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Preface

The topic of the present Ph.D. thesis is the investigation of the role of mul-

tiple classifier system for fingerprint recognition. We mean, with the term

recognition, two main applications:

1. Biometric identification: the automatic association of a certain identity

to the person that submit his/her fingerprint

2. Biometric verification: the automatic verification that the actual iden-

tity of the person corresponds to the claimed one, by comparing his/her

fingerprint with the one stored in the system data base and associated

to the claimed identity

According to such categorisation, it is a question of:

1. the identity of each person

2. the users which are allowed/not allowed to access to the system

Technologies of such biometric are very promising and it can have a wider

spectrum of applications than others. In this work, fingerprint biometric has

been represented with different approaches, wich require different algorithms

for recognition. Then, we combined the outputs of such algorithms by de-

signing various multiple classifiers systems in order to:
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• increase the performance with respect to that of the best individual

classifier

• point out the complementarity of different classifiers. The term com-

plementarity could be intuitively explained as follows: if two classifiers

correctly classify patterns localised on different sudsets of the features

space, their ”fusion” could exploit such ability. Therefore, it could be

possible to design a multiple classifiers system able to correctly classify

all patterns in all features space subsets. In our opinion, this aspect is

not yet sufficiently investigated in the literature for automatic biomet-

ric systems

The Ph.D. thesis is organised as follows.

Chapter 1 is aimed to present the principal concepts behind biometrics:

what they are, the structure of a biometric recognition system, the main

performance evaluation parameters.

Chapter 2 describes the main approaches prensent in the state of the art,

with particular attention to statistical and structural methods.

Chapter 3 introduces the innovative proposed methods. All our methods

are structural, that is, they classify pattern described by structural data such

as graphs or threes. In particular we evaluate the performance of recursive

neural networks and structural K nearest neighbors approach as individual

classifiers.

Chapter 4 investigates the advantages of fusing approaches described in

chapter 3, firstly themselves, then with the main statistical approach, the so

called FingerCode. Moreover, approaches to design ensembles of statistical

classifiers are described in order to evaluate which of these could be also used

viii



for structural classifiers.

Chapter 5 deeply shows the experimental results of all investigated meth-

ods: individual classifiers, their diverse combinations and ensembles of them.

The book closes with some considerations on the present utility and the

future potentialities of graph-based methods for fingerprint classification.

Alessandra Serrau
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Chapter 1

Introduction to Biometrics

Personal identification is since the earliest times a felt issue and, at the

same time, doesn’t have a simple solution. Nowadays, it is becoming a very

important social aspect and its importance enormously grew because of a

major need of security, such as dangerous people recognition into banks,

airports and other public environment in which terrorists or other criminals

could operate.

A traditional authentication system is based on something that the person

know, i.e. a password, or something that the person has i.e. a smart card.

Nevertheless password and smart card may be lost, stole, forgot or forged.

On the other hand, an approach of biometric authentication is not based

on knowledge or possession but on body characteristics (finger, eyes, face)

and ways to do (talk, write); these characteristics could be considered unam-

biguous. Therefore, biometrics are the physiological and behavioural human

characteristics and so offer protection to the user from the identity theft.

The biometric systems, since few years ago used only in specific envi-

ronments with high security level, now are much required in many sectors.

1



CHAPTER 1. INTRODUCTION TO BIOMETRICS 2

Moreover, the drastic costs reduction of these systems in the last years, makes

more interesting biometric tecnologies for business too.

1.1 Biometrics and properties

The identification process consists in associating a certain identity to a per-

son. The identification can be:

• Positive: the person to be identified declares her/his identity. In this

case, the identification process must verify that claimed identity and

person correspond. This kind of identification is often called identifi-

cation one to one.

• Negative: the identification process requires a comparison between the

person to be identified and other persons in a data base, in order to find

his/her identity. This kind of identification is often called identification

one to many.

A behavioural or physiological characteristic is a biometric if it holds the

following properties:

• Universality : it can be found in all people

• Uniqueness : it is unique from person to person

• Permanence: it does not change over the time, during the live

• Collectability : it is possible to capture it quantitatively

Besides, for using a biometric in real applications, it must have the following

properties:
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• Performance: the biometric allows to distinguish the persons with high

degree of accuracy

• Acceptability : the biometric must be accepted by the users

• Circumvention: the violability degree of the system must be very low

1.2 Main biometrics

In this section we briefly review the main biometrics. Figure 1.1 shows the

most important biometrics. For details, see [Jain 1999].

Fingerprint

They are the most famous biometric. A fingerprint pattern is described by

the epidermic ridges and valleys. In this thesys we’ll deepen such biometric.

Face

The face is the oldest biometric for personal recognition because it is the most

natural characteristic to recognise each other [Wechsler 1997]. Advantages

are non intrusion and person non collaboration. Drawbacks are difficulty in

the algorithms that are strongly dipendent of environmental variability such

as lighting conditions and expression and pose in front of a camera.

Iris

The iris structure is unique for each individual. It can be acquired through

a specialized camera at a certain distance from the subject. Thus, the iris
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Figure 1.1: Examples of various biometrics
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acquisition requires a high level of cooperation. This biometric is charac-

terised from a high accuracy, but it is possible to deceive the system by

presenting coloured contact-lents [Daugman 1993]. Moreover a recognition

system based on iris is compromised by lighting variations such as intensity

and directions and it is very costly because of the high quality of the capture

devices.

Voice

Voice is very simple to acquire but it requires a deep enhancement pocess

in order to extract the useful information to person recognition. In fact, the

voice is strongly dependent on the environment conditions and on the humour

of the person. Many voice-based identification systems have been proposed

so far. Typically, the Fourier transform is the main feature extractor and the

Hydden Markov Model the most successful algorithms for voice recognition

[Furui 1997].

Facial Thermogram

The InfraRed technology can point out the thermal radiation of the human

body. In particular, it is possible to obtain a feature pattern for character-

ising each person from the radiation intensity of the face [Prokoski 1992].

Unfortunately, such emission is dependent on many factors, in particular the

person healthy and the presence of other objects in the scene. However, it

can be useful to distinguish twins or drugged people.
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Retinal Scan

The internal structure of the vein flows in the retina is unique for each person

and can be used as a biometric [Hill 1978]. The main advantage is that it is

practically impossible to steal or reproduce the retinal vasculature. However,

the acquisition of such biometric is very expensive, more than the iris scan-

ning. Moreover, the retinal vasculature is influenced from the healthy of the

subject. Being characterised from a high accuracy, retinal vasculature-based

systems are used in military applications.

Hand Geometry

Although the hand is not unique, it has been considered as a biometric and

used for control access. The subject to be recognised places his/her hand

on a panel. The hand is aligned through a system of pegs by outstrechting

the fingers. Because it is not unique, the hand geometry cannot be used for

recognising persons from a large population of identities. A variant of the

hand geometry is the finger geometry, but its technology is not yet mature

[Jain 1999].

Palmprints

Recently, person authentication through the epidermic ridge flow of the palm,

called ”palmprint”, has been proposed. Recent results have shown that palm-

prints verification accuracy can be comparable with that of hand geometry

[Zhang 2003]. Moreover, palmprints can be useful to increase authentication

accuracy by combining them with oder biometrics [Kumar 2003]

Other physiological characteristics are the ear, body odor, the DNA. The
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latter is widely used for criminal investigations and forensic applications, but

its use for person authentication or recognition in civilian fields is strongly

affected by its intrusiveness and the unreliability for positive identification.

In [Jain 1999], Anil K. Jain, one of the greatest experts on biometrics, pointed

out three limitations for a larger use of the DNA:

1. it is easy to steal a piece of DNA from an unsuspecting subject to be

subsequently abused for an ulterior purpose

2. the present technology for genetic matching is not geared for online

non-obtrusive identification

3. the unintended abuse of genetic code information may result in discrim-

ination in e.g. hiring practices

Behavioural biometrics

It is acknowledged that the systems based on behavioural biometrics are less-

robust than those based on physiological biometrics. The reason is that the

behavioural biometrics can easly be reproduced by clever imitators. More-

over, they may be not invariant over the time, and they may be not unique.

However, they can be used for authentication process in presence of a small

user population.

We describe here briefly two of these biometrics: the signature and the

gait. Other behavioural biometrics are the keystroke dynamics and the acous-

tic emissions during the signature scribble. Further details about behavioural

biometrics can be found in [Jain 1999].

Signature: it is the widest used behavioural biometric. It is known that

the signature is already accepted as an identity proof for all kind of docu-
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ments, such as driver licenses, identity cards, commercial transactions. Being

a behavioural biometric, it suffers from the physical and emotional conditions

of persons. However, in the case of the signature, this kind of variations can

be considered typical from person to person. Actually, the human experts

can distinguish from the signature verification [Herkel 2003]. Recently, many

systems based on signature have been proposed. This research field is still

very active.

Gait : although it is relatively simple to capture, this biometric is very

complex to process [Kale 2003]. Being a spatio-temporal-dependent biomet-

ric, its process requires very expensive computational resources. Moreover,

it depends on the healty of person (e.g. drugs or Parkinson’s disease affect

dramatically such biometric).

1.3 Comparison between biometrics

Figure 1.2 shows the trade-off between accuracy and cost for the most im-

portant biometric systems.

The most accurate system is iris scan, but it is the most costly too,

whether in terms of instruments’ complexity for image extraction or in terms

of difficulty of users utilization (intrusivity). These drawbacks are the reason

of difficulties to the iris scan spreading.

Other methods, such as face recognition, are very few costly in terms of

user collaboration and intrusivity. In fact, one can be shot inadvertently.

Moreover, equipments to image acquisition are not expensive. The problem

is that a sufficient accuracy to have developments and applications for a

suitable diffusion is not yet achieved.
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Figure 1.2: Trade-off between accuracy and costs for the main biometrics

Figure 1.2 shows that a good trade-off between accuracy and costs is

achieved by fingerprint identification systems. Fingerprints are considered

unique for each person, that is, don’t exist two persons with identical finger-

prints, even if the two persons are twins. Another advantage is that finger-

prints are unalterable since the fetus is formed until the death. When the

skin deteriorates, for esemple because of a wound, it reproduces identically

to the old skin in a small time.

1.4 Biometric system structure

It is worth noting that biometrics have been widely used for criminal inves-

tigations and prisoners control from long time. The first system based on

biometrics was proposed by Alphonse Bertillon in 1882. It was based on

anthropological measures. It was used at the Leavenworth prison until 1903,
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Figure 1.3: Architecture of a biometric system

when such system failed in distinguishing two twins. So far, many automatic

identification systems based on biometrics have been proposed: in some case,

the biometric technologies are notably improved from the first attempts and

now they are very promising [Jain 1999]. Recently, some automatic veri-

fication systems based on fingerprint or face acquisition has been installed

in airports and banks. Although such systems actually serve as deterrent,

because their performance is yet low, their ”active” presense could be con-

sidered an important step for the diffusion and the increase of the interest

around the biometrics.

In the following we describe the general architecture of a biometric system.

Figure 1.3 shiws such architecture. The first module of a biometric system

is typically the acquisition module. The role of such module is to capture

the given biometric: e.g. we could have an optical sensor for fingerprits or a

camera for the face.
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The second step is the processing of the capture biometric. Firstly, the

biometric is processed in order to enhance the resolution of the captured

signal (e.g. the face image). Then, a feature extraction is performed and

the biometric is represented by its set of features (e.g. the iris-code for the

iris). This is the so-called template, a mathematical model which serves as

the biometric representation. The above processing and feature extraction

phases are generally called enrolment. When a novel user has to be registered

by the system administrator, she/he submits to the system his/her biometric

and his/her identity. The biometric is processed and transformed in the

template, that could be stored in the identities data base or in other means,

as a smart card. The registration phase is tipically off-line.

The second phase of recognition1 can be diveded in two main applications:

the so-called identification and verification. In the first case, the subject

submits to the system her/his biometric only. The role of the system is to

find the most likely identity near to the possessor of the given biometric. This

application is also called ”indentification one to many”, because the system

must compare the given biometric with all those stored in the central data

base (e.g. it is the case of criminal investigations). In the second case, the

subject submits to the system her/his biometric and declares her/his identity.

Figure 1.3 points out such case. In the example, the identity declaration

is performed by a User ID. The role of the system is to verify that the

declared identity and the ”real” identity of the subject correspond. This

application is also called ”identification one to one”, because the system must

compare the given biometric with the template(s) of the claimed identity

1With the term recognition, we indicate in the following both identification and verifi-

cation applications
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stored in the central data base or in the smart-card submitted by the subject.

This application appears to be simpler than indentification ”one to many”.

However, it presents many problems, especially in defining the population of

possible ”impostors”.

From the definitions given above, it is evident that the ”enrolment” phase

is common both in the registration and in the recognition phases. In the first

one, he subject is registered for the first time into the system, while in the

second one the subject must be identified by the system on the basis of

previous registration. The difference is that during the registration phase

the system has the subject identity. In the identification case, the system

has to identify or to verify the identity of the subject given his/her biometric.

The core of a biometric system is the identification module, i.e. the algo-

rithm used for comparing the template stored in the data set and the input

biometric submitted in a second time. For each biometric, the literature

presents many works for performing such comparison. The final result of the

so-called ”matching” phase is a real value named distance or score. The score

value is the degree of similarity between the input biometric and the tem-

plate. The maximum value means that the two biometrics are the same, the

minimum value value means that the two biometric are definitely different.

Vice versa for the distance.

In the ”one to many” identification, usually all possible identities whose

input-template comparisons exceeded a given threshold are considered, and

the final decision is trusted to human operator.

In the identification ”one to one”, if the score is more than the so-called

”acceptance threshold”, the subject identity is verified and the person is
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classified as a ”genuine user”. Otherwise, the subject is classified as an

”impostor”.

In some systems the identification module could be very complex, es-

pecially in the case of ”one to many” identification. In this case, many

comparisons should be performed (e.g. the FBI fingerprint data set contains

more than 70 milion fingerprint images!) and the identification time could

be very large. However, if it is possible to group in classes those images ex-

hibiting similar textures or shapes, as the fingerprints, the problem could be

notably simplified and the identification time could be drastically reduced.

In fact, before identification, a classification step is performed by comparing

the given biometric through a mathematical model representing each class.

After classification, the system compares the given biometric only with the

ones belonging to the computed class or classes. In certain cases, the dif-

ference among classes are not well-defined. As a consequence, more than

one class could be associated to the given biometric. It is the case of the

fingerprints.

We deeply study and investigate only the classification issue suggesting

various methods to design the fingerprint biometric systems and comparing

them with other approaches described in literature to do it.

1.5 Requirements of a biometric system

In the following we give some requirements for each biometric system. Such

requirements vary in function of the biometric system.

• Co-operative: the system needs the user co-operation. As an example,

an iris based biometric system needs that the user places his-self in a
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certain position with respect to the camera

• Evident: the system is not hidden to the pubblic. It is the case of

biometric systems for access control based on fingerprints

• Habitual: the system is frequently used. E.g. a biometric system for

accessing to the user PC

• Public: the system is accessible to many different users

• Standard environment: the system does not modify the environment

in which it is placed

• Open: the system communicates information with other systems.

1.6 Biometric system evaluation

The objective evaluation of a biometric system is still a matter of on-going

discussions. Intuitively, such performance can be defined as the rate with

which the system correctly associate or verify people identities. Such perfor-

mance is strongly dependent on the environmental conditions and, in many

cases, on the people healthy (with this term we mean both physiological and

emotional states). The environmental conditions are the weather, the tem-

perature, the background with respect to which the biometric is captured

(e.g. face, gait, etc.). The physiological or behavioural conditions are the

state of the biometric (e.g.. fingers or hands could be moist), the subject

appearance (e.g. contact lens for the iris, glasses for the face), or his humour

(e.g. face expressions).
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Moreover, many open issues concern the change of the biometric over the

time, that may cause large variations of the target population. All these

parameters concur to deceive a biometric system even if the identification

should appear to be straightforward for human operator. Therefore, the

main issues to consider for a correct system evaluation are the environment

where the system is expected to work. In this case, the term ”environment”

means not only the system physical location, but also the kind of population

that is expected to use (or to fraud) it. As such issues have been considered,

it is possible to indicate some fixed points for evaluating recognition and

verification systems [Jain 1999] [Mansfield 2002].

In the case of identification ”one to many”, or simply ”identification”,

two parameters are important to evaluate the performance:

1. the overall accuracy, usually given in terms of ratio between number of

correct identification and number of total comparisons

2. the Cumulative Match Characteristic (CMC), also referred as Rank

Curve. The CMC represents the overall identification accuracy when

the number of possible identities considered by the system increases.

In other words, the CMC plots the verification accuracy in function of

the first k identities in the data base. Such identities are associated

to the patterns ”closest” to the input biometric. A system exhibiting

the slope of such curve superior than that another system is obviously

more reliable

Where it is possible to perform a preliminary biometric classification,

the overall classification accuracy is the usual evaluation parameter. Such

parameter is computed by ratio between the number of correctly classified



CHAPTER 1. INTRODUCTION TO BIOMETRICS 16

samples and the number of samples submitted to the system. Another eval-

uation parameter is the so-called penetration rate. The penetration rate is

a measure of the average portion of the whole data base that is used during

identification (matching), and strictly depends on the classification accuracy.

The general definition of penetration rate is:

P =
E(NumberOfComparison)

N

where N is the total number of templates in the data base and

E(NumberOfComparison) is the expected number of comparisons for a sin-

gle input sample [Jain 1999]. Unfortunately, such parameter does not always

reveal actual advantages of the system, especially regarding the reduction of

the identification time.

In the case of identification ”one to one”, or simply ”verification”, the

so called verification score s provides the degree of similarity between two

biometric patterns, and take values in [0, 1]. The higher the score, the higher

the similarity degree between the considered patterns. A biometric pattern

belongs to the genuine class if the identity of her/his possessor corresponds

to the claimed one. The opposite holds for the impostor class.

The design of any biometric verification system depends on the estimate

of the two posterior probabilities p(s|genuine) and p(s|impostor), and the

selection of the acceptance threshold s∗. If the score is higher than the accep-

tance threshold, the claimed identity is accepted and the person is classified

as a genuine user. Otherwise, she/he is classified as an impostor.

Authentication errors obviously depend on the acceptance threshold. They

are called ”false acceptance” errors if an impostor is accepted, and ”false

rejection” errors if a genuine user is rejected. The probabilities of false ac-
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ceptance and false rejection are called False Accenptance Rate (FAR) and

False Rejection Rate (FRR). The FAR and FRR mathematical expressions

are as follows:

FAR(s∗) =

∫ 1

s∗

(
p(s|impostor)ds

)

FRR(s∗) =

∫ s∗

0

(
p(s|genuine)ds

)

In the two equations the value s* is the so-called ”acceptance threshold”.

Because of the dependance of FAR and FRR on the threshold, the literature

proposed some FAR and FRR measures in some important points:

• Equal Error Rate (EER)point. It is the point where FAR(s*)=FRR(s*)

• 1%FRR (1%FAR). It is the FAR (FRR) corresponding to the threshold

for which the FRR (FAR) is fixed to 1%

• ZeroFRR (ZeroFAR). It is the FAR (FRR) corresponding to the thresh-

old for which the FRR (FAR) is fixed to 0%

In general, the threshold value depends on the application for which the

biometric system is designed. Then, the choice of the evaluation point (i.e.

the evaluation ”fairness”) has to be regarded with respect to expected en-

vironment. As an example, for a control access system in a nuclear power

station, a high performance in terms of FAR are required without denying

the access to authorised persons (low FRR). For such system the 1%FRR or

the ZeroFRR are measures more critical than the EER.

The so-called Receiver Operating Characteristic (ROC) shows the general

performance level of the system in terms of graphical view. The ROC is the
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graph of the couple {FAR(s∗), FRR(s∗)} for all the acceptancce threshold

values.

Before closing this section, it is worth noting that the conceps of FAR

and FRR describe the performance of the system by including in some case

the errors in the enrolment phase. An error in the enrolment phase occurs

when the biometric cannot be acquired or not processed or not make suitable

fot the template computation. In this case this kind of errors affects the

FAR and the FRR evaluation. In order to separate the ”enrolment errors”

and to assess the effectiveness of the matching algorithm, False Matching

Rate (FMR) and the False Non-Matching Rate (FNMR) terms have been

proposed instead of FAR and FRR, respectively. The plot of the couples

{FMR(s∗), FNMR(s∗)} have been then called Detection Error Trade-off

curve (DET). FMR, FNMR, DET curves refer to the error rate of the system

when enrolment errors are not considered. However, very few papers in the

literature use such terms (as very few vendor give it in their data sheet).

Further details about ”best practices” in evaluating biometric systems can

be found in [Mansfield 2002].

1.7 Fingerprint biometric

1.7.1 History of fingerprint recognition

The high discriminative power of fingerprints seems to be known by Chinise

population since 7000 b.C. Fingerprints have been systematically studied,

with scientific criteria, since the XIX century [Maltoni 2003], [Jain 1999]. In

the XX century, the structure and the main features of fingerprints have been
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pointed out thanks to researchers as Galton and Henry [Henry 1900]. It is

worth noting the increase of the success of fingerprints for personal recogni-

tion has involved the academic, the industrial and the forensic communities.

The main steps can be summarised as follows:

• from 1684 to 1788, European scientists as Grew, Malpighi and Mayer

published the first studies on the structure of ridge and valleys of fin-

gerprints

• in 1809, the entrepreneur T. Bewik started to use his fingeprints as

trademarks

• from 1823 to 1899, fingerprints have been rigorously described by Her-

schel, Faulds, Galton and Henry

• in 1901-02, fingerprints were adopted by Scotland Yard for criminals

categorisation. In particular, in 1902 the first case was solved thanks

to fingeprints left in the crime scene

• in 1960, the first Automatic Fingerprint Indentification System (AFIS)

were adopted by the FBI and the Paris Police Department

• in recent years, the National Institute of Standard and Technology

(NIST) fixed the standard definitions of fingerprint characteristics

Nowadays, to the state of our knowledge, the technology for acquiring, pro-

cessing and matching fingerprints can be considered as a mature technology.

So, fingerprints have been widely proposed both in forensic and civilian ap-

plications. However, it is very difficult to design an automatic fingerprint
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classification and identification system exhibiting very high recognition ac-

curacy and reliability. So, fingerprint recognition is still a very active research

field.

1.7.2 Structure of fingerprints

Fingerprint patterns are described by the epidermic ridge and valleys. As

mentioned in section 1.3, two properties concurred to the wide success of

fingerprints for personal recognition: the persistence and the uniqueness.

• Persistence means that the ridge pattern does not change over the time

• Uniqueness means that such ridge pattern is unique from person to per-

son. Moreover, fingerprints cannot be forgotten and it is very difficult

to stole and reproduce them

The persistence and the uniqueness are two very important properties of such

biometric. It is worth noting that persistence has been scientifically proved;

even in case of intensive manual works, the ridge pattern forms again after few

days of rest; but the uniqueness is still matter of on-going research. Usually,

the uniqueness is ”proved” by empirical and statistical observations. From

the empirical point of view, it is easy to see that not a couple of twins have

the same fingerprints. Statistically, it has been shown that the probability

of exhibiting the same minutiae set among two fingerprint is about 6× 10−8

[Pankanti 2002], [Bolle 2002]. The minutiae are micro-characteristics that

allow to distinguish two fingeprints (see the related sub-section in 1.7.2).
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Figure 1.4: Main characteristics of a fingeprint image. In the left are empha-

sized the micro-characteristics (minutiae points), in the right are emphasized

the macro-characteristics (core and delta points)

Macro-characteristic of fingerprints

The ”macro-characteristic” of fingerprints, or ”global features”, are consti-

tuted by the ridge pattern and the ”singularity points”. Such features are

not sufficient to distinguish two fingerprints. However, they greatly simplify

the whole identification process.

The ridge pattern characterises the shape described by the ridge flow.

The singularity points are localized in small regions where the ridge flow

becomes irregular. In particular, we can defines two singularity points: the

core point and the delta point. In the first case the ridge flow describe a

circle usually localized at the center of the ridge pattern. In the second case

the ridge lines converge and describe the ”∆” greek letter. The right side of

the Figure 1.4 shows an example of core and delta points in a fingerprint.

In a fingerprint it is possible to find one or two delta points and one or

two core points, although these latter are always localized at the center of

the shape. Through the relative position among such points, Edward Henry
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Figure 1.5: Examples of the five fingerprint classes [3]: (L) Left Loop (R)

Right Loop (W) Whorl (A) Arch (T) Tented Arch. Core and delta points

are shown for each class in this figure by squares and triangles, respectively.

The A class has no singularity, the L, R, T classes have two singularities (one

core and one delta point), and the W class has four singularities (two cores

and two deltas)

had been able to identify eight categories of ridge pattern among fingerprints

[Henry 1900]. These eight categories are plain arch, tended arch, radial loop,

ulnar loop, plain whorl, central pocket, double loop, accidental whorl.

Such categorisation has been simplified to four or five classes by the Na-

tional Institute of Standard and Technology (NIST). In particular, the plain

arch, central pocket, double loop and accidental whorl classes have been

grouped in the whorl class; the plain arch and the tended arch classes have

been grouped in the arch class. Radial loop and lunar loop are also called

right loop and left loop classes, respectively. The categorisation with five

classes uses the plain arch (simply, arch), tended arch, right loop, left loop

and whorl classes, while the categorisation with four classes uses the arch,

right loop, left loop and whorl classes. Figure 1.5 shows the selected five

classes.

Such categorisations allow to greatly simplify the problem of the search
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for a fingerprint in a data set. In fact, it is firstly possible to identify the

class which a certain fingerprint belongs to, and secondly to perform a search

in the subset made up of fingerprints of the identifies class.

By reducing the minimum the number of classes, i.e. by considering

arch, left loop, right loop and whorl classes, we can notice the following

characteristic:

• the arch class exhibits only one core and no delta points

• the left loop class exhibits one core point and one delta point localized

at the right of the image

• the right loop class exhibits one core point and one delta point localized

at the left of the image

• the whorl class exhibits two core points and two delta points

These features allow to classify a fingerprint image in a simple way. How-

ever, the boundaries among classes are very smoothed, so it is possible to

have a fingerprint with a ridge pattern similar to the one of more classes.

Such fingeprints are usually referred as cross-referenced because they are la-

belled with more than one class (e.g. arch and left loop). They cannot be

assigned to one class neither by a human expert.

Therefore, although all AFIS systems require the fingerprint classification

stage before the matching stage, it is very difficult to design an automatic

system able to perform such classification with high accuracy [Karu 1996].
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Micro-characteristics of fingerprints

The micro-characteristics of fingerprints, or ”local features”, are constituted

by the discontinuities of the ridge lines, usually called minutiae points. So

far, about 150 types of minuitiae points have been founded [Lee 1994].

Usually, the various kinds of minutiae points are grouped in two types: the

bifurcation and the termination of the ridge lines. Figure 1.4 shows this kind

of minutiae.

Such points describe in detail each fingerprint, that is, the fingerprint im-

age can be substituted by its minutiae set without loss of information. The

position and orientation of minutiae are claimed to be unique from person to

person. Therefore, they are the main features used in identification (match-

ing) process. The definition of the position and orientation have been fixed

by the NIST. In particular, the orientation is defined as the local orientation

of the ridge line which the minutia belongs to.

To manually match two fingerprints through their minutiae points is a

very difficult and tiring process. So, various algorithms for automatic match-

ing based on minutiae heve been proposed. Obviously, none of them is able

to certify the two fingerprints matches perfectly. However, their use allowed

to notably simplify the identification process in criminal investigations, and

in the simpler case of access control.

1.7.3 The Automatic Fingerprint Identification Sys-

tem

Figure 1.6 shows an overview of a fingerprint identification system. The

first module is aimed to acquiring the fingerprint image. The second module
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Figure 1.6: The Automatic Fingerprint Identification System (AFIS) scheme
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typically enhances the quality of the acquired image. The third module

performs the preliminary classification of the fingerprint, i.e., it assign a

class among those viewed in section 1.7.2. The fourth module is the matching

module. It performs a comparison between the input fingerprint and the ones

stored in the fingerprint database and associated to the class(es) computed

by the classification module.

The output of the matching module is a score, i.e. a similarity degree from

the compared fingerprints. Such score can be used in two ways:

• if the identification one to one is performed, such score has been derived

from the comparison between the given fingerprint and the template

fingerprint associated to the claimed identity. In other words, the per-

son to be recognised by-passes the classification module by declaring

his/her identity. In this case, if the score exceeds a certain fixed accep-

tance threshould, the claimed identity is ”verified”).

• if the identification one to many is perfomed, the score value is associ-

ated to a certain identity. By ordering the identities in fuctions of the

increasing order of their score, the system returns the most probable

identities which the inpunt fingerprint belongs to).

This thesys study deeply the classification module used for the identifica-

tion one to many. We investigate novel algorithms to fingerprint classification

and their fusion, whether among themselves or among other important ap-

proaches proposed in literature. Next chapter describes the state of the art of

fingerprint classification approaches, with particular attention to statistical

and structural ones.



Chapter 2

Fingerprint Classification:

State of Art

The simplest way to classify a fingerprint is to localise their core and delta

points. By counting the number of such singularities, it is possible to identify

the class which the fingerprint belongs to. Karu and Jain [Karu 1996] present

a simple classification system based on such computation. Unfortunately, this

approach does not work well if the image is significantly corrupted by the

noise, that does not allow to reliably localize the singularities points.

Due to the above limitations, the most of the proposed approaches to

automatic fingerprint classification are only partially based on the singular-

ities detection (e.g., on the detection of the core point), and try instead to

extract global features related to the ridge flow orientations. To this end,

many classification algorithms compute the so-called orientation field, which

is the map of the ridge-flow average orientations of the fingerprint image.

Figure 2.1 shows an example of orientation field extracted from a fingerprint

image.

27
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Figure 2.1: Example of fingerprint image and corresponding orientation field.

In the example, the original image is 480x512 pixels sized. Each pixel of the

orientation field has been computed with a 32x32 pixels sized block of the

original image, so generating a 28x30 pixels sized orientation field

So far, many approaches for fingerprint classification have been proposed.

They are based on different pattern recognition teories. Main approaches are:

• Statistical methods: are based on the identification of singular points

(core and delta points). The used criteria for singularities computing

are assentially euristics and the success for finding them is strongly

affected by noise. In fact, in the cases in which the noise is very high,

it is possible to not take delta or core points, or take them in incorrect

positions. This kind of methods transform patterns in a features vector

of fisical and real characteristics.

• Geometrical methods: are based on geometrical approssimation of

the ridge. As an example, we mention the method of Ghong [Ghong 1997]

that use the B-splines.

• Syntactical methods: among the first methods devised, they date

from the Seventies. The basic idea consists in associate at each class

a grammar that describes the fingeprint. Each fingerprint is coded as
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a phrase. Then a syntactical analysis is performed and finally it is

associated to the grammar of which the phrase respects the rules, that

is, the fingerprint is classified.

• Structural methods: innovative methods that exploit the structure

of the pattern and trasform them in structural data.

• Neural methods: methods that exploit a neural network as finger-

print classifier. A neural network can be a simple perceptron, a multi-

layer perceptron (MLP) or a more complex architecture as a recursive

neural network (RNN).

For the purposes of this work, the proposed approaches to fingerprint

classification can be subdivided into the two main categories of statistical

and structural approaches.

Statistical methods are characterised by the use of the decision-theoretic ap-

proach to pattern classification [Duda 2001], namely, a set of characteristic

measurements, called feature vector, is extracted from fingerprint images and

used for classification [Candela 1995]-[Yao 2003].

Structural approaches basically use the syntactic or structural pattern recog-

nition methods [Moayer 1975]-[Neuhause 2005]. Fingerprints are described

by production rules or relational graphs, and parsing processes or graph

matching algorithms are used for classification.

Recently, the fusion of multiple fingerprint classifiers has been proposed

[Yao 2003], [Senior 2001]-[Neuhause 2005 b].
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2.1 Statistical methods

Statistical methods use a vector of statistical measures to represent the fin-

gerprints. In [Ghong 1997] the sequence of the B-splines coefficients was used

in order to approximate the orientation field, i.e. the orientation of the skin

ridge flow, and an empirical rule is used to perform the final classification.

In [Candela 1995] the researchers of the National Institute of Standard and

Technology (NIST) proposed a method based on the KL-transform of the

orientation field (the representation of the fingerprint). A probabilistic Neu-

ral Network is used for elaborating the obtained pattern and for making the

final classification.

In [Jain 1999 b] each fingerprint is described in terms of fingercode. We de-

scribe this method with more details because we used it for comparison and

fusion with our methods. The core of such approach is a novel representation

scheme (called ”FingerCode”) which is able to represent into a numerical

feature vector both the minutiae details and the global ridge and furrows

structures of fingerprints. The computation of such FingerCode starts by

identifying the ”core” point in the fingerprint input image and by defining a

spatial tessellation of the image region around this point. This spatial tessel-

lation is a circle decomposed in 48 sectors. Then, four band-pass Gabor filters

with orientation-selective characteristics (00, 450, 900, and 1350) are applied

to such tessellated image, so producing four orientation-filtered images. Each

filtered image accentuates ridge structures along one orientation. Finally, for

each filtered image and for each sector, the standard deviation of grey level

values is computed, and the FingerCode feature-vector with 192 elements is

produced. Jain and his collaborators used such feature vector as input to
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a two stage classification architecture using a K-nearest neighbour classifier

to find the two most probable classes of fingerprints and ten binaries neural

networks to make the final decision (see Figure 2.2).

Figure 2.2: The Multichannel approach to fingerprint classification proposed

by Jain et al. [Jain 1999 b]

We used such feature vector as input of a multi-layer perceptron (MLP).
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2.2 Structural and graph-based methods

The structural approaches describe the fingerprint in terms of grammars or

graphs.

Moayer and Fu (1975) [Moayer 1975] and Rao and Balk (1980) [Rao 1980]

give a syntactical description of the fingerprint, by defining a set of terminal

symbol, based on the ”local structure” of the skin ridges, and a set of produc-

tion rules to create a grammar that represents each class. A parsing algorithm

is applied to perform the final classification. These kind of approaches are

the oldest, and they have been dropped by the modern research, because

of their sensitivity to the noise frequently added to the fingerprint images

during the acquisition process.

In Cappelli et al (1999) [Cappelli 1999] an adaptative filter, called ”dy-

namic mask” and correspondent to each class is applied to the orientation

field in order to segment it. In the following we describe deeply this method

because we use it for comparison and fusion with our ones.

This method was introduced to overcome the large variability of segmenta-

tions of similar fingerprints, which comes out when the segmentation algo-

rithm described in [Maio 1996] is applied. The basic idea of this approach is

to perform a ”guided” segmentation of the orientation field of the fingerprint

image in order to reduce the variability during the segmentation process.

To this end, five filters, called ”dynamic masks”, one for each class, ”guide”

the orientation field segmentation, so producing a class-dependent segmen-

tation. Such dynamic masks can be regarded as ”prototypes” of images

segmented by the orientation field. Using these filters the number of seg-
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mentation regions and the coarse region shape are fixed. Each dynamic

mask is obtained by the following four steps:

1. for each class, selection of a set of representative fingerprints

2. computation of the respective orientation fields

3. application of a genetic algorithm to segment the orientation field

4. identification of an ”average” ensemble of fixed and mobile vertices and

segments that define the mask. Such vertices are located around the

singularity points (”core” and ”delta”)

To classify fingerprints, the orientation field of an input fingerprint is seg-

mented according to the five dynamic masks (one for each class). For each

mask, a ”cost” provides a measure of the difficulty of the guided segmen-

tation process. Accordingly, the lowest cost means that the segmentation

process can easily produce a segmented image very similar to the used mask.

The cost vector is then converted into a posterior probabilities vector. The

class associated to the maximum posterior probability is associated to the

fingerprint.

In Lumini et al. (1999) [Lumini 1999] the orientation field of a given fin-

gerprint image is computed. A segmentation is performed in order to parti-

tion the orientation field in ”homogeneous orientation” regions. A relational

graph is defined by starting from the segmentation. Finally an unelastic

matching with a template graph for each class is performed and the best

match determines the final classification.

In Yao et al. (2003) [Yao 2003] the fingerprint is described by a Directed

Oriented Acyclic Graph, and a structural vector is extracted from the given
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graph and merged with the ”fingercode” of the original image. A set of Sup-

port Vector Machines (SVMs) is trained and the outcomes of each classifier

are combinated through an Error Correcting Output Code System, in order

to make the final decision. This system presents a better accuracy rejection

curve with respect to that reported in [Jain 1999].

Senior [Senior 2001] proposes a fingerprint classification system based on

the integration of hidden markov models (HMM) and decision trees (DT).

The HMM-based classifier is trained by a set of novel features extracted from

the skin ridge flow. Such feature extraction step is performed as follows.

A set of horizontal and vertical ”fiducial” lines intersects the skeletonised

fingerprint image at different locations. At each ’fiducial line’-’ridge line’

intersection, a set of measures is computed. A multi-layered HMM is designed

by considering the so-computed set of features at each fiducial line as the

input of each layer. The decision tree classifier is trained on another set

of features extracted from the skin ridge flow. Such features are aimed to

encode the ridge shape. The outcomes of the DT and HMM classifiers are

the inputs of a feed-forward neural network for the final classification.

A graph matching based approach using directional variance is recently

proposed by Neuhause and Bunke (2005) [Neuhause 2005]. It consists on

computation of a directional variance measured at each pixel of orientation

field. The variance is defined such that high variance areas correspond to

relevant regions to discriminate between fingerprint Henrys classes. These

regions are not only singular points, but also areas with vertical ridge orienta-

tion. The resulting structures are converted into attributed graphs. A node

corresponds to a pixel of the selected high variance regions and the edges are
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the connection among the pixel. The attributes are the position of the corre-

sponding pixel as node feature and an angle information as edge feature. In

order to perform the classification, a K-Nearest Neighbour paradigm is ap-

plied. The edit distance is based on a simple cost function in which constant

costs are assigned to insertion and deletion operations and a value propor-

tional to the Euclidean distance of attributes is assigned to costs of substi-

tution operations. In order to find the minimum path for the edit distance,

only a subset of all edit paths is considered in the approximate algorithm,

instead of exploring the full search space. The prototypes set is established

by manually selecting promising candidates. It consists of 60 elements.

2.3 Multiple classifiers system to fingerprint

classification

So far, the works [Jain 1999], [Yao 2003], [Cappelli 2002], [Nagaty 2001] and

[Neuhause 2005 b] are the only ones in which a multiple classfier system is

used for the performance improvement. In particular, [Cappelli 2002] use the

”dynamic masks” method as first classifier.

Moreover, a novel transformation of the orientation field, called Multiple KL-

tranform (MKL), generates a feature vector for each fingerprint. Two clas-

sifiers (Nearest Neighbour and a K-Nearest Neighbour) are trained by using

the MKL transformation, and the decisions of the Dynamic Mask method

and the two classifiers described above are finally combined by using the ma-

jority voting rule [Windeatt 2003].

Nagaty (2001) [Nagaty 2001] proposed the combination between statistical
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and structural features at the level extraction. The structural features are

represented by the orientation field codified into a binary string of fixed di-

mension. The statistical features are represented by a ”texture measure”

performed by the computation of the second moments. A feature vector

made up of the whole statistical and structural features (186 features) is the

input of a Artificial Neural Network which performs the final classification.

A very recent work is proposed by Neuhause [Neuhause 2005 b]. The fusion is

performed by generating a unique graph from different graph representations

of each pattern. Each representation is obtained by different approaches.

For each pattern, the two most similar graphs are searched for, then they

are merged to obtain one graph. The process iteratively continues until all

graphs are reduced in only one graph.



Chapter 3

A Graph-Based Approach to

Fingerprint Classification

3.1 Introduction

Fingerprint classification is based on the shape described by the skin ridges

flow of such biometrics: Arch (A), Tended Arch (T), Left Loop (L), Right

Loop (R) and Whorl (W). The next step is to recognise the fingerprint by

performing a search in the set of fingerprints associated to the identified class

(matching process). This strategy is necessary for reducing the identification

time.

Unfortunately, fingerprint classification task is made very difficult by sev-

eral factors. Among the others, the poor quality of real fingerprint images

which can decease the singularity points detection, and the existence of am-

biguous fingerprints which cannot be reliably classified even by human ex-

perts. In particular, the crucial issue of ambiguous fingerprints is due to the

large within-class variability and the small between-class separation. In some

37
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cases, fingerprints which cannot be reliably assigned to a single class even by

human experts are labelled with two classes, and named ”cross-referenced”

fingerprints. These fingerprints are so called because two classes, instead of

one, are associated to them. Figure 3.1 shows an example of ”AT cross-

referenced” fingerprint, beside a A and a T fingerprint. Because of the shape

”continuity” among classes, it is impossible to associate only one of them.

Figure 3.1: Example of AT cross referenced fingerprint compared with A and

T fingerprint images

As said in Chapter 2, the proposed approaches to automatic fingerprint

classification can be coarsely subdivided into two main categories of ”flat”

and ”structural” approaches. Flat approaches are characterised by the use

of the ”decision theoretic” or statistical approach to pattern classification,

namely, a set of characteristic measurements, called feature vector, is ex-

tracted from fingerprint images and used for classification ([Candela 1995],

[Jain 1999], [Nagaty 2001], [Senior 2001], [Cappelli 2002]). On the other

hand, structural approaches presented in the literature basically use the syn-

tactic or structural pattern recognition methods ([Moayer 1975], [Rao 1980],

[Cappelli 1999], [Lumini 1999], [Yao 2003], [Neuhause 2005 b]). Fingerprints

are described by production rules or relational graphs and parsing processes

or graph matching algorithms are used for classification. It is worth re-
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marking that the structural approaches of fingerprint classification has not

received much attention still now. However, a simple visual analysis of the

structure of fingerprint images allows one to see that structural information

can be very useful for distinguishing fingerprint classes of the arch and whorl

type. On the other hand, it is easy to see that structural information is

not appropriate for distinguishing fingerprint classes of the right loop, left

loop and tended arch type. Figure 3.2 shows a typical segmentation of each

class. Accordingly, the combination of flat and structural approaches should

be investigated. With regard to this issue, it is worth noting that very few

papers in the literature investigated the potentialities of such combination

([Nagaty 2001], [Cappelli 2002], [Yao 2003], [Neuhause 2005 b]).

Figure 3.2: Segmentation of the orientation fields of the fingerprint images

for the five Henry’s classes
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3.2 An appropriate data representation

According to section 1, our definition of fingerprint structure corresponds to

the topology of completely connected ”regions” grouping ridges and valleys

with homogenous orientations. Such topology relies on the singularities lo-

cations. Hence, it is different from class to class, according to the Henry’s

classification [Henry 1900].

The so defined fingerprint structure can be easly extracted by segmenting

the fingerprint orientation field into regions characterised by homogeneous

ridge directions ([Yao 2001], [Yao 2003], [Lumini 1999], [Cappelli 1999],

[Marcialis 2001], [Marcialis 2003]).

The first problem is how to describe such structure through an appropri-

ate data type. The relational graph appears to be an appropriate type of

data for describing the fingerprint topology. The relational graph nodes could

correspond to regions extracted by the segmentation algorithm, as shown in

[Lumini 1999]. However, the main arising issue is to find the best represen-

tative graph for each fingerprint class, in order to apply a template-matching

algorithm, like such shown in figure 3.3. In particular, L, R and T classes,

fingerprints structures are very difficult to separate by a simple relational

graph-based representation.

The second problem is to make the above fingerprint representation ”ro-

bust” to the large small-within class variability and the small between-class

variability, which is accentuated in real applications because of the noise in

sensed data. Because each region derives from the segmentation algorithm,

the robustness degree is mainly dependent on such algorithm. However, to

the best of our knowledge, none of the proposed segmentation algorithms
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Figure 3.3: Some example of relational graphs representing the structure

of A, W, L, R, T classes, according to segmentations of Figure 3.2. Each

node corresponds to each segmentation region. Edges are drawn according

to adjacency of related regions. While it is simple to describe A and W

classes (a-b), it is quite difficult to separate L, R and T classes on the basis

of their structure by using a relational graph (c)

is robust to the above variability. As a consequence, very different segmen-

tation related to fingerprints of the same class and similar segmentations

related to fingerprints of different classes (L, R, T and W especially) are

produced [Lumini 1999], [Cappelli 1999].

The structural classification system presents the same general architecture

of all pattern recognition systems [Duda 2001]. Figure 3.4 summarises such

architecture. It is made up of:

• a pre-processor module to enhance the quality of the input fingerprint

image and to generate the orientation field segmentation
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• graph generator module, which takes as input the orientation field seg-

mentation provided by the previous module. Each node of the graph is

enriched by a real-valued feature vector extracted from the orientation

field. We used two graph representation; a generic relational graph and

a DPAG, namely, Directed Acyclic Positional Graph.

• an appropriate machine learning model for each data representation: a

classical graph-based classifier, based on inexact graph matching theory

and a Recursive Neural Network for classifying the fingerprint. These

methods takes as input the graph representation generated by the pre-

vious module, respectively.

Figure 3.4: Modules of our fingerprint classification system

3.3 The pre-processor module

The pre-processor module performs the enhancement, the orientation com-

putation and the segmentation of the fingerprint image, as shown in Figure
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3.5. The enhancement and the orientation field computation is performed by

using the algorithms proposed in [Candela 1995], while the orientation field

segmentation is performed by using the algorithm proposed in [Maio 1996].

The aim is to partition the orientation field into regions characterised by

homogeneous ridge directions. The used algorithm implements a very so-

phisticated ”region growing” process. It starts from the central element of

the directional image and scans the image according to a square spiral strat-

egy. At each step, the segmentation algorithm uses a quite complex cost

function to decide about the creation of a new region. The resulting seg-

mentation is related to a minimum of such cost function. Details about the

segmentation algorithm used can be found in [Maio 1996].

Figure 3.5: Fingerprint image transformation: (a) Original image, (b) En-

hanced image, (c) Orientation field from the enhanced image, (d) Segmenta-

tion extraction from the fingerprint’s orientation field

3.4 A structural-connesionist approach

The proposed approach uses a machine learning architecture explicitly aimed

to face on structured data. With regard to such solution, Frasconi (1998)

[Frasconi 1998] and Sperduti (1997) [Sperduti 1997] proposed the so called
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”Recursive Neural Networks” (RNNs). By using this machine learning ar-

chitecture, we avoid the problem to design a set of templates for each class,

because Recursive Neural Networks are specialised in learning to classify

complex data structures by examples.

The main limitation of such approach is that RNNs can learn to classify

only data structures in terms of Directed Positinal Acyclic Graphs (DPAGs).

A DPAG is a directed acyclic graph in which the ”children-nodes” (the nodes

linked by another node, also called ”father-node”) are ordered according to a

certain rule. As an example, a node of the DPAG can have the first child, the

second child, the fourth child, while the third one is missed. In a DPAG for

classification by RNNs, (a) the maximum number of children-nodes, called

”out-degree”, is given; (b) the ”super-source” node is also defined as the

node which connects all nodes of the graph, by following a directed path

[Frasconi 1998].

It is evident that the use of a DPAG implies some topological constraints

which could determine the loss of information in describing the fingerprint

structure. In particular, the DPAG could not take into account all segmen-

tation regions because of the designed positional rule between children-nodes

and father-node. So, a DPAG generation algorithm could be not able to pre-

serve the original fingerprint segmentation topology. In order to reduce such

possible loss of information, a DPAG generation algorithm addressing such

issue is needed [Yao 2003]. The DPAG based representation of fingerprints is

then completed by attaching to each graph node some local characteristics of

regions and some geometrical and spectral relations among adjacent regions.
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3.4.1 The directional positional acyclic graph genera-

tor module

The main rational behind of our DPAG generation algorithm is

1. to associate a segmentation region to each graph node

2. to draw the completed connected relational graph on the basis of the

adjacencies amog regions (i.e. a graph edge connects only adjacent

regions)

3. to cut the edges responsible of cycles in the graph on the basis of a

hierarchical rule defining the starting node (the super-source), its child

nodes and so on.

A rule for ordering the child-nodes is also necessary to obtain a DPAG.

In designing such rules, it is necessary to preserve as more as possible the

topology of the orientation field segmentation.

The DPAG-based fingerprint description is then completed by attaching

to each node a feature vector containing local characteristics of the related

region and by geometrical and spectral relations among adjacent regions.

In the following, we describe the algorithm for DPAG generation from the

orientation field segmentation and then we describe the features attached to

each graph node.

DPAG generation from the orientation field segmentation

It is presented a DPAG generation algorithm from orientation field segmen-

tations in [Yao 2001], [Yao 2003] and [Marcialis 2001], before our generation
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algorithm. Briefly, such previous algorithm describes the segmentation topol-

ogy starting from the region containing the core point. The positional rule

between father-node and children-nodes is as follows: 8 positions are consid-

ered (8 is the DPAG out-degree), each of them corresponds to the relative lo-

cation of the child-node with respect to the father-node (North, North-East,

East, South-East, South, South-West, West, North-West). Such locations

are computed in according to their baricenters relative positions. As an ex-

ample, if the child-node baricenter is to North of the father-node baricenter,

the position ”North” is assigned to such child node; when the child node

baricenter is to North-East, the position ”North-East” is assigned and so on.

The main drawbacks of such algorithm are that:

1. if more than one child-node concur to the same position with respect

to the same father-node, some of such nodes could be lost during the

DPAG generation, so producing a DPAG generation failure (we called

such nodes ”orphans-nodes”)

2. the core point could not be found at all in certain images, so producing

failure in the core detection.

As a consequence of both cases, the fingerprint is rejected because it cannot

be make reliable and suitable for the RNN processing. In particular, the first

issue indicates that such algorithm is not always able to preserve the original

fingerprint topology.

Accordingly, we designed the following algorithm to address such issues.

The complete algorithm is presented in the pseudo-code form in Figure 3.6.

Figure 3.7 shows an example of DPAG generation with the proposed

algorithm. The proposed algorithm can be summarised as follows:
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Figure 3.6: Pseudo-code of the DPAG generation algorithm

• The whole orientation field image is the super-source S

• The regions of the segmented orientation field image are first ordered

according to the relative positions of the centre of mass

• The first region R1 is assigned as the first child of the super-source
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• The sub-image starting from the x-coordinates of the R1’s centre of

mass is partitioned in od rectangles, where od is the out-degree of the

DPAG. Figure 3.7 shows an example of such rectangles starting from

the region labelled with ”0”. Figure 3.7 also shows the center of mass

of the regions by little filled circles. In the example, od = 8

• The first baricenter belonging to an adjacent region of R1, found in the

i-th rectangle, is assigned as the i-th child of the node associated to R1

• The same process is repeated for the children-nodes while all regions

have been considered

It is easy to see that this process allows to avoid the presence of cycles in

the graph. However, it may be happen that a node may be assigned as child

of any DPAG’s node. In order to take into account these nodes, we simply

attached them to the super-source S (the whole orientation field image) by

considering them as ”super-source children” in the positions od + 1, od + 2

and so on, according to their order. Consequently, the DPAG out-degree is

od + N , being N the number of segmentation regions.

The above algorithm does not present the drawbacks of the previous one

[Yao 2003] because:

• it avoids the issue of the nodes loss by introducing the ordered rule for

recovering the orphans-nodes

• it avoids the dependence of the starting point on the fingerprint core

detection

It is also worth noting that the fingerprint topology preserved by the proposed
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Figure 3.7: Example of DPAG generated from the orientation field image.

The out-degree is 8. In this example, the region ’0’ has the baricenter at

the position {x = 7, y = 10}. According to the algorithm of Figure 8, this

is the first child of the super-source S (the whole image). Then, the sub-

image starting from the x-coordinate of the baricenter of ’0’ is partitioned

in 8 rectangles labelled from 0 to 7. The baricenter of Region ’1’ is located

in the rectangle no.1. Being Region ’1’ adjacent to Region ’0’, Region ’1’ is

assigned as the child no.1 of Region ’0’, as it can be seen from the label of

the related arch of the DPAG

algorithm, because it takes into accunt all regions. So, it is possible to

averagely recover the original segmentation topology.



CHAPTER 3. GRAPH-BASED APPROACH 50

Feature extraction for the DPAG representation

The representation is completed by characterising the nodes with local fea-

tures and relational features with children-nodes. The first ones are:

• Mean and standard deviation of the region orientations

• Baricenter-coordinates and area of the region. Area’s value is nor-

malised with respect to the area of overall image.

• Distribution of the orientation field in the image, in terms of probability

of a certain orientation value given the region. Eight orientation values

were considered in the range [jπ/4, (j +1)π/4], where j = 0, . . . , 7, and

the number of pixels of the orientation field of the region that fall in

each interval was computed. In the following, we indicated this number

with cj, related to the j-th interval. For estimating the probability, each

value was normalised with respect to the area of the region. Hence, for

each region (node):

pj =
cj

A

• ”Cumulative” distribution of the orientation field. For each node, the

following feature is defined: cumj(v) = cj(v) +
∑

u∈Children(v) cj(u),

where Children(v) is the set of ordered v’s children nodes. In the case

of a leaf-node: cumj(v) = cj(v). The normalisation with respect to the

sum of the node areas is performed:

pcumj
(v) =

cumj(v)

A(v) +
∑

u∈Children(v) A(u)

The relational features are ”distance” values:
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• Among the baricenters

• Among the means and among the standard deviations

• Among the distributions of the orientation field of different regions.

Named d(u, v) this distance:

d(u, v) =
∑

j

|pj(v)− pj(u)|

where u ∈ Children(v)

• We computed the perimeter of adiacency among two adiacent regions

• We also computed a modified version of the Mahalanobis distance for

characterising the relationship among means and standard deviations

of different regions. Named µf and σf the mean and the standard

deviation of the orientations of the father-node, and named µc and σc

the mean and the standard deviation of the orientations of the child-

node, we defined:

d(Rf , Rc) =
(µf − µc)

2

σfσc

3.4.2 Recursive neural networks for fingerprint class-

fication

Research in connessionist models capable of representing and learning struc-

tured (or hierarchically organised) information begun in the early 90’s with

recursive auto-associative memories (RAAM) [Pollack 1990]. Since then, sev-

eral other architectures have been proposed, including holografic reduced

representation (HRR) [Plate 1995], and Recursive Neural Networks (RNN)
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([Goller 1996], [Sperduti 1997], [Frasconi 1998]). A selection of papers in this

area appeared in [Frasconi 2001].

Our approach will rely on Recursive Neural Network, a machine learning

architecture which is capable of learning to classify hierarchical data struc-

tures, such as the structural representation of fingerprints which we employ

in this chapter. The input to the network is labelled DPAG U , where the

label U(v) at each vertex v is a real-valued feature vector associated with a

fingerprint region.

A RNN performs a ”recursive transduction” that maps a graph V in

another graph XV wich has the same topology. Hence, to each node nV of

V corresponds a node nXV
of XV . As shown in Figure 3.8, a feature vector

X(nXV
) ∈ <n is associated to each node nXV

, computed on the basis of v’s

label, according to the formula:

X(nXV
) = f(X(u1), . . . , X(uk), U(nV )), where uj ∈ Children(nXV

)(3.1)

Figure 3.8 depicts that vector X(nXV
) contains the distributed represen-

tation of the sub-graph dominated by nXV
(i.e., all the nodes that can be

reached starting a directed path from nXV
). X(nXV

) is called ”state vector”.

f is called ”state transition function”. It combines a vector encoding the

label of v with the state vectors of {u1, . . . , uk} , which is the ordered set of

nXV
’s children. Computation proceeds recursively from the nodes without

children to the super-source (the node dominating all other nodes). The base

step for Eq. 3.1 is X(u) = 0 if u is a missing child.

In our case, the transition function f is computed by a multilayer percep-

tron (MLP) [Bishop 1995], which is replicated at each node in the DPAG,
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Figure 3.8: A recursive transduction from a simple input DPAG (outdegree =

2) to the state-DPAG labelled with state vectors. The node labelled with

the state vector X(S) contains the distributed representation of the whole

input DPAG. Each child can be univocally identified through its position

with respect to the father: e.g., A is the first child of S, B the second. It is

worth noting that C has not children. In this case, the base-step is applied

for each missing child

sharing weights among replicas. Classification with recurrent neural networks

is performed by adding an output function g that takes as input the hidden

state vector X(s) associated with the super-source s:

Y = g
(
X(s)

)
(3.2)

It is worth noting that X(s) can be extracted and independently used as

a ”structural” feature vector, because it contains the distributed represen-

tation of the whole DPAG. Function g is also implemented by a multilayer

perceptron.

The output layer in this case uses the softmax functions (normalised expo-

nentials), so that Y can be interpreted as a vector of conditional probabilities

of classes given the input graph, i.e. Yi = P (C = i|V ) , being C a multi-
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nomial class variable [Bishop 1995]. Training relies on maximum likelihood.

The training set consists of T pairs

D =
{(

U1, c(U1)
)
, . . . ,

(
Ut, c(Ut)

)
, . . . ,

(
UT , c(UT )

)}
(3.3)

where c(Ut) denotes the class of the t-th fingerprint in the data set. Ac-

cording to the multinomial model, the log-likelihood has the form:

l(D; Θ) =
∑

t

logYc(Ut)(3.4)

where Θ denotes the set of trainable weights and t ranges over training

examples. Optimisation is performed with a gradient descent procedure,

where gradients are computed by the Back-Propagation Through Structure

algorithm [Sperduti 1997].

In order to take into account the cross-referenced fingerprints, charac-

terised by two classes instead of one, a ”soft” target vector was introduced

in the training phase. The two cross-referenced classes were considered to

have the same probability given the pattern. Thus, the target-vector takes

value 0.5 in correspondence of the two target classes of the cross-referenced

fingerprints. For the standard fingerprints, the target-vector takes value 1.0

in correspondence of the target class.

3.5 The structural K-nn approach

One of the most natural structural representation of the fingerprint orienta-

tion field segmentation (i.e., of the segmentation of the fingerprint image in

regions with homogeneous orientation of ridge and valley, as shown in Fig-

ure 3.2) is a relational graph. Relational graphs appear to be appropriate,
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as nodes could naturally correspond to the regions extracted by the seg-

mentation algorithm [Lumini 1999]. Each graph node can be associated to a

segmentation region and the edges join two nodes according to the adjacency

relationship of the respective regions.

Figure 3.9 shows an example of relational graph related to a fingerprint

orientation field segmentation.

Figure 3.9: Graph-based representation obtained from the segmented orienta-

tion field of a fingerprint image. Node labels represent the number associated

to each region as shown in the orientation field and the edge labels represent

the position of each child-node

The representation is completed by associating to each node a feature

vector containing the local characteristics of the regions (area, average direc-

tional value, etc) and the geometrical and spectral differences among adjacent

regions (relative positions, differences among directional average values, etc).

A graphical representation of this kind of graph is shown in Figure 3.10.

Graph matching is a method to perform structural data classification.

The graph matching we used is based on the computation of the graph edit

distance between the input graph and a set of prototype graphs representing

each class. It works such as the K- nearest neighbor classifier but the distance
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Figure 3.10: A generic attributed graph. Node labels represent the number

associated to each region as shown in the orientation field and the edge labels

represent the position of each child-node

between input patterns and prototypes, since the patterns are represented by

graphs, is the edit distance, that is, a particular measurement of differences

between two graphs. Therefore, distances between input graph and model

graphs are computed; then, the class associated to the input graph is the

most represented in the nearest K prototypes to the input graph.

Figure 3.11: K nearest neighbors representation in a space in which can be

represented graphs. The distance between graph patterns is edit distance,

i.e. a measurement of difference between two graphs

Edit distance is the minimum cost obtainable by applying edit opera-

tions, i.e. node/edge substitution, in order to transform an input graph to a
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prototype graph. Figure 3.12 shows an example of such transformation.

Figure 3.12: An example of transformation from input graph into model

graph by edit operations: for all nodes except one a substitution is applied

and for one node an insertion is necessary to have the same number of nodes

of model graph

A cost is associated to each node operation and the overall cost is the sum

of all edit operation costs. The edit operations we used are node and edge

insertion, cancellation and substitution. The cost of each operation depends

on selected discriminant features and on weights assigned to these features.

In order to calculate edit operation costs, a cost function is defined.

(3.5) Ce =

√√√√
Nf∑
i=1

(
Ci

(
fi(v)− fi(w)

)2
)

Formula 3.5 represents the cost function for a single edit operation. Functions

fi are the discriminant features, selected to define the costs, and their value

depends on the current node, if fi is a node feature, or depends on the current

edge, if fi is an edge feature. The cost function definition is a measurement of

the node/edge feature value difference between the node/edge v of the input

graph and the node/edge w of the model. In particular, each difference is

weighted by the Ci coefficients to give different importance to each feature.
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If cancellation or insertion operation is applied, the feature value related to

the input graph or to the model graph is zero. Then, getting simpler, the

cost function becomes:

(3.6) Ce =

√√√√
Nf∑
i=1

(
Cif 2

i (v)
)

The main issue is to find the sequence of edit operations which provide

the minimum cost. To this aim, a research tree containing all the possible

edit operations sequences is constructed. The search of the best sequence (i.e.

the minimum cost path into the research tree) is performed by an algorithm

similar to A* [Bunke 1983]. This procedure allow to obtain the absolute

minimum cost, namely, allow to find the optimal solution of minimum path

searching problem. The main drawback of such a search in the tree is the

computational complexity in terms of time. Hence, some trick to reduce the

time of computing is applied.

Since there is a Ci coefficient for each feature used, in order to avoid to

select too many Ci, few features are used, the most significant. In particular,

the edit operations cost is based on three node features and only one edge

feature. The following list shows the features selected for each edit operation.

They are a subset of that used for RNNs described in chapter 3.4.

• Node substitution

– Area and baricenter coordinates

– Orientation densities in the 8 main directions

• Node cancellation/insertion

– Area
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• Edge substitution

– Perimeter of adiacency

• Edge cancellation/insertion

– Perimeter of adiacency

Note that, to have a distance, cancellation and insertion must produce the

same cost, so the related coefficients must be equal. Moreover, edge cancel-

lation may happen in two cases:

1. After node substitution, if doesn’t exist the link between the two sub-

stituted nodes in the model graph

2. After node cancellation, it is necessary to eliminate all edges arriving

in the cancellated node

In order to distinguish these two cases, two different coefficients are used.

Obviously, dual consideration is worth also for edge insertion. So we have

two other different coefficients for edge insertion too.

In order to have outputs for the combination task with other investigated

classifiers, for each test pattern, the mean of K lowest edit distances for each

class is computed and then converted into a posterior probabilities vector.



Chapter 4

Ensembles of Graph Matchers

and Fusion of Structural and

Statistical Fingerprint

Classifiers

The aim of this work is to generate Multiple Classifiers System (MCS) using

structural methods as individual classifiers of the combination system to

classify fingerprints. In particular, we would obtain MCSs automatically from

the same type of classifier. In other words, we would generate an Ensemble of

Graph Matchers. In the literature there are various methods to create MCS

when the individual classifiers are statistical type. On the contrary, so far,

only few approaches with structural individual classifiers have been proposed

(see Section 2.3), and anybody has not yet been proposed an Ensemble of

Graph Matchers for fingerprint classification.

60
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First of all, we consider in the section 4.1 the combination with diverse

classifiers for fingerprint classification, i.e. statistical one and different struc-

tural ones. In the section 4.2, we describe how to perform a Multiple Classifier

System for statistical classifiers in order to evaluate either if it is possible to

use the same approaches for structural classifiers or if it is possible to adapt

them. Then, we describe our approaches to design ensembles of structural

matchers.

4.1 Fusion of structural and statistical finger-

print classifiers

In this section, we describe our approach for decision-level fusion of structural

and statistical classifiers. The general scheme is reported in figure 4.1, which

is quite similar to the commonly used multiple classifiers fusion scheme at

the decision-level [Roli 2002].

Figure 4.1: General scheme of a fingerprint classification system

We used the finger-code as statistical representation of the fingerprint

([Jain 1999 b]). This vector is the input of a MultyLayer Perceptron trained

according to the maximum likelihood cost function. The outputs of the net
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have the same meaning than those of Recursive Neural Network, Structural

K-nn and Dynamic Masks1, i.e. the estimation of the conditional probability

of each class given the fingerprint pattern with its input features. Hence, the

output of each net is a 5-dimensional vector of probabilities. In the following,

we denote with pRNN
c and pMLP

c and so on for the other classifiers, the c-th

outcome of each classifier, representing the probability of the c-th class, given

the pattern (c ∈ {A,L, R, T, W}).
Many experimental results heve been shown that classifiers specialised

on different pattern representations can benefit from the fusion of their out-

comes, especially when this information produces ”complementary” classi-

fiers [Roli 2002]. In our case, RNN, MLP Structural K-nn and Dynamic

Masks were trained to classify on diverse information. We studied their com-

plementarity in next chapter.

Accordingly, we assessed two types of fusion algorithm (or ”combination

rules”). The first one was based on a fixed transformation of the outcomes

of the experts. In particular, we used the mean and the product rules:

winnerClass = argmaxc∈{A,L,R,T,W}
∑

pi
c(4.1)

winnerClass = argmaxc∈{A,L,R,T,W}
∏

pi
c(4.2)

where i ∈ {RNN,MLP, SKnn,DMask}, i.e. represents one of the individ-

ual classifiers and it is possible to have combination either with two, three

or all four individual classifiers.

These simple combination rules require the conditional indipendence of

the classfiers given the class, and a strong complementarity, to give optimal

1In our experiments of system combination we used all these strucutral classifiers, as

well as the cited statistical one.
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results [Kittler 1998].

The second fusion algorithm followed the so-called ”meta-classification”

(as well as known as ”stacked”) approach which uses an additional classifier

for combination [Giacinto 1997]. In particular, a K-Nearest Neighbors clas-

sifier was used [Duda 2001]. The input of such classifier is a novel feature

vector made up of the outcomes of the expert.

4.2 Ensembles of graph matchers

The fusion of classifiers can happen in different points of classification process.

Figure 4.2 shows that one can fuse at the level of acquisition module when

more than one sensor is utilized. It is the Data Level Fusion. Another

possibility is to fuse at the level of features, manipulating them. The Decision

Level Fusion performs the combination of the outputs of individual classifiers.

At any level the designer wants to work, the aim is to generate complementar

classifiers in order that each base-classifier is competent on a feature space

portion or, in general, on a particular domain. We focused our attention to

the latter level of fusion.

In order to create a multiple classifiers system, different kinds of classifiers

can be considered as base classifiers, like proposed in [Serrau 2005] and in

[Marcialis 2003] for fingerprint classification. In these works statistical and

different types of structural classifiers are combinated at the decision-level

fusion. In order to create automatically different classifiers of the same type,

that is, to create ”Ensembles of classifiers”, one can manipulate training data

or input and output features.

By manipulating training data, one can create through the bootstrap
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Figure 4.2: Points of the classification process in which it is possible to

perform the fusion of more classifiers

technique the so called Bagging system [Breiman 1996]. It consists on (i)

constructing N different training sets as bootstrap replicas of the original

one, (ii) for each training set so generated, learning a kind of classifier (as

an example, the classifier could be a decision three or a neural network) and

then (iii) combining the outputs of the individual classifiers with some fusion

rules, for example with the mean rule.

Another famous MCS generated by manipulating training data is Boost-

ing that iteratively trains a classifier by maintaining a set of weights on train-

ing samples. Weights are updated at each iteration, placing more weight on

misclassified samples and less weight on correctly classified ones. This forces

the classifier to focus on hard training samples.

Moreover, other simple methods are data splitting and cross-validation

techniques.

Methods based on In/Out features manipulation are:

• Feature manipulation by hand or algorithm

• The Random Subspace Method (RSM)
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• Input features can be manipulated by adding noise

• Output features can be manipulated for creating diverse classifiers

(ECOC)

Manual or automatic feature selection can be used for creating different

classifiers using diverse feature sets. It can work if there are features either

redundant or irrilevant. The sets obtained by selecting from the original set,

are subset of that.

The most important method to select features, is the Random Subspace

Method. It consists on selecting a certain number of subspaces from the

original feature space, and training a classifier on each subspace [Ho 1998].

Feature subsets can varying in number and in dimensionality2.

Adding noise to feature space is used to resolve the small sample size

problem that arise when the number of training patterns is smaller than the

feature space dimensionality. It is possible to exploit the noise injection into

input features for creating ensembles that differ in training sets. Usually the

noise distribution is Gaussian, but it can distort data configuration, therefore

it is better injecting noise along the direction of the K nearest neighbors of

each pattern [Skurichina 2000].

Error Correcting Output Coding is a way to manipulate output features.

Each classifier of the multiple system is trained to be competent on a sub-

set of the class set. For example, iteratively partitioning the class set into

two subsets, each classifier has to resolve a binary task. Then, a suitable

combination method able to recover the original classes is necessary, e.g. a

decoding matrix whose rows are the original classes and columns are code-

2Dimensionality of subsets is a critical parameter of the RSM
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words associated to each class3.

Finally, one can create multiple classifiers systems by modifying internal

parameters of a certain classifier. As an example, when neural network are

used, its topology and architecture could be modified changing the number of

hidden neurons and/or the number of hidden layers, so generating different

classifiers. In the case of graph-based classifiers, it is possible to exploit

internal parameters such as that used for definition of the distance between

graphs .

4.2.1 Ensembles of statistical vs. structural classifiers

Intuitively, methods that manipulate the training set without operating on

the features, could be applied for create structural MCSs identically to sta-

tistical ones, namely, either Bagging or Boosting, but data splitting or cross-

validation too, if the dataset is enough large. It is not assured that with

these methods a structural classifier can build complementar experts, but

there isn’t any reason that deny it. Therefore, it makes sense trying these

methods. In particular, bagging technique works when base classifiers are ”in-

stable”4. Intuitively, graph-based classifiers are instable, so Bagging should

work if it is applied to a structural classifier.

When MCSs are generated on the basis of features changes, e.g. using the

Random Subspace Method (RSM), the application to structural classifiers is

not trivial. As minimal, it is necessary an extension to treat the feature

3In order to have a good ECOC, row and column separation must be satisfied
4As Breiman says in [Breiman 1996], a classifier is instable if, producing small changes

in bootstrap training sets, after learning phase its outputs are very different with respect

to that obtained without introducing changes in the original training set.
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vectors labels of each node instead of the classical feature vector, which is

unique for each pattern. For example, we can simply select a subset of the

original node labels, of course, always the same for each node and for each

graph (pattern) for consistency reasons. Another way to do an MCS with

RSM is proposed by [Schenker 2004]: he and their contributors select feature

subsets by randomly removing nodes in each graph. In spite of difficulties

to apply this methods, it seems to be interesting to adapt it for structural

classifiers.

Noise injection also is not a trivial extension to graph-based approaches.

To injecting gaussian noise, it should be applied equally to the features asso-

ciated to each node and edge in order to avoid data configuration distortion.

Moreover, adding noise into the K nearest neighbors direction could be given

for each node or edge. Applying this method to create ensembles seems to

be too much complicate, compared with the few benefits obtainable for the

fingerprint classification task.

As regards the ECOC application, since it involves only the output fea-

tures fusion, should be used without changes or extensions for structural

approaches. Like for statistical classifiers, the critical issue is to find a good

coding.

In conclusion, there is much room to research for ensembles of structural

classifiers and there are very few works about it. In particular, for fingerprint

classification anybody before us has investigated the possibility to expand

ensembles to structural or graph-based methods. In this thesys work we

investigated two of the above mentioned approaches: bagging and internal

parameters variation. We explain these methods in the next section.
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4.2.2 Bagging of structural classifiers

As described in section 3.4, the approaches we designed for fingerprint clas-

sification are recursive neural network (section 3.4) and structural K nearest

neighbors (section 3.5). They could be both used as base classifier of bagging,

but for computational complexity reasons, it is not feasible to apply bagging

to structural K-nn. In fact, only one learning of graph-based matchers takes

busy many hours a modern computer. On the other hand, for bagging it is

necessary to use many (theoretically infinite) base classifiers. Therefore, we

apply bagging only to recursive neural network.

After learning phase of the individual classifiers is completed, the poste-

rior probability of each expert is used as feature vector to the combination

module. Since it is a classification task with five classes, we have a feature

vector of five elements for each individual classifier. All these vectors are

the input of a combinator that uses the mean rule to give last classification,

still by a 5-dimensional feature vector of the posterior probabilities. Figure

4.3 shows the architecture of the multiple classifier system obtained using

recursive neural networks as individual classifiers of the bagging approach

and combining with the mean rule, that is, by averaging the posterior prob-

abilities of each test pattern.

4.2.3 Ensembles of structural K-nn

Ensembles of structural K nearest neighbors are obtained by changing the

cost function definition aimed for the edit distance computation. As shown
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Figure 4.3: Architecture scheme of ensembles of recursive neural networks

using bagging

in section 3.5, cost function for a substitution operation is:

(4.3) Ce =

√√√√
Nf∑
i=1

(
Ci

(
fi(v)− fi(w)

)2
)

while the cost function for either a cancellation or a insertion operation is:

(4.4) Ce =

√√√√
Nf∑
i=1

(
Cif 2

i (v)
)

We create diverse classifiers by varying, for each learning process, the

weights Ci associated to each feature present in the cost function definition.

In particular, since the weights Ci are a lot, that associated to the node edit

operations are fixed and that associated to the edge edit operations are vari-

able. Altogether, we have three weiths for substitution node operations plus

one for cancellation/insertion node operations that are fixed, and one weight

for substitution edge operations and two others for cancellation/insertion

edge operations5. In order to reduce the degrees of freedom, i.e. in order

to simplify the problem, the two weights for cancellation/insertion of edges

5In this case the weights are two to distinguish the cancellation/insertion of edges due

to node substitution from that due to node cancellation/insertion.
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are equal. Then, only two weights, that related to edge substitution opera-

tions and that related to edge cancellation/insertion operations, can vary to

generate different base classifiers.

The architecture of the combination system is similar to bagging with

RNNs one. Combination is still performed by mean rule. Figure 4.4 shows

this architecture.

Figure 4.4: Architecture scheme of ensembles of structural K nearest neigh-

bors, generated by varying internal parameters concerning edit distance def-

inition.



Chapter 5

Experimental Investigation

5.1 The data set

The NIST-4 database [Watson 1992], created by the National Institute of

Standard and Technology, is a reference data set widely used for assessing

and comparing fingerprint classification algorithms. It is made up of 4,000

ink-acquired fingerprint images, equally subdivided in five classes (A, L, R,

W, T). Each fingerprint was acquired two times. The first acquisition de-

notes the fingerprints from f0001 to f2000, the second acquisition denotes the

fingerprints from s0001 to s2000. We followed the experimental protocol gen-

erally used for such data set (see e.g. [Jain 1999 b, Yao 2003, Senior 2001]).

The first 1,800 fingerprints (f0001 through f900 and s0001 through s900) were

used for classifier training. The next 200 fingerprints were used as validation

set, necessary to perform early stopping of the neural classifiers (RNN and

MLP) during the learning phase, and the last 2,000 fingerprints as test set.

Seven hundred fingerprint images of NIST4 data set are labelled with two

classes instead of only one (”cross-referenced” fingerprints), as they could

71
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not be reliably assigned to a unique class even by human experts. Table 5.1

shows the distribution of the classes in the NIST-4 data set. Rows indicate

the first class label, columns indicate the second class label. As an example,

the 29,7% of T class fingerprints are ”cross-referenced” with the R class. It

means that the 29.7% of T class fingerprints are labelled as ”TR”, class R be-

ing the second label for such fingerprints. Values along the diagonal indicate

the percentages of fingerprint images labelled with only one class. Typically

[Maltoni 2003], cross-referenced fingerprints are considered correctly classi-

fied if the classifier assigns them to one of the two classes. Table 5.1 points

out that an intrinsic confusion degree characterises the NIST-4 data set. In

A L R T W

A 95.0 0.0 0.3 4.7 0.0

L 0.0 94.5 0.0 5.2 0.3

R 0.0 0.0 93.3 6.2 0.5

T 18.8 20.7 29.7 30.8 0.0

W 0.0 0.3 0.7 0.0 99.0

Table 5.1: Distribution of the class labels in the NIST-4 Database. Rows

indicate the first class label, columns indicate the second class label.

order to use the FingerCode statistical representation [Jain 1999 b], we had

to disregard sixty-three fingerprint images due to the impossibility to find the

”core” point for such poor quality images. It should be noted that Jain et al.

also disregarded such fingerprint images in their experiments [Jain 1999 b].



CHAPTER 5. EXPERIMENTAL INVESTIGATION 73

5.2 Combination of diverse structural classi-

fiers

In this section, we report results on the performance of structural classi-

fiers designed by us (described in chapter3) and of Dynamic Masks devised

by Cappelli et al [Cappelli 1999] and described in section 2.2 We firstly

compared the performance of structural classifiers, in order to analyse their

main pros and cons for fingerprint classification. Then, we investigated their

measurement-level fusion according to chapter 4.

5.2.1 Comparison of structural classifiers performance

Table 5.2 reports the class percentage classification accuracies (second to

sixth columns) and the overall classification accuracy (seventh column). The

second row is related to the dynamic masks method (”DMasks”), the third

one to the recursive neural networks-based approach (”RNN”), and the fourth

one to the structural K nearest neighbors approach (”SKnn”).

A L R T W Overall

DMasks 48.1 84.5 82.1 66.0 78.4 71.5

RNN 90.7 79.1 83.3 36.2 81.4 76.8

SKnn 71.9 62.3 69.4 52.7 66.3 65.2

Table 5.2: Percentages of the class accuracies and the overall accuracy of the

dynamic masks method (”DMasks”), the recursive neural networks (”RNN”),

and the structural K nearest neighbors approach (”SKnn”).

The best performance is exhibited by the RNN classifier (table 5.2, sev-

enth column). This is mainly due to the fact that RNNs do not need of
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class prototypes, because class representations are automatically learnt by

examples. Therefore, RNNs are able to better handle the intrinsic small

class-separation of fingerprints, which make difficult to find a representative

set of class prototypes to use with SKnn. On the other hand, the perfor-

mance of RNN classifier is the worst on the T class. This is probably due

to the massive presence of cross-referenced fingerprints in the NIST4 data

set and the introduction of the soft-target, which allowed us to reduce the

”noise labelling” effect, but at the expense of the T class training effective-

ness, because the T class patterns labelled with only one class are less than

the cross-referenced ones (Table 5.1, fifth row).

Although the SKnn classifier performed worse than the RNN on average,

their behaviour appears to be similar. Both SKnn and RNN performed well

for the A class, and exhibited the worst performance for the T class of fin-

gerprints. The good performance on the A class confirms that structural fea-

tures could be useful to distinguish strongly structured classes. Accordingly,

it can be hypothesized that the performance of the SKnn approach could

be strongly improved if a more robust orientation field segmentation algo-

rithm could be designed, or if effective methods for class prototypes selection

would be available. In fact, although we used the sophisticated fingerprint

segmentation algorithm described in [Maio 1996], segmentations of L, R, and

T class fingerprints often contains errors that make the related graphs very

similar. This issue clearly demand for future work on graph representation

and matching techniques that can handle such segmentation errors.

The dynamic masks classifier performed quite differently with respect

to the others. In particular, the performance on the A class is very low.
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In our opinion, such a low performance can be explained with the absence

of singularity points in the A class, which make quite difficult to design an

appropriate dynamic mask for that class. With regard to this issue, it should

be noted that the performance on the other classes, which exhibit at least

two singularities, is definitely higher.

5.2.2 Decision-level fusion of structural classifiers

First of all, the complementarity among the investigated structural classifiers

was investigated using the so called ”oracle”, that is, the ”ideal” combiner

able to select the classifier, if any, that correctly classifies the input pattern. It

should be noted that the oracle accuracy is usually a very optimistic estimate

of the performance achievable with classifier fusion rules. This is due to the

fact that the oracle give an estimation of the intersection degree among the

sets of misclassified patterns of the individual classifiers, without taking into

account the values of posterior probabilities output by them. In order to

overcome this limitation, we coupled the oracle results with the analysis of the

correlation coefficient among the outputs of each couple of the investigated

classifiers.

The performance of the oracle is shown in table 5.3.

The first column shows the ”fused” classifiers (the percentage accuracy

of the best individual classifier is reported in brackets), the second column

shows the performance of the related oracle. Table 5.3 points out that dy-

namic masks and the other structural classifiers exhibit a certain comple-

mentarity degree (second and third rows). It is also worth noting that the

highest classification rate can be potentially achieved by combining all three
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FUSION of Oracle

DMasks-RNN (76.8) 91.1

DMasks-SKnn (71.5) 89.2

RNN-SKnn (76.8) 86.1

DMasks-RNN-SKnn (76.8) 94.1

Table 5.3: Performance of the oracle. Accuracy of the best classifier in each

combination is reported in brackets

investigated structural classifiers. This means that each classifier can sig-

nificantly contribute to the performance improvement. However, Table 5.4

shows that the correlation coefficient among their outputs per class is aver-

agely high, except for the couple RNN-DMasks and SKnn-DMasks on A and

T classes. These values could be expected because all methods are aimed to

describe the same data, i.e. the orientation field segmentation, and also they

use similar structural representations. Accordingly, it could be difficult to

exploiting the complementarity among these classifiers.

Class A Class L Class R Class T Class W

SKnn+DMasks 0.35 0.55 0.58 0.24 0.59

SKnn+RNN 0.81 0.59 0.66 0.46 0.63

DMasks+RNN 0.40 0.67 0.69 0.40 0.70

Table 5.4: Correlation coefficient computed among the individual classifiers.

For each classifiers pair, the correlation among class posterior probabilities

vectors of a test pattern is determined. Then, the mean for class is calculated.

Table 5.5 shows the performance of individual classifiers and their related

decision-level fusion with different combination rules.

The best performance is achieved by the fusion rules based on the KNN
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FUSION of Mean Product KNN

DMasks-RNN (76.8) 80.6 79.2 81.7

DMasks-SKnn (71.5) 79.1 77.8 79.8

RNN-SKnn (76.8) 76.1 76.7 76.6

DMasks-RNN-SKnn (76.8) 82.4 82.2 83.6

Table 5.5: Percentage accuracy of the measurement-level fusion of the inves-

tigated structural classifiers by the mean rule, the product rule, multi-layer

perceptron (MLP) and K-nearest neighbour (KNN). The overall accuracy of

the best individual classifier is reported in brackets in the first column

when all the three structural classifiers are combined. But the simple mean

rule also gives a good performance (table 5.5, fifth row). This result points

out that the contribution of structural K nearest neighbors classifier is dif-

ficult to exploit, probably because of the low performance of this approach.

On the other hand, reported results points out the high complementarity

between the dynamic masks and RNN classifiers. The improvement of the

classification performance is about 7% and, according to the oracle results,

there is still room for further improvements (table 5.3, tab:structFus, fifth

row).
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5.3 Comparison and combinations between

structural and statistical classifiers

5.3.1 Comparison among statistical and structural ap-

proaches

Table 5.6 reports the accuracy on the test set of the statistical classifier men-

tioned in Section 2.1, that is, the multi-layer perceptron using FingerCodes.

First of all, Table 5.6 shows that the overall accuracy of the statistical classi-

fier is higher than the one of any structural classifiers and their combination.

However, it is evident from tables 5.2 and 5.6 that, for the A class, the struc-

tural classifiers perform definitely better than the statistical one (except for

the dynamic masks method).

Class A Class L Class R Class T Class W Overall

Statistical classifier 80.5 91.8 89.5 79.1 89.4 86.0

Table 5.6: Percentage class accuracies and overall accuracy of multi-layer

perceptron trained with FingerCodes on NIST-4 test set

In order to investigate the advantages of structural approaches for dis-

criminating classes with a clear structure, for which standard statistical clas-

sifiers often perform not well, we analysed in detail the confusion degree

between the A and T classes. Table 5.7 shows the confusion degree between

the A and T classes (i.e., the percentage of fingerprints of the A class misclas-

sified as T class fingerprints) of the individual structural classifiers, their best

fusion, and the statistical classifier. It should be noted that the confusion

among such classes is a well-known issue for the state-of-the-art statistical
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classifiers. Table 5.7 shows that structural approaches can be useful to rec-

ognize strongly structured fingerprint classes, such as the A class. Even for

the dynamic masks and the SKnn classifiers, which do not outperform the

statistical classifier individually, Table 5.7 shows that their fusion definitely

improve the performance.

Classifiers A - T confusion degree

DMasks 19.8

RNN 2.7

SKnn 19.4

Best fusion DMasks-RNN 4.5

Best fusion DMasks-SKnn 5.0

Best fusion RNN-SKnn 2.9

Best fusion DMasks-RNN-SKnn 5.2

Statistical classifier 16.7

Table 5.7: Percentage of A-T classes confusion degree of the individual clas-

sifiers (masks, RNN, SKnn), their best fusion, and the statistical classifier.

The best fusion has been reported according to the best overall accuracy

showed in table 5.5

5.3.2 Fusion of statistical and structural approaches

Table 5.8 reports the overall accuracy obtained by using the oracle and the

product, mean and KNN fusion rules (third, fourth, fifth and sixth columns,

respectively). We also reported the correlation coefficient of the maximum

posterior probabilities output by each statistical-structural classifiers couple

in the second column. These values, coupled with the oracle performance,

points out the strong complementarity between structural and statistical
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approaches. In particular, the overall accuracy of the oracle reaches a value

near to the 100.0% in the case of the fusion of all classifiers. The other

columns shows that this complementarity can be exploited by the fusion

rules.

Fusion of Corr. Coeff. Oracle Mean Product KNN

Statistical-DMasks 0.30 93.0 84.4 83.5 86.2

Statistical-RNN 0.26 94.0 87.6 87.8 88.5

Statistical-SKnn 0.23 93.1 86.7 87.0 88.6

Ststistical-RNN-SKnn - 95.5 86.0 87.5 89.0

Statistical-DMasks-SKnn - 96.1 86.8 85.8 88.0

Statistical-DMasks-RNN - 96.5 88.2 85.8 88.8

Statistical-DMasks-RNN-SKnn - 97.2 88.6 87.0 89.6

Table 5.8: Percentage accuracy on overall of the oracle and the investigated

fusion rules. The correlation coefficient of each statistical-structural classi-

fiers couple is reported in the second column.

In particular, the good results of mean and product rules, which are

simpler than the KNN one, can be explained with the help of Table 5.9.

This table reports the mean of the posterior probability of each class for the

investigated structural and statistical classifiers. It shows that the outputs

of the statistical classifier are averagely higher than those of the structural

approaches, except for the DMasks classifier. This means that it is very

difficult to change the decisions of the statistical classifier. On the other

hand, structural K nearest neighbors and rnn classifiers exhibit a lower value,

especially for those classes they are not effective (L, R, T classes). This

means that, in many cases, their decision could be ‘corrected’ by a classifier

which exhibit a ‘stronger’ behaviour, namely, the statistical one. The same
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observation can be made for the A class, where SKnn and RNN outperform

the statistical classifier. Their posterior probabilities on this class exhibit

a value higher than that of the statistical one. Accordingly, many wrong

decisions of the statistical approach on this class could be recovered (i.e.,

can be turned on right decisions) by the fusion with structural ones. In fact,

as the fusion by K-nn metaclassifier shows, better performance are achieved

when statistical classifier is combined with RNN or SKnn classifier, in spite

of the low overall accuracy of the last one.

Class A Class L Class R Class T Class W

SKnn 0.78 0.54 0.60 0.23 0.57

RNN 0.73 0.61 0.65 0.27 0.78

DMasks 0.43 0.80 0.76 0.40 0.76

Statistical 0.69 0.85 0.82 0.60 0.87

Table 5.9: Mean of class posterior probabilities for each class, for individual

classifiers on the test set

Figure 5.1 shows the accuracy-rejection curves of the best classifiers and

fusion approaches we investigated. The rejection option makes sense when

a fingerprint cannot be classified without a large margin of uncertainty, so

increasing the probability of wrong classification, and, consequently, increas-

ing the identification time. In this case, it can be better: (i) to leave the

decision to a human expert, or (ii) to submit the fingerprint to a specialised

classification module, if any, or (iii) to associate the fingerprint to the couple

of most probable classes (and doing a search in the data base limited to such

classes). The use of the rejection option obviously increases the final identifi-

cation time (Section 1). Therefore, a good trade-off between the percentage
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Figure 5.1: The accuracy-rejection curves of the best classifiers and their

best fusion algorithm. Graphic 5.1(a) shows the overall accuracy, whereas

graphic 5.1(b) shows the accuracy of A class.

of rejected fingerprints and the required classification accuracy is needed.

As the FBI requirements for the NIST data bases are 99% of classification

accuracy with 20% rejection rate [Maltoni 2003, Karu 1996, Senior 2001],

we investigated accuracy for rejection rates ranging from 2% to 20% in our

experiments.

We followed the Chow’s rule for rejecting the pattern [Chow 1970], that is,

its maximum posterior probability should exceed a certain rejection thresh-

old otherwise it is considered as ”‘rejected”’ or not classified. From Figure

5.1, it is evident that, by increasing the number of structural classifiers, it

is possible to gradually improve the performance and also to obtain a bet-

ter classification accuracy when the rejection rate increases, especially for

class A accuracy. This confirms that each classifier contributed to the per-
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formance improvement significantly, and also impacts on the reliablity of the

classification system.

5.4 Bagging with recursive neural networks

In this section, results on the performance of ensemble of recursive neural

networks generated using bagging approach is reported. As shown in section

4.2, Bagging is a typical method used for generating a multiple classifier

system, automatically from the same kind of base classifier. The diversity

of individual classifiers in the combination system is due by generating N

different bootstrap replicas of the original training set. It is well known

([Breiman 1996] that the number of training replicas must be infinite, that

is, N must be enough great to be considered infinite. How much great should

be N , dipendes on the particular application and it is not simple to find

its value. A typical solution is to learn many individual classifiers and to

stop the addition of classifiers in the combination system when the so called

”plateau” is found in the graphic representing the behaviour of combination

accuracy with respect to the number of individual classifiers. In this case,

i.e. recursive neural networks as base classifiers for fingerprint classification

on NIST4 database, it is chosen N = 100. Then, in order to combine the

base classifier outputs, mean rule is used. Figure 5.2 shows the behaviour of

bagging accuracy with respect to the N values.

The curve displais that the plateau is reached when about 30 base classi-

fiers are combined and the accuracy is approximately 76.6%. Since the overall

accuracy of a single recursive neural network, learned without using bagging,

is 76.8%, it is worth noting that bagging doesn’t improve performance of a
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Figure 5.2: Behaviour of bagging accuracy on the test set of NIST4 database

with respect to N. Base classifiers are recursive neural networks.

single recursive neural network.

As one could to expect, accuracy of base classifiers is a little worst with

respect to that of a single RNN; this fact is due to the instability intro-

duced by bootstrap technique. As the figure shows, the combination of base

classifiers improve with respect to them. In conclusion, seems that bagging

doesn’t work better than the single recursive neural network for fingerprint

classification.

5.5 Ensembles of structural K-nn

In this section, we report performance results of Ensembles of graph matchers,

where graph matchers are structural K nearest neighbors described in section

4.2.

As the computational complexity is too much and the learning process of

each individual classifier in the combination system is very time consuming,
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it is not feasible to experiment it with all NIST4 dataset we used for the

other multiple classifier system, as described in sections 5.2 and 5.3.

Only one individual classifier is learned on all NIST4 dataset and its per-

formance are shown in table 5.2, fourth row. The overall accuracy reported

in this table is 65.2% and the classes accuracy is similar to that of recursive

neural network, i.e. the A class accuracy is very high with respect to the

overall accuracy, while other classes don’t achieve good performance, mostly

the T class. In our opinion, this similar behaviour is due to the fact that the

same image representation (i.e. the orientation field) and the same features

are used for both approaches.

In order to demonstrate the effectiveness of this method, aimed to create

ensembles of graph matchers in spite of computational difficulties, a reduced

set of 200 elements for the training set and other 200 elements for the test

set is extracted to NIST4 database; in order to respect the prior probabilities

of each class, patterns are randomly selected for the original dataset, that is,

the prior probabilities are all the same for each class with respect to the first

label of each pattern.

Table 5.10 shows accuracies on the test set of individual classifiers, gen-

erated by varying cost function of edit distance in the structural K nearest

neighbors. Each row represents a classifier. First and second columns are

edit operation weights that characterize differences of each classifier. As said

in section 4.2, only weights of edge edit operations vary to generate diverse

classifiers.

It is worth noting that performance of individual classifiers are not so

different. But combination of some of these classifiers, as shown in table 5.11,
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C1 C2 Overall accuracy

15 5 62,00

3 1 58,50

10 1 57,50

15 3 57,50

15 1 57,50

20 2 56,00

30 3 58,00

17 4 62,50

16 2 58,50

17 1 58,00

10 5 60,50

15 5 62,00

10 8 62,00

10 1 61,50

5 1 62,50

Table 5.10: Accuracy of individual classifiers, generated by varying cost func-

tion of edit distance in the structural K nearest neighbors. Each row repre-

sents a classifier. First and second columns are edit operation weights that

characterize differences of each classifier.

improves performance of the best individual classifier. For the combination

phase, classifiers are selected on the basis of a validation set.

Each row is referred to a multiple classifier system. Each column, except

last one, indicates the overall accuracy of individual classifier, while last

column indicates the overall accuracy of multiple classifier system obtained

fusing the classifiers of the same row. It is worth noting that, by increasing

the number of individual classifiers, combination system doesn’t improve its
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(a)

S1 S2 Fusione

60.5 61.5 65.5

60.5 62.5 67.0

62.0 60.5 64.5

57.5 60.5 63.5

(b)

S1 S2 S3 Fusione

62.5 60.5 62.5 67.0

62.5 60.5 58.5 65.5

57.5 57.5 57.5 62.0

57.5 60.5 62.5 63.5

(c)

S1 S2 S3 S4 S5 S6 Fusione

57.5 62.0 62.5 62.5 60.5 62.0 64.0

57.5 57.5 62.0 62.5 62.5 60.5 65.0

Table 5.11: Overall accuracies of ensembles of graph matchers fused by mean

rule. Combination architecture has of 3, 4 and 6 base classifiers, generated by

varying cost function of edit distance in the structural K nearest neighbors.

performance. In particular, the best combination is obtained both with the

two individual classifiers related to third row in the table 5.11(a) and with

three individual classifiers related to second row in the table 5.11(b).

Table 5.12 shows performance of individual classifiers (second and third

row) and related combination of the best fusion of ensembles of graph match-

ers (fourth row) in terms of class accuracies.

It is worth noting that the behaviour of individual classifiers is similar:

very high percentage of correct classified patterns for the A class and worst

performance for T and W classes. The A class classification improvement of
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Class A Class L Class R Class T Class W Overall

Expert 1 70.45 73.81 57.89 58.06 51.11 62.50

Expert 2 72.09 69.05 48.72 58.06 53.33 60.50

Fusion 93.02 69.05 53.85 38.71 71.11 67.00

Table 5.12: Percentages of the class accuracies and the overall accuracy of

individual classifiers and related combination of the best fusion of ensembles

of graph matchers.

the combination is more than 20% with respect to the best A class accuracy

of single classifiers. Hence, A class accuracy becomes comparable with the A

class accuracy of diverse classifiers combination, namely, all structural and

statistical shown in section 5.3.2 (in particular, see figure 5.1(b)). Moreover,

also W class accuracy improves approximately of 20% with respect to W class

accuracies of single classifiers. Unfortunately, T class accuracy deteriorates

its performance.



Chapter 6

Conclusions

6.1 Conclusions on diverse classifiers fusion

In chapters 3 and 4 the structural approaches and its combination with the

statistical one were investigated. The aim of our study was:

1. to show the classes for which the structural approaches could be effec-

tive

2. to investigate the theoretical potentialities of structural-statistical fu-

sion

3. to investigate some fusion rules for exploiting such potentialities

We firstly trained and tested a recursive neural network for distinguishing

among fingerprints represented by a DPAG, a graph describing the fingerprint

structure. The proposed structural approach presented important modifica-

tions with respect to that proposed in previous works: we avoided the DPAG

generation dependence on the singularity points, which cannot be easily de-

tected in many computed fingerprint images; we reduced the noise labelling

89
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introduced by the ambiguous fingeprints by using a soft-target during the

RNN training.

Then, we trained and tested a structural K nearest neighbors for distin-

guishing among fingerprints represented by a relational graph describing the

fingerprint structure in a different way with respect to that of DPAG for re-

cursive neural networks. This proposed method is a tipical way for classifing

structural patterns, but it is the first time that it is applied to fingerprint

classification.

We combine these approaches and another relevant structural approach

reported in the literature, the dynamic masks approach, themselves and com-

pared their results with that of statistical classifier based on FingerCode. Ex-

perimental results appear to confirm that structural approaches can perform

better than statistical ones for the strongly structured fingerprint classes,

such as the A class. Moreover, their fusion can help in improving classifica-

tion performances and, in particular, to reduce the problem of A-T classes

confusion degree, which is a well- known issue for currently used statistical

classifiers. Although definitive conclusions cannot be drawn on the basis of

the above limited set of experiments, we believe that this work can contribute

to start the discussion about advantages and drawbacks of structural meth-

ods for fingerprint classification, and also to indicate some aspects worthy of

further investigations.

We combined the structural approaches results with those of a statisti-

cal approach based on the FingerCode. Reported results pointed out that

structural approaches can distinguish the A class much better than the sta-

tistical one. On the other hand, the structural approaches are not sufficient
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to achieve good classification performance on the other classes.

Then, we studied the complementarity among structural and statistical

approaches. The ”oracle” and the correlation coefficient of their outputs

used to this aim pointed out the strong complementarity among the above

approaches. In particular, the role of each approach to perfomance improve-

ment is quite different, being the structural aprroaches specialised on the A

class and the statistical one on the other classes.

Accordingly, we applied different fusion rules to exploit such complemen-

tarity: the fixed rules (non parametrical rules, so defining a simple fusion

architecture) and the so called meta-classification approach (a K nearest

neighbors, so defining a more complex fusion architecture). Reported re-

sults on fusion of structural and statistical approaches definitely showed the

improvement of the performance with respect to that of the best individ-

ual one. A sharp classification performance increase has been pointed out

both from fixed rules and meta-classifier. This result pointed out that such

complementarity exploitation does not often require very complex fusion ar-

chitectures. As an example, the mean rule exhibited a classification accuracy

superior than that presented by the KNN architecture on the W class; in

other cases, performance of fusion by KNN and the fixed rules were com-

parable. As expected, a powerful fusion rule, as the KNN metaclassifier,

has been able to better approximate the oracle behaviour, by working as a

”selector” among the structural classifiers and the statistical one for each

pattern class.

The complementarity esploitation of the decision-level structural-statistical

fusion has been confirmed by the recover rate analysis of all fusion rules. In
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particular, the investigated fusion rules exhibited a high capability of recov-

ering patterns wrongly classified by structural approaches. Many A class

pattern wrongly classified by the statistical approach have been recovered by

our fusion rules too.

Finally, as the accuracy-rejection trade-off is an important issue for a

real automatic fingerprint classification systems, reported accuracy-rejection

curves analysis based on the Chow’s theory pointed out that decision-level

fusion is more effective than the best individual approach (the statistical one

for the L-R-T-W classes, the structural ones for the A class) in improving the

overall performance when ambiguous fingerprint cannot be reliably classified.

Firstly, none of the few works investigating the structural fingerprint clas-

sification experimentally analysed the fingerprint classes for which a struc-

tural approach is useful. On the contrary, in this work, we clearly showed

the crucial role that the proposed structural approaches play in fingerprint

classification. Accordingly, the interest in structural fingerprint classifica-

tion should be renewed: other structural approaches could be analysed and

their fusion with other statistical approaches could be investigated to obtain

more general results than ours. Secondly, very few works about decision-level

structural-statistical fusion have been proposed so far. However, the high po-

tentiality of such fusion, which we showed in this work using different fusion

rules, should contribute to stimulate the interest around such challenging

topic. In particular, the design of decision-level fusion rules explicitly aimed

to exploit the structural-statistical complementarity is still an open issue.
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6.2 Conclusions on ensembles of graph match-

ers

Once designed the individual classifiers (recursive neural network and struc-

tural K nearest neighbors), they are adapted to generate ensembles, that is,

a lot of individual classifiers of the same type trained with some different

characteristic about internal parameters, input features or output features.

We trained and tested two kind of ensembles, the first regarding recur-

sive neural network with differences in input features, the latter regarding

structural K nearest neighbors with differences in internal parameters.

Ensembles of recursive neural networks, generated using bagging proce-

dure, have performance similar that obtained with a single recursive neural

network. Performance of the individual RNNs trained with bagging, are lower

than a single RNN trained without bagging perturbation. With respect to

base classifiers performance, ensembles improve their accuracy. Hence, al-

though the overall accuracy for fingerprint classification on NIST4 is not

better than the single classifier one, ensemble created by bagging works well,

like for statistical base classifiers.

Ensembles of structural K nearest neighbors are trained and tested on

a reduced dataset for computational complexity reasons. Base classifiers so

generated are weak classifiers and their performance are similar. Combina-

tion of some base classifiers outperforms with respect to the best individual

classifier. By increasing the number of individual classifiers, combination

system doesn’t improve its performance. It is probably due to the fact that

base classifiers have similar behaviour, hence few classifiers have a high com-
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plementarity with respect to the others. Regarding the single class accura-

cies, the behaviour of individual classifiers is similar: very high percentage

of correct classified patterns for the A class and worst performance for T

and W classes. The A class classification improvement of the combination is

more than 20% with respect to the best A class accuracy of single classifiers.

Moreover, also W class accuracy improves approximately of 20% with respect

to W class accuracies of single classifiers. Unfortunately, T class accuracy

deteriorates its performance.

Another time we found the most relevant result: structural classifiers, ei-

ther single or combined, are very usefull to distinguish the strong structured

classes, such as the A class for fingerprint classification. Like for diverse

structural-statistical combination, for ensembles of structural matchers too,

none of the few works investigating the structural fingerprint classification

experimentally analysed the fingerprint classes for which a structural ap-

proach is useful. On the contrary, in this work, we clearly showed the crucial

role that the proposed structural approaches play in fingerprint classifica-

tion. Accordingly, the interest in structural fingerprint classification should

be renewed: other approaches of ensembles of structural classifiers could be

analysed and investigated to obtain more general results than ours. Secondly,

very few works about ensembles of graph matchers have been proposed so

far, especially for fingerprint classification. However, the high potentiality

of such fusion, should contribute to stimulate the interest around such chal-

lenging topic. In particular, the design of other multiple classifiers systems

using graph-based approaches explicitly aimed to exploit the base classifiers

complementarity is still an open issue, which will be the subject of our future
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works.
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