirements, without having to deal with the complete redesign of

the single cluster, that would take much more time.

6.4.4 Compression of VLIW programs in memory.

VLIW programs are made of Long Words, where all the uops the core has to execute

in a single cycle are stored. If a given lane of the core in a particular cycle needs

to be stalled to avoid resource conflict with another instruction, the corresponding

slot inside the VLIW is filled by the compiler with a NOP tag. This NOP tag

specifies that the functional unit assigned to that slot will be idle in that cycle.

Since the situation where some of the slots inside a Long Word are filled with NOP

is actually very common, storing a program in memory in this format would lead

to a great waste of memory resources. For these reason, have been designed a

number of techniques for the compression of VLIW programs in memory, where the

basic approach is to avoid wasting space storing NOP information. The problem

85

6.4. VLIW processors.

Register File

FU 1
 FU 2
 FU 3
 FU N

Lane 1
 Lane 2
 Lane 3
 Lane N

Fetch Unit

Lane 2

Dispatch Unit

Long Word (Bundle)

Figure 6.9: Execution lanes in a V LIW processor.

is worsened by the fact that also the optimization techniques performed by VLIW

compiler have as a side effect a significant increase on the size of the program.

One the most widely used compression techniques consists in using a few additional

bits embedded in the Long Word that specify if a specific slot has to execute some

real instruction or not. A similar scheme is implemented inside the TIC6xxx, a

VLIW processor from Texas Instruments. In this processor family the Long Word

is referred to as fetch packet. The bits that implement the compression scheme are

called p− bits.

When the Fetch packet is acquired from memory the p-bits are scanned from

86

6.4. VLIW processors.

Figure 6.10: Example of centralized architecture.

Figure 6.11: Example of architecture Clustered.

Figure 6.12: Format of the Fetch Packet for the TIC6XXX.

left to right. The semantics is the following: 1) if the p-bit for a given slot is 1 then

also the uop specified in the next slot will be executed in the same cycle; 2) When

instead the p-bit is 0 the uop placed on the next slot will be executed one cycle

after. Fig. 6.13 and Fig. 6.14 show respectively a possible configuration of the Fetch

Packet for the TIC6XXX processor and the resultant schedule.

87

6.4. VLIW processors.

Figure 6.13: Possible configuration for the Fetch Packet of a TIC6XXX.

Figure 6.14: Schedule that results from the preceding pattern.

88

Chapter 7

ST230 architecture.

The ST230 belongs to the Lx family of processors, developed in partnership by

STMicroelectronics and the HP labs. The Lx architecture is a VLIW architecture

specifically targeted to Systems-on-chip. It builds upon a sophisticate code genera-

tion platform derived from the Multiflow compiler, one of the best VLIW compilers

available in the industry that is the result of more than 20 years of research (CITE

Multiflow). The Lx architecture has been designed from the beginning with scalabil-

ity in mind, and this is way Lx designers adopted a clustered organization. Indeed,

the ST230 represents one instance of the Lx architecture that includes one single

computing cluster. The Lx Instruction Set Architecture (ISA) belongs to the class

of RISC (Reduced Instruction Set Computer) ISAs. This means that Lx instruc-

tions are in principle quite simple, not including operations with complex semantics.

It lacks also SIMD-like operations , that have been included in the Instruction Set

of other VLIW processors for Systems-on-chip as the TIC6xxx. Fig. 7.1 shows an

high level representation of the ST230 processor. Not many details can be disclosed

about the ST230 architecture due to confidentiality reasons.

ST230 includes 4 Integer Units, 2 Multiply Units, a Load Store Unit and a

Branch Unit. There are two different Register Files: the General Purpose Register

File and the Branch Registers Register File. The first contains 64 registers of 32 bits

each and the second contains 8 registers of 1 single bit each. The Latency of Integer

Units is 1 cycle. They take in input 2 operands and produce in output 2 results: 1)

a 32 bits value (the result) and 2) a condition bit. Multiply Units have a 3 stage

pipeline and have a latency of 3 cycles, although they can accept a new instruction

per cycle. The ST230 pipeline is partially exposed to the compiler. In particular

the compiler has notion of the instruction latencies and of other microarchitectural

details has the status of the bypass network, etc.

89

7.1. Fetch Packet.

Figure 7.1: High level block diagram of ST230.

7.1 Fetch Packet.

The ST230 Fetch Packet is called bundle, and it is composed of 4 micro-instructions

(syllables). Every syllable has a width of 32 bits.

The stop bit has function similar to the p-bit of the TIC6XXX. If the stop bit

is 1 then the corresponding syllable is the last of its bundle. An ST230 bundle

can include no more than 4 syllables. Unlike other VLIW processors the ST230

does not have a Dispatch Unit for issuing the syllables to the functional units.

Instruction bundles are passed directly to the functional units which are directly in

charge of understanding if a particular syllable has to be executed locally or belongs

to another FU. For this reason bundles do not have any information specifying

where a given syllable has to be executed. Control and Status registers are Memory

mapped. When the core performs a memory access to the address space of the

Control registers, the Load Store Unit drives the relevant information to the actual

Control registers.

90

7.2. Software load speculation.

7.2 Software load speculation.

The ST230 processor supports the speculative execution of load instructions. The

implementation of this feature gives more freedom to the compiler to implement

aggressive optimizations of the code, allowing the execution of load instructions

in advance. This kind of code transformation is often very useful to increase the

available parallelism of a program fragment that can be then exploited by the paral-

lelizing compiler. Support for this functionality is provided through inclusion in the

Lx instruction set of dismissible load instructions. These load instructions behave

exactly like normal load instructions, except when some of the following conditions

occurs:

A. The address of the load instruction belongs to a critical address segment, for

example to the address space of some peripherals. In this case also a read access

can have dangerous effects.

B. When the execution of the load would have caused an exception condition.

C. If the speculative load determines a bus error the corresponding exception is

executed anyway.

7.3 Management of the Program Counter.

In the ST230 the Program Counter (PC) is not handled like the other registers.

Update of the program counter happens only as a side effect of the execution of

some specific instruction classes. This is very different to what happens in other

processors available for Systems-on-chip, as ARM processors. In ARM processors

in fact the PC can be accessed exactly like any other general purpose register, even

if with some limitations.

7.4 Lx Architecture and binary compatibility with

ISA ARM.

ARM processors are the most widely used family of processors for Systems-on-

chip. It is estimated the ARM processors have a market share around 70%, that

is even higher if the analysis is restricted to wireless applications. This widespread

diffusion of ARM processors has the side effect that a large part of the software

91

7.4. Lx Architecture and binary compatibility with ISA ARM.

applications available for Systems-on-chip are available as ARM binary code. As al-

ready explained in the previous chapter the problem of binary code reuse and binary

compatibility across families of processors is becoming relevant also in the context

of Systems-on-Chip. In today’s Systems-on-chip, many of the software programs

that will actually run on the computing platform are developed by third party com-

panies. For these companies, the possibility to reuse the same binary code across

different system architectures and families of processors would allow to avoid the

expensive process of porting and retargeting a software application to a different

executing platform. It is well known for example that much of the success of the

wintel platform in general purpose computing depends on the support for the large

base of legacy applications and programs that are available for the x86 platforms. In

this context the large base of applications available for the x86 platforms becomes a

barrier against any one trying to push a platform different from x86 for general pur-

pose computers. Providing direct support for ARM programs would allow to ST230

processors to have access to the large base of application in ARM code that exists

for Systems-on-chip. For some applications it is even acceptable for the execution of

the ARM code to be less efficient than the execution of native Lx code. This is for

example the case of the plenty of little applications available for mobile phones like

ring tones, games, etc. Relaxing the requirement of having the same performance

when executing ARM code or native VLIW code it is possible to extend the number

of available technical solutions that are available for implementing binary compat-

ibility between the two instruction sets. The choice among the available solutions

would then be driven also by other factors as cost in terms of hardware resources,

time to market, minimization of the impact on the standard processor architecture.

92

Chapter 8

Hardware and software techniques

for binary translation of

Instruction Sets.

8.1 Overview of binary translation techniques.

The problem of executing programs compiled for a given machine on different ma-

chines has been dealt with for a long time both in the academic and in the industrial

sector. Technologies that solve to a certain degree the aforementioned problem are

available from many years. It is for example the case of the so called emulators.

Emulators are programs that perform some kind of encapsulation (wrapping) of soft-

ware programs written for s target machine in order to execute them on a different

(host) machine. Typically, target and host machine may have different processors,

different Operating Systems or a combination of both. The major weakness of this

approach is that execution of a program under emulation is much slower than native

execution (execution of programs directly compiled for the host machine), on the

average by a factor of 10. See Fig. for a description of a typical emulator. Emulation

is by definition a purely software technique.

Much work has been spent in trying to decrease the performance gap between

native execution and execution under emulation. New techniques have been discov-

ered, but pure emulation is still a slow process. This is why the research community

has started searching for alternative techniques that could in principle speed up the

process of executing a program compiled for a target machine on a different host

machine. One of the proposed solutions has been to provide the host hardware of

93

8.1. Overview of binary translation techniques.

Program

coded in

target
 ISA

System Memory

Emulator
 Emulator

target
 ISA

program

Processor

with
host

ISA

System Memory

target
 ISA

program

host
 ISA

program

Figure 8.1: Conceptual representation of the operation of an emulator.

some additional resources that could enable the speed up of the execution of the

target program. The hardware approach for binary compatibility among ISAs builds

upon large work made in the past for solving a slightly different problem: providing

solutions for achieving significant performance improvements of processor cores de-

signed for the execution of CISC-like Instruction Sets. The distinguishing feature of

CISC (Complex Instruction Set Computer) Instruction Sets Structures is that they

include instructions of complex semantics, like instructions for performing some kind

of computations on operands gathered directly from memory bypassing the Register

94

8.1. Overview of binary translation techniques.

File. Implementation of this class of instructions, and of complex instructions in

general, poses serious treats on the efficiency of the computing hardware, because

complex logic is needed to support them in hardware. The implementation of such

complex control structures in hardware affects the performance of the processing

core as a whole, imposing for example un upper bound on the working frequency of

the machine. So, if for example 80% of the processing core could run at a frequency

of say 1Ghz and the remaining 20% could just run at a maximum frequency of say

500 Mhz, the overall maximum frequency for the design would be 500 Mhz. More-

over, the complex control logic required for the support of the Complex Instructions

right inside the processor’s functional unit requires significant power consumption

and overhead in terms of area occupation. For this reason people has been searching

for solutions that could allow in principle to avoid executing the complex instruc-

tions in hardware, but without changing at the same time the processor ISA has

seen by the programmer, because this would compromise the support of legacy code.

Changes in the microarchitecture of the processing core must be somehow hidden to

the programmer. In this context, a good solution seemed to be to build the process-

ing core around a RISC engine, not a CISC engine, and to add hardware structures

in order to wrap this RISC processing engine to make the outside world (the code

generation toolchain) believe it is a CISC engine. In this way there is not in principle

any need to change the compilation toolchain. The change in the microarchitecture

is not exposed to the compiler. The approach behind RISC Instruction Sets is ex-

actly the opposite of that behind CISCs. If CISCs supported complex, intricate

instructions, RISC processors provide only support for easy, fast and streamlined

instructions, in order to support high operating frequencies. The microarchitecture

of a RISC processor is typically much more efficient in terms of figures of merit as

area occupation, latency of the functional units and power consumption. In partic-

ular the hardware implementation of the control structures is much more simple in

RISC than in CISC processors. In order to effectively use this approach, the RISC

processing engine must be completed with some kind of predecoding resources that

must take care of the task of translating the instructions fetched from memory, of

CISC type, in RISC instructions ready to be executed by the functional units. If the

translation process is efficient enough, large improvements in terms of performance

can be reached with this approach. This is the reason why today the most widely

used x86, x86 is a CISC ISA, processors in the market as many Intel and AMD

processor families resort to this technique for achieving high throughput at lower

cost. In the framework just outlined, the target ISA would be the CISC ISA, while

the host ISA is RISC.

Even the approach described above, superior to traditional CISC microarchi-

95

8.1. Overview of binary translation techniques.

target
ISA

program

System Memory

Processor

CISC
-->
RISC
 Conversion

 Internal

RISC

execution

Engine

target
ISA

program

Figure 8.2: CISC to RISC ISA conversion in hardware in modern x86 processors.

tectures, has its own drawbacks. Sometimes also the decoding logic needed to map

some of the complex CISC instructions (target instructions) into one or more RISC-

like (host) instructions can be too complex. Some x86 instructions that need for

example a long sequence of RISC instruction to reproduce their semantics. In these

cases a possible optimization is to rely on software emulation routines for perform-

ing the mapping. The replacement of the more complex instructions with the RISC

emulation routines could be performed by the compiler or directly in the hardware,

using for example a ROM memory placed inside the decoder. Advantages are even

more if the complex instructions have a low execution probability, because in this

case implementing their mapping in hardware would be much like a waste of re-

sources. Hybrid, hardware-software, solutions to the problem of mapping a target

ISA in a host ISA like the one described above are becoming increasingly popular.

However, exploiting the full potential of these techniques requires a careful parti-

tioning among tasks to be assigned to hardware resources and tasks to be assigned

to software.

The Instruction Sets supported by VLIW processors are almost always RISC

ISAs. The Lx ISA of the ST230 processor described in the previous chapter is in

96

8.1. Overview of binary translation techniques.

target
ISA

program

(i.e.
x86
)

System Memory

Processor

CISC
-->
RISC

conversion (translation)

Internal

RISC

execution

engine

Corner case?

NO

YES
Support

Software

x86

program

Figure 8.3: Hardware approach to the binary conversion with software support for

corner cases.

fact a RISC ISA. Then, exactly in the same way as RISC engine can be wrapped

to become a CISC processor, as described above, also a VLIW execution engine

could be used to speed up execution of a CISC ISA. And in this latter case speed

ups would be probably much more consistent. Also the aforementioned hybrid

techniques can be easily applied to systems built around VLIW processing engines.

An additional advantage of using VLIW engines is that when hybrid approaches

are used, approaches where part of the problem is delegated to software algorithms,

the sophisticate software infrastructure that surrounds VLIW processors can be

exploited. Hybrid approaches for mapping a target ISA on a host ISA, process

of binary translation, in the context of VLIW execution engines will be better

discussed later.

97

8.2. Supporting binary compatibility in hardware.

target
 ISA

program

System Memory

Processor

VLIW
 processor with

extensions for

emulation

support

Unlike in

superscalar

processors in

this case
 target

instruction do

not arrive to

the processor

Support

Software

host
 ISA

program

target
 ISA

program

Figure 8.4: Binary conversion in the context of VLIW processors.

8.2 Supporting binary compatibility in hardware.

In the following paragraph will be given a more in depth treatment of hardware

techniques for binary translation.

98

8.2. Supporting binary compatibility in hardware.

8.2.1 Hardware Binary Translation in superscalar proces-

sors.

Most of today’s superscalar processors that support the x86 Instruction Set include

both resources for HBT (Hardware Binary Translation) and for performing Dynamic

Scheduling of instructions. The picture is completed by a parallel execution engine

which can execute more instructions in parallel. Target ISA instructions, x86 in-

structions, are translated before being executed into one or more host instructions,

RISC-like instructions often called uops, micro−instructions or operations. Fig. 8.5

shows the typical front-end of a modern superscalar processor.

Fetch
x86

instructions

Memory

x86

program

Binary

Decoder

Scheduling

& Dispatch

FU

FU

FU

FU

Figure 8.5: Front-end of a modern superscalar processor.

In what follows, description will focus on the inner workings of hardware trans-

lation units. There are two basic approaches in the design of hardware transla-

tion units: 1) based on combinational logic or 2) based on the so called micro −
sequencers. Often the hardware translation units (binary decoders) are actually

formed by a number of independent blocks working in parallel. Some of this blocks

can be fast combinational blocks, while other can be based on sequential logic or

microcontrollers. In this context the term microcontroller is not synonymous of pro-

cessing core, as can be found somewhere, but it just identifies a microprogrammed

control units. A microprogrammed control unit is a controller where the various

configurations a particular set of control signals can assume over time is stored in

a special memory, usually a read-only (ROM) memory. In principle the micropro-

grammed control unit is the grandfather of instruction based control units, which

stands behind any modern microprocessor. This is why sometimes the term micro-

controller is considered synonymous of microprocessor. In modular binary decoders

usually happens that the fast combinational decoders are used to translate target

instructions which do not require long sequences of host instructions for being emu-

99

8.2. Supporting binary compatibility in hardware.

lated, where micorcontrolled decoders come into play. Since the chance to encounter

one of the complex instruction in a typical program is quite low, the increase in la-

tency of ROM based decoders can be tolerated. Resorting to ROM-based decoders

is required because the imp0lementation cost of implementing in a State Machine

the complex control mechanisms required for the emulation of the most complex

target instructions would be too high. Fig. 8.6 , extracted from an AMD patent,

describes the high level architecture of a decoder of this kind.

Figure 8.6: Typical parallel decoder.

In Fig. 8.6, auops represent host instructions while macroinstructions are the

target instructions.

Fig. 8.7, taken from an Intel patent, shows a more detailed block diagram of an

heterogeneous binary decoder as found in many superscalar processors.

With reference to Fig. 8.7 , apart of the x86 specific features as the need to pro-

vide support for instructions varying in length, is it possible to identify 6 different

parallel decoders: 5 combinational (PLAs) and the 6th based on a microsequencer.

The microsequencer comprises an Entry Point Generation Unit, a Microcode Se-

100

8.2. Supporting binary compatibility in hardware.

Figure 8.7: Detailed block diagram of a parallel decoder.

quencing Unit and a ROM. The Entry Point Generation Unit generates the starting

address of the emulation routine stored in the ROM and the Microcode Sequencing

101

8.2. Supporting binary compatibility in hardware.

Unit regulates the flow of control of the same emulation routine. The emulation

routines stored in the ROM are not actually sequences of full featured host instruc-

tions ready to be executed by the functional units. They are more templates of

instructions. Emulation routines have to reproduce the semantics of a given target

instruction in input. There are slots of the input instructions that depend on in-

put data, the value of an immediate field for example, or the value of a memory

address. For this reason there is the need to pass some data fields directly from

the format of the input instruction to the emulation routine. Therefore, there is

the need to provide a block that takes care of extracting those field from the input

instruction (the Field Extractor in Fig. 8.7) and of some other block (typically a

mux tree) for merging this data with the emulation routine template fetched from

the ROM. In this context, the emulation routine specifies the behavior, while the

input dependent information is just transferred from the target instruction in input.

The task of the field extractor can be very complex sometimes. This is particularly

the case when the format of the instructions of the target ISA is not regular. An

Instruction Set is regular when specific bit slices inside the instruction word have

the same meaning for all the instructions. For example, suppose to have an instruc-

tion format where the 4 most significant bits specify the instruction’s opcode. If

this is true for all the instructions then the instruction format is regular, at least

with reference to the opcode. If this property holds for all the different slots that

can be identified in the instruction format, for example the slots that specify input

and output registers, the Instruction Set is said to be regular, and the task of Field

Extraction can be accomplished without too much overhead. If instead there are

slots in the instruction format that violate this rule the Field Extraction process can

quickly became overly complex. The ARM ISA, the target Instruction Set in the

context of the work carried on in the course of this thesis, exhibits good regularity

apart from some corner case, where the extraction of critical data fields becomes

more complex.

8.2.2 Trace Cache.

In the discussion above, target instructions are translated every time they are fetched

from memory. Suppose that the processor is executing highly recurrent code, where

the same instructions or code fragment is executed most of the time. In this case

repeating the translation every time would be a waste both in terms of performance

and power consumption. In terms of performance because the binary translation

process has significant latency, sometimes there is the need to resort to pipelining,

and in terms of power because the complex computations involved are very energy

102

8.2. Supporting binary compatibility in hardware.

consuming. Avoiding to repeat the translation process in these cases would definitely

improve performance. Placing a dedicated high speed memory buffer downstream

of the decoding logic for storing the code fragments (already translated) with higher

execution rates and searching this buffer in all future program references to that

code fragment would definitely improve performance. This is exactly what a Trace

Cache does (see Fig. 8.8).

Fetch

x86

instructions

Memory

x86

Program

Binary

Decoder

Scheduling &

Dispatch

FU

FU

FU

FU

Trace

Cache

Figure 8.8: Binary decoding with Trace Cache.

The Trace Cache technique is widely used in modern superscalar processors.

Translated instructions (in host format) are stored in the Trace Cache in exe-

cution order. However, maintaining a Trace Cache is not an easy task. If for

example the Nth time a code fragment is fetched from memory the control flow

inside the fragment changes, the core cannot continue fetching instructions from

the Trace Cache because it is now inaccurate. There is the need to provide some

recovery mechanisms in order to stop fetching instructions from the Trace Cache

and restarting to translate the instructions fetched from memory. To be efficient,

this process must be supported by some branch prediction hardware.

8.2.3 Microcode sequencers.

Microsequencers (Fig. 8.9)are used to translate complex target instructions into a

sequence, often a long one, of host instructions.

Hereafter the basic principles of microsequencer operation are described. The

input target instruction is scanned and the entry point (starting address) of the

emulation routine is produced. The actual access to the ROM memory can be

organized in different fashions, according to different design styles. Basically there

are two alternative microsequencer organizations. The first one is based on the so

103

8.3. Software-oriented approaches for binary compatibility.

Entry

point

Logic

Microcode

Sequencer

Uops

ROM

Macroinstruction

Uop Queue

Figure 8.9: Micro Sequencer.

called Branch Uops, branch instructions that are only for internal use inside the

microsequencer, as depicted in Fig. 8.10. They must not be confused with actual

branch instruction that regulate the control flow of the software program. The

second approach, described in Fig. 8.11, is to write beside to each location of the

sequencer’s ROM the address of the next ROM location to read. The choice among

these two approaches is determined by the application at hand, the properties of the

target and host Instruction Sets, etc. In general, the second solution is less flexible

than the first.

In case Branch Uops are used, the default behavior of the emulation routine is

to continue fetching from the next location inside the ROM.

In next uop configurations the end of the emulation routine is specified by a

dedicated bit, which is stored in every ROM location. Otherwise in branch uops

configurations the end is specified by a special configuration of the branch target

field. A further distinction exists among ROM architecture with one of two levels of

indirection. The difference is that in the second case the first access produces only

an address for the second level ROM, as shown in Fig. 8.12. Also in this case the

choice among the two available options needs to be tailored on the properties of the

Instruction Sets involved in the translation process (target and host ISA).

8.3 Software-oriented approaches for binary com-

patibility.

Modern software-oriented approaches to binary translations try to improve perfor-

mance of traditional emulation systems using aggressive optimization algorithms in

order to fill as much as possible the performance gap with native code execution.

104

8.3. Software-oriented approaches for binary compatibility.

Entry

point

Logic

Uops

ROM

Macroinstruction

Entry

point

address

Branch uop

Figure 8.10: Managing control flow inside the microsequencer with branch uops.

Entry point

Logic

Uops

ROM

Macroinstruction

Entry point

address

Next Uop

address

ROM

Entry point + 1

Entry point + 2

Entry point + 3

Entry point + 4

0x3FC

0x3FC
 0x3FC + 1

0x3FC....

............

Figure 8.11: Managing control flow in microsequencer with next uop address field.

Typically a software binary translation framework uses a combination of traditional

emulation with advanced techniques as caching of translated code and aggressive

105

8.3. Software-oriented approaches for binary compatibility.

Microcode

Sequencer

Uop Queue

Entry

point

Logic

Macroinstruction
 First

Level

ROM

Second

Level ROM

Figure 8.12: Simple two level ROM.

Figure 8.13: Micro Sequencer with intermediate instruction format.

optimization of translated code fragments. Moreover, caching of translated code

fragments can be memory-based or supported by special hardware units like the

Trace Cache introduced in the previous chapter.

Sometimes the distinction between emulation and binary translation is a bit

confusing. In general emulation is a superset of binary translation. In fact, in

typical emulation systems, once a given target instruction or code fragment has

been translated it is immediately executed by the underlying machine. Binary

translation instead can be performed on a given section of target code and transla-

106

8.3. Software-oriented approaches for binary compatibility.

Software binary compatility environment

Emulation
 Binary

Translation
+

Figure 8.14: General view of a software binary translation platform.

tions can be placed in some memory buffer, in order to be executed later or further

optimized. The memory area where translations are placed is sometimes called

Queues Cache or Fragment Memory. The basic advantage of separating binary

translation of a code fragment from its execution is that binary translation can be

executed only once, the first time that particular code fragment is fetched from pro-

gram memory, and being executed many times. In fact, when the program’s control

flow reaches again the point of the translated segment of code the system instead

of translating again the instructions can jump to the appropriate translated image

stored in the Fragment Memory and execute native host code. The higher is the

execution rate of that particular program fragment the higher is the performance

benefit of this optimization techniques over classical emulation techniques. If the

rate of execution approaches infinity the performance of this software translation

techniques matches that of native code execution. In this case in fact binary trans-

lation and optimization techniques can be combined with the already sophisticated

software environment of VLIW processors, in order to boost the performance of

both components. Typically the piece of software where binary translation and op-

timization techniques are implemented is called Dynamic Compiler. An important

point that is worth remarking is that in this framework binary translation of target

programs is something that happens at run-time, not statically at compilation time.

Dynamic Compilers in conjunction with VLIW processor are particularly appealing

exactly because the addition of a run-time software environment can significantly

improve the performance of the optimization algorithms of VLIW compilers that in

general have to accomplish their task counting only on statistical information, gath-

ered profiling the software application, which is an inherently inaccurate process.

As explained in Chapter 6, the VLIW optimizer in order to find the hot spots of the

programs that need to be aggressively optimized relies only on statistical informa-

107

8.3. Software-oriented approaches for binary compatibility.

tion about the behavior of branch instructions. If the information on the behavior

of branch instructions was instead gathered at run-time, upon the real execution

of the code, it would be much more accurate. Therefore the chance of branch mis-

prediction would be significantly reduced and accordingly the performance of the

VLIW schedule would be increased. The more the behavior of branch instructions

in unpredictable the higher is the benefit of relying on run-time information. If

instead the behavior of branches is highly predictable, even at compilation time, the

overhead of managing a complex software run-time monitoring environment is not

justified. These properties depend basically on the particular software applications

that have to be executed.

8.3.1 DEC FX!32.

The Digital FX!32 has been one of the first attempts where techniques of emulation

and binary optimization have been used in combination. The objective of the project

was to support the execution of x86 programs the DEC Alpha platform. The process

of binary translation was executed in background, in order to minimize its overhead.

Fig. 8.15 shows a block diagram of FX!32.

DEC FX!32 required that both the x86 target application and the underlying

Alpha machine were used with the Windows NT operating system. Calls from

x86 code to Windows NT were supported through a technique called jacketing,

that consists in encapsulating operating system calls triggered by x86 code in the

corresponding operating system calls of native Alpha code.

Management of x86 condition codes in DEC FX!32.

A very interesting technique has been provided in DEC FX!32 for handling the

setting of x86 condition codes. Many of x86 instructions potentially can set condition

bits, but statistically only a few instructions on a given program fragment actually

use them. The technique used in DEC FX!32 tries to exploit this fact by means of

a lazy evaluation mechanism. In this way, computation of unused condition bits

is virtually avoided, with significant savings in terms of extension of the emulation

routines.

108

8.3. Software-oriented approaches for binary compatibility.

Figure 8.15: Block diagram of DEC FX!32.

8.3.2 Examples of binary translation techniques in the con-

text of VLIW processors.

As already explained, benefits of binary translation techniques are larger when used

in conjunction with VLIW processing cores. Further benefits can be achieved if

the VLIW core supports in hardware particular features specifically designed for

speeding up the binary translation/dynamic compilation process. In this section an

enhanced VLIW architectures developed from IBM, designed for optimized support

of dynamic translators, will be introduced.

DAISY.

The acronym Daisy stands for Dynamically Architected Instruction Set from York-

town. Fig. 8.16 shows the high level architecture of a typical Daisy system.

The areas of Fig. 8.16 marked in black regard blocks of the system were execution

of native VLIW code is involved. The target instruction set in Daisy is the PowerPC

109

8.3. Software-oriented approaches for binary compatibility.

Figure 8.16: Daisy’s structure.

ISA, while the host ISA is represented by the native VLIW ISA. The presence of

the Dynamic compiler is completely hidden to the PowerPC software applications.

The Dynamic compiler works seamlessly translating PowerPC instructions in native

code. In the following the basic operation of the system is outlined. At system

boot, control passes to a software module called VMM (Virtual Machine Display

console). After initialization of the system has been finished control is then passed

to the interpreter/emulator that begins translating and executing PowerPC code

fragments included in the boot routine. The boot routine is executed under control

of the VMM. After the boot routine finishes its execution, and kernel of the operat-

ing system has been loaded in memory, Daisy begins interpreting and executing the

operating system code. In practice, execution of every PowerPC code fragment, ap-

plication or operating system, happens under control of the Daisy dynamic compiler

and run-time environment (VMM). The instructions coming from the boot ROM

come in this case executed under the control of the VMM. The VMM supports two

different execution scenarios: 1) when PowerPC code is interpreted and immediately

executed (as in standard emulation) and 2) when the system executes directly from

memory translated code fragments corresponding to PowerPC code translated pre-

viously. The more time a system of this kind spends executing already translated

code from memory the better is the performance. Typically, translation of PowerPC

code happens at basic block level. After the dynamic compiler identifies the bound-

aries of a basic block in the PowerPC code it starts generating the corresponding

segment of translated code. At this point the VMM can apply further optimizations,

110

8.3. Software-oriented approaches for binary compatibility.

as merging translations corresponding to different basic blocks in order to maximize

the parallelism available in the code and exploitable by the scheduler. Aggressive

code optimizations must be performed with care, because the cost of the recovery

mechanisms is relevant.

Translation Cache

Target Program Memory

(PowerPC program)

PowerPC

 instruction

or instruction

 block

Interpreter

Count

number of

fragment's

executions

> threshold

<= threshold

VLIW

processing core

Optimizer runs

on code stored

in the cache

Optimized
 VLIW

 code fragment

Unoptimized

VLIW

 code

Figure 8.17: VMM control flow diagram.

Translation units used in Daisy are the tree-regions. Fig. 8.18 explains the

differences between the tree-regions and the traces, introduced in Chapter 6. Unlike

traces, tree-regions include segments of code that belong also to different paths of

the program. This is done in order to decrease the overhead incurred in case of

misprediction on the behavior of branch instructions, at the expense of reducing

the efficiency of the code included in the translation units (because part of the

translated instruction will be certainly never executed, belonging to different paths

of the CFG).

In Daisy the entity of the optimizations applied to translated code is directly pro-

portional to the execution rate of that code. If the code will be executed extensively,

then it is worth spending time and resources for aggressive optimizations.

111

8.3. Software-oriented approaches for binary compatibility.

Figure 8.18: Trace and treeregion

Exception handling. A critical aspect of the Daisy system concerns the man-

agement of exceptions and interrupts triggered during execution of translated code

(not during execution of the VMM itself). When an exception is encountered in

a processor, is important for the system to be able to rollback to its state at the

moment immediately preceding the exception or interrupt was collected. In this

context, the optimization techniques that the dynamic compiler applies to trans-

lated instructions can in principle undermine the ability of the system to find out

exactly which PowerPC instruction produced the exception and to go back to the

state as it was before the exception or interrupt occurred. To avoid this problem in

Daisy is employed the policy that no matter what optimizations the dynamic com-

piler applies to the translated code sequences, update of the system’s architectural

state happens in a way that respects the original order of PowerPC instructions.

This is accomplished using two different sets of registers: 1) architectural registers

and 2) working registers. Architectural registers are used to store the architectural

(official) state of the system. Working registers instead are used to support the

112

8.3. Software-oriented approaches for binary compatibility.

aggressive optimization techniques applied by the dynamic compiler, which makes

extensive use of register renaming for exploiting as much parallelism as possible.

Safety during exceptions or interrupts is accomplished providing that the value of

working registers is copied to the architectural registers only at PowerPC instruction

boundaries. This process happens under direct control of the VMM.

113

Chapter 9

Extension of ST230 architecture

to binary compatibility with ARM

ISA.

The concepts and policies described in the second part of this thesis have been ap-

plied to the problem of providing support for the execution of ARM programs inside

the ST230 processor of the Lx family, developed by STMicroelectronics. For confi-

dentiality reasons the description that follows could not be much detailed. Moreover,

since much of the work has been carried on with help of proprietary software tools

and technologies developed by STMicroelectronics, and made available under NDA,

it will not be possible to show material as sections of the source code developed, if

not in rare cases. Therefore the following description will focus on the architecture,

mostly at an high level of abstraction, of the proposed solutions for providing bi-

nary compatibility with ARM code inside the ST230 processor. For specific details

about the properties of ARM instructions refer to the ARM Architecture Reference

Manual [3].

9.1 Analysis of architectural choices.

The spectrum of possible solutions for providing binary compatibility among ARM

and Lx instructions is quite large, as seen in the previous chapter. The main available

options in synthesis are:

1) Full software oriented approach. It requires using a dynamic transla-

tion/compilation system, that in principle could run under the operating system

114

9.1. Analysis of architectural choices.

or above the operating system. ARM code fragments in this case are translated

by the software in Lx code fragments. Thus, in this case no ARM instructions are

actually fetched by the pipeline of the ST230 processor. Moreover, in this case

we can have two different subcases:

� Specific extensions in the ST230 pipeline for speed up of translation process

and forcing precise exceptions in hardware.

� No particular hardware support for binary translator in hardware, apart of

the definition of a suitable mapping for the architectural space of the target

(ARM) ISA.

2) Full Hardware oriented approach. It implies modifying hardware front end

of the ST230 processor, with the addition of a custom designed Binary Decoder

able to convert incoming ARM instructions into one or more Lx instructions.

Unlike in the above case, now ARM instructions are fetched from the ST230

pipeline. Further choices available are:

� Implementation of a purely combinational decoder, single or parallel.

� Implementation of a parallel decoder comprising also a microsequencer for

translation of complex ARM instructions.

� Full decoder implementation based on a microsequencer.

3) Hybrid hardware/software approaches. In this case part of the decod-

ing process is accomplished by an hardware decoder and remaining part is done

in software. Usually in hardware is done the decoding of the most commonly

executed instructions, while in software is done only the decoding of the most

rare and complex ones. There is also the possibility to decide how exceptions or

interrupts triggered by the execution of translated code are handled:

� Support in hardware can be provided, including directly in the processors

pipeline some place for storing the recovery routines that are in charge of

handling exceptional conditions.

� A purely software strategy can be adopted, where recovery routines have to

be fetched every time from the system memory.

To choose the right approach to the problem there is the need to understand

the constraints posed by the features of the ST230 processor, by the properties of

the software programs that are supposed to take advantage of the binary translation

capabilities and by the price that can be payed in terms of performance of the system

and hardware resources. The ST230 processor has been designed for applications

115

9.1. Analysis of architectural choices.

like multimedia Systems-on-chip targeted at the market sectors of set-top-boxes,

mobile phones, multimedia content players, etc. Applications that are supposed to

run on the ST230 processor are basically of two categories:

Heavyweight applications. These include the software tasks in charge of cod-

ing and decoding in real-time multimedia content, managing the communication

channels in wireless devices, playing multimedia content to displays at an high

data rate.

Lightweight applications. These include management of Graphical user inter-

faces and of all little application built around GUIs, as calculators, software for

handling calendars and similar utilities. In this context is worth noting that while

the user of the appliance is not usually aware of the Heavyweight tasks, because

they are only experienced indirectly by the user in terms of performance of the

system, it is instead directly exposed to the GUI and utilities. This is why the

last ones tend to be standard across models proposed by different companies.

It can be safely assumed that software tasks that will take advantage of the ARM

execution capabilities will belong to the second category. Applications that instead

fall in the first category will be almost certainly compiled with the Lx toolchain and

executed natively as Lx code, because the strict real-time constraints posed by their

execution are not compatible with the overhead that is almost inherent to any binary

translation mechanism. Furthermore, for the applications targeted by the ST230,

the use of a complete dynamic compilation framework as the one used in Daisy seems

not to be required at the moment (remember the Daisy was developed as a general

purpose computer). STMicroelectronics has developed in partnership with HP labs

a software run-time environment called DELI, which has many features in common

with the VMM in Daisy. It is intended mainly for optimizing software execution in

embedded platforms, but can also be configured to include dynamic compilers (also

called Just-in-time, JIT, compilers) for binary translation tasks, even with all the

overheads of a pure software approach. However, at the moment the approach of

supporting the translation of ARM code plugging into DELI a proper Just-in-time

compiler has been discarded, because a more efficient solution would be preferred. At

the same time another strong constraint has been the requirement for the solution

to minimize the impact on the ST230 microarchitecture. The reason for this is

that today one of the most time consuming tasks when designing a System-on-chip

and even more when designing a microprocessor is the verification task. Modifying

critical parts of the processor that had already taken months for being validated

could have been dangerous. For example any modification to the Load/Store unit

(see Chapter 6) was strictly forbidden, because that block took several months

116

9.1. Analysis of architectural choices.

in verification time before being validated. This is why aggressive changes to the

ST230 processor like adding new ad-hoc registers for mapping the ARM architectural

state in order to optimize the execution of the emulation routines have soon been

discarded (see Fig. 9.1 for an overview of the possible solutions for the mapping of

ARM architectural state). Instead has been preferred solution b in Fig. 9.1.

Figure 9.1: Mapping options for ARM architectural state.

117

9.1. Analysis of architectural choices.

Among the resources included in the ARM architectural state [3] is comprised

also the ARM PC (the program counter that tracks the execution of the ARM code

inside the ST230 processor). Unlike the program counter of the ST230 processor,

that can be updated only as a side effect of the execution of few Lx instructions,

the PC in ARM processors is included in the general purpose Register File and

can be directly updated by many variants of common ARM instructions. Since the

execution of ARM instructions inside the ST230 happens by means of the emulation

routines generated by the ARM decoder, and this emulation routines once they exit

the ARM decoder are just sequences of ordinary Lx instructions, the only way for the

execution of ARM code fragments for properly updating the ARM PC is to reserve

to the ARM PC one of the general purpose registers inside the ST230 Register File.

Other solutions like placing an ad-hoc register inside the ARM decoder for acting

like the ARM PC are not viable, because this new resource would not be visible to

Lx instructions without major changes to the ST230 pipeline. For all these reasons

the architecture configuration that has been chosen as a starting point includes an

ARM Binary Decoder implemented in hardware as a Microcode sequencer. This

hardware decoder will be connected to the front-end of the ST230 processor and will

be in charge of the translations of the vast majority of ARM instructions. In the first

version of the architecture support for the remaining ARM instructions as well as

for the interrupt and exception emulation routine will be provided by means of calls

to software routines stored in main memory. In future versions of the architecture

will be explored the opportunity of including also support for these feature inside

the Decoder in hardware. Refer to Fig. 9.2 for an high level view of the architecture

chosen.

It is worth noting that although some of the solutions employed here are al-

ready known in the academic and industrial literature, as described in the previous

chapter, this is to our knowledge one of the first attempts of employing hybrid hard-

ware/software binary translation techniques in the field of Systems-on-chip. The

strong real time constraints that must be respected by processors in the context of

SoC based system require a completely new research effort in understanding which

techniques and solutions for binary compatibility are best suited for the new envi-

ronment. The purpose of this work accomplished in the context of the thesis is to

make a contribution in this direction, even with all the restrictions imposed by the

strong industrial setting of the project.

118

9.2. Implementation.

ARM Binary

Decoder

ARM

instructions

ARM instructions

supported in

hardware

interrupt

controller

ST230

pipeline

ARM instructions

not directly

supported in

hardware

Additional

Interrupt

line

Figure 9.2: Binary translation system architecture.

9.2 Implementation.

Hardware support is provided only for part of the ARM ISA. When the ARM

Binary Decoder fetches from memory an unsupported instructions it triggers an

interrupt toward the ST230 Interrup Controller, that then processes the interrupt

as a normal ST230 interrupt (call to exception handlers in memory, etc.). The

implementation of the overall system undertaken in the course of this thesis involves

the development of the major component of the binary translation system described

above:

Hardware part. The development on the hardware side has required the imple-

mentation in the SystemC language, at an RTL level of abstraction, of the ARM

binary decoder. The detailed microarchitecture and source code of the ARM

119

9.2. Implementation.

Binary Decoder cannot be disclosed for confidentiality reason, but it is basically

based on a Microcode Sequencer. The work to be carried on in the hardware

context regarded also the interfacing of the custom developed decoder with the

ST230 model made available by STMicroelectronics under NDA. It is a model

coded in the C language, but that provides support for detailed emulation of the

ST230 processor architecture behavior.

Software part. The development on the software side of the project included

mainly the creation of the emulation routines stored inside the ARM Binary

Decoder. These emulation routines are sequences, sometimes quite long, of na-

tive Lx instructions in charge of reproducing precisely the behavior of the set

of ARM instructions which have to be decoded in hardware. The development

of the emulation routine was probably the hardest task. The work could not

be undertaken by hand, therefore it was accomplished through the help of two

advanced proprietary software tools of STMicroelectronics: 1) Deli, a complex

run-time environment for the optimization of code execution in VLIW processor,

but also suitable for off-line optimization of software functions, and 2) Chorizo,

a powerful parametric generator of Instruction set Emulators.

In the following the discussion will focus mainly on the software development

work. Fig. 9.3 describes the development flow for the emulation routines.

9.2.1 Examples of ARM ISA description with the Chorizo

grammar.

A description of the ARMv5 (one the ARM ISA variants) was given with the gram-

mar specified by the Chorizo emulator generator. Hereafter some code snippet taken

from the ARM specification file will be shown. Although not all the instructions

of ARMv5 ISA are still supported, no supports exists for example at this time for

Thumb (see the ARM Reference Manual [3] for details about ARM ISA), the In-

struction Set specification file is about 6000 lines long. The following code fragments

shows the section of the specification where all the slots available on the ARM in-

struction format are specified.

1

2 code Fields {

3

4 // ARMv5 ISA fields . the naming conventions are

5 //the same used in the ARM Architecture

120

9.2. Implementation.

ARM
 ISA

description in

Chorizo
 grammar.

(file
 arm.ch
).

Chorizo

unoptimized

emulation

functions

written in
 C

Deli

Optimized

and
 templetized

emulation routines

in
Lx
 assembly

Figure 9.3: Development flow for emulation routines.

6 // Reference Manual .

7 //In this first version the Thumb instruction

8 //set is not implemented .

9

10 rotate_imm 4; // see Addressing modes 1 , #immediate

11 immed_8 8; // see Addressing modes 1 , #immediate

12 Rm 4; // see Addressing modes 1

121

9.2. Implementation.

13 shift_imm 5; // see Addressing modes 1

14 Rs 4; // see Addressing modes 1

15 offset_12 12; // see Addressing modes 2

16 shift 2; // see Addressing modes 2

17 immedH 4; // see Addressing modes 3

18 immedL 4; // see Addressing modes 3

19 //Ss 1; // see Addressing modes 3

20 H 1; // see Addressing modes 3

21 Rn 4; // base register

22 Rd 4; // destination register

23 L 1; // link bit . tells if the branch instructions

24 //update the link register

25 signed_immed_24 24; // holds the branch offset

26 // in B and BL instructions

27 immed1 12; // holds the first part of the

28 //immed field in BKPT instructions

29 immed2 4; // holds the second part of the immed

30 //field in BKPT instructions

31 //H 1; // H bit in Branch with

32 //Link and Exchange instructions

33 opcode_1 4; // found in coprocessor instructions

34 opcode_2 4; // found in coprocessor instructions

35 CRn 4; // first register identifier

36 //in coprocessor instructions

37 CRd 4; // second register identifier

38 //in coprocessor instructions

39 CRm 4; // third register identifier in

40 //coprocessor instructions

41 cp_num 4; // number of the coprocessor the instruction refers to

42 eight_bit_word_offset 8; // see Addressing mode 5

43 //- Load and Store Coprocessor

44 //P 1; // see Addressing mode 5 -

45 //Load and Store Coprocessor and

46 //also Addressing Mode 4

47 //U 1; // see Addressing mode 5 - Load and Store

48 //Coprocessor and also Addressing Mode 4

49 N 1; // see Addressing mode 5 - Load and Store

50 //Coprocessor and also Addressing Mode 4

51 W 1; // see Addressing mode 5 - Load and Store

52 //Coprocessor and also Addressing Mode 4

53 register_list 16; // holds the list of registers

54 //to transfer in LDM and STM instructions

55 RdHi 4; // register identifier used in the long multiplies

56 RdLo 4; // register identifier used in the long multiplies

57 hbyte 4 ; // generic halfbyte

58

122

9.2. Implementation.

59 // fixed fields . for definition of

60 //fixed fields see chorizo user manual

61

62 dp_first_opcode 4 fixed; // the first opcode field

63 //in data processing instructions

64 dp_secnd_opcode 2 fixed; // second opcode field in data

65 // processing instructions

66 mems_opcode 2 fixed; // principal opcode field for basic

67 //memory transfer instructions

68 mem_opcode 3 fixed; // principal opcode field in some of

69 //the memory block transfer instructions

70 mult_op1 7 fixed; // first opcode field in multiply

71 //and long multiply instructions

72 mult_op2 4 fixed; // second opcode field in multiply

73 //and long multiply instructions

74 br_opcode 3 fixed; // opcode for branch instructions

75 bkpt_opcode1 8 fixed; // opcode fields of

76 //breakpoint instructions

77 bkpt_opcode2 4 fixed;

78

79 I 1 fixed; // immediate bit . tells

80 //if the addressing mode uses an immediate value

81 S 1 fixed; // provvisoriamente posso forzare il bit S a zero

82 P 1; // choose between pre or post incrementing

83 //addressing mode in block transfer instructions

84 U 1; // decrement or increment the base

85 //register for calculating the other addresses

86 B 1;

87 // .

88

89 bit 1 fixed; // generic bit

90 hbyte_f 4 fixed;

91 byte_f 8 fixed;

92 threebit_f 3 fixed;

93 // conditional field.

94 cond_field 4 fixed;

95

96

The following code fragment shows instead a section of the file where the seman-

tics of an ARM instruction is specified. In this case is an ADC (Add with carry),

see [3] instruction with an immediate value as one of the operands.

1 c_imm jitinfo 2 pipeinfo 1 // 1

2 debug " ADC <REG_D> %d=0x%08x ,<REG_N> %d=0x%08x , <SHIFTER_OP>

123

9.3. Results and future work.

3 0x%08x\n " literal "d,REG[d],n,REG[n],shifter_operand";

4 coded as cond_field = 0b0000 + dp_secnd_opcode =

5 0b00 + I = 0b1 + dp_first_opcode = 0b0101 + S = 0b0

6 + Rn ˜ n + Rd ˜ d + rotate_imm ˜ v_rotate_imm

7 + immed_8 ˜ v_immed_8;

8 {

9

10 uint shifter_carry_out;

11 uint shifter_operand;

12 if (v_rotate_imm == 0)

13 {

14 shifter_operand = v_immed_8;

15 shifter_carry_out = CFLAG;

16 }

17 else

18 {

19 shifter_operand = ((v_immed_8 << (32-(v_rotate_imm * 2)))

20 | (v_immed_8 >> (v_rotate_imm * 2)));

21 shifter_carry_out = shifter_operand & 0x10;

22 }

23 REG[d]= REG[n] + shifter_operand +CFLAG;

24 }

25 ;;

9.3 Results and future work.

Preliminary results and characterization for the above described architecture can-

not be disclosed for confidentiality reasons. Future work will regard extension of

the ARM specification file to include also Thumb class instructions. Also the mech-

anisms for management of exceptions and interrupts generated by the execution of

ARM code will be further optimized, maybe inserting some hooks in hardware for

the speed up of processes like context-switching. A detailed performance compari-

son with binary translation approaches based on advanced dynamic compilers will

also be undertaken.

124

Appendix

125

Appendix A

Selection of traffic scenarios

generated by implementation of

Multi-socket STNoC� algorithms.

126

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

WRITE

SIZE=1

LENGTH=1

add=
 0x00

incrementing

1

0

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1

0

0

0

ST1

add=
 0x00

1

0

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
NoC
 STBus
 Slave
 1

WRITE

SIZE=1

LENGTH=2

add=
 0x00

incrementing

0 1

1 0

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1

1

0

0

ST2

add=
 0x00

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 2

WRITE

SIZE=1

LENGTH=3

add=
 0x00

incrementing

1 0 1

0 1 0

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1

1

1

0

ST2

add=
 0x00

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 3

ST1

add=
 0x02

1

0

WRITE

SIZE=1

LENGTH=4

add=
 0x00

incrementing

0 1 0 1

1 0 1 0

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1

1

1

1

ST4

add=
 0x00

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 4

WRITE

SIZE=1

LENGTH=5

add=
 0x00

incrementing

1 0 1 0 1

0 1 0 1 0

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1 1

0 1

0 1

0 1

ST4

add=
 0x00

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 5

ST1

add=
 0x04

1

0

WRITE

SIZE=1

LENGTH=1

add=
 0x01

incrementing

 0

 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

0

0

0

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 6

ST1

add=
 0x01

0

1

WRITE

SIZE=1

LENGTH=2

add=
 0x01

incrementing

 1 0

 0 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

0

0

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
NoC
 STBus
 Slave
 7

ST2

add=
 0x00

0

1

ST1

add=
 0x02

1

0

WRITE

SIZE=1

LENGTH=3

add=
 0x01

incrementing

 0 1 0

 1 0 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

1

0

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 8

ST2

add=
 0x00

0

1

ST2

add=
 0x02

1

1

127

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

WRITE

SIZE=1

LENGTH=4

add=
0x01

incrementing

 1 0 1 0

 0 1 0 1

FLITDATA
=4

add=
0x01

H

E

A

D

E

R

1

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 9

ST1

add=
0x04

1

0

ST4

add=
0x00

1 0

1 1

WRITE

SIZE=1

LENGTH=5

add=
 0x01

incrementing

 0 1 0 1 0

 1 0 1 0 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1

0 1

0 1

0 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 10

ST2

add=
 0x04

1

1

ST4

add=
 0x00

1 0

1 1

WRITE

SIZE=2

LENGTH=1

add=
 0x00

incrementing

1

1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

0

0

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 11

ST2

add=
 0x00

1

1

WRITE

SIZE=2

LENGTH=2

add=
 0x00

incrementing

1 1

1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 12

ST4

add=
 0x00

1 1

1 1

WRITE

SIZE=2

LENGTH=3

add=
 0x00

incrementing

1 1 1

1 1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1

1 1

0 1

0 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 13

ST4

add=
 0x00

1 1

1 1

ST2

add=
 0x04

1

1

WRITE

SIZE=2

LENGTH=4

add=
 0x00

incrementing

1 1 1 1

1 1 1 1

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 14

ST8

add=
 0x00

1 1 1 1

1 1 1 1

WRITE

SIZE=2

LENGTH=1

add=
 0x01

incrementing

0

1

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

0

1

0

0

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 15

ST2

add=
 0x00

0

1

WRITE

SIZE=2

LENGTH=2

add=
 0x01

incrementing

1 0

1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

0

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 16

ST4

add=
 0x00

1 0

1 1

128

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

WRITE

SIZE=2

LENGTH=4

add=
 0x01

incrementing

1 1 1 0

1 1 1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 0

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 17

ST8

add=
 0x00

1 1 1 0

1 1 1 1

WRITE

SIZE=2

LENGTH=5

add=
 0x01

incrementing

1 1 1 1 0

1 1 1 1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 0

1 1 1

0 1 1

0 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 18

ST2

add=
 0x08

1

1

ST8

add=
 0x00

1 1 1 0

1 1 1 1

WRITE

SIZE=4

LENGTH=1

add=
 0x00

incrementing

1

1

1

1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 19

ST4

add=
 0x00

 1 1

 1 1

WRITE

SIZE=4

LENGTH=2

add=
 0x00

incrementing

1 1

1 1

1 1

1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 20

ST8

add=
 0x00

 1 1 1 1

 1 1 1 1

WRITE

SIZE=4

LENGTH=3

add=
 0x00

incrementing

1 1 1

1 1 1

1 1 1

1 1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 1

1 1 1

1 1 1

1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 21

ST8

add=
 0x00

 1 1 1 1

 1 1 1 1

ST4

add=
 0x08

 1 1

 1 1

WRITE

SIZE=4

LENGTH=4

add=
 0x00

incrementing

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 22

ST16

add=
 0x00

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

WRITE

SIZE=4

LENGTH=1

add=
 0x01

incrementing

0

1

1

1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

0

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 23

ST4

add=
 0x00

 1 0

 1 1

WRITE

SIZE=4

LENGTH=2

add=
 0x01

incrementing

1 0

1 1

1 1

1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 0

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 24

ST8

add=
 0x00

 1 1 1 0

 1 1 1 1

129

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

WRITE

SIZE=4

LENGTH=3

add=
 0x01

incrementing

1 1 0

1 1 1

1 1 1

1 1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 0

1 1 1

1 1 1

1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 25

ST8

add=
 0x00

 1 1 1 0

 1 1 1 1

ST4

add=
 0x08

 1 1

 1 1

WRITE

SIZE=4

LENGTH=1

add=
 0x00

incrementing

1

1

1

1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 26

ST4

add=
 0x00

1

1

1

1

Bus Size=4

WRITE

SIZE=4

LENGTH=2

add=
 0x00

incrementing

1 1

1 1

1 1

1 1

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 27

ST8

add=
 0x00

1 1

1 1

1 1

1 1

Bus Size=4

WRITE

SIZE=4

LENGTH=1

add=
 0x01

incrementing

0

1

1

1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

0

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 28

ST4

add=
 0x00

 0

 1

 1

 1

Bus Size=4

WRITE

SIZE=4

LENGTH=2

add=
 0x01

incrementing

1 0

1 1

1 1

1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 0

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 29

ST8

add=
 0x00

 1 0

 1 1

 1 1

 1 1

Bus Size=4

WRITE

SIZE=4

LENGTH=3

add=
 0x01

incrementing

1 1 0

1 1 1

1 1 1

1 1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 0

1 1 1

1 1 1

1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 30

ST8

add=
 0x00

 1 0

 1 1

 1 1

 1 1

Bus Size=4

ST4

add=
 0x08

 1

 1

 1

 1

WRITE

SIZE=4

LENGTH=4

add=
 0x01

incrementing

1 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 31

Bus Size=4

ST16

add=
 0x00

 1 1 1 0

 1 1 1 1

 1 1 1 1

 1 1 1 1

WRITE

SIZE=4

LENGTH=1

add=
 0x02

incrementing

0

0

1

1

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

0

0

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 32

Bus Size=4

ST4

add=
 0x00

 0

 0

 1

 1

130

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

WRITE

SIZE=4

LENGTH=1

add=
 0x02

incrementing

0

0

1

1

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

0

0

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 32

Bus Size=4

ST4

add=
 0x00

 0

 0

 1

 1

WRITE

SIZE=4

LENGTH=3

add=
 0x02

incrementing

1 1 0

1 1 0

1 1 1

1 1 1

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

1 1 0

1 1 0

1 1 1

1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 34

Bus Size=4

ST8

add=
 0x00

 1 0

 1 0

 1 1

 1 1

ST4

add=
 0x00

 1

 1

 1

 1

WRITE

SIZE=4

LENGTH=1

add=
 0x03

incrementing

0

0

0

1

FLITDATA
 =4

add=
 0x03

H

E

A

D

E

R

0

0

0

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 35

Bus Size=4

ST4

add=
 0x00

 0

 0

 0

 1

WRITE

SIZE=4

LENGTH=2

add=
 0x03

incrementing

1 0

1 0

1 0

1 1

FLITDATA
 =4

add=
 0x03

H

E

A

D

E

R

1 0

1 0

1 0

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 36

Bus Size=4

ST8

add=
 0x00

 1 0

 1 0

 1 0

 1 1

WRITE

SIZE=4

LENGTH=3

add=
 0x03

incrementing

1 1 0

1 1 0

1 1 0

1 1 1

FLITDATA
 =4

add=
 0x03

H

E

A

D

E

R

1 1 0

1 1 0

1 1 0

1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 37

Bus Size=4

ST8

add=
 0x00

 1 0

 1 0

 1 0

 1 1

ST4

add=
 0x08

 1

 1

 1

 1

WRITE

SIZE=4

LENGTH=1

add=
 0x00

incrementing

1

1

1

1

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 38

Bus Size=8

ST4

add=
 0x00

1

1

1

1

0

0

0

0

WRITE

SIZE=4

LENGTH=2

add=
 0x00

incrementing

1 1

1 1

1 1

1 1

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 39

Bus Size=8

ST8

add=
 0x00

1

1

1

1

1

1

1

1

WRITE

SIZE=4

LENGTH=3

add=
 0x00

incrementing

1 1 1

1 1 1

1 1 1

1 1 1

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1 1 1

1 1 1

1 1 1

1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 40

Bus Size=8

ST8

add=
 0x00

1

1

1

1

1

1

1

1

ST4

add=
 0x08

1

1

1

1

0

0

0

0

131

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

WRITE

SIZE=4

LENGTH=1

add=
 0x01

incrementing

0

1

1

1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

0

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 41

Bus Size=8

ST4

add=
 0x00

0

1

1

1

0

0

0

0

WRITE

SIZE=4

LENGTH=2

add=
 0x01

incrementing

1 0

1 1

1 1

1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 0

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 42

Bus Size=8

ST8

add=
 0x00

0

1

1

1

1

1

1

1

WRITE

SIZE=4

LENGTH=3

add=
 0x01

incrementing

1 1 0

1 1 1

1 1 1

1 1 1

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 0

1 1 1

1 1 1

1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 43

Bus Size=8

ST16

add=
 0x00

1 0

1 1

1 1

1 1

1 1

0 1

0 1

0 1

WRITE

SIZE=4

LENGTH=1

add=
 0x02

incrementing

0

0

1

1

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

0

0

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 44

Bus Size=8

ST4

add=
 0x00

0

0

1

1

0

0

0

0

WRITE

SIZE=4

LENGTH=2

add=
 0x02

incrementing

1 0

1 0

1 1

1 1

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

1 0

1 0

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 45

Bus Size=8

ST8

add=
 0x00

0

0

1

1

1

1

1

1

WRITE

SIZE=8

LENGTH=1

add=
 0x00

incrementing

1 1

1 1

1 1

1 1

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 46

Bus Size=4

ST8

add=
 0x00

Bus Size=8

1

1

1

1

1

1

1

1

WRITE

SIZE=8

LENGTH=2

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 47

Bus Size=4

ST16

add=
 0x00

Bus Size=8

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

WRITE

SIZE=8

LENGTH=1

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 0

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 48

Bus Size=4

ST8

add=
 0x00

Bus Size=8

0

1

1

1

1

1

1

1

1 0

1 1

1 1

1 1

132

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

WRITE

SIZE=8

LENGTH=2

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 49

Bus Size=4

ST16

add=
 0x00

Bus Size=8

1 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1

WRITE

SIZE=8

LENGTH=3

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 1 1 1 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 50

Bus Size=4

ST16

add=
 0x00

Bus Size=8

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

ST8

add=
 0x10

1 1

1 1

1 1

1 1

1 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1

WRITE

SIZE=8

LENGTH=4

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 51

Bus Size=4

Bus Size=8

1 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

ST32

add=
 0x00

WRITE

SIZE=8

LENGTH=1

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

1 0

1 0

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 52

Bus Size=4

Bus Size=8

0

0

1

1

1

1

1

1

ST8

add=
 0x00

1 0

1 0

1 1

1 1

WRITE

SIZE=8

LENGTH=2

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

1 1 1 0

1 1 1 0

1 1 1 1

1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 53

Bus Size=4

Bus Size=8

1 0

1 0

1 1

1 1

1 1

1 1

1 1

1 1

ST16

add=
 0x00

1 1 1 0

1 1 1 0

1 1 1 1

1 1 1 1

WRITE

SIZE=8

LENGTH=3

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 1 1

1 1 1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 54

Bus Size=4

Bus Size=8

1 1 0

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

ST16

add=
 0x00

1 1 1 0

1 1 1 0

1 1 1 1

1 1 1 1

ST8

add=
 0x10

1 1

1 1

1 1

1 1

WRITE

SIZE=8

LENGTH=4

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 55

Bus Size=4

Bus Size=8

1 1 1 0

1 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

ST32

add=
 0x00

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

WRITE

SIZE=8

LENGTH=1

add=
 0x03

incrementing

FLITDATA
 =4

add=
 0x03

H

E

A

D

E

R

1 0

1 0

1 0

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 56

Bus Size=4

Bus Size=8

0

0

0

1

1

1

1

1

ST8

add=
 0x00

1 0

1 0

1 0

1 1

133

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

WRITE

SIZE=8

LENGTH=2

add=
 0x03

incrementing

FLITDATA
 =4

add=
 0x03

H

E

A

D

E

R

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 57

Bus Size=4

Bus Size=8

1 0

1 0

1 0

1 1

1 1

1 1

1 1

1 1

ST16

add=
 0x00

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 1

WRITE

SIZE=8

LENGTH=3

add=
 0x03

incrementing

FLITDATA
 =4

add=
 0x03

H

E

A

D

E

R

1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 58

Bus Size=4

Bus Size=8

1 1 0

1 1 0

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

ST16

add=
 0x00

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 1

ST8

add=
 0x10

1 1

1 1

1 1

1 1

READ

SIZE=1

LENGTH=1

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 59

Bus Size=2

Bus Size=2

LD1

add=
 0x00

1

0

R

A

C

1

0

1

1

0

0

1

0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

AXI
 Read Address

Channel Signals

ST
 NoC
 packet

ByteEnable
 is 1

if that byte is part

of the response

transaction, no matter

what the byte enables are.

Exchange of information

needed between REQUEST

and RESPONSE path to

construct the correct response.

READ

SIZE=1

LENGTH=2

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 60

Bus Size=2

Bus Size=2

LD2

add=
 0x00

1

1

R

A

C

1

1

1

1

0

0

1 0

0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

READ

SIZE=1

LENGTH=3

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 61

Bus Size=2

Bus Size=2

LD4

add=
 0x00

1 1

0 1

R

A

C

1

1

1

1

1

1

1 0 1

0 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1

0

READ

SIZE=1

LENGTH=4

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 62

Bus Size=2

Bus Size=2

LD4

add=
 0x00

1 1

1 1

R

A

C

1 1

1 1

1

1

1

1

1 0 1 0

0 1 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

READ

SIZE=1

LENGTH=1

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 63

Bus Size=2

Bus Size=2

LD1

add=
 0x01

 0

 1

R

A

C

0

1

1

1

0

0

 0

 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

READ

SIZE=1

LENGTH=2

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 64

Bus Size=2

Bus Size=2

LD2

add=
 0x00

 0

 1

R

A

C

0

1

1

1

1

1

 0 1

 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD1

add=
 0x02

 1

 0

1

0

134

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

READ

SIZE=1

LENGTH=3

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 65

Bus Size=2

Bus Size=2

LD4

add=
 0x00

 1 0

 1 1

R

A

C

0

1

1

1

1

1

 0 1 0

 1 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1

1

READ

SIZE=1

LENGTH=4

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 66

Bus Size=2

Bus Size=2

LD1

add=
 0x04

 1

 0

R

A

C

1

0

1 1

1 1

1 0

1 0

 0 1 0 1

 1 0 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

 1 0

 1 1

0 1

1 1

READ

SIZE=1

LENGTH=5

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 67

Bus Size=2

Bus Size=2

LD1

add=
 0x04

 1

 0

R

A

C

1

0

1 1

1 1

1 0

1 0

 0 1 0 1 0

 1 0 1 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

 1 0

 1 1

0 1

1 1

READ

SIZE=1

LENGTH=6

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 68

Bus Size=2

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 0 1 0 1 0 1

 1 0 1 0 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD8

add=
 0x00

 1 1 1 0

 0 1 1 1

0 1 1 1

1 1 1 0

READ

SIZE=2

LENGTH=1

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 69

Bus Size=2

Bus Size=2

LD2

add=
 0x00

 1

 1

R

A

C

1

1

0

0

 1

 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1

1

READ

SIZE=2

LENGTH=2

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 70

Bus Size=2

Bus Size=2

LD4

add=
 0x00

 1 1

 1 1

R

A

C

1

1

1

1

 1 1

 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1 1

1 1

READ

SIZE=2

LENGTH=3

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 71

Bus Size=2

Bus Size=2

LD8

add=
 0x00

 0 1 1 1

 0 1 1 1

R

A

C

1 1

1 1

1 0

1 0

 1 1 1

 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1 1

1 1

1

1

0

0

READ

SIZE=2

LENGTH=4

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 72

Bus Size=2

Bus Size=2

LD8

add=
 0x00

 1 1 1 1

 1 1 1 1

R

A

C

1 1

1 1

1 1

1 1

 1 1 1 1

 1 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1 1 1 1

1 1 1 1

135

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

READ

SIZE=2

LENGTH=5

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 73

Bus Size=2

Bus Size=2

LD8

add=
 0x00

 1 1 1 1

 1 1 1 1

R

A

C

1 1 1

1 1 1

1 1 0

1 1 0

 1 1 1 1 1

 1 1 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1 1 1 1

1 1 1 1

LD2

add=
 0x08

 1

 1

1

1

READ

SIZE=2

LENGTH=1

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 74

Bus Size=2

Bus Size=2

R

A

C

1

1

0

0

 0

 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD2

add=
 0x00

 0

 1

0

1

READ

SIZE=2

LENGTH=2

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 75

Bus Size=2

Bus Size=2

R

A

C

1

1

1

1

 0 1

 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

 1 0

 1 1

0 1

1 1

READ

SIZE=2

LENGTH=3

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 76

Bus Size=2

Bus Size=2

R

A

C

1 1

1 1

1 0

1 0

 0 1 1

 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1

1

LD8

add=
 0x00

 0 1 1 0

 0 1 1 1

0 1

1 1

0

0

READ

SIZE=2

LENGTH=4

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 77

Bus Size=2

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 0 1 1 1

 1 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD8

add=
 0x00

1 1 1 0

1 1 1 1

01 1 1

11 1 1

READ

SIZE=2

LENGTH=5

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 78

Bus Size=2

Bus Size=2

R

A

C

1 1 1

1 1 1

1 1 0

1 1 0

 0 1 1 1 1

 1 1 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD8

add=
 0x00

1 1 1 0

1 1 1 1

01 1 1

11 1 1

LD2

add=
 0x08

1

1

1

1

WRITE

SIZE=1

LENGTH=8

add=
 0x07

wrapped

FLITDATA
 =4

add=
 0x07

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 121

Bus Size=2

Bus Size=2

ST1

add=
 0x07

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0

1

ST4

add=
 0x00

1 1

1 1

sig
 =7

key=1,142

ST2

add=
 0x04

1 1

1 1

ST1

add=
 0x06

1

0

READ

SIZE=1

LENGTH=2

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 80

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 1 0

 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1

1

0

0

LD2

add=
 0x00

1

1

0

0

136

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

READ

SIZE=1

LENGTH=3

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 81

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 1 0 1

 0 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1

1

1

0

LD4

add=
 0x00

1

1

1

0

READ

SIZE=1

LENGTH=4

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 82

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 1 0 1 0

 0 1 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1

1

1

1

LD4

add=
 0x00

1

1

1

1

READ

SIZE=1

LENGTH=5

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 83

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 1 0 1 0 1

 0 1 0 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1

1

1

1

LD4

add=
 0x00

1

1

1

1

LD1

add=
 0x04

1

0

0

0

1

0

0

0

READ

SIZE=1

LENGTH=6

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 84

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 1 0 1 0 1 0

 0 1 0 1 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

1

1

1

1

LD8

add=
 0x00

1

1

1

1

1

1

0

0

1

1

0

0

READ

SIZE=2

LENGTH=1

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 85

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 1

 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD2

add=
 0x00

1

1

0

0

1

1

0

0

READ

SIZE=2

LENGTH=2

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 86

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 1 1

 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

1

1

1

1

1

1

1

1

READ

SIZE=2

LENGTH=3

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 87

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 1 1 1

 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD8

add=
 0x00

1

1

1

1

1

1

1

1

1

1

0

0

1

1

0

0

READ

SIZE=2

LENGTH=4

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 88

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 1 1 1 1

 1 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD8

add=
 0x00

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

137

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

READ

SIZE=2

LENGTH=5

add=
 0x00

incrementing

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 89

Bus Size=4

Bus Size=2

R

A

C

1 1 1

1 1 1

1 1 1

1 1 1

 1 1 1 1 1

 1 1 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD2

add=
 0x08

1

1

0

0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

LD8

add=
 0x00

1

1

0

0

READ

SIZE=1

LENGTH=1

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 90

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 0

 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD1

add=
 0x01

0

1

0

0

0

1

0

0

READ

SIZE=1

LENGTH=2

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 91

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 0 1

 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

0

1

1

0

0

1

1

0

READ

SIZE=1

LENGTH=3

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 92

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 0 1 0

 1 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

0

1

1

1

0

1

1

1

READ

SIZE=1

LENGTH=4

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 93

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 0 1 0 1

 1 0 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

0

1

1

1

0

1

1

1

LD1

add=
 0x04

1

0

0

0

1

0

0

0

READ

SIZE=1

LENGTH=5

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 94

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 0 1 0 1 0

 1 0 1 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

0

1

1

1

0

1

1

1

LD2

add=
 0x04

1

1

0

0

1

1

0

0

READ

SIZE=1

LENGTH=6

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 95

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 0 1 0 1 0 1

 1 0 1 0 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD8

add=
 0x00

1 0

1 1

1 1

0 1

0 1

1 1

1 1

1 0

READ

SIZE=2

LENGTH=1

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 96

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 0

 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

0

1

0

0

0

1

0

0

138

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

READ

SIZE=2

LENGTH=2

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 97

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 0 1

 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

0

1

1

1

0

1

1

1

WRITE

SIZE=1

LENGTH=16

add=
 0x02

wrapped

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 123

Bus Size=2

Bus Size=2

ST2

add=
0x00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1

1

ST8

add=
0x08

1 1 1 1

1 1 1 1

sig
 =2

key=8

ST2

add=
0x02

1

1

ST4

add=
 0x04

11

11

READ

SIZE=2

LENGTH=4

add=
 0x01

incrementing

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 99

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 0 1 1 1

 1 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD8

add=
 0x00

1 0

1 1

1 1

1 1

0 1

1 1

1 1

1 1

READ

SIZE=1

LENGTH=1

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 100

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 1

 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD1

add=
 0x02

0

0

1

0

0

0

1

0

READ

SIZE=1

LENGTH=2

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 101

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 1 0

 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD2

add=
 0x02

0

0

1

1

0

0

1

1

READ

SIZE=1

LENGTH=3

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 102

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 1 0 1

 0 1 0

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

0

0

1

1

0

0

1

1

LD1

add=
 0x04

1

0

0

0

1

0

0

0

READ

SIZE=1

LENGTH=4

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 103

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 1 0 1 0

 0 1 0 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

0

0

1

1

0

0

1

1

LD2

add=
 0x04

1

1

0

0

1

1

0

0

READ

SIZE=2

LENGTH=1

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 104

Bus Size=4

Bus Size=2

R

A

C

1

1

1

1

 1

 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD2

add=
 0x02

0

0

1

1

0

0

1

1

139

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

READ

SIZE=2

LENGTH=2

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 105

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 1 1

 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD4

add=
 0x00

0

0

1

1

0

0

1

1

LD2

add=
 0x04

1

1

0

0

1

1

0

0

READ

SIZE=2

LENGTH=3

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 106

Bus Size=4

Bus Size=2

R

A

C

1 1

1 1

1 1

1 1

 1 1 1

 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD8

add=
 0x00

1 0

1 0

1 1

1 1

0

0

1

1

1

1

1

1

READ

SIZE=2

LENGTH=4

add=
 0x02

incrementing

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

H

E

A

D

E

R

AXI
 Master
 ST
 NoC
 STBus
 Slave
 107

Bus Size=4

Bus Size=2

R

A

C

1 1 1

1 1 1

1 1 1

1 1 1

 1 1 1 1

 1 1 1 1

Legenda
 :

Data+
 ByteEnable
 /
ByteStrobe

ByteEnable
 /
ByteStrobe
 only

Data only

LD8

add=
 0x00

1 0

1 0

1 1

1 1

1

1

0

0

LD2

add=
 0x08

1

1

0

0

0 1

0 1

1 1

1 1

WRITE

SIZE=1

LENGTH=2

add=
 0x00

wrapped

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1

1

0

0

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 108

Bus Size=2

Bus Size=2

ST2

add=
 0x00

0 1

1 0

1

1

sig
 =0

key=
 ¥

WRITE

SIZE=1

LENGTH=8

add=
 0x00

wrapped

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 109

Bus Size=2

Bus Size=2

ST8

add=
 0x00

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 1 1 1

1 1 1 1

sig
 =0

key=
¥

WRITE

SIZE=1

LENGTH=16

add=
 0x00

wrapped

FLITDATA
 =4

add=
 0x00

H

E

A

D

E

R

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 110

Bus Size=2

Bus Size=2

ST16

add=
 0x00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

sig
 =0

key=
¥

WRITE

SIZE=1

LENGTH=2

add=
 0x01

wrapped

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

0

0

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 111

Bus Size=2

Bus Size=2

ST1

add=
 0x01

1 0

0 1

0

1

ST1

add=
 0x00

1

0

sig
 =1

key=2

WRITE

SIZE=1

LENGTH=4

add=
 0x01

wrapped

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 112

Bus Size=2

Bus Size=2

ST2

add=
 0x02

1 0 1 0

0 1 0 1

1

1

ST1

add=
 0x00

1

0

sig
 =1

key=4

ST1

add=
 0x01

0

1

140

A. Selection of traffic scenarios generated by implementation of Multi-socket
STNoC� algorithms.

WRITE

SIZE=1

LENGTH=8

add=
 0x01

wrapped

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 113

Bus Size=2

Bus Size=2

ST4

add=
 0x04

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 1

1 1

ST1

add=
 0x00

1

0

sig
 =1

key=8

ST1

add=
 0x01

0

1

ST2

add=
 0x04

1

1

WRITE

SIZE=1

LENGTH=16

add=
 0x01

wrapped

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 114

Bus Size=2

Bus Size=2

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

ST1

add=
0x00

1

0

sig
 =1

key=16

ST1

add=
0x01

0

1

ST2

add=
0x02

1

1

ST4

add=
0x04

1 1

1 1

ST8

add=
0x08

1 1

1 1

WRITE

SIZE=1

LENGTH=4

add=
 0x02

wrapped

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 115

Bus Size=2

Bus Size=2

ST2

add=
 0x02

0 1 0 1

1 0 1 0

1

1

ST2

add=
 0x00

1

1

sig
 =2

key=2

WRITE

SIZE=1

LENGTH=4

add=
 0x03

wrapped

FLITDATA
 =4

add=
 0x01

H

E

A

D

E

R

1

1

1

1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 116

Bus Size=2

Bus Size=2

ST1

add=
0x03

1 0 1 0

0 1 0 1

0

1

ST2

add=
0x00

1

1

sig
 =3

key=1,33

ST1

add=
0x02

1

0

WRITE

SIZE=1

LENGTH=8

add=
 0x02

wrapped

FLITDATA
 =4

add=
 0x02

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 117

Bus Size=2

Bus Size=2

ST2

add=
 0x02

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1

1

ST2

add=
 0x00

1

1

sig
 =2

key=4

ST4

add=
 0x04

1

1

WRITE

SIZE=1

LENGTH=8

add=
 0x04

wrapped

FLITDATA
 =4

add=
 0x04

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 118

Bus Size=2

Bus Size=2

ST4

add=
 0x04

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 1

1 1

ST4

add=
 0x00

1 1

1 1

sig
 =4

key=2

WRITE

SIZE=1

LENGTH=8

add=
 0x05

wrapped

FLITDATA
 =4

add=
 0x05

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 119

Bus Size=2

Bus Size=2

ST2

add=
0x06

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1

1

ST4

add=
0x00

1 1

1 1

ST1

add=
0x04

1

0

sig
 =5

key=1,6
 ST1

add=
0x05

0

1

WRITE

SIZE=1

LENGTH=8

add=
 0x06

wrapped

FLITDATA
 =4

add=
 0x06

H

E

A

D

E

R

1 1

1 1

1 1

1 1

H

E

A

D

E

R

STBus
 response

signals

AXI
 response

signals

AXI
 Master
 ST
 NoC
 STBus
 Slave
 120

Bus Size=2

Bus Size=2

ST2

add=
 0x06

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1

1

ST8

add=
 0x00

1 1

1 1

sig
 =6

key=1,33
 ST2

add=
 0x04

1

1

141

Bibliography

[1] Amba� axi protocol v1.0 specification. http://www.arm.com.

[2] Amba� specification (rev.2.0). http://www.arm.com.

[3] Arm� architecture reference manual. http://www.arm.com.

[4] Open core protocol specification, release 2.1. http://www.ocpip.org.

[5] Stbus communication system: Concepts and definitions. STMicroelectronics

internal document.

[6] The coreconnect� bus architecture. http://www.chips.ibm.com/products/coreconnect.

[7] ITRS. 2003. International technology roadmap for semiconductors. tech. rep.,

international technology roadmap for semiconductors.

[8] J. BAINBRIDGE and S. FURBER. Chain: A delay-insensitive chip area in-

terconnect. IEEE Micro 22, (5 ,Oct):16–23, 2002.

[9] W. BAINBRIDGE and S. FURBER. Delay insensitive system-on-chip intercon-

nect using 1-of-4 data encoding. Proceedings of the 7th International Symposium

on Asynchronous Circuits and Systems (ASYNC), pages 118–126, 2001.

[10] L. BENINI and G. D. MICHELI. Powering network-on-chips. The 14th Inter-

national Symposium on System Synthesis (ISSS), pages 33–38, 2001.

[11] MAHADEVAN S. OLSEN R. G. BJERREGAARD, T. and J. SPARSØ. An ocp

compliant network adapter for gals-based soc design using the mango network-

on-chip. Proceedings of International Symposium on System-on-Chip (ISSoC),

2005.

[12] LOCATELLI R. MARUCCIA G. PIERALISI L. SCANDURRA A. COPPOLA,

M. Spidergon: a novel on-chip communication network. Proceedings of Inter-

national Symposium on System-on-Chip, 2004.

142

BIBLIOGRAPHY

[13] MANHO K. DAEWOOK, K. and G.E. SOBELMAN. Niugap: low latency

network interface architecture with gray code for networks-on-chip. Proceedings

of International Symposium on Circuits and Systems (ISCAS), 2006.

[14] W. J. DALLY. Virtual-channel flow control. IEEE Trans. Parall. Distrib. Syst.

3, 2,March:194–205, 1992.

[15] W. J. DALLY and C. L. SEITZ. Deadlock–free message routing in multipro-

cessor interconnection networks. IEEE Trans. Comput. 36, (5,May):547–553,

1987.

[16] J. DUATO. A new theory of deadlock-free adaptive routing in wormhole net-

works. IEEE Trans. Parall. Distrib. Syst. 4, (12,Dec):1320–1331, 1993.

[17] P. MARTIN. Design of a virtual component neutral network-on-chip transac-

tion layer. Proceedings of the Design, Automation and Test in Europe Confer-

ence and Exibition (DATE), 2005.

[18] G. MARUCCIA. Stnoc network interface - functional specification. STMicro-

electronics internal document, (ADCS 7785770), 2005.

[19] NILSSON E. THID R. MILLBERG, M. and A. JANTSCH. Guaranteed band-

width using looped containers in temporally disjoint networks within the nos-

trum network-on-chip. Proceedings of Design, Automation and Testing in Eu-

rope Conference (DATE), pages 890–895, 2004.

[20] L.-S. PEH and W. J. DALLY. A delay model for router microarchitectures.

IEEE Micro 21, pages 26–34, 2001.

[21] DIELISSEN J. GOOSSENS K. RIJPKEMA E. ANDWIELAGE P. RAD-

ULESCU, A. An efficient on-chip network interface offering guaranteed services,

shared-memory abstraction, and flexible network configuration. Proceedings of

Design, Automation and Testing in Europe Conference (DATE), pages 878–883,

2004.

[22] ANGIOLINI F. CARTA S. RAFFO L. BERTOZZI D. STERGIOU, S. and G.D.

DE MICHELI. Xpipes lite: A synthesis oriented design library for networks on

chips. Proceedings of Design, Automation and Testing in Europe Conference

(DATE), 2005.

143

