
A Software Process Simulation Model of

Extreme Programming

Marco Melis

February 7, 2006

Contents

Introduction vi

1 XP Overview 1

2 Software Process Simulation Modeling 6

2.1 Common uses of simulation modelling 8

2.2 Simulation techniques and approaches 13

2.2.1 Continuous Simulation 13

2.2.2 Discrete Event Simulation 15

2.2.3 Deterministic, Stochastic and Mixed Simulation 20

2.2.4 Sensitivity Analysis . 21

3 Studies on XP 22

3.1 XP Case Studies . 22

3.2 Pair Programming . 26

3.3 Test First Programming . 30

4 Related Works 36

5 Model Description 38

5.1 The Simulation Modeling Approach 38

5.2 Model Description . 40

5.2.1 Model Entities . 41

5.2.2 Model Actors . 45

5.2.3 Model Activities . 50

5.3 The Simulator Engine . 61

5.4 A Quick View to the Simulation Flow 63

5.5 A Better Explanation of the Practices’ Usage Level 64

5.6 Calibration and Validation . 67

6 Experimental Results 72

6.1 Research Hypotheses . 72

6.2 Simulation Results . 73

6.2.1 Further Analysis on the Simulation Model 77

6.2.2 Statistical Analysis of the Results 82

7 Conclusions and Future Work 87

A Parameters 99

B Detailed Results 103

List of Figures

2.1 Structure of a discrete event simulation system. 17

2.2 Details of the event approach structure. 18

5.1 Class diagram of the model entities. 42

5.2 Class diagram of the model actors. 46

5.3 Class diagram of the model activities. 51

5.4 Class diagram of the model events. 52

5.5 Refactoring probability. 59

6.1 Simulation results varying TDD. 78

6.2 Simulation results varying PP. 79

6.3 Actual PP usage percentage varying PP. 80

6.4 Simulation results varying actual PP. 81

6.5 Fitting USs distribution. 82

6.6 Fitting Days distribution. 84

6.7 Fitting Defects/KLOC distribution. 84

6.8 Fitting KLOCs distribution. 85

6.9 Box plots of the output variables. 86

List of Tables

3.1 Measurement of implementation quality. 24

3.2 Pair Programming experiments and case studies. 34

3.3 TDD experiments and case studies. 35

5.1 Defect injection rate multipliers. 60

5.2 RepoMargining input parameters. 68

5.3 RepoMargining simulation results. 69

5.4 M@Info input parameters. 70

5.5 M@Info simulation results. 71

6.1 The four project research conditions. 73

6.2 Simulation results. 74

6.3 Hypotheses tests. 76

6.4 Simulation results varying problem reports. 77

6.5 Test fit for the output variables distribution. 83

A.1 Input and output variables. 99

A.2 Project specific parameters. 100

A.3 Inner model parameters. 101

A.4 Practice influence weights. 102

B.1 Descriptive Statistics: case 1. 103

B.2 Descriptive Statistics: case 2. 103

B.3 Descriptive Statistics: case 3. 104

B.4 Descriptive Statistics: case 4. 104

B.5 Descriptive Statistics: case 1 with PR. 104

B.6 Descriptive Statistics: case 2 with PR. 104

B.7 Descriptive Statistics: case 3 with PR. 105

Introduction

Extreme Programming (XP) [4] is a new lightweight software development

methodology which has become very popular in recent years. However, the

effectiveness of XP practices has still to be assessed. Few studies have been

published that provide quantitative results and most of them comes from

empirical experiments which are extremely costly to perform and for which

it is virtually impossible to achieve a high degree of completeness. The use of

simulation to estimate and qualitatively verify the effectiveness of a particular

development process often represents a valid alternative solution.

The main goal of this research is to better understand the XP process

and to evaluate its effectiveness. In particular it is aimed to investigate how

its key practices influence the evolution of a certain project. To achieve

this, software process simulation has been chosen. A process model has been

developed and a simulation executive has been implemented to enable simu-

lation of XP software development activities. The model follows an object-

oriented approach and was implemented in Smalltalk language, following the

XP process itself. It is able to vary the usage level of some fundamental XP

practices (Pair Programming, Test-First Programming), and to simulate how

the modelled project entities evolve as a result.

Thesis Organization

The thesis is organized as follows:

Chapter 1: this chapter gives a background on the Extreme Programming

methodology and of the values and practices which characterize it;

Chapter 2: in this chapter, a description of Software Process Simulation

and of the more commons modelling techniques is reported;

Chapter 3: the existing empirical studies on Extreme Programming, with

particular attention to those related to Pair Programming and Test-

First Programming, are reported here;

Chapter 4: this chapter presents some important related works on simula-

tion modeling of Extreme Programming aimed to study the effective-

ness of its practices;

Chapter 6: this chapter shows the experimental results obtained simulating

an XP project.

Chapter 7: a summary of the findings of the thesis and further research

works are given in this chapter.

Chapter 1

Extreme Programming

Overview

In recent years Extreme Programming (XP) [2], [4] is the agile methodol-

ogy that has received most attention. In XP there is a strong emphasis on

informal and immediate communication, automated tests and pair program-

ming, which monitor the progress of the software development, allowing a

continuous feedback at different time scales.

The roots of XP lie in the Smalltalk community and, in particular, in

the close collaboration of Kent Beck and Ward Cunningham beginning in

the late 1980’s. Both of them refined these practices on numerous projects

during the early 1990’s, extending their ideas of a software development

approach that was both adaptive and people-oriented [23], [61]. The crucial

step from informal practice to a methodology occurred in 1997 when Kent

Beck successfully used the full set of XP practices (which will be described

later in this section) to implement a payroll project for Daimler Chrysler

[23]. Since then, XP has been successfully used at many companies, such as

2

Bayerische Landesbank, Credit Swiss Life, First Union National Bank, Ford

Motor Company and UBS [61].

XP is based on Beck and Cunninghams observations of what made pro-

gram development faster and what made it slower. XP is an important new

methodology because it is one of the several new agile software methodolo-

gies created to produce high quality software and reduce the cost of software

[23].

These experiences were then formalized and published in 1999 by Kent

Beck in the first edition of “Extreme Programming Explained – Embrace

Change” [2]. He defined a set of 12 practices that embody four fundamen-

tal values: communication, feedback, courage, simplicity. Five years later a

new edition of the same book appeared, with a renewed vision of the same

methodology [4]. This new version is based on the lessons learned by the XP

community since the publication of the first book.

The new XP includes five values, fourteen principles, thirteen primary prac-

tices and eleven corollary practices. Here I give you a little description of the

five values:

Communication This XP value focuses on building a person-to-person,

mutual understanding of the problem environment through minimal

formal documentation and through maximum face-to-face interaction.

XPs practices are designed to encourage interaction, developer-to-de-

veloper and developer-to-customer [12].

Simplicity. This XP value challenges each team member to continuously

ask, What is the simplest thing that could possibly work? [12]. The

XP originators contend that it is better to do a simple thing today and

3

pay a little more tomorrow for change than to do a more complicated

thing today that may never be used [12].

Feedback. XP teams obtain feedback by testing their software early and

often [19]. They deliver the system to the customers as early as possible

and implement changes and re-prioritization as suggested by feedback

from the customer.

Courage. Developers often cite the pressure to ship a buggy product. It

takes courage to resist this pressure [12]. Beck also states that XP

teams must be courageous and willing to make changes late in the

project or even discard the code and start all over again [12].

Respect. The previous four values imply a fifth: respect. If members of

a team dont care about each other and their work, no methodology

can work. You must be respectful to your colleagues and their contri-

butions, to your organization, to persons whose life is touched by the

system you are writing [40].

As Beck says, “Values bring purpose to practices.” and “Practices are ev-

idence of values”. A brief description list of the primary practices is reported

below, as excerpted from “The New XP” written by Michele Marchesi [40]:

Stories: the functionalities of the system are described using stories, short

descriptions of customer-visible functionalities. Stories also drive sys-

tem development.

Weekly Cycle: software development is performed a week at a time. At

the beginning of every week there is a meeting where the stories to

develop in the week are chosen by the customer.

4

Quarterly Cycle: on a lager time scale, development is planned a quarter

at a time. This is made up of reflections on the team, the project and

the progress.

Slack: avoid to make promises you cannot fulfill. In any plan, include some

tasks that can be dropped if you get behind. In this way, you will keep

a security margin, to be used in the case of un-forecasted problems.

Sit Together: development teams should work in an open space, able to

host the whole team, to maximize communication.

Whole Team: the team should be composed of members with all the skills

and the perspectives needed for the project to succeed. They must

have a strong sense of belonging, and must help each others.

Informative Workspace: the workspace should be provided with informa-

tive posters and other stuff, giving information on the project status

and on the tasks to be performed.

Energized Work: developers must be refreshed, so that they can focus on

their job and be productive. Consequently, limit overtime working so

everyone can spend time for his or her own private life. This practice

in the old version of XP was called “sustainable pace”.

Pair Programming: the code is always written by two programmers at one

machine. This practice exits already in the original XP.

Incremental Design: XP opposes producing a complete design up front.

The development team produces the code as soon as possible in order

to obtain feedback and improve the system continuously. Design is

5

indispensable to obtain good code. The question is when to design.

XP suggests to do it incrementally during coding. The way helpful to

obtain this is to eliminate duplications in the code.

Test-First Programming: before updating and adding code, it is neces-

sary to write tests in order to verify the code. This solves four problems:

• Cowboy coding: It is easy to get carried away to program quickly

and put everything in mind in the code. If we write tests and you

have to run them, the tests help us focus on the problem at hand,

and can prove that our design is correct.

• Coupling and cohesion: if it isn’t easy to write a test, this means

that you have a problem of design, not of testing or coding. If

your code is loosely coupled and highly cohesive, you can test it

easily.

• Trust: if you write code that works and you document it with

automated tests, your teammates will trust you.

• Rhythm: it is easy to get lost and wander for hours when you

are coding. If you accustom yourself to the rhythm: test, code,

refactor, test, code, refactor, it will not happen.

Ten-Minute Build: system should be built and all of the tests should be

finished in ten minutes, in order to execute it often and obtain feedback

.

Continuous Integration: Developers should be integrating changes every

two hours in order to ease integration headaches.

Chapter 2

Software Process Simulation

Modeling

Software Process Simulation (SPS) is becoming increasingly popular in the

software engineering community, both among academics and practitioners

[32]. In fact, new and innovative software engineering techniques are con-

stantly being developed, so a better understanding of these is useful for as-

sessing their effectiveness and predicting possible problems. Simulation can

provide information about these issues avoiding real world experimentation,

which is both time and cost-intensive.

This area of SPS has attracted growing interest over the last twenty years,

but only recently is it beginning to be used to address several issues concern-

ing the strategic management of software development and process improve-

ment support. It can also help project managers and process engineers to

plan changes in the development process. The development of a simula-

tion model is a relatively inexpensive way – compared to experimenting with

actual software projects – of gathering information when costs, risks and

7

complexity of the real system are very high.

In order to relate the real world results to simulation results, it is usual

to combine empirical findings and knowledge from real processes. In general,

empirical data are used to calibrate the model, and the results of the simu-

lation process are used for planning, design and analyzing real experiments

[54].

Some key concepts have to be explained in order to have a better under-

standing of this area, in particular what “model” and “simulation model”

means. A model is an abstraction (i.e., a simplified representation) of a real

or conceptual complex system. A model is designed to display significant

features and characteristics of the system, which one wishes to study, pre-

dict, modify, or control. Thus a model includes some, but not all, aspects of

the system being modelled.

A simulation model is a computerized model that possesses the char-

acteristics described above and that represents some dynamic system or phe-

nomenon. One of the main motivations for developing a simulation model

or using any other modeling method is that it is an inexpensive way to gain

important insights when the costs, risks, or logistics of manipulating the real

system of interest are prohibitive. Simulations are generally employed when

the complexity of the system being modelled is beyond what static models

or other techniques can usefully represent [32].

2.1 Common uses of simulation modelling 8

2.1 Common uses of simulation modelling

Common 1 purposes of simulation models are to provide a basis for exper-

imentation, predict behavior, answer “what if” questions, teach about the

system being modelled, etc. A software process simulation model focuses on

some particular software development / maintenance / evolution process. It

can represent such a process as currently implemented (as-is), or as planned

for future implementation (to-be). Since all models are abstractions, a model

represents only some of the many aspects of a software process that poten-

tially could be modelled namely the ones believed by the model developer

to be especially relevant to the issues and questions the model is used to

address.

There is a wide variety of reasons for undertaking simulations of software

process models. In many cases, simulation is an aid to decision making. It

also helps in risk reduction, and helps management at the strategic, tactical,

and operational levels. Here we have a list of the main reasons for using

simulations of software processes.

Strategic management. Simulation can help address a broad range of

strategic management questions, such as the following. Should work

be distributed across sites or should it be centralized at one location?

Would it be better to perform work in-house or to out-source (sub-

contract) it? Would it be more beneficial to employ a product-line

approach to developing similar systems, or would the more traditional,

individual product development approach be better suited to software

1This section has been excerpted from the paper “Software Process Simulation Model-

ing: Why? What? How?” [32].

2.1 Common uses of simulation modelling 9

process improvement initiatives?

In each of these cases, simulation models would contain local organi-

zational parameters and be developed to investigate specific questions.

Managers would compare the results from simulation models of the

alternative scenarios to assist in their decision making.

Planning. Simulation can support management planning in a number of

straightforward ways, including

• forecast effort / cost, schedule, and product quality;

• forecast staffing levels needed across time;

• cope with resource constraints and resource allocation;

• forecast service-level provided (e.g., for product support);

• analyze risks.

All of these can be applied to both initial planning and subsequent

re-planning. Simulation can also be used to help select, customize, and

tailor the best process for a specific project context. These are process

planning issues.

Control and operational management. Simulation can also provide ef-

fective support for managerial control and operational management.

Simulation can facilitate project tracking and oversight because key

project parameters (e.g., actual status and progress on the work prod-

ucts, resource consumption to-date, and so forth) can be monitored and

compared against planned values computed by the simulation. This

2.1 Common uses of simulation modelling 10

helps project managers determine when possible corrective action may

be needed.

Project managers can also use simulation to support operational deci-

sions, such as whether to commence major activities (e.g., coding, inte-

gration testing). To do this, managers would evaluate current project

status using current actual project data and employ simulation to pre-

dict the possible outcome if a proposed action (e.g., commence integra-

tion testing) was taken then or delayed.

Process improvement and technology adoption. Simulation can sup-

port process improvement and technology adoption in a variety of ways.

In process improvement settings, organizations are often faced with

many suggested improvements. Simulation can aid specific process

improvement decisions (such as go / no-go on any specific proposal,

or prioritization of multiple proposals) by forecasting the impact of a

potential process change before putting it into actual practice in the

organization. These applications use simulation a prior i to compare

process alternatives, by comparing the projected outcomes of impor-

tance to decision makers (often cost, cycle-time, and quality) resulting

from simulation models of alternative processes.

Simulation can also be used ex post to evaluate the results of pro-

cess changes or selections already implemented. Here, the actual re-

sults observed would be compared against simulations of the processes

not selected, after updating those simulations to reflect actual project

characteristics seen (e.g., size, resource constraints). The actual results

would also be used to calibrate the model of the process that was used,

2.1 Common uses of simulation modelling 11

in order to improve future applications of that model.

Just as organizations face many process improvement questions and de-

cisions, the same is true for technology adoption. The analysis of insert-

ing new technologies into a software development process (or business

process) would follow the same approach as for process change and em-

ploy the same basic model. This is largely because adoption of a new

technology is generally expected to affect things that are usually re-

flected as input parameters to a simulation (e.g., defect injection rate,

coding productivity rate) and / or to change the associated process

in other more fundamental ways. about software processes in several

ways.

Understanding. Simulation can promote enhanced understanding of many

process issues. For example, simulation models can help people such

as project managers, software developers, and quality assurance per-

sonnel better understand process flow, i.e., sequencing, parallelism,

flows of work products, etc. Animated simulations, Gantt charts, and

the like are useful in presenting simulation results to help people vi-

sualize these process flow issues. Simulations can also help people to

understand the effects of the complex feedback loops and delays inher-

ent in software processes; even experienced software professionals have

difficulty projecting these effects by themselves due to the complicated

interactions over time.

In addition, simulation models can help researchers to identify and un-

derstand consistent, pervasive properties of software development and

maintenance processes (a.k.a. software laws). Moreover, simulations

2.1 Common uses of simulation modelling 12

(especially Monte Carlo techniques) can help people understand the

inherent uncertainty in forecasting software process outcomes, and the

likely variability in actual results seen. Finally, simulations help facil-

itate communication, common understanding, and consensus building

within a team or larger organization. All simulation models help with

process or organizational understanding to some degree.

Training and learning . Simulation can help with training and learning

about software processes in several ways. Although this purpose clus-

ter is closely related to that of understanding, the particular setting

envisioned here is an explicitly instructional one. Simulations provide

a way for personnel to practice / learn project management; this is

analogous to pilots practicing on flight simulators. A simulated en-

vironment can help management trainees learn the likely impacts of

common decisions (often mistakes), e.g., rushing into coding, skipping

inspections, or reducing testing time. Finally, training through par-

ticipation in simulations can help people to accept the unreliability

of their initial expectations about the results of given actions; most

people do not possess good skills or inherent abilities to predict the be-

havior of systems with complex feedback loops and / or uncertainties

(as are present in software processes). Overall, active participation in a

good mix of simulations can provide learning opportunities that could

otherwise only be gained through years of real-world experience [32].

2.2 Simulation techniques and approaches 13

2.2 Simulation techniques and approaches

During the design and implementation of a simulator, various techniques

and strategies may be adopted to model the behaviour of a given system.

Depending upon the system to be simulated, some techniques may be more

favourable than others. Factors including the level of abstraction and the de-

sired accuracy and speed of the simulation should be taken into consideration

when designing the simulator engine. Traditionally, simulators are designed

using either continuous or discrete-event techniques to simulate a given

system [14]. The following sections 2.2.1 and 2.2.2 analyze these different

approaches.

Also, it is useful to classify the system being simulated into two sepa-

rate categories depending upon the degree of randomness associated with

the behaviour of the system in its simulated environment. A system that

relies heavily upon random behaviour is referred to as a stochastic system.

Conversely, a deterministic simulation system incorporates absolutely no

random behaviour whatsoever. As such, the simulation results for a given set

of inputs will always be identical [14]. These issues are described in section

2.2.3.

2.2.1 Continuous Simulation

With continuous simulation time is controlled by continuous variables ex-

pressed as differential equations. During the simulation the software will

integrate the equations.

The more popular approach for simulating in a time continuous way is

the System Dynamics modeling. This field was introduced by J. W. Forrester

2.2 Simulation techniques and approaches 14

to apply the engineering principles of feedback and control to social systems

[21]. Abdel-Hamid was the first person to use system dynamics for modeling

software project management process [1].

In system dynamics a system is defined as a collection of elements that

continually interact with each other and outside elements over time, to form

a unified whole [28]. The two important elements of the system are structure

and behavior. The structure is defined as the collection of components of a

system, and their relationships. The structure of the system also includes

the variables that are important in influencing the system. The behavior is

defined as the way in which the elements or variables composing a system

vary over time [28].

System dynamics models describe the system in terms of “flows” that

accumulate in various “levels”. The flows can be dynamic functions or can

be the consequence of other “auxiliary” variables. As the simulation advances

time in small evenly spaced increments, it computes the changes in levels and

flow rates . For example, the error generation rate may be treated as a “flow”

and the current number of errors could be treated as a “level”. This allows

the model to capture the stability or instability of feedback loops. A system

dynamics model can be valuable in finding the levels where a model can

become unstable, or in predicting the unanticipated side effects of a change

in a system variable [41].

While the system dynamics model is an excellent way to describe the

behavior of project variables, it is a more difficult way to describe process

steps. While it is possible to represent discrete activities in a system dynamics

model, the nature of the tool implies that all levels change at every time

2.2 Simulation techniques and approaches 15

interval. If the process contains sequential activities, some mechanism must

be added to prevent all activities from executing at once. For example, if we

modelled the software process as define, design, code and test activities, as

soon as some code was defined, design would start. If we wanted to model a

process that completed all design work before coding started, we would have

to create an explicit mechanism to control the sequencing [41].

Because system dynamics models deal with flows and levels, there are

no individual entities and thus no entity attributes. For a software process

model, this means that all modules and all developers are equal. If we wanted

to model the effect of a few error prone code units on the development process,

we would not be able to specify which units were error-prone [41].

Finally, a system dynamics model does not easily allow to model the

uncertainty inherent in our estimates of model parameters. If we estimate

that coding each module will take from 3 to 6 weeks, we would have to

translate that estimate into equivalent coding rates. A discrete model could

sample from a distribution using a different time for each module. The system

dynamics model either must sample the rate at each time step or must use

the same rate for each model run [41].

2.2.2 Discrete Event Simulation

Discrete event simulation [20] involves modelling a system as it progresses

through time and is particularly useful for analysing queuing systems. Such

systems are common in the manufacturing environment and are obvious as

work in progress, buffer stocks, and warehouse parts.

A major strength of discrete event simulation is its ability to model ran-

2.2 Simulation techniques and approaches 16

dom events and to predict the effects of the complex interactions between

these events. Experimentation is normally carried out using the software

model to answer ’what-if?’ questions. This is achieved by changing inputs

to the model and then comparing the outcomes. This type of simulation is

primarily a decision support tool.

Inside the software or model will be a number of important concepts,

namely entities and logic statements. Entities are the tangible elements

found in the real world, e.g. for manufacturing these could be machines or

trucks. The entities may be either temporary (e.g. parts that pass through

the model) or permanent (e.g. machines that remain in the model). The

concepts of temporary and permanent are useful aids to understanding the

overall objectives of using simulation, usually to observe the behaviour of the

temporary entities passing through the permanent ones.

Logical relationships link the different entities together, e.g. that a ma-

chine entity will process a part entity. The logical relationships are the key

part of the simulation model; they define the overall behaviour of the model.

Each logical statement (e.g. “start machine if parts are waiting”) is simple

but the quantity and variety and the fact that they are widely dispersed

throughout the model give rise to the complexity.

Another key part of any simulation system is the simulation executive.

The executive is responsible for controlling the time advance. A central

clock is used to keep track of time. The executive will control the logical

relationships between the entities and advance the clock to the new time.

The process is illustrated in Figure 2.1. The simulation executive is central

to providing the dynamic, time based behaviour of the model. Whilst the

2.2 Simulation techniques and approaches 17

clock and executive are key parts of a simulation system they are very easy

to implement and are extremely simple in behaviour.

Figure 2.1: Structure of a discrete event simulation system.

Two other elements that are vital to any simulation system are the ran-

dom number generators and the results collation and analysis. The random

number generators are used to provide stochastic behaviour typical of the

real world.

The model is advanced to the time of the next significant event. Hence

if nothing is going to happen for the next 3 minutes the executive will move

the model forward 3 minutes in one go. The nature of the jumping between

significant points in time means that in most cases the next event mechanism

is more efficient and allows models to be evaluated more quickly.

The event approach is described in Figure 2.2. The diagram shows two

essential elements: the clock and simulation executive. Here the simulation

executive will use an event list (a string of chronologically ordered events).

The executive is responsible for ordering the events. The executive removes

2.2 Simulation techniques and approaches 18

Figure 2.2: Details of the event approach structure.

the first event from the list and executes the relevant model logic. Any new

events that occur as a result are inserted on the list at the appropriate point

(e.g. a machine start load event would generate a machine end load event

scheduled for several seconds time). The cycle is then repeated.

Each event on the event list has two key data items. The first item is the

time of the event which allows it to be ordered on the event list. The second

item is the reference to the model logic that needs to be executed. This

allows the executive to execute the correct logic at the correct time. Note

that more than one event may reference the same model logic, this means

that the same logic is used many times during the life of the simulation run

[20], [35], [48], [55].

Discrete event simulation is efficient and particularly appealing when the

process is viewed as a sequence of activities, such as in a manufacturing line

where items or entities move from station to station and have processing

done at each station. Discrete models easily represent queues and can delay

processing at an activity if resources are not available. In addition, each

2.2 Simulation techniques and approaches 19

entity may be described by unique “attributes”. Changes to the attributes

by the activities can provide much of the value of a discrete model.

Because a discrete model allows each entity to contain unique values for

attributes, the model can capture the variation in code difficulty and pro-

grammer capability. The effects of increased complexity on effort and error

rates or the impact of different programmer capabilities on coding duration

may be computed from attributes in a discrete model.

Values for attributes may be constant or may be sampled from distribu-

tions. The stochastic nature of the variables captures the uncertainty present

in measuring the attributes.

Finally, a discrete model allows us to represent the interdependence that

occurs between activities in a project. Activities in a development process

may be delayed when a programmer is diverted to another task. Testing

may be delayed until a test bed is released. If a model can capture these

dependencies at a sufficiently detailed level, it may show ways to alter the

process to reduce risk or increase efficiency [41].

As mentioned above, a discrete model advances time only when an event

occurs. This means that continuously changing variables are only updated

at the event times. While the time between discrete events may be days or

weeks in a software project, the model of the continuous variables may require

a time step in hours. This difference can cause errors in the integration of

the continuous variables or may create instability in the behavior of feedback

loops.

In addition, because discrete models are based on the idea of a sequence

of activities, it may be awkward to represent simultaneous activities. While

2.2 Simulation techniques and approaches 20

activities can occur in parallel, it is difficult to represent the idea of an entity

in two activities simultaneously. Imagine a code module in which some parts

are in coding while other parts are in unit test. To capture this in a discrete

model, we are forced to model sub-components of the module so that each

sub-component can be in only one activity at a time [41].

2.2.3 Deterministic, Stochastic and Mixed Simulation

A simulation can be deterministic, stochastic, or mixed. In the deterministic

case, input parameters are specified as single values (e.g., coding for this unit

will require 5 work-days of effort, or 4 hours per hundred lines of code; there

will be two rework cycles on code and unit test; etc.). Stochastic modeling

recognizes the inherent uncertainty in many parameters and relationships.

Rather than using (deterministic) point estimates, stochastic variables are

random numbers drawn from a specified probability distribution. Mixed

modeling employs both deterministic and stochastic parameters.

In a purely deterministic model, only one simulation run is needed for

a given set of parameters. However, with stochastic or mixed modeling the

result variables differ from one run to another because the random num-

bers actually drawn differ from run to run. In this case the result variables

are best analyzed statistically (e.g., mean, standard deviation, distribution

form) across a batch of simulation runs; this is termed Monte Carlo simu-

lation. Although many process simulation tools support stochastic models,

only some of them conveniently support Monte Carlo simulation by handling

batches well.

2.2 Simulation techniques and approaches 21

2.2.4 Sensitivity Analysis

Finally, sensitivity analysis is a very useful technique involving simulation

models. Sensitivity analysis explore the effects on the key result variables, of

varying selected parameters over a plausible range of values. This allows the

modeler to determine the likely range of results due to uncertainties in key

parameters. It also allows the modeler to identify which parameters have the

most significant effects on results, suggesting that those be measured and

/ or controlled more carefully. As a simple example, if a 10% increase in

parameter A leads to a 30% change in a key result variable, while a 10%

increase in parameter B leads to only a 5% change in that result variable,

one should be somewhat more careful in specifying or controlling parame-

ter A. Sensitivity analysis is applicable to all types of simulation modeling.

However, it is usually performed by varying the parameters manually, since

there are few simulation tools that automate sensitivity analysis.

Sy
x = lim

∆x→0

∆y/y

∆x/x
=

∂y

∂x

x

y
(2.1)

Chapter 3

Studies on XP

This chapter aim to present the existing studies on Extreme Programming,

with particular attention to those related to Pair Programming and Test-

First Programming.

3.1 XP Case Studies

A case study by Poole and Huishman [50] at IOANA Technology reported

the productivity improvement when XP was used for maintenance work. The

practices of XP were applied to deal with the maintenance of the older version

of one of their product. They achieved 67% productivity improvement in

terms of bugs fixed per iteration. The productivity is based on a constant

work force with no change in overall work habits in terms of hours spent

fixing bugs.

Maurer and Martel [42], [43] reported another case study in which they

studied a small company with nine full-time programmers developing a Web-

based system over 16 months. The first version of the system (first 9 months)

3.1 XP Case Studies 23

was developed using a document-centric development process. For the second

version of the system (last 5 months), the company switched to XP. They

calculated four productivity metrics from one release to the next: newly cre-

ated lines of code (NLOC) per unit effort, number of new methods per

unit effort, number of new classes per unit effort, number of fixed bugs

and new features in a given release per unit effort. A gain in productiv-

ity was found for the first three metrics: +63% for NLOC/effort, +302%

for #methods/effort and 283% for #classes/effort. On the other hand,

the last metric (#bugs + #features)/effort showed a slight productivity

decrease (-5%) after adopting agile practices.

In addition they inspected three other metrics aimed to understand the

average size of the new code added per closed feature or bug fix:

• NLOC/(#bugs + #features)

• #methods/(#bugs + #features)

• #classes/(#bugs + #features)

It was found a large increase in these three metrics after adopting XP (+74%,

+323% and +303% respectively). Assuming that program size is somehow

correlated with problem difficulty, these results show that during the XP

timeframe the team simply tackled more complex problems. This interpre-

tation explains the decrease in the last productivity metric.

Another case study was conducted by Hodgetts and Philips [26] at Es-

crow.com, an internet business-to-business startup. During the same project,

the first version of the system was developed using a traditional defined pro-

cess (V2) for about 20 months. Then the company switched to XP and

3.1 XP Case Studies 24

a new version of the system (V3) was developed in 12 months. The V2

project employed 21 developers during its existence, with a total cost of 207

developer-months. The V3 team was made up of 4 developers, employing a

total cost of 40 developer-months. These results represent an 80% reduction

in development-month effort. However, the V3 team was staffed by senior

developers, and their expertise likely contributed to the productivity gains.

Switching to XP brought a reduction in the release cycle from two months

to 2 weeks, enabling product managers to flexibly and quickly respond to

changing business conditions.

Also, XP allowed to reach an increased product quality due to the autom-

atization of the acceptance testing process. They showed a 70% reduction

in the number of defects and, in addition, they found a lower defect severity

level.

Another advantage of the adoption of XP was in the increased quality of

design and implementation. For measure these entities they used some simple

indicators: total code size, average size of classes, average size of metrics, and

the average cyclomatic complexity of methods. These results are reported in

Table 3.1.

Table 3.1: Measurement of implementation quality.

Metric V2 (non-XP) V3 (XP) %Change

Total code size 45773 15048 -67%

Average methods per class 6.30 10.95 +73%

Average LOC per method 11.36 5.86 -48%

Average cyclomatic complexity 3.44 1.56 -54%

The reduction in code size is indicative of a simpler implementation, as-

3.1 XP Case Studies 25

suming delivery of comparable functionality. The presence of a larger num-

ber of smaller methods per class, combined with the reduced complexity of

methods, suggest an improved division of responsibility and behaviour across

methods.

Wood and Kleb [65] conducted a pilot project in order to assess the XP

adoption at the NASA Langley Research Center. The project consisted of

two release cycles, each subdivided into three two-week iterations, for a total

project length of 12 weeks. Their results indicated that the XP approach

was approximately twice as productive as similar historical projects they had

undertaken in the past. They implemented functionalities at the historical

rate, but also supplied a large amounts of supporting tests. Furthermore, the

production code was about half as many lines of code as expected and the

code readability was much improved, mainly due to continuous refactoring,

emergent design and constant code review.

Drobka et al. [17] used XP with four development teams inside their com-

pany over an 18-month period. They qualitative and quantitative measured

a number of process variable in order to investigate how the XP adoption

could change their initial waterfall based process. They conducted a survey

by which it was found that XP increased the team’s morale and shortened

the initial project-learning curve. Measuring the productivity, in terms of

assembler-equivalent lines of code per unit effort, they found a high produc-

tivity improvement related to previous waterfall projects.

3.2 Pair Programming 26

3.2 Pair Programming

Pair Programming practice states that any production code must be created

by a pair of developers working together at one computer on the same task.

The claimed benefits are diverse:

• it helps to implement the system quickly by speeding up the program

development and the bugs removal;

• continuous review is made by the pair developer, so many bugs are

removed at the earliest possible point in the software development cycle

where they have the least impact on schedule and cost;

• it leads to a better distribution of knowledge among the team members,

because everybody works with everybody else during the project, each

time on probably different part of the system. It is also a good way to

introduce new team members to the project;

• learning is improved, because each member of the developer contributes

with her/his personal experience, information and skills and, on the

other hand, learns from her/his pair mate experience, information and

skills;

• a further benefit is the improved design. While one partner is busy

typing or writing down the code, the other partner can think more

strategically about the implications of the design and can consider al-

ternative solutions.

However, software developer managers often reject the use of pair pro-

gramming inside their organization. This is because they assume there will

3.2 Pair Programming 27

be a 100 percent programmer-hour increase by putting two developers on a

job that only one can do. If pair programming does, indeed, double the time,

it certainly would be difficult to justify [62].

Here I report some quantitative studies conducted to assess the validity and

efficiency of this practice. A summary of all these findings has been reported

in Tab. 3.2.

One of the first experiments conducted to assess the efficiency of collabo-

rative working on software development comes from the Hill Air Force Base

in 1975: the so called “Two-Person Team” (2P) [29]. The two-person team

approach places two engineers or two programmers in the same location with

one workstation and one problem to solve.

The project was a real-time, multitasking system executive of approximately

30,000 Fortran source lines. The team is not allowed to divide the task but

produces the design, code, and documentation as if the team was a single

individual. Final project results were astounding. Total productivity was

175 lines per person-month (lppm) compared to a documented average in-

dividual productivity of only 77 lppm prior to the project (+127%). This

result is especially striking when we consider two persons produced each line

of source code (144 lppm). The error rate through software-system integra-

tion was three orders of magnitude lower than the organizations norm.

Why were the results so impressive? A brief list of observed phenomena

includes focused energy, brainstorming, problem solving, continuous design

and code walkthroughs, mentoring, and motivation.

An experiment conducted by Nosek at Temple University [47] studied 15

full-time, experienced programmers working for 45 minutes on a challenging

3.2 Pair Programming 28

problem. Five of them worked individually, while the others worked collab-

oratively in five pairs, at the same conditions. The pairs completed the task

40% more quickly and effectively by producing better algorithms and code

in less time.

The results found by this experiment have shown statistical significance. Un-

fortunately little can be generalized because the experiment only involved the

completion of a single 45 minute task.

Laurie Williams – University of Utah – conducted a controlled experiment

on 28 students working in pair programming and 13 students in individual

programming [13], [63] and [62]. She found that paired programmers spent,

on average, 15% more time to complete two projects than the solo program-

mers spent to complete just one, suggesting that pair programming is 40-50%

faster than solo programming.

Moreover, the pairs passed, on average, 15% more of the automated post-

development test cases and implemented the same functionalities in more

than 20% fewer lines of code than their individual counterparts. Implement-

ing functionality in fewer lines of code is commonly viewed as an indication

of better design quality and lower projected maintenance costs [5].

Nawrocki and Wojciechowski [46] conducted a similar experiment at the

Poznan University of Technology. A group of 21 students was divided into

3 sub-groups: 10 programmers worked in pairs following an XP-like process

(XP2); 5 students worked individually using an XP-like process too (XP1),

while the last 6 programmers worked individually following the Personal

Software Process approach (PSP). They were asked to write four small pro-

gramming tasks. The results showed that there is no significant difference

3.2 Pair Programming 29

in the average development time between pair programming (XP2) and in-

dividual programming (XP1). On the other hand the standard deviation of

the development times and program sizes is lower for the pair programming

group (XP2), suggesting that pair programming is more predictable than

individual programming.

Vivekanandan [59] performed a controlled experiment with 214 students:

116 worked in pairs and 98 individually. The experiment consisted in doing a

short programming task of about 3 hours and relative debugging to satisfy a

defined set of test cases. He found that the PP group employed 19% less time

than individuals to complete the same assignment. In other words, pairs were

23% faster than individuals. Also, 8% better design and an improvement of

8% in knowledge and programming skills were achieved by the PP group.

Padberg and Muller [49] used a combination of different metrics to eval-

uate the cost and benefits of Pair Programming using an economic model

for the business value of a development project. They found that pair pro-

gramming can increase the value of the project when time to market is the

decisive factor, and that programmer pairs are faster than single developers.

Vivekanandan [59] performed a controlled experiment with 214 students:

116 worked in pairs and 98 individually. The experiment consisted in doing a

short programming task of about 3 hours and relative debugging to satisfy a

defined set of test cases. He found that the PP group employed 19% less time

than individuals to complete the same assignment. In other words, pairs were

23% faster than individuals. Also, 8% better design and an improvement of

8% in knowledge and programming skills were achieved by the PP group.

3.3 Test First Programming 30

Hulkko and Abrahamsson [27] conducted four case studies on the impact

of pair programming on software productivity and quality. In contrast to

other researchers, they found that Pair Programming does not provide any

proven quality benefits and does not result in consistently superior produc-

tivity when compared to solo programming.

3.3 Test First Programming

In Test-First Programming practice, also known as Test Driven Development,

the developers have to write the test before the code itself. Through a rapid

cycle of adding new tests, making them pass, and then refactoring to clean

code, the software design evolves through the tests. Also, all tests should be

automated [15]. From here on, I will refer to this practice as TDD. Devel-

opment, the developers have to write tests before the code itself. Through

a rapid cycle of adding new tests, making them pass, and then refactoring

to clean code, the software design evolves through the tests. Also, all tests

should be automated [15]. From here on, I will refer to this practice as TDD.

Many studies reported in the literature have investigated the benefits of

TDD. A summary of all of these findings has been reported in Tab. 3.3.

benefits of TDD. A summary of all these findings has been reported in Tab.

3.3.

Ynchausti [66] presented a study where unit testing was integrated into

the software development process of a five-member programming team using

a test-during-coding training module. Individual and pair developer per-

formance was measured before and after the training module was presented.

The improvements in quality achieved by the team ranged from 38% to 267%

3.3 Test First Programming 31

fewer defects. On the other hand, test-during-coding process took more time

to implement the assignment (from 60% to 100%), and led to an increase in

size of about 100% more code in the form of unit tests.

George and Williams [24] carried out an experiment with 24 professional

pair programmers. The programmers were divided into two groups, one de-

veloped code using TDD while the other one used a waterfall-like approach.

The experiment showed that the TDD developers took more time (16%) than

those not using this practice, but produced higher code quality. In fact this

code passed 18% more functional black box test cases than the one devel-

oped without applying TDD. However, the variance in the performance of

the teams was large and these results are only directional. Additionally, the

control group pairs did not generally write any worthwhile automated test

cases (though they were instructed to do so), making the comparison un-

even. Ynchausti [66] presented a study where unit testing was integrated

into the software development process of a five-member programming team

using a test-during-coding training module. Individual and pair developer

performance was measured before and after the training module was pre-

sented. The improvements in quality achieved by the team ranged from 38%

to 267% fewer defects. On the other hand, test-during-coding process took

more time to implement the assignment (from 60% to 100%), and led to an

increase in size of about 100% more code in the form of unit tests.

Muller and Hagner [45] conducted a controlled experiment with 19 com-

puter science graduate students with a median programming experience of

8 years, in order to compare TDD with the traditional development pro-

cess. Students were divided into two groups and were assigned the same

3.3 Test First Programming 32

programming task. They investigated the effectiveness of TDD in terms of

development time, reliability and understandability. They found that this

XP practice neither leads to quicker development nor does it enhance quality

but it would appear to support better program understanding.

George and Williams [24] carried out an experiment with 24 professional

pair programmers. The programmers were divided into two groups, one

developed code using TDD while the other one used a waterfall-like approach.

The experiment showed that the TDD developers took 16% more time than

those not using this practice, but produced higher code quality. In fact

this code passed 18% more functional black box test cases. However, the

variance in the performance of the teams was large and these results are only

directional. Additionally, the control group pairs did not generally write

any worthwhile automated test cases (though they were instructed to do so),

making the comparison uneven.

Williams et al. [64] conducted a case study to investigate the effects of

TDD at IBM. They found that the introduction of this practice achieves

about a 40% reduction in the defect density of functional verification tests.

Also they reported that the team introduced more than 0.5 lines of test code

for every line of implementation code. While the developers spend more time

writing the test cases, TDD reduces the time they spend in debugging and

the overall productivity was roughly the same in both cases.

Erdogmus et al. [18] conducted a controlled experiment with undergrad-

uate students divided into two groups. The experiment group (Test-First)

developed using TDD, while the control group (Test-Last) wrote tests af-

ter coding. They reported that Test-First programmers wrote more tests

3.3 Test First Programming 33

per unit of programming effort than Test-Last group. They observed that

writing more tests led to a higher level of productivity and improved the

minimum quality achievable.

3.3 Test First Programming 34

Table 3.2: Summarized results for Pair Programming experiments and case

studies.

Authors Description Results (PP vs noPP)

Nosek, 1998 [47] Controlled experiment with 15

professionals - 5 pairs vs 5

individuals - 45 minute pro-

gramming task

PP was 40% faster.

Williams et al.,

2000 [13, 63, 62]

Controlled experiment with 41

students - 14 pairs vs 13 indi-

viduals - 4 programming tasks

PP was 40-50% faster, passed

15% more functional tests,

wrote more than 20% fewer

lines of code.

Nawrocki and Wo-

jciechowski, 2001

[46]

Controlled experiment with 15

students - 5 pairs vs 5 individ-

uals - 4 programming tasks

No significant difference in

terms of development time.

Lui and Chan,

2003 [38]

Controlled experiment with 15

professionals - 5 pairs vs 5 in-

dividuals - logical and deduc-

tion problems tasks

PP reached 85% of correct-

ness and the individuals only

achieved 51%, but PP spent

much more time. To reach the

same quality, a pair spent 4.2%

less time than did individuals

on the same tasks.

Vivekanandan,

2004 [59]

Controlled experiment with

214 students, 58 pairs vs 98

individuals - 3 hours program-

ming tasks + debugging

PP was 23% faster, gave 8%

higher design, gave 8% higher

knowledge and programming

skills.

Hulkko and Abra-

hamsson, 2005

[27]

4 case studies with both pro-

fessionals and students - 8

weeks projects

No significant difference in

terms of quality and productiv-

ity.

3.3 Test First Programming 35

Table 3.3: Summarized results for TDD experiments and case studies.

Authors Description Results (TDD vs noTDD)

Ynchausti, 2001

[66]

Case study with 5 profession-

als developing 2 small pro-

grams, TDD vs Test Last.

TDD took more time (60 - 100%),

led to 100% more code, gave 38%

- 267% fewer defects.

Muller and Hag-

ner, 2002 [45]

Controlled experiment with

19 students, divided into two

groups performing the same

programming task.

TDD seems to support better pro-

gram understanding. No signifi-

cant difference in terms of quality

and productivity.

George and

Williams, 2003

[25]

Controlled experiment with

24 professionals - 12 using

TDD vs 12 not using TDD.

TDD took more time (16%),

passed 18% more functional black

box test cases.

Williams et al.,

2003 [64]

Case study in industrial envi-

ronment.

TDD gave 40% lower defect den-

sity. No productivity gain.

Erdogmus et al.,

2005 [18]

Controlled experiment with

students. TDD vs Test Last.

TDD led to a higher level of pro-

ductivity and improved the qual-

ity.

Chapter 4

Related Works

In spite of the widespread use of Extreme Programming (XP) in academic

and industrial spheres, only recently have the first attempts been made to

simulate XP processes, all using the System Dynamics approach. Some sig-

nificant contributions are mentioned here.

In [12] Cao proposes a system dynamic simulation model to investigate

the applicability and effectiveness of agile methods and to examine the impact

of agile practices on project performance in terms of quality, schedule, cost

and customer satisfaction. The paper does not provide any quantitative or

qualitative results.

Misic et al. [44] investigate the possibility of using system dynamics to

model, and subsequently simulate and analyze, pair programming practice

and pair switching. The model allows the exploration of some variables

affecting pair programming efficiency. The authors find that XP proficiency

increases with both psychological compatibility and pair adaptation speed

between the members of the pair. Also, the authors observe that the XP

process appears to have an advantage over the traditional approach when

37

pair switches are not too frequent.

Two of the most significant works are those conducted by Kuppuswami

et al. [37], [36]. In [37], they propose a system dynamics simulation model

of the XP development process to show the constant nature of the cost of

change curve that is one of the most important claimed benefits of XP. They

also describe the steps to be followed to construct a cost of change curve

using the simulation model. In [36], they developed a system dynamics sim-

ulation model to analyse the effects of all the XP practices on the software

development effort. The developed model was simulated for a typical XP

project of 50 User Stories size and the effects of all the individual practices

were computed. The results indicated a reduction in software development

cost by enhancing the usage levels of individual XP practices.

However, not enough information was provided about the validation of the

developed simulation models.

Chapter 5

Model Description

The present chapter gives a detailed description of the model developed in

the context of this research thesis.

5.1 The Simulation Modeling Approach

To gain a greater insight into the XP process it was chosen to develop the

whole simulation model following the XP methodology ourselves. The sys-

tem was developed using Smalltalk object oriented language. This choice fell

on this language for a number of reasons. First of all, Smalltalk is one of the

first object oriented languages, which has been giving support to simulation

since its beginning [34], [58], [67]. It is easy to use, powerful and achieves

high development productivity levels. In addition, Smalltalk is closely re-

lated with Extreme Programming. In fact, Kent Beck, Ward Cunningham,

Ron Jeffries [53], Alistair Cockburn [52] and other XP-evangelists, have used

Smalltalk as their preferred programming language [2], [10], [9]. Also, many

XP support tools were first developed in Smalltalk, such as the xUnit testing

5.1 The Simulation Modeling Approach 39

framework [11], [3] and the refactoring browser [51]. Furthermore, object ori-

entation techniques provide a set of values, such as reusability, adaptability

and maintainability, which are very desirable for simulation developers [67].

As regards the specific simulation technique, I followed a hybrid approach

merging Discrete Event Simulation (DES) and System Dynamics (SD) sim-

ulation so as to exploit the advantages of both.

One of the main advantages of the DES approach is that it allows to eas-

ily define a stochastic model and perform Monte Carlo simulations, taking

into account the intrinsic risk and uncertainty of real projects. For example,

the estimated effort required to implement each user story could be better

modelled using an appropriate random distribution.

Another reason for choosing DES is that in this way each model entity

is well identified and characterised by a number of attributes whose values

may change when some specific events are executed. So, we can examine the

status of each model entity at each time step of the simulation, gaining a

better understanding of the evolution of the process during a simulation run.

On the other hand, with DES it is not easy to model complex feedback

loops or aspects of the system that vary continuously. Thus, some aspects of

the SD approach were also used, albeit to a lesser extent.

The the two techniques are merged using integration rates (typical of Sys-

tem Dynamics) and updating entity attributes at time steps driven by event

execution (Discrete Event). A specific case is the rate at which a developer

implements a specific user story: it increases with her/his skill level that

varies continuously with her/his cumulated experience on the project. Nev-

ertheless, this model updates developers’ experience level at discrete steps,

5.2 Model Description 40

at the end of each development session.

More details about hybrid simulation techniques can be found in [41], [60].

5.2 Model Description

The model is characterized by several activities: ReleasePlanning, ReleaseIm-

plementationPhase, IterationDevelopment and DevelopmentSession. The in-

puts to these activities are entities that are modified and created by other

instances of activities.

Each activity is executed by one or more actors in the process. Each

actor has some attributes, which vary in time, and can perform a number of

actions. For example each developer is characterized by experience, skill and

velocity.

The model development was based on the following assumptions:

• User Stories are independent from each other. For this reason, the code

needed to implement a specific user requirement is associated to one

and only one User Story.

• User Stories are not split into engineering tasks, as normally happens

in an XP approach. It was not considered necessary for the scope of

this model.

• The development team remains the same throughout the project. Turn-

over was not considered.

• Problems/defects are only found and committed at the end of a release.

5.2 Model Description 41

• Debugging activities do not add any other code and defects to the

system.

The time granularity used in the model is of the duration of a Devel-

opmentSession, which typically lasts a couple of hours. The equations

regulating the model entity variations and the execution of each activity

have been taken from existing models, empirical data and, when necessary,

from authors assumptions.

5.2.1 Model Entities

As shown in Fig. 5.1, in the model we have 5 concrete type of entities:

Project, Release, Iteration, UserStory and ProblemReportSto-

ry. Project, Release and Iteration are also kind of ProcessEntity,

a common superclass that takes into account of their common features, such

as name, startTime and stories, a collection of UserStories. A Project

contains a set of Releases, and each Release has a set of associated

Iterations. A ProblemReportStory is a specialization of UserStory.

A detailed description of such entities is given below.

Entity: User Story

UserStories are the fundamental documents of an XP process. Basically, a

UserStory (US) represents a single requirement specification of the system,

written by the customer or system user.

As shown in the class diagram in Fig. 5.1, a US is characterized by the

following set of attributes:

5.2 Model Description 42

Figure 5.1: Extract from the class diagram of the identified XP high-level

entities.

• priority, which is the business value assigned by the customer using

three possible values: Must, Should and Could. One of these three

values is assigned to each story with equal probability.

• estimatedPoints, whose value represents the estimated effort – in terms

of story points – for each UserStory (values taken from a log-normal

distribution).

• estimationError, indicating the error of each estimation (values taken

from a log-normal distribution).

• targetPoints (see equation 5.1), whose value represents the actual effort

needed to complete a UserStory.

TargetPoints = (1 + EstimationError) · EstimatedPoints (5.1)

5.2 Model Description 43

• pointsDone, that is the actual effort updated at the end of each De-

velopmentSession.

• status, which represents the actual working state of the UserStory

(four possible values: ToDo, InProgress, Done and NotCompleted).

• classes, methods, locs, which represent the number of classes, meth-

ods and source lines of code developed for implementing the specific

UserStory.

• defects, the number of defects injected during code implementation.

Entity: ProblemReportStory

This entity is a particular kind of UserStory, which is used to report

problems and bugs found in the system by the Team or the Customer. Each

ProblemReportStory (PR-US) is scheduled as the other UserStories,

but its implementation can be considered as a debugging activity in that

aimed to solve problems or fix bugs.

A ProblemReportStory inherits all the attributes and operations of

a simple UserStory. In addition, each PR-US has an associated User-

Story (storyToDebug) since it has been made the assumption that each

problem/bug is associated to only one specific implemented UserStory.

Another assumption is that when a PR-US is implemented, no further

bugs are injected into the system and no code are added or removed. The

only effect of a PR-US implementation is to reduce the number of defects

associated to the storyToDebug.

The mechanism through which the defects are reduced depends on a

5.2 Model Description 44

stochastic rule. In particular, each defect of the storyToDebug is fixed with

a probability Pfix given as an input model parameter.

When TDD is used, the debugging time to fix a single defect decreases.

This assumption is based on the fact that the use of TDD lead to an higher

test coverage for the system then, quite likely, it decreases the time needed to

fix defects. Therefore, it is plausible that the debugging activities are more

efficient. This is in agreement with a case study conducted by Lui et al. [39]

in which they found that non-TDD teams were able to fix only 73% of their

defects against 97% fixed at the same time by TDD-Teams.

In accordance to these results, when TDD is not used, Pfix has been set to

Pfix|min = 0.73 and linearly increase with the adoption level of this practice

(ATdd
%), with a maximum of Pfix|max = 0.97.

Entity: Project

This entity represents a software project. It is characterized by a name, a

startTime, a team and a customer. It also have an attribute called stories

which represents the set of UserStories still to implement. The develop-

ment of a Project goes through a number of subsequent Releases of the

system (attribute releases).

Entity: Release

An XP Release represents a predefined period of time in which a set of User

Stories, chosen by the Customer, have to be implemented to deploy a new

version of the system under development.

Each Release has its own identifier (name), a startTime, a duration, a

5.2 Model Description 45

capacity, a number of Iterations (iterations) and an associated activity:

ReleaseImplementationPhase. Each Release contains a set of UserSto-

ries (stories).

Entity: Iteration

XP follows an iterative approach to development, using time-boxed cycles.

Each Release of the system is implemented through a predefined number

of time boxed Iterations. An Iteration has its own identifier (name), a

startTime, a duration, a capacity and, again, contains a set of UserStories

(stories).

5.2.2 Model Actors

Each activity is executed by one or more actors in the process. The identified

actors are the Customer and the Developers making up the Team (see

Fig. 5.2).

Actor: Team

The Team can be considered as a system actor, although it is made up

of other actors (Developers). In fact, the Team can perform actions,

activities and modify entities’ attributes.

As said before, the Team is composed by a number of Developers or,

in other words, it has an attribute called developers which is a collection of

Developers. It is responsible for the creation of these actors when a new

project simulation starts. The number of developers is given as an input

of the simulator and chosen by the simulator user, such as the other input

5.2 Model Description 46

Figure 5.2: Extract from the class diagram of the identified XP actors.

parameters. One of these is the initialTeamVelocity that is a number speci-

fying the typical speed at which a specific Team can implement a software

project, in terms of Story Points1 per day. The created Developers have

their own velocity which vary during a project. So, the Team velocity (Vteam)

vary during a project simulation, and is given by the sum of the individual

Developers’ velocities, as shown in the Equation 5.2.

Vteam(ti) =
∑

j

VDj
(ti) (5.2)

The Team is also responsible for:

• estimating the effort needed to implement each UserStory;

• splitting the UserStories that are too big (Macro UserStories)

1An XP Story Point is a relative unit used by XPers to estimate and measure efforts.

Frequently, a Story Point is intended as an ideal working day of development, but each

team can use its own definition.

5.2 Model Description 47

into smaller ones;

• searching problems in the implemented system and tracking them (Pro-

blemReportStories).

The process of estimating the UserStories is performed during the

ReleasePlanning activity. For each UserStory inside the Project’s

stories container, the estimated effort (estimatedPoints) is drawn from a log-

normal distribution with given descriptive parameters (mean and standard

deviation). These distribution parameters are given as inputs to the simula-

tor and are taken from historical data of other company’s projects or from

the same project under simulation whether it is already started.

I suppose that a Team can implement at least two (Kmacro = 2) User-

Stories for each week. For this reason, the UserStories whose estimation

is greater than half the week’s capacity2 are classified as “Macro UserSto-

ries”, then split by the team into smaller ones. The limit identifying a

Macro UserStory (Kmacro) can be changed in accordance to the specific

company’s needs (see Tab. A.3).

Upon completion of each Release the Team reports any problems en-

countered in the system developed so far. The number of problems is pro-

portional to the system defect density in terms of residual defects per US.

For each problem found, a ProblemReportStory is created and planned

in the subsequent releases as the other UserStories.

2The week’s capacity is given by the daily team velocity (Vteam) multiplied by the

number of working days on a week.

5.2 Model Description 48

Actor: Developer

Developers are the main actors of an XP software development process. They

are responsible for develop the whole system starting from the USs defined

by the Customer. In the model, each Developer is characterized by a set

of attributes: experience, skill, maxSkill, initialVelocity and isAvailable.

Experience is the cumulated working days by each Developer on the

project and is updated at the end of each DevelopmentSession, as for-

mally expressed by the following equation:

E(ti) = E(ti−1) + ∆tsess(ti) (5.3)

where E(ti−1) is the experience cumulated by the Developer at the time

ti−1, just before starting the ith DevelopmentSession; E(ti) is the Devel-

oper’s experience after having completed the ith DevelopmentSession,

while ∆tsess(ti) is the duration of the ith DevelopmentSession.

The skill attribute represents the Developer’s ability to develop soft-

ware and is judged on a scale from Smin = 1 to Smax = 10. Each Devel-

oper instance is created with an initial skill value which is randomly chosen

from 1 to 3. Then, the individual skill linearly increases with the experience

gained on each DevelopmentSession with a coefficient Klearn (learning

coefficient).

skill(ti) = skill(ti−1) + ∆E(ti) · Klearn (5.4)

Also, each Developer can attain a maximum skill level (maxSkill),

which differs from one to another, randomly chosen from 7 to 10. This

takes into account the fact that a Developer’s capability is also affected

5.2 Model Description 49

by her/his individual characteristics. In fact, a Developer with a lower

initial skill rating can equal and surpass her/his team mate’s skill level.

A value of Klearn was chosen such that a Developer with the minimum

initial skill level (Smin = 1) can attain the maximum skill level (Smax = 10)

after about 5 years3.

Smax = Smin + 1000 · Klearn =⇒ Klearn =
Smax − Smin

1000
= 0.009

Based on empirical findings (see Section 3.2) a different value for the

learning coefficient Klearn was used depending on whether the session was to

be performed in pair programming or not. In particular, the skill increment

is 8% higher for a pair programming session [59]. For this reason we have

two different values for the learning coefficient:

Klearn =

0.009 solo session,

0.00972 pair programming session.

A Developer is characterised by a development velocity VD(t), which

describes how fast she/he can complete the implementation of a UserStory

in terms of Story Points per day. Each Developer starts the Project

with randomly different initialVelocity VD |init, whose mean is given by

Vteam(0)/Ndevs
4. The initialVelocity VD |init increases with her/his skill level,

as shown in equation 5.5.

VD(ti) = VD |init +log[Skill(ti)] (5.5)

31 year = 200 working days ⇒ 5 years = 1000 days.
4Vteam(0) is the initial team velocity without PP (see sec. 5.5) and Ndevs is the number

of developers of the team.

5.2 Model Description 50

Finally, the attribute isAvailable is a Boolean value that takes into ac-

count the current availability of the Developer to work on a new Devel-

opmentSession. The value of this attribute is normally “true” except when

she/he is involved in a DevelopmentSession.

Actor: Customer

This Actor represents the customer – or a proxy customer – who pay for the

system to be implemented by the Team. She/he indicates the functionalities

that the final system must have, in the forms of User Stories (writeUser-

Story()). In addition, she/he chooses the order with which these User Stories

have to be implemented (assignPriorities()). This assignment is performed

randomly choosing one of the three possible values: Must, Should and Could.

The probabilities to choose each of these values is given as an input model

parameter (priorities probability array, see Tab. A.3).

5.2.3 Model Activities

Each Activity in the model is characterized by, at least, a startTime and a

duration, and has two related events: ActivityStart and ActivityEnd.

Generally, an Activity is created when the specific ActivityStart event

is executed by the Simulator. For example, when a ReleasePlanning-

Start event is on the top of the Simulator’s eventsQueue, it is executed

and an instance of ReleasePlanning activity is created. Figures 5.3 and

5.4 show an extract of the class diagram regarding the identified model Ac-

tivities and Events. More precisely, an event of ActivityStart or Activ-

ityEnd has an attribute named activity. This attribute is aimed to link the

5.2 Model Description 51

specific event with the proper activity.

Figure 5.3: Extract from the class diagram of the identified XP activities.

The actions performed during the execution of an activity are very dif-

ferent from one kind to another. Let us see in more details each particular

case.

Activity: ReleasePlanning

The objective of this activity is to create a plan for the UserStories that

have to be implemented in the next Release.

The duration of this kind of activity is an input parameter of the Simu-

lator (Tplan). In fact, each team can use more or less time for the planning

activities. Therefore, it is useful to change this particular parameter value

(see Tab. A.2).

Since no particular events occur between the start and end of this activity,

5.2 Model Description 52

Figure 5.4: Extract from the class diagram of the identified XP events.

the end time can be determined. Then, a ReleasePlanningEnd event is

inserted into the eventsQueue when the ReleasePlanningStart event is

executed.

The execution of a ReleasePlanning activity is triggered by the Re-

leasePlanningEnd event. First of all, the Customer assign the priorities

to all the UserStories on the Project container (see sec. 5.2.1). Then,

the Team estimates all these UserStories (see sec. 5.2.2).

After that, if a US estimation exceeds a certain limit (a fraction of the

week’s capacity) it will be split into two or more USs. More in details, I

assumed that a UserStory is considered to be a “Macro UserStory” if

its estimation is greater than half the week’s capacity.

The next step consists in choosing the USs which will be implemented

in the next Release and consequently assigned to a specific Iteration.

The USs are ordered by priority (in order: Must, Should and Could), then

by status (in order: InProgress, ToDo and Done) and, finally, in order of

creation.

5.2 Model Description 53

Once the USs are ordered, a number of them can be moved to the next

Release container. Each Release has its own capacity, which is given

by the actual daily Team velocity (Vteam) multiplied by the duration of the

Release under schedule (Equation 5.6). The Release is loaded of USs up

to its capacity, that is the sum of the estimated points of the selected USs

doesn’t have to exceed the Release capacity.

capacity = Vteam · duration [story points] (5.6)

If a Release is not full yet, but the next US in the ordered queue is too

big, then this US will be split in two USs in such a way that one of these

derived USs can be put in the next Release. The other derived US is put in

the Project container and will be planned in the next ReleasePlanning

activity.

Activity: ReleaseImplementationPhase

This activity represents the phase of development of a particular Release.

It can be seen as a macro activity, in that it act as a container of other

sub-activities.

The ReleaseImplementationPhase starts (ReleaseImplementa-

tionPhaseStart event) at the time the Release itself starts, and ends

(ReleaseImplementationPhaseEnd) at the end of the last Iteration

planned for the current Release.

At the end of this activity, the associated endEvent (ReleaseImplemen-

tationPhaseEnd) move the remaining not implemented USs to the Project ’s

stories container, so that they can be planned again in next Releases. In

addition, a ProblemReportEvent is created and inserted in the Simu-

5.2 Model Description 54

lator’s eventsQueue. This particular event will probably create instances

of ProblemReportStorys

Actually, this activity doesn’t do nothing special and could be removed.

The class Release could substitute its role. However, this class has been

created to keep a coherent structure in the activity/event model.

Activity: IterationDevelopment

This activity is aimed to manage the development activities that happens

during an Iteration. It is responsible to start new DevelopmentSes-

sions and, if the time scheduled for the current Iteration is running out,

close itself and create a start event for the next Iteration or Release.

This is the algorithm used. At first, it verify if the remaining time to the

planned Iteration ending is sufficient5 to start a new DevelopmentSes-

sion. If so, a new DevelopmentSession is created whether there is at

least an available Developer and an UserStory inside the Iteration’s

stories container. Otherwise, an IterationDevelopmentEnd event is

created, whose execution creates another IterationDevelopmentStart

or, in the case no other Iterations were planned for the current Release,

a ReleaseImplementationPhaseEnd event.

If an US is still InProgress when an IterationDevelopment ends, it

will be split in two USs. The one partially implemented will be left in the

Iteration with the status NotCompleted, while the other one will be moved

to the current Release with the status InProgress, in order to be completed

in the next Iteration. This new US has an attribute named “splittedFrom”

5On my hypothesis, the smallest DevelopmentSession can lasts 0.1 days.

5.2 Model Description 55

to take track of the original US from which it was born.

Activity: DevelopmentSession

During a DevelopmentSession a Developer implements the code for

a specific UserStory. The duration ∆tsess of a session is drawn from a

discrete distribution function and can take five different values expressed

in working day units: ∆tsess = {0.1, 0.2, 0.3, 0.4, 0.5}. Assuming an 8-hour

working day, the duration can range from 48 minutes to 4 hours. The prob-

ability that a specific session will have a certain duration can be chosen as

an input parameter (Psess, see Tab. A.2), in that each team usually has its

own rules and habits.

When a DevelopmentSession is created by the IterationDevelop-

ment activity, an associated DevelopmentSessionStart event is created

with a given startTime and enqueued in the Simulator’s events list.

A DevelopmentSession has a Boolean attribute (isTddSession) stat-

ing whether it will be performed using TDD or not. This attribute is cho-

sen randomly with a probability given by the TddAdoption input parameter

(ATdd
%). This value can be set up in input in order to take into account of

the influence of this practice on the project outputs.

In an XP project the development session would normally be carried out

by two programmers working in pairs at a single computer (Pair Program-

ming). However, this practice is rarely adopted in toto. For this reason,

the model has an input parameter called Pair Programming Adoption (APP
%)

that indicates the percent usage of this practice. This parameter expresses

the probability that a DevelopmentSession will be performed by two pro-

5.2 Model Description 56

grammers rather than one.

When a DevelopmentSession is created and assigned to a Developer

(firstDeveloper), if another Developer is available at that moment, the

session will be performed in pair with a probability given by the Pair Pro-

gramming Adoption level.

Once a DevelopmentSessionStart event is executed, the activity

endTime is calculated, based on the actual status of the US to implement

and the moment in the day. In particular, a first random value is chosen and

it is possibly reduced to fit in the day.

To avoid the situation that the involved Developers would remain occu-

pied doing nothing when the implementation of a US is finished before the

planned session duration, the duration is possibly reduced based on the points

still to implement for the current US.

Now the end session event is created with the appropriate time and en-

queued in the Simulator’s events list. When executed, it updates all the

resources involved in that session (developers, US and the associated source

code) and put the US in the current Iteration. After that, it asks the

IterationDevelopment activity to plan other sessions or close the Iter-

ation.

Pair Programming influence Development Session performed in

pair programming is more efficient than a “solo-programming session” in

terms of time required to implement a single UserStory and defects in-

jected [13]. Moreover, the gained Developer’s skill increases 8% faster

when pair programming is applied [59].

I assumed that the velocity of a pair of Developers is given by their

5.2 Model Description 57

average velocity increased by 40% (wPP
V = 0.4), as reported in some empirical

studies [13], [47] (see equation 5.7).

Test Driven Development influence The more complete and accurate

experimental study [24] showed that TDD Developers took 16% more

time than non-TDD Developers to develop the same small project. This

corresponds to a decrease in the overall development speed of 14%, so I

assumed that the velocity of a single DevelopmentSession, performed

following TDD, decreases by the same percentage (wTdd
V = −0.14).

Vsess =

VD1 · (1 + wTdd

V) no PP, with TDD

(VD1+VD2)
2

· (1 + wTdd
V) · (1 + wPP

V) with PP and TDD

(5.7)

Source code production At the end of a DevelopmentSession, new

code is generated and the existing code is modified, inevitably injecting a

certain number of defects. The level of these changes is affected by stochastic

variables influenced by both Developers’ attributes (experience and skill)

and usage levels of individual XP practices (TDD and Pair Programming).

The produced code is measured through product metrics (such as number of

classes, methods, LOCs and defect density).

Equation 5.8 dictates the production of the source code ∆S during a De-

velopmentSession. It depends on the specific session duration ∆tsess(tj),

in terms of days, and on the productivity coefficient Pi(tj).

∆Si(tj) = ∆tsess(tj) · Pi(tj) i = C, M, L (5.8)

The subscript i = C, M, L represents Classes, Methods and LOCs respec-

tively. The productivity coefficient Pi(tj) is measured in terms of size over

5.2 Model Description 58

effort [19].

For example, PL is expressed in terms of LOCs per day and is taken from

a log-normal distribution calibrated using product data from the first itera-

tions of the specific project, or from previous projects implemented by the

same team. Then, at the end of the jth DevelopmentSession, of duration

∆tsess(tj), the number of lines of code associated to the UserStory under

development will be increased by ∆SL(tj) = ∆tsess(tj) · PL(tj). Similarly, a

number of ∆SC(tj) classes and ∆SM(tj) methods will be added to the same

UserStory.

The Refactoring Model As the system increases in size, its complexity

consequently increase. This phenomenon lead to an increase of the project

entropy and renders difficult to improve and maintain the system. Refactor-

ing is a technique that allow to reduce and control this inevitably software

quality worsening [22].

In this simulation model a very simple Refactoring activity is imple-

mented. With a certain chance pr, a DevelopmentSession is aimed to

refactor the system. In the case it occur, that session will reduce the size of

the software code (LOCs, methods and classes related to the UserStory

under development) by the same quantities ∆Si(tj) reported in Eq. 5.8. No

further defects are injected into the system.

The probability pr(ti) that a refactoring session occurs, depends on how

much time ∆tr(ti) is passed from the last refactoring session (see Eq. 5.9).

This is based on the observation that the system has more needs of being

refactored if much time is passed from the last refactoring.

pr(ti) = Pr,max · (1 − e−
∆tr(ti)

τr) (5.9)

5.2 Model Description 59

where Pr,max is the maximum value that pr(ti) can reach (input model param-

eter), and τr is the time constant of the equation. Every time a refactoring

session finishes, the variable ∆trefact(ti) is reset to zero.

Furthermore, based on the assumption that the greater is the system

size, the more frequent it needs to be refactored, the probability pr(ti) also

depends on the system size in terms of lines of code (SL) (see Fig. 5.5).

More precisely, τr = τr(SL), in fact 1/τr(SL) can be seen as the speed at

which pr(ti) raises to Pr,max (Eq. 5.10).

τr(SL(ti)) = τr,max · e
− SL(ti)

Krefact (5.10)

where τr,max and Krefact are two coefficients used to calibrate the model.

Figure 5.5: Refactoring probability pr plotted for three values of the system

size SL.

5.2 Model Description 60

The defects injection model The number of defects ∆D(tj) injected

after the jth development session is given by the following Equation 5.11:

∆D(tj) = ∆SL(tj) · d(tj) (5.11)

where ∆SL(tj) is the number of lines of code produced during that Devel-

opmentSession and d(tj), expressed in defects per lines of code, is the so

called “defect injection rate”.

As reported in [6], [30], [57], typical values for defect injection rate are

25 defects/KLOC for the design phase and 15 defects/KLOC for the coding

phase. These values normally vary depending on Developer skills.

This phenomenon has been studied in depth in the Devnani-Chulani

model [16], where it was found that the number of defects injected varies

with programmers capability (skill in this model), other than with the spe-

cific development phase. Tab. 5.1 shows the ratings for the different levels

of programmer capability.

Table 5.1: Defect injection rate multipliers (Devnani-Chulani model).

Capability Design Coding

Very High 0.85 0.76

Nominal 1.00 1.00

Very Low 1.17 1.32

The model incorporates these results in the following way: the number

of defects injected per KLOC during a DevelopmentSession decreases

linearly with Developer skill level6. A “Very High” capability corresponds

6For a pair programming session, I considered the more skilled programmer.

5.3 The Simulator Engine 61

to the maximum skill level (Smax = 10), while “Very Low” corresponds to a

minimum skill level (Smin = 1). In addition, since in an XP process design

and coding are not performed in different phases, but concurrently during the

same DevelopmentSession, the defect injection rates for the two different

phases have been combined. The resulting rate ranges from dmin = (1.17 ·

25+1.32 ·15) to dmax = (0.85 ·25+0.76 ·15) when passing from the minimum

to the maximum skill level (see table 5.1).

Other studies have found that pair programming produces better quality

projects than solo programming (see section 3.2 for details). I introduced this

behaviour into the model as follows: in a pair programming session the defect

injection rate will be that of the more skilled Developer of the pair, further

reduced by 15% (wPP
d = −0.15). This percentage may well be greater in that

empirical studies have found that the number of functional tests decreased

by 15%, therefore the number of defects would be probably more smaller.

It has also been found in [64] and [66] that when using the TDD practice

the number of detected defects decreases by about 40% compared to projects

developed using a more traditional approach (code then test). Based on these

findings, I decreased the number of defects introduced during a session by a

further 40% when TDD is adopted (wTdd
d = −0.4).

5.3 The Simulator Engine

The Simulator engine is composed of a set of other classes which enable

the model to be simulated.

Simulator The simulator itself. It contains an instance variable “events-

Queue” which contains the list of events that have to be executed,

5.3 The Simulator Engine 62

ordered according to their time attribute. The core routine is “run”.

It implements the following algorithm:

Class: Simulator

Method: run

Algorithm:

while: (eventsQueue is not empty)

do: {

currentEvent := first event of eventsQueue.

remove the first event of eventsQueue.

if (currentEvent is the end simulation event)

then: {

Time := time of currentEvent.

terminate simulation.}

else: {

execute currentEvent.

Time := time of currentEvent}

Parameters This class contains all the parameters used by the system (see

Appendix A).

XPPracticeInfluence Contains the specific parameters related to the XP

practices in the model and implements some of their influence to the

model behavior.

Random1 Implements the stochastic functions used in the model.

5.4 A Quick View to the Simulation Flow 63

5.4 A Quick View to the Simulation Flow

After having chosen and customized the input project and model parameters

(see Appendix A), a project simulation is created and initialized with a num-

ber Ndevs of Developers, and an initial number NUS of USs which identify

the project main requirements and represent a preliminary evaluation of the

project size.

Once a Project has been properly created, a first ReleasePlan-

ningStart event, with time = 1, is put in the Simulator’s eventsQueue.

Another event is created and enqueued: this is an EndSimulation event, a

special event aimed to stop a simulation run when executed. It is set up with

time = Tmax which is an input parameter used with the objective to close a

project after a specific time. After this value Tmax, a project is considered

as failed. This is useful when a budget limit has been chosen for a specific

project.

Now the simulation can start. The first activity to be executed is the

ReleasePlanning. During this activity, the USs in the Project container

are prioritised by the Customer and estimated by the Team. If an US

estimation exceeds a certain limit it will be split into two or more USs (Section

5.2.3).

Once the USs have been ordered by priority, a number of them is chosen to

be implemented in the next Release (Section 5.2.3). Then, a new Release

and its first Iteration start.

Inside an Iteration, design and development of the scheduled USs

are performed during DevelopmentSession activities. The time actually

spent to implement each US is affected by the estimation error and by the

5.5 A Better Explanation of the Practices’ Usage Level 64

velocity of the developers who have worked on it. In addition, it is also influ-

enced by percent usage of Pair Programming and Test Driven Development

(TDD) practices.

In some cases not all the planned USs are completed within one Itera-

tion. These USs are replanned and implemented in subsequent Iterations.

At the end of each Iteration, a new Iteration or ReleasePlanning

activity is created. It depends on how many Iterations have been planned

for the current Release.

Upon completion of each Release the Team reports any problems en-

countered in the system developed so far. The number of problems is propor-

tional to system defect density in terms of residual defects per US. These re-

ports are planned by the Team like the other USs (ProblemReportStory

(PR-US)) each of which has an associated US affected by the problem found

(storyToDebug). The implementation of each PR-US has the only effect of

reducing the number of defects of the related US.

5.5 A Better Explanation of the Practices’

Usage Level

This section gives an explanation of how the variation of the usage levels

of Pair Programming and Test Driven Development (TDD) practices has

been implemented and influence the model entities. It is fundamental to

understand this mechanism in order to appropriately use this feature of the

simulator.

Actually, for each practice p there are two input parameters regarding

5.5 A Better Explanation of the Practices’ Usage Level 65

the usage level: the “initial practice usage level” (Ap
%|init) and the “practice

usage level” (Ap
%). The first is the real level of adoption of the particular

practice in the context of the project used to collect the data needed to set

the input parameters for the simulator. In other words, it is a data that

characterize the real team we are going to simulate.

The second parameter is the desired adoption level. The simulations are

performed using this second value. Thanks to it, the simulator user can

simulate how the project will be performed varying the adoption level of

that particular practice.

Currently, the “initial practice usage level” Ap
%(t0) is used only for one

purpose: to determine the Developers’ initialVelocity attribute when they

are created. In fact, as described in section 5.2.2, each Developer starts

the Project with randomly different initialVelocity VD |init, whose mean

is given by Vteam(t0)/Sizeteam. The input parameter Vteam(t0) is sufficient

to describe the Team as a whole, but insufficient when we want to char-

acterize each individual Developer. In fact, Vteam(t0)/Sizeteam correctly

define the average individual development speed whether that Team were

not using Pair Programming. In the case this practice were used – at a spec-

ified usage level APP
% (t0) – the proper Team velocity (Vteam(0), without pair

programming) needs to be determined (Eq. 5.12).

Vteam(0) = Vteam(t0) ·
1 + APP

% (t0)

1 + APP
% (t0) · wPP (Vteam)

(5.12)

Having found Vteam(0), the average individual Developer velocity can

be determined as Vteam(0)/Ndevs (see sec. 5.2.2).

5.5 A Better Explanation of the Practices’ Usage Level 66

XP practices influence some variables in the model. For each variable

ν, the level of influence depends on the adoption percentage Ap
% of each

particular practice p and on a coefficient wp
ν , as reported in Eq. 5.13.

ν(Ap
%) = ν(0) · (1 + Ap

% · wp
ν) (5.13)

A generic variable ν can be affected by more than one practice. For this

reason, instead of a single value Ap
%, we have a vector A% of adoption level

values. Similarly, instead of wp
ν we have wν . Then, the Eq. 5.13 becomes a

vectorial equation, as reported in Eq. 5.14.

ν(A%) = ν(0) · (1 + APP
% · wPP

ν) · (1 + ATdd
% · wTdd

ν) . . . (5.14)

ν(A%) : resulting variable affected by the various practices;

ν(0) : initial value of the variable under consideration when the usage level

of all the practices is set to 0%;

Ap
% : usage level for the specific practice p. A value of 0 stays for “practice

not adopted” (0%), while 1 “practice fully adopted” (100%);

wp
ν : specific weight regulating the impact of the practice p on the variable

ν.

An application example of equation 5.14 is shown by equation 5.7. In that

case Ap
% can be only 0 or 1 because it is referred to a single Develop-

mentSession that can be performed in pair or not and in TDD or not (see

sec. 5.2.3).

Another use of this influence model is reported in page 59 where it is ex-

plained how TDD and PP affect the defect injection rate.

5.6 Calibration and Validation 67

Through this practice influence mechanism it is simple to improve the

simulation model adding other practices that affect the model variables. Also,

it is simple to adjust the weight a single practice has on a specific variable ν

varying the coefficients wp
ν (see Tab. A.4).

5.6 Calibration and Validation

One of the major problems in process simulation is the effective calibration

and validation of the simulator developed. In order to achieve this, data sets

gathered from real projects are required. However, these data are difficult to

obtain for several reasons. The greater part of real projects are developed by

privately-owned companies that, for obvious reasons, are generally reluctant

to publish data regarding their internal development process.

Also, it is difficult to find companies that develop software using XP and

systematically collect information about their development process. More-

over, should this be so, there is no guarantee that the degree of detail of the

information gathered is sufficient to perform proper calibration and valida-

tion of simulation models. I cite two XP projects where tracking activity has

been conducted systematically and where the data available are sufficiently

detailed: Repo Margining System [33] and Market Info [7], [8].

In order to calibrate the parameters of the simulation model, I used some

input variables (see Tab. 5.2) drawn from the Repo Margining System project

[33], such as number of developers, release duration and so on. Also, I used

the project and process data gathered during the first two iterations. Then,

I simulated the evolution of the whole project.

A number of simulation runs were performed using these input param-

5.6 Calibration and Validation 68

Table 5.2: Input parameters taken from the Repo Margining project used to

calibrate the model. A story point [pts] corresponds to 30 minutes of work.

Input parameters Value

Number of initial USs 27

Number of developers 4

Mean (stand. dev.) of USs estimation [pts] 15 (12)

Mean (stand. dev.) of USs estimation error 2 (0.9)

Initial Team velocity [pts/day] 16

Number of Iterations per Release 3

Typical iteration duration [days] 10

Typical session duration [days] 0.2

Mean (stand. dev.) of Locs productivity [Locs/day] 156 (80)

Mean (stand. dev.) of Methods productivity [Methods/day] 7 (3)

Mean (stand. dev.) of Classes productivity [Classes/day] 1.8 (0.3)

5.6 Calibration and Validation 69

Table 5.3: Comparison between simulation results averaged over 200 runs

and the Repo Margining System project. Standard deviations are reported in

parenthesis. A story point [pts] corresponds to 30 minutes of work.

Output variable Simulation Real Project

Days [days] 61.9 (13.5) 60

User Stories 28.2 (1.6) 29

Total Estimated Effort [pts] 525.6 (132.3) 474

Total Actual Effort [pts] 829.7 (203.7) 793

Number of Releases 2.5 (0.6) 2

Iterations per Release 2.7 (0.3) 3

Lines of Code [KLOC] 9.9 (1.5) 9.8

Methods 440.8 (71.3) 454

Classes 113.2 (17.6) 107

5.6 Calibration and Validation 70

Table 5.4: Input parameters taken from the M@rket Info project used to

validate the model. A story point [pts] corresponds to 30 minutes of work.

Input parameters Value

Number of initial USs 131

Number of developers 6

Mean (standard deviation) of USs estimation [pts] 18.4 (12)

Mean (standard deviation) of USs estimation error 1.7 (0.7)

Initial Team velocity [pts/day] 28

Number of Iterations per Release 1

Typical iteration duration [days] 7.5

Typical session duration [days] 0.2

eters. I then calibrated iteratively the model parameters so as to obtain a

better fit of the final results of the real project. In Tab. 5.3 the simulation

outputs are compared with those taken from the Repo Margining System case

study.

In order to validate the simulation model I used the Market Info project

changing the project dependent parameters as reported in Tab. 5.4.

I had no information about the estimation error on single user stories

completed during the first iterations. I hypothesized that the estimation

error decreases according to the specific team’s experience. Actually there

are no empirical case studies that support this assumption. However, I used

this hypothesis to choose the input project parameter. In particular, I was

aware that the M@Info team was more experienced than the Repo Margining

team. Also, I observed that the average velocity of a single developer of the

5.6 Calibration and Validation 71

Table 5.5: Comparison between simulation results averaged over 200 runs and

the M@rket Info project. Standard deviations are reported in parenthesis. A

story point [pts] corresponds to 30 minutes of work.

Output variable Simulation Real Project

Days [days] 225.3 (29.1) 198

User Stories 158.2 (5.83) 168

Total Actual Effort [pts] 4160.0 (470.1) 4118

M@Info team was 16% higher than a developer of the Repo Margining team.

So, I decided to decrease the average estimation error by the same percentage.

The simulation results obtained for this project are shown in Tab. 5.5. As

can be seen, the simulated project data agree fairly well with the real project

data, demonstrating that the model provides sufficiently valid and accurate

results. Actually, I was not able to validate the output variables related to

software production because sufficient information was not available about

code productivity during the initial project phases.

Conceptual model validation was also performed interviewing some soft-

ware engineers familiar with the XP process itself. The proposed approach

was presented, and its various concepts – roles, activities and artifacts – were

explained in detail. I collected positive feedback on my approach and on the

specific parameter values used in the simulation model.

Chapter 6

Experimental Results

6.1 Research Hypotheses

The main objective of this research work was to explore the influence of

some key XP practices (Test-First Programming and Pair Programming) on

the evolution of an XP project. I investigated how the outputs of a typical

XP project (Repo Margining System) varied changing the usage levels of

these two practices. I focused on output variables related to effort, size,

quality and released functionalities. That is, total working days (Days), size

of the project in terms of lines of code (KLOCs), residual defect density

(Defects/KLOC) and released User Stories (User Stories).

The research hypotheses were as follows:

Hypothesis A: The residual defect density of the project using both PP

and TDD is different from that obtained without PP and/or TDD.

Hypothesis B: The number of working days needed to complete the same

number of functionalities using both PP and TDD is different from that

6.2 Simulation Results 73

Table 6.1: The four project research conditions.

PP TDD

case 1 0% 0%

case 2 0% 100%

case 3 100% 0%

case 4 100% 100%

without PP and/or TDD.

Hypothesis C: The number of lines of code needed to implement the same

number of functionalities using both PP and TDD is different from that

without PP and/or TDD.

Hypothesis D: The number of released User Stories using both PP and

TDD is equal to that without PP and/or TDD.

6.2 Simulation Results

Keeping the same input parameters reported in Tab. 5.2, I examined the

simulation outputs in the four project conditions shown in Tab. 6.1.

For each case 200 simulation runs have been performed. The summarized

results are reported in Tab. 6.2.

The results with PP = 100% and TDD =100% (case 4) are identical to

those shown in Tab. 5.3, obtained simulating the Repo Margining System

project.

Looking at case 2 (Tab. 6.2), we can see that some outputs for the

same simulated project varied only when Pair Programming was not adopted.

6.2 Simulation Results 74

Table 6.2: Comparison of simulation results averaged over 200 runs for four

project conditions (see Tab. 6.1). Standard deviations are reported in parenthesis.

Detailed results in Appendix B.

Output variable case 1 case 2 case 3 case 4

Days 41.8 (11.9) 48.8 (11.3) 53.0 (10.8) 61.9 (13.5)

User Stories 28.2 (1.5) 28.4 (1.6) 28.2 (1.5) 28.2 (1.6)

Defects/KLOC 65.0 (4.0) 40.2 (2.4) 51.7 (3.3) 31.4 (1.8)

KLOCs 11.8 (2.6) 13.4 (2.4) 9.0 (1.4) 9.9 (1.5)

I found that by not using Pair Programming at all, the duration of the

project (in terms of working days) decreases by 21%. The number of User

Stories remains fairly similar in both cases. On the other hand, defect density

increases by 28% when PP is not practised. In addition, the number of LOC

is increased by 35% by not using PP.

Consequently, we can say that the use of Pair Programming increases the

total development cost (working days), but this is offset by better quality

project (in terms of defect density) and by a better design, in terms of fewer

lines of code per User Story (0.47 KLOC/US against 0.35 KLOC/US). These

results agree fairly well with those reported in [13] and [47], as previously

described in section 3.2.

What happens when the TDD practice is not adopted? Starting from

the Repo Margining results (case 4 - Tab. 6.2), I proceeded without using

TDD (case 3 - Tab. 6.2). As can be observed, not using TDD decreases the

duration of the project by 14%, residual defect density increases by 65% and

the number of released USs is fairly similar, while there is a 9% reduction in

6.2 Simulation Results 75

project size.

The extra time taken by TDD may be attributed to the time needed

to develop test cases. In addition, test cases lead to an increment of the

project’s source instructions, as confirmed by the simulation results. On the

other hand, notwithstanding of the minor advantage that less effort is needed

to complete the project, project quality deteriorates significantly. This is due

to the fact that the model does not include the quality assurance and rework

phases, typical of a classic approach (testing after coding, then rework).

Let us point out that all these experiments has been performed setting

the number of problems found by the team (problem reports rate KPR) to

zero, which is the model’s only mechanism for simulating a sort of pre-release

system testing phase.

In the extreme case I varied the usage of both practices simultaneously

from TDD=PP=100% (case 4) to TDD=PP=0% (case 1). I obtained a 32%

reduction in time and a 19% size increase, while the defect density doubled.

In order to validate the research hypotheses, I performed a series of sta-

tistical tests: two-sided t-test for normal samples and KS-test for non-normal

samples1. As can be observed from the summarized results reported in Tab.

6.3, my hypotheses (A, B, C and D) were confirmed with a statistical signif-

icance of 95%, except for one case. In fact, when I exclude the use of Pair

Programming, the defect density does not differ significantly, though we can

observe from Tab. 6.2 a 26% increase between the average values.

Finally, I tried to adjust the problem reports rate coefficient KPR so as to

1The Kolmogorov-Smirnov test (KS-test) tries to determine if two datasets differ signif-

icantly. Basically, it is used in the place of the t-test when the datasets are non-normally

distributed [56].

6.2 Simulation Results 76

Table 6.3: Results of the two-sided tests (α = 0.05) obtained for the four

hypotheses under test.

case 4 vs case 1 case 4 vs case 2 case 4 vs case 3

H0 P − value H0 P − value H0 P − value

HypA (t-test) rejected 2.7 · 10−66 accepted 0.57 rejected 8.0 · 10−67

HypB (ks-test) rejected 1.9 · 10−39 rejected 9.0 · 10−18 rejected 2.6 · 10−9

HypC (t-test) rejected 5.0 · 10−18 rejected 3.4 · 10−52 rejected 4.3 · 10−9

HypD (ks-test) accepted 1.0 accepted 0.9 accepted 0.9

determine the additional cost required to achieve the same quality (in terms

of residual defects) of the system developed using both TDD and PP (see

Tab. 6.4).

As can be observed when neither practice is adopted an extra cost of 145%

is incurred in terms of days needed to complete the project with the same

quality level (case 1 and case 4 - Tab. 6.4). That is, only 28% (41.8 days)

of the total effort (151.9 days) was spent developing system functionalities,

while the remaining (72%) was devoted to improving project quality.

I observed similar behaviour omitting the use of only one the two XP

practices, but on a smaller scale. When Pair Programming was omitted

(case 2), the team had to spend an additional 24% of the time to achieve

the same quality as the project developed using both TDD and PP (case 4).

Here, the effort devoted to quality assurance and rework (36%) is lower than

the previous case, because the use of TDD made it possible to achieve higher

quality during the implementation phase.

The last case (case 3) shows an increase of 78% in the final time and

6.2 Simulation Results 77

Table 6.4: Comparison of simulation results averaged over 200 runs for four

project conditions, varying the problem reports rate KPR. Standard deviations

are reported in parenthesis.

case 1 case 2 case 3 case 4

Output variable KPR = 0.07 KPR = 0.04 KPR = 0.07 KPR = 0.00

Days 151.9 (28.1) 76.8 (26.5) 110.1 (27.1) 61.9 (13.5)

User Stories 29.5 (2.4) 28.6 (2.1) 29.4 (2.2) 28.2 (1.6)

Defects/KLOC 31.6 (5.6) 30.8 (3.4) 31.1 (2.9) 31.4 (1.8)

KLOCs 12.56 (2.4) 13.7 (3.3) 9.4 (1.4) 9.9 (1.5)

the extra time spent on improving project quality accounts for 52% of the

total effort. A similar situation was studied in [49] and [31], where Pair

Programming is compared to a quality assurance process but with discordant

conclusions.

6.2.1 Further Analysis on the Simulation Model

In order to better understand the mechanism influencing the output variables

of the simulation model, I analyzed in depth its variations against some key

input parameters. In particular, the usage levels of TDD and PP has been

varied and it has been observed how the four output variables under study

consequently changed. This analysis has been performed simulating a typical

project of 30 initial User Stories and a team made up of 6 developers having

an initial team velocity of 25 points/day. All the other parameters have been

kept equals to those reported in Tab. 5.2. Fig. 6.1 reports the simulation

results obtained gradually changing the usage level of TDD (ATdd
%) from 0%

6.2 Simulation Results 78

Figure 6.1: Average results, over 200 simulation runs, obtained varying the

TDD usage level.

to 100%, keeping constant all the other parameters. Using the sensitivity

function reported in Eq. 2.1 and linearly approximating the variation of

the output variables, we have obtained the following sensitivity results: the

more sensitive variable is the residual defect density (Defects/KLOC), having

obtained a sensitivity value of Sdefects
Tdd = −25%. A sensitivity value of 7% has

been obtained by both KLOCs and Days variables, while the last variable

(USs) is unsensitive to the variations of this parameter.

Therefore we can state that the adoption of the adoption of TDD has a

large positive impact on the quality that can be obtained for a specific project,

in that it lead to a reduction of the system defectiveness, and slightly increase

the system size and the project duration.

In Fig. 6.2 has been reported the results of an analogous analysis per-

6.2 Simulation Results 79

formed varying the PP adoption level parameter (APP
%). In this particu-

Figure 6.2: Average results, over 200 simulation runs, obtained varying the

PP usage level.

lar case, the following sensitivity values have been obtained: Sdays
PP = 12%,

Sdefects
PP = −9%, Sklocs

PP = −15%, SUSs
PP = 0%. Therefore, based on these sim-

ulation model results, we can say that Pair Programming adoption signifi-

cantly reduces the number of defects of a software system. Also, it negatively

affects the system size and, on the other hand, positively affect the project

duration, increasing the working days needed to complete the same number

of User Stories.

Special attention have to be given to understand the difference between

the desired PP adoption level (APP
%) and the actual use of this practice by

the team. In fact, as described in section 5.2.3, APP
% expresses the probability

that a DevelopmentSession will be performed by two programmers rather

6.2 Simulation Results 80

than one. However, a DevelopmentSession can be performed in pair only

if two Developers are both available at the same time. For this reason not

all the planned pair sessions will be actually performed by two Developers.

Therefore, the actual percentage of pair programming adoption will be less

than APP
% , as shown in Fig. 6.3.

Figure 6.3: Average results, over 200 simulation runs, of the actual percent-

age of PP sessions against the desired PP adoption level.

Since the actual adoption percentage of PP is always different from the

desired adoption percentage APP
% , the sensitivity results have to be computed

again: Sdays
PP = 9%, Sdefects

PP = −6%, Sklocs
PP = −10%, SUSs

PP = 0%. As can be

seen from these results and from Fig. 6.4, the output variables are less

sensitive to the variation of the actual PP level rather than the desired one.

However, similar trends have been obtained although in a smaller scale.

6.2 Simulation Results 81

Figure 6.4: Average results, over 200 simulation runs, obtained varying the

PP usage level.

6.2 Simulation Results 82

6.2.2 Statistical Analysis of the Results

Concerning the statistical nature of the results, a set of Kolmogorov-Smirnov

test [56] has been performed to determine the probability distributions that

better fit the output data. In particular, I focused my attention on the

four variables analysed in the study obtained simulating the RepoMargining

project (Tab. 6.1, case 4): total working days (Days), size of the project

in terms of lines of code (KLOCs), residual defect density (Defects/KLOC)

and released User Stories (User Stories).

The test results – reported in Tab. 6.5, with a 95% confidence level

– showed that Defects/KLOC and KLOCs can be represented as normal

distributions, while Days is better fit by a log-normal distribution. The last

variable (User Stories) is better described by a power law distribution as

shown in Fig. 6.5.

(a) Frequency (b) CDF

Figure 6.5: The User Story output variable is better described by a power law

distribution.

The box plots in Fig. 6.9 provide a visual representation of the statistical

nature of the results obtained simulating the Repo Margining System project

(case 4). Descriptive statistic of these results is reported in Tab. B.4.

6.2 Simulation Results 83

T
ab

le
6.

5:
R
es

u
lt
s

of
th

e
tw

o-
sa

m
pl

e
K

S
-t
es

ts
(α

=
0.

05
)

fo
r

th
e

be
st

fi
t
di

st
ri

bu
ti
on

of
th

e
ou

tp
u
t
va

ri
ab

le
s.

V
a
r
ia

b
l
e

D
is

t
r
ib

u
t
io

n
E
q
u
a
t
io

n
P
a
r
a
m
e
t
e
r
s

H
0

P
−

v
a
lu

e

D
ay

s
L
og

-n
or

m
al

f
(x

)
=

1
x
σ
√

2
π
e−

(l
n
(x

)−
µ
)2

2
σ
2

µ
=

4.
10

σ
=

0.
21

ac
ce

pt
ed

0.
11

U
se

r
St

or
ie

s
P
ow

er
L
aw

f
(x

)
=

k
·x

a
k

=
e5

4
.8

2
a

=
−

15
.3

1
ac

ce
pt

ed
0.

43

D
ef

ec
ts

/K
L
O

C
N

or
m

al
f
(x

)
=

1
σ
√

2
π
e−

(x
−

µ
)2

2
σ
2

µ
=

31
.3

7
σ

=
1.

75
ac

ce
pt

ed
0.

54

K
L
O

C
s

N
or

m
al

f
(x

)
=

1
σ
√

2
π
e−

(x
−

µ
)2

2
σ
2

µ
=

9.
85

σ
=

1.
53

ac
ce

pt
ed

0.
10

6.2 Simulation Results 84

(a) PDF (b) CDF

Figure 6.6: Days output variable distribution and best fit with a log-normal

distribution.

(a) PDF (b) CDF

Figure 6.7: Defects/KLOC output variable distribution and best fit with a

normal distribution.

6.2 Simulation Results 85

(a) PDF (b) CDF

Figure 6.8: KLOCs output variable distribution and best fit with a normal

distribution.

6.2 Simulation Results 86

(a) Days (b) User Stories

(c) Defects/KLOC (d) KLOCs

Figure 6.9: Box plots for the four output variables under consideration

(case 4).

Chapter 7

Conclusions and Future Work

An Extreme Programming (XP) process simulation model has been devel-

oped and here presented for assessing the effectiveness of some XP practices

and for obtaining a deeper understanding of its dynamics.

To gain a greater insight into the XP process it was chosen of develop-

ing the whole simulation model in our research group following an XP-like

methodology. In this way, an increased knowledge of the process under study

has been gained, diminishing the gap between theory and practice.

The use of the XP process allowed us to develop the simulation model in

an incremental way. The model started with an initial embryonic version and

then evolved, step by step, to its current status. Calibration and validation

were also performed in an incremental manner. This provided useful feed-

backs, suggesting how to adjust the equations, parameters and model events

in order to obtain more realistic results.

In addition, the use of XP has led to a software implementation with a

simple and flexible structure, provided with a fairly complete test suite. This

will enable anyone to improve the simulation model and add further features,

88

such as the implementation of other XP practices, in a more confident and

easier way.

The model has been calibrated and validated using data obtained from

two different real projects. Then, the variation in usage level of two key

XP practices – Pair Programming and Test First Programming – has been

simulated. It has been found that increasing the usage of such practices

significantly diminishes product defectiveness. That is, the adoption of both

these practices greatly improved the software quality and reliability. On the

other hand, the results showed that greater effort, in terms of working days,

was required to implement the same number of functionalities.

More in details, the adoption of Test First has shown a large positive

impact on the quality that can be obtained for a specific project, in that

it led to a reduction of the software defectiveness, slightly increasing the

system size and the project duration. At the same way, Pair Programming

adoption significantly reduces the number of defects and slightly affect the

project duration, increasing the working days needed to complete the same

User Stories. However, it negatively affects the system size, decreasing the

total number of lines of code.

In order to estimate the cost of the adoption of the two practices, a

quality assurance process was introduced into the model. Then, it has been

calibrated in such a way that similar levels of project quality can be obtained

in the various cases. In this way, it can be evaluated the extra cost needed

to reach same final residual defectiveness when one of the two practices are

not used.

The results showed that, when Pair Programming was omitted, the team

89

had to spend an additional 24% of the time to achieve the same quality as

the project developed using both the practices. A greater increase (78%) in

the final time has been observed when Test First was not adopted. In the

worst case, when neither of the practices were used, it has been found an

extra cost of 145% in terms of days needed to complete the same number of

functionalities.

I would point out that the developed model is not a complete represen-

tation of the intrinsic complexity of these practices and of the development

process itself. A model is always a strong simplification of the real world.

This simulation model can be used in support of managers and software en-

gineers to “qualitatively” estimate and forecast the behaviour of a certain

project when changes on the development process are introduced.

Least but not last, it can be used in support of researchers in that, try-

ing to model an Extreme Programming process using the empirical findings

reported to date, it has enlightened some issues that warrant further investi-

gation. Estimation errors varying team experience and skill, the influence of

Pair Programming on developers’ learning curve, how code productivity is

influenced by Pair Programming and Test First, are some of the hypotheses

made because no consistent data were available. To improve model reliability

and obtain more realistic results requires the creation of a more comprehen-

sive knowledge base on agile software development.

————————–

Bibliography

[1] Tarek Abdel-Hamid and Stuart E. Madnick. Software Project Dynamics:

an Integrated Approach. Prentice Hall, Englewood Cliffs, NJ, 1991.

[2] Kent Beck. Extreme Programming Explained: Embrace Change.

Addison-Wesley, 1999.

[3] Kent Beck. Test Driven Development: By Example. Addison-Wesley,

2003.

[4] Kent Beck and Cynthia Andres. Extreme Programming Explained: Em-

brace Change- Second Edition. Addison-Wesley, 2004.

[5] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[6] Barry W. Boehm. Developing small-scale application software products:

Some experiment results. In IFIP Congress, pages 321–326, 1980.

[7] PierGiuliano Bossi. Extreme programming applied: a case in the private

banking domain. In Proceedings of OOP2003, 2003.

[8] Piergiuliano Bossi. Using actual time: learning how to estimate. In

XP2003 Conference Proceedings, pages 244–253, 2003.

BIBLIOGRAPHY 91

[9] John Brewer and Jera Design. Extreme programming faq. Url:

http://www.jera.com/techinfo/xpfaq.html, 2000.

[10] Christopher Browne. Christopher browne’s web pages - com-

puter languages: Smalltalk. Url: http://www.ntlug.org/ cb-

browne/smalltalk.html, 2000.

[11] CampSmalltalk. Sunit. Url: http://sunit.sourceforge.net/, 2000.

[12] Lan Cao. A modeling dynamics of agile software development. In Com-

panion of 19th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), pages

46–47. ACM Press, 2004.

[13] Alistair Cockburn and Laurie Williams. The costs and benefits of pair

programming. In Proceedings of the First International Conference on

Extreme Programming and Flexible Processes in Software Engineering

(XP2000), Cagliari, Sardinia, Italy, June 2000.

[14] Donald C. Craig. Extensible hierarchical object-oriented logic simulation

with an adaptable graphical user interface. Master of science, School of

Graduate Studies, Department of Computer Science, Memorial Univer-

sity of Newfoundland, 1996.

[15] L. Crispen and L. House. Testing Extreme Programming. Addison Wes-

ley, ma: addison wesley pearson education edition, 2003.

[16] Sunita Devnani-Chulani. Results of delphi for the defect introduction

model. Technical Report USC-CSE-97-504, Computer Science Depart-

ment, University of Southern California, Los Angeles, 1997.

BIBLIOGRAPHY 92

[17] Jerry Drobka, David Noftz, and Rekha Raghu. Piloting xp on four

mission-critical projects. IEEE Softw., 21(6):70–75, 2004.

[18] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the effec-

tiveness of the test-first approach to programming. IEEE Transactions

on Software Engineering, 31(3):226–237, March 2005.

[19] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: a

rigorous and pratical approach. PWS Publishing Company, 1996.

[20] George S. Fishman. Discrete-Event Simulation: Modeling, Program-

ming, and Analysis. Springer Series in Operations Research and Finan-

cial Engineering. Springer-Verlag, Berlin, 2001.

[21] J. W. Forrester. Industrial Dynamics. Cambridge MA: Productivity

Press, 1961.

[22] Martin Fowler. Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.

[23] Martin Fowler. The new methodology. Published on:

http://martinfowler.com/articles/newMethodology.html, 2003.

[24] Boby George and Laurie Williams. An initial investigation of test driven

development in industry. In Proceedings of the 2003 ACM symposium

on Applied computing, pages 1135–1139. ACM Press, 2003.

[25] Boby George and Laurie Williams. An initial investigation of test driven

development in industry. In Proceedings of the 2003 ACM symposium

on Applied computing, pages 1135–1139. ACM Press, 2003.

BIBLIOGRAPHY 93

[26] Paul Hodgetts and Denise Phillips. Extreme adop-

tion experiences of a B2B start-up. Published on:

www.extremejava.com/files/eXtremeAdoptioneXperiencesofaB2BStartUp.pdf,

2001.

[27] Hanna Hulkko and Pekka Abrahamsson. A multiple case study on the

impact of pair programming on product quality. In ICSE ’05: Proceed-

ings of the 27th international conference on Software engineering, pages

495–504, New York, NY, USA, 2005. ACM Press.

[28] The System Dynamics in Education Project MIT. Road

maps: A guide to learning system dynamics. Published on:

http://sysdyn.clexchange.org/road-maps/home.html, 2000.

[29] PRandall W. Jensen. Management impact on

software cost and schedule. Published on:

http://www.stsc.hill.af.mil/crosstalk/1996/07/manageme.asp, 1996.

[30] T. Capers Jones. Measuring programming quality and productivity.

IBM Systems Journal, 17(1):39–63, 1978.

[31] Gerold Keefer. Pair programming: An alternative to reviews and in-

spections? Cutter IT Journal, 18(1), 2005.

[32] Marc I. Kellner, Raymond J. Madachy, and David M. Raffo. Software

process simulation modeling: Why? What? How? The Journal of

Systems and Software, 46(2–3):91–105, April 1999.

[33] KlondikeTeam. Tracking-aworkingexperience. Published on:

http://www.communications.xplabs.com/paper2001-2.html, 2000.

BIBLIOGRAPHY 94

[34] Verna Knapp. The smalltalk simulation environment. In WSC ’86:

Proceedings of the 18th conference on Winter simulation, pages 125–

128, New York, NY, USA, 1986. ACM Press.

[35] Wolfgang Kreutzer. System Simulation - Programming Styles and Lan-

guages. Addison Wesley, Reading (U.S.A.), 1986.

[36] S. Kuppuswami, K. Vivekanandan, Prakash Ramaswamy, and Paul Ro-

drigues. The effects of individual xp practices on software development

effort. SIGSOFT Softw. Eng. Notes, 28(6):6–6, 2003.

[37] S. Kuppuswami, K. Vivekanandan, and Paul Rodrigues. A system dy-

namics simulation model to find the effects of xp on cost of change curve.

In XP2003 Conference Proceedings, pages 54–62, 2003.

[38] Kim Man Lui and Keith C. C. Chan. When does a pair outperform two

individuals? In XP2003 Conference Proceedings, pages 225–233, 2003.

[39] Kim Man Lui and Keith C.C. Chan. Test driven development and

software process improvement in china. In Jutta Eckstein and Hubert

Baumeister, editors, XP2004 Conference Proceedings, volume 3092 of

LNCS, pages 219–222. Springer, 2004.

[40] Michele Marchesi. The new xp. Published on: http://www.agilexp.org,

2005.

[41] Robert H. Martin and David Raffo. A model of the software development

process using both continuous and discrete models. Software Process:

Improvement and Practice, 5(2-3):147–157, 2000.

BIBLIOGRAPHY 95

[42] Frank Maurer and Sebastien Martel. Extreme programming: Rapid

development for web-based applications. IEEE Internet Computing,

6(1):86–90, 2002.

[43] Frank Maurer and Sebastien Martel. On the productivity of ag-

ile software practices: An industrial case study. Published on:

http://sern.ucalgary.ca/ milos/Library.htm, 2002.

[44] Vojislav B. Misic, Hudson Gevaert, and Michael Rennie. Extreme dy-

namics: Modeling the extreme programming software development pro-

cess. In Proceedings of ProSim04 workshop on Software Process Simu-

lation and Modeling, pages 237–242, 2004.

[45] Matthias M. Müller and Oliver Hagner. Experiment about test-first

programming. IEEE Proceedings - Software, 149(5):131–136, 2002.

[46] Jerzy Nawrocki and Adam Wojciechowski. Experimental evaluation of

pair programming. In 12th European Software Control and Metrics Con-

ference (ESCOM 2001), 2001.

[47] John T. Nosek. The case for collaborative programming. Commun.

ACM, 41(3):105–108, 1998.

[48] Peter Ball University of Strathclyde. Introduc-

tion to discrete event simulation. Published on:

http://www.dmem.strath.ac.uk/ pball/simulation/simulate.html,

2001.

BIBLIOGRAPHY 96

[49] Frank Padberg and Matthias Muller. Analyzing the cost and benefit

of pair programming. In Proceedings of Ninth International Software

Metrics Symposium, pages 166–177, 2003.

[50] Charles J. Poole and Jan Willem Huisman. Using extreme programming

in a maintenance environment. IEEE Software, 18(6):42–50, 2001.

[51] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for

Smalltalk. Theory and Practice of Object Systems (TAPOS), 3(4):253–

263, 1997.

[52] Armin Rohrl and Stefan Schmiedl. Interview to Al-

istair Cockburn on programming productivity. Url:

http://www.approximity.com/produktiver programmieren/cockburn en.html,

2002.

[53] Armin Rohrl and Stefan Schmiedl. Interview to

Ron Jeffries on programming productivity. Url:

http://www.approximity.com/produktiver programmieren/jeffries en.html,

2002.

[54] Ioana Rus, Michael Halling, and Stefan Biffl. Supporting decision-

making in software engineering with process simulation and empirical

studies. International Journal of Software Engineering and Knowledge

Engineering, 13(5):531–545, 2003.

[55] Thomas J. Schriber and Daniel T. Brunner. Inside discrete-event simu-

lation software: how it works and why it matters. In WSC ’99: Proceed-

BIBLIOGRAPHY 97

ings of the 31st conference on Winter simulation, pages 72–80. ACM

Press, 1999.

[56] David Sheskin. The Handbook of Parametric and Nonparametric Statis-

tical Procedures. CRC Press, 2003.

[57] T. Thayer, M. Lipow, and E. Nelson. Software Reliability. North Hol-

land, 1978.

[58] Onur M. Ulgen and Timothy Thomasma. Simulation modeling in an

object-oriented environment using smalltalk-80. In WSC ’86: Proceed-

ings of the 18th conference on Winter simulation, pages 474–484, New

York, NY, USA, 1986. ACM Press.

[59] K. Vivekanandan. The Effects of Extreme Programming on Productivity,

Cost of Change and Learning Efficiency. PhD thesis, Department of

Computer Science, Ramanaujam School of Mathematics and Computer

Sciences, Pondicherry University, India., 2004.

[60] Wayne W. Wakeland, Robert H. Martin, and David Raffo. Using design

of experiments, sensitivity analysis, and hybrid simulation to evaluate

changes to a software development process: a case study. Software Pro-

cess: Improvement and Practice, 9(2):107–119, 2004.

[61] Don Wells. What is extreme programming? Published on:

http://www.extremeprogramming.org/what.html, 1999.

[62] Laurie Williams and Robert Kessler. Pair Programming Illuminated,

chapter 4: Overcoming Management Resistance to Pair Programming,

pages 33–44. Addison-Wesley Longman Publishing Co., Inc., 2002.

BIBLIOGRAPHY 98

[63] Laurie Williams, Robert R. Kessler, Cunningham Cunningham, and

Ron Jeffries. Strengthening the case for pair programming. IEEE Soft-

ware, 17(3):19–25, July/August 2000.

[64] Laurie Williams, E.Michael Maximilier, and Madlen Vouk. Test-driven

development as a defect-reduction practice. In Proceedings of the 14th

Symposium on Software Reliability Engineering (ISSRE’03), pages 34–

45, 2003.

[65] William A. Wood and William L. Kleb. Exploring XP for Scientific

Research. IEEE Software, 20(3):30–36, 2003.

[66] Randy A. Ynchausti. Integrating unit testing into a

software development teams process. Published on:

http://www.agilealliance.org/articles/ynchaustirandyaintegr/file,

2001.

[67] George W. Zobrist and James V. Leonard. Object Oriented Simulation:

Reusabilty, Adaptability, Maintainability. IEEE Press, 1997.

————————–

Appendix A

Parameters

Table A.1: Input parameters required to start a simulation and main output

variables of the simulation model.

Input parameters Main output variables

Number of initial USs Released User Stories

Number of developers Defect density [defects/KLOC]

Mean and stand. dev. of USs

estimation

[pts] Classes

Mean and stand. dev. of USs

estimation error

Methods

Initial Team Velocity [pts/day] Lines of code

Number of Iterations per Release Working days

Typical iteration duration [days] Total Estimated Effort [pts]

Typical session duration [days] Total Actual Effort [pts]

Productivity coefficients

(PC , PM , PL)

100

Table A.2: Project specific parameters.

Parameter Description Default Value

Ndevs Number of Developers of the Team.

NUS Number of initial USs, which identify the project

main requirements and represent a preliminary

evaluation of the project size.

Tmax Maximum duration for a project can be considered

to be failed. After this time the simulation run will

be stopped (maxProjectDuration).

150 days

Vteam(t0) Initial Team velocity.

Ap
%(t0) Typical historical usage level of the specific practice

p for your team.

100%

Ap
% Simulation usage level for the specific practice p. 100%

Tplan Typical time spent in planning activities for each

release.

1 day

Psess Session duration probability array: each element

gives the probability of choosing one of the following

durations for a development session expressed in

working day units: ∆tsess = {0.1; 0.2; 0.3; 0.4; 0.5}.

[0; 1; 0; 0; 0]

PC , PM , PL Productivity coefficients for Classes, Methods and

LOCs respectively, measured in terms of size over

effort [Classes/day, Methods/day, LOCs/day]

1.8; 7.0; 156.0

101

Table A.3: Inner model parameters.

Parameter Description Default Value

Kmacro Coefficient used to identify a Macro User-

Story. It indicates the minimum number of

USs that should be implemented during a week

2

Pprior Priorities probability array: each element gives

the probability of choosing one of the three pri-

ority values: Must, Should and Could.

[13 ; 1
3 ; 1

3]

Klearn Learning coefficient (see Eq. 5.4). A different

value of this coefficient is used when a Devel-

opmentSession is performed in pair program-

ming (within parentheses).

0.009 (0.00972)

KPR Problem reports rate: coefficient used to set the

number of problem reports created before the

end of each Release.

0.00

Pr,max Maximum value for the probability that a refac-

toring session will occur.

0.3

τr,max Maximum refactoring τ : is the initial value as-

sumed by τ , when the system size SL = 0, in

the refactoring model (see Eq. 5.10).

50 [days]

Krefact Coefficient used to calibrate the refactoring

model (see Eq. 5.10).

1000 [LOCs]

dmin Minimum defect injection rate: minimum num-

ber of defects injected per KLOC.

32.65 [defects/KLOC]

dmax Maximum defect injection rate: maximum num-

ber of defects injected per KLOC.

49.05 [defects/KLOC]

Pfix|min Probability to fix a defect when TDD is not used

at all.

0.73

Pfix|max Probability to fix a defect when TDD is fully

used.

0.97

102

Table A.4: Influence weights of XP practices on model variables.

Practice TDD PP

Variable weight value weight value

Vsess wTdd
V -0.14 wPP

V 0.40

dinj wTdd
d -0.40 wPP

d -0.15

Appendix B

Detailed Results

Table B.1: Descriptive statistics for the output variables of case 1.

Variable Mean Std. Dev. Min Max Mode Median

Days 41.76 11.86 141.00 24.00 41.00 40.00

User Stories 28.24 1.45 36.00 27.00 27.00 28.00

Defects/KLOC 65.04 4.02 76.49 53.83 N.A. 65.14

KLOCs 11.77 2.57 34.15 7.37 12.07 11.49

Table B.2: Descriptive statistics for the output variables of case 2.

Variable Mean Std. Dev. Min Max Mode Median

Days 48.78 11.27 86.00 29.00 43.00 46.00

User Stories 28.35 1.56 34.00 27.00 27.00 28.00

Defects/KLOC 40.18 2.40 48.43 34.33 N.A. 40.34

KLOCs 13.38 2.35 23.23 9.07 11.32 13.23

104

Table B.3: Descriptive statistics for the output variables of case 3.

Variable Mean Std. Dev. Min Max Mode Median

Days 52.96 10.80 94.00 31.00 54.00 52.00

User Stories 28.24 1.50 35.00 27.00 27.00 28.00

Defects/KLOC 40.18 2.40 48.43 34.33 N.A. 40.34

KLOCs 8.96 1.42 15.53 6.36 8.63 8.77

Table B.4: Descriptive statistics for the output variables of case 4.

Variable Mean Std. Dev. Min Max Mode Median

Days 61.86 13.54 41.00 115.00 55.00 59.00

User Stories 28.22 1.60 27.00 36.00 27.00 28.00

Defects/KLOC 31.37 1.75 27.92 35.97 N.A. 31.25

KLOCs 9.85 1.53 9.67 7.36 15.07 9.78

Table B.5: Descriptive statistics for the output variables of case 1 with KPR =

0.07.

Variable Mean Std. Dev. Min Max Mode Median

Days 151.89 28.05 192.00 79.00 178.00 164.00

User Stories 29.54 2.42 39.00 26.00 27.00 29.00

Defects/KLOC 31.62 5.57 52.50 22.34 N.A. 30.60

KLOCs 12.55 2.44 19.23 7.77 11.11 12.35

Table B.6: Descriptive statistics for the output variables of case 2 with KPR =

0.038.

Variable Mean Std. Dev. Min Max Mode Median

Days 76.78 26.51 187.00 29.00 55.00 73.00

User Stories 28.61 2.11 38.00 27.00 28.00 28.00

Defects/KLOC 30.75 3.39 39.93 23.67 27.05 30.59

KLOCs 13.72 3.26 37.61 8.74 16.05 13.12

105

Table B.7: Descriptive statistics for the output variables of case 3 with KPR =

0.07.

Variable Mean Std. Dev. Min Max Mode Median

Days 110.08 27.07 194.00 56.00 94.00 108.00

User Stories 29.43 2.18 36.00 27.00 28.00 29.00

Defects/KLOC 31.06 2.94 38.70 23.85 N.A. 30.99

KLOCs 9.37 1.40 13.03 6.21 9.51 9.26

