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Many dynamic planning and management problems are typically charac-
terised by a level of uncertainty regarding the value of data input such as supply,
capacity and demand patterns. Assigning inaccurate values to them could invali-
date the results of the study. Consequently, deterministic models are inadequate
for the representation of these problems where the most crucial parameters are
either unknown or are based on an uncertain future. In these cases, the scenario
analysis technique could be an alternative approach. Scenario analysis can model

many real problems in which decisions are based on an uncertain future, where
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uncertainty is described by means of a set of possible future outcomes, called
”scenarios”. An example being a scenario analysis approach applied to water
system management and air-traffic delay. In scenario analysis applied to water
system management, data uncertainty can be modelled by a robust chance opti-
misation model obtaining a so-called barycentric value with respect to selected
decision variables. The successive reoptimisation model based on this barycentric
solution allows planning a part of the risk of making a wrong decision, reduc-
ing the negative consequences deriving from it. In scenario analysis applied to
air traffic management, I have introduced a tactical optimization model for the
ground delay problem and presented a computational experience by using a la-
grangian decomposition approach and a scenario tree solver. Instances are based
on a dynamic space-time network flow model with uncertainty on the capacity of
the airport, due to environmental and human factors. In these contexts, scenario
approach may be trustworthy because it permits decision makers to select the
scenarios most appropriate to the situation and useful because it quickly provides
robust solutions. Combination of open source codes, modular programming and
standardization rules are very important as these permit us implementing and
estending computer codes in order to give some advice to decision makers about

the most advantageous methodological approach.

Key words: Optimization under Uncertainty, Network Flow, Air Traffic Man-
agement, Air Traffic Delay, Air Traffic Capacity, Water System Management,
Min Cost Flow, Dynamic Networks, Robust Optimization, Decomposition Meth-
ods, Convex Analysis, Scenario Analysis, Risk Analysis, Operational Research,

Management Science.



iv

a mamma



Acknowledgements

I recognize that this research would not have been possible without the
financial assistance of the University of Cagliari, the Department of Electrical
and Electronic Engineering (DIEE) the Department of Land Engineering. I ex-
press my gratitude to those agencies. I have been fortunate to interact with
many other people who have influenced me greatly, one of the pleasures of fi-
nally finishing is this opportunity to thank them. I would like to thank my
tutors professor Paola Zuddas and professor Alessandro Giua whose expertise,
understanding, and patience, added considerably to my PhD experience. I would
like to thank professor Antonio Frangioni for his support in computer program-
ming. I wish to thank the following professor for their help and collaboration on
these three years: professor Alessandra Fanni, professor Carla Seatzu, professor
Alexei Gaivoronski, professor Theodor Crainic, professor Giovanni Maria Sechi,
professor Alessandro Olivo. I wish to remember in these rows professor Stefano
Pallottino, my professor of “Theory and Optimization Methods” at University
of Pisa, he left us in 2004. Finally, I am indebted to my many colleagues for
providing a stimulating and fun environment in which to learn and grow. I am
especially grateful to the following engineers: Francesca Salis, Maria Antonietta
Loi, Massimo Di Francesco, Saverio Liberatore, Andrea Sulis for their supports

and friendship.



vi

Table of Contents

Chapter
1 Optimization Under Uncertainty: A General View 2
1.1 Introduction . . . . . . . . . . ... 2
1.2 Scenario Analysis . . . . . . . ... 3
1.3 Software Packages . . . . . . . .. ... oo 5
1.4 Decisions and deterministic models . . . . . . ... ... ... .. 7
2 Uncertainty in linear programming 8
2.1 The deterministic equivalent model . . . . . . ... ... ... .. 19
3 Bundle methods 39
3.1 The dual viewpoint . . . . . . ... Lo Lo o 40
3.2 The primal viewpoint . . . . . . .. ... Lo oL o1
4 First application: an application of scenario analysis to water system
management 29
4.1 Introduction . . . . . . . . ... ... 29
4.2  Water Resource Dynamic Model . . . . . . . ... ... ... ... 61
4.2.1 Definition of Water Resources Optimization Model Com-
ponents . . ... ... e 64
4.3 Asimplesystem . . . . . ... 66
4.4 A barycentric chance reoptimisation model . . . . . . . . ... .. 70
4.5 Test Case II: A Real Physical System . . . . . ... ... ..... 73
4.6 Conclusions . . . . . . . ... 76
5 Second application: an application of scenario analysis to air traffic delay
management 7
5.1 Imtrodution . . . . .. .. ... ... 77
5.2 Air traffic management outline . . . . . . .. ... ... 78
5.3 Literature review . . . . . . . . ... 84
5.4 The air traffic delay model . . . . . . .. ..o 87
5.5 A decomposition algorithm . . . . . ... .. ... 94
5.6 Computational experience . . . . . .. .. .. ... ... ... 97

5.7 Conclusions . . . . . . . s 98



vil

104



List of Tables

Table
1.1 List of available commercial and non commercial packages

2.1 Matrix of constraints in a 3 - scenario tree and 2 stages . . . . .
2.2 Matrix of constraints in a 3 - scenario tree and 2 stages. First
stage variables are grouped . . . . ... ... ...

viil



List

Figure

2.1
2.2
2.3
2.4

3.1

3.2
3.3
3.4

3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8

X

of Figures

A set of parallel scenarios with different branching times . . . . . 10
Scenario tree representation for the situation illustred in figure 2.1 12
A set of supporting hyperplanes . . . . .. ... ... ... ... 24
Projection on X of an arbitrary pointz . . . . . . ... ... ... 31
A set of supporting hyperplanes generated using a cutting plane

method . . . . . . ... 41
@p(.) approximates ¢(.) . . ... 42
two e-subgradients . . . . .. ... 44
Effects of the stabilizing term: for ¢; < t; < t3 and given a set 3,

d;, i=1,..,3 are the optimal solutions for 5 . . . . . . . .. .. .. 46
Sequence of the optimal solutions x;(y) obtained in Dantzig-Wolfe

algorithm . . . . . . .. oo 54
(Mpg) can be empty while (M§) itisnot. . . ... ... ... ... 57
Physical sketch . . . . .. ... oo oo 62
Dynamic network sketch generated by simple basic graph . . . . . 63
Dynamic network generated by simple basic graph . . . . . . . .. 64
Scenario tree . . . . . ... 67
Stored volumes . . . . . . ... ... 69
Transferred water . . . . . . . . . ... ... 69
Delivered resource . . . . . . . . . ... 71
System Flumendosa-Campidano-Cixerri . . . . . . .. ... ... 73
Stored volumes . . . . .. ... ... ... 75
Transferred water . . . . . . . . ... ... 75
Total delay . . . . . . . .. . 80
airport/enroute delay distribution . . . . .. ... ... L. 83
Direct temporal network for air traffic delay management . . . . 100
A bundle of scenarios generated for the GHP . . . . . . ... ... 100
Scenario tree resulting after the grouping process . . . .. .. .. 101
Scenario tree decomposed in independent instances . . . . . . .. 101
A scheme of the decomposition algorithm . . . . . . ... ... .. 102
Results obtained for real size instances . . . . ... ... ... .. 103



Even a correct decision is wrong when it was taken too late.

Lee lacocca 1924, CEO of Chrysler.



Chapter 1

Optimization Under Uncertainty: A

General View

1.1 Introduction

This thesis focuses on issues related to integration of uncertainty into the
mathematical model and the advantages offered by scenario analysis to give deci-
sion support. This is done in particular by considering network dynamic models
that specifically incorporate uncertainty at some level involving data (for exam-
ple: input, capacity, supply and demand). In many planning and management
problems the decision maker will need to make choices that can not be put off
or left to a later decision but “here and now”. If exact information on the states
of nature is not fully revealed, it would be impossible to predict the conditions
a decision maker will face starting from a certain point in time [98]. Seeing
that it would be difficult to deal with unpredicability, could be assumed that
the predictions made by a Decision Support System are always accurate. In this
case, no explicit account is taken for uncertainty in the predictions and that
these predictions are updated over time. Decision managers must therefore al-

low for uncertainty by making intuitive adjustments based on their experience



and expertise. Because this is not a satisfactory way to deal with the ubiqui-
tous problem of uncertainty, it is important to determine how to satisfactorily
incorporate this complexity into a decision model. An early approach in the
investigation of these effects was the use of sensitivity analysis, unfortunately,
as shown in [50], this approach shows a number of limitations and may provide
misleading conclusions in respect of the nature of the solutions. Hence, in gen-
eral sensitivity analysis is not a suitable approach for understanding the effects
of random behaviour about the model parameters. Uncertainty can appear in
the model as parameter having a nature of type either subjective or stochastic.
Different methodological approaches have been proposed to handle uncertainty,
in general they are classified as: distribution problems with the subclass “wait
and see problems” and expected value problems, recourse problems with the two
subclass distribution problems and scenario analysis based problems and change

constrained problems [32].

1.2 Scenario Analysis

Scenario based methods are being affirmed as an useful methodological ap-
proach to handle uncertainty in order to offer a “robust” decision policy, in the
sense the risk of wrong decisions is minimized and the solution can be accepted by
decision maker [35]. There are many modelling and algorithmic approaches that
could belong to scenario analysis based methods, like: stochastic programming
with recourse ([96], [94]), chance constrained programming, stochastic control
and dynamic programming, robust optimization [8]. Scenario Analysis is a sce-
nario based method to handle with uncertainty, it gives the possibility to consider
a fan, called scenario tree, of different possible configurations of the system,

each one called scenario, which represents the possible sequence of realisations



4

over the time horizon. Scenario analysis permits us to solve a problem associated
to a system without having to consult each scenario separately. In general, the
solution generated by scenario generation methods ( conditional sampling, mo-
ment matching, sampling from specified marginals and correlations, path-based
methods, optimal discretization) must not depend by particular scenario. In
general, in order to test this property particular tests are often used that try
to give a measure of the quality of a generated scenario tree, such as in_sample
stability and out_of_sample stability ([26], [56]). For example, this is important
when the system contains uncertain parameters with a continuous probabilistic
distribution. In these cases the problems are difficult to solve, using scenario
analysis, we build a scenario tree which is a discrete representation of the con-
tinuous problem, the loss of information of the scenario tree (discrete model) in
respect to the continuous model, depends on the number of scenarios that have
been introduced. This is important because the problem the “user time” often
depends on the size of the scenario tree, but it is also true that a width tree
produces a more robust information in output. If any probabilistic distribution
is not known, a scenario tree can be built assigning to each scenario a parameter.
It represents a some source of information related to the “importance” given to
a single scenario in the scenario tree context. Because such models are usually
very large and involve both integer and continue variables, problems with uncer-
tainty are unmanageable directly by classical algorithms. One possible approach
can be to implement new algorithms based on interior point methods [19]. De-
composition algorithms such as nested Benders decomposition [92], stochastic
decomposition methods, importance Sampling, quasi gradient methods [34] are
used as basis solver in order to propose new robust versions by exploiting the

algebraic model.



1.3 Software Packages

The use of implement policies scenario analysis holds its strength when
applied to practical problems as reported in bibliography. In this thesis I present
two practical application inhering the usage of scenario approach to real world
contexts, that show the effectiveness of such methods when uncertainty is in-
cluded in such models. The analysis of the obtained results is often difficult to
carry out without the use of database systems and customised friendly viewers.
Up to now the largest effort has been dedicated to the development of solution
techniques and related software systems suitable for the solution of large scale
uncertainty programming model. Table 1.1 contains a list of software packages
which deal with uncertainty problems ignoring the different stages of completion
and use. Moreover, various research programs are in progress, such as in the
Open Source Interface project (http://www.coin-or.org), developing a new tool
called Stochastic Modelling Interface (SMI), for optimization under uncertainty
SMI stands for Stochastic Modelling Interface. It is an interface for problems
in which uncertainty and optimization appear together. SMI routines deal with
commonly encountered programming issues, such as handling probability distri-
butions, providing problem generation in SMPS (Stochastic Mathematical Pro-
gramming System) stochastic standard format, interacting with solvers (such as
the only open source linear programming solver CLP) to obtain solution infor-
mation, etc.

This thesis focuses on the issues related to the potentiality of some open sources
computer codes in order to build new tools that can deal with real problems
including data uncertainty. Starting with a common platform and standard
rules, “open source” codes and following standardisation rules are then imple-

mented.



name affiliation system name
JJ Bisshop, et al. | Paragon Decision Technology AIMMS
A Meeraus GAMS GAMS
B Kristjansson Maximal Software MPL
MAH Dempster Cambridge University STOCHGEN
E Fragniere University of Geneva SETSTOCH
A King IBM OSL/SE
HI Gassmann Dalhousie University MSLiP
G Infanger et. al. Stanford University DECIS
P Kall University of Zurich SLP-TIOR
G Mitra Brunel University SPInE
A Gaivoronski NTNU SQG

Table 1.1: List of available commercial and non commercial packages




1.4 Decisions and deterministic models

It is important to dedicate some word about the crucial relationships be-
tween the times at which decisions are made, together with the moments at which
we have certain data. If the uncertainty is solved before any decision is made, a
deterministic model will be appropriate, otherwise uncertainty models occur to
deal with unpredicability [49]. Often, linear deterministic models generally do
not reflect the times at which decisions are made, nor do they distinguish be-
tween what will be known and what will remain uncertain when the decisions are
made. Therefore it is essential to understand what and when a given parameter

might change as it is critical to the acceptance of the methodology.



Chapter 2

Uncertainty in linear programming

This chapter introduces the classic definition of a deterministic model that
can be associated at the “wait and see” approach in models containing uncer-
tainty that is in strong relation with the “here and now” concept [98]. As is
well known, a Linear Programming (LP) problem can be expressed in a compact

standard form:

Model (P)

min cx (2.1)

where data are classified as:
e © € R™ is the vector of decision variables;

e "cost” vector ¢ € R™, in the objective function, whose components
c; can represent a cost, a benefit, a penalisation or a specific weight

assigned by the manager to a unit of the variable z;;

e a RHS (Right Hand Side) vector b € R", in the constraints system,



whose component b; can represent a supply or a demand associated to a

node i, i.e., to the activity represented by node ;

e lower and upper bound vectors u and [ € R™, whose components [;
and u; represent lower and upper limits (possible zero and infinity, re-
spectively) on the variable z; by physical, technological, environmental

and /or political, requirements;

matrix D € R™*™ represents the coefficient matrix of the constraints system as-
sociated to vector of decision variables {x € R™}. In the deterministic approach
certainty derived from available historical data submitted to statistical valida-
tion on the basis of a forecast and adopted as reference scenario. In deterministic
optimisation model we assume that the decision maker has a perfect knowledge
of the future evolution of each scenario without distinction among what is known
and what remain uncertain. As a consequence, the solution obtained is strictly
connected to the adopted scenario. Given a finite set G = ¢y, ..., gs; of predefined
scenarios, for a specific scenario g the corresponding LP model, can be expressed
as:

Model (Pg)

min (cyx,) (2.2)
Dz, = b,

lg <3y <y

The index ¢ identifies vectors ¢, b, | and u of data related to the given scenario
g. Moreover, z, represents the vector comprehensive of all variables in scenario
g and all constraints are represented as lower and upper bounds or in equation
form. Using scenario analysis a set of different scenarios are considered together

in order to obtain a set of decision variable on the whole set of scenarios. More
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Figure 2.1: A set of parallel scenarios with different branching times
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precisely, we consider a set of parallel scenarios which share at first a common part
but, starting from a certain event one o more scenario could evolve in a their own
manner. In the resulting mathematical model this relationships among scenarios
is described by adding complicated constraints, it requires the subsets of decision
variables, corresponding to the indistinguishable part of the different scenarios
must be equal among them. These constraints are called in various manner:
coupling constraints, non-anticipativity constraints, aggregation constraints. In
scenario analysis the partial aggregation can be exploit in order to build a new
structure to better manage scenarios and their aggregation: the scenario tree
([74],[97],[76]). In the scenario tree each node resume the partial description of a
system and can contain one or more overlapped scenarios; a branch corresponds
to add a new level to scenario depth and describes a possible evolution of either
a single or a set of scenarios. Last horizontal arc joining two or more scenarios
correspond to the last instant in which such scenarios are identical. In figure 2.1
are reported 8 parallel scenarios where horizontal lines among two or more nodes
the non-anticipativity constraints. The solution obtained by scenario tree must
be in any given time independent by information not yet available, this is done
by introducing the non-anticipativity or congruity constraints. Hence, scenario
tree follow two purposes: to specify the scenario generation and to define the
algebric model structure including recursive non anticipativity restrictions. The
mathematical model of the scenario aggregation can be resumed in the following

structure:

Model (Pa)

min Y (cgz,) (2.3)
Ty € Ry

eSS
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where z® is the vector of variables submitted to congruity constraints, called
also "wait and see” variables, z, € R, the set of standard constraints for each

scenario g € G; x® € S, the set of congruity constraints. Resuming, the main

=1

=2

=3

= /o\@
scenario ] 2 3 4 ] 6 i 3

Figure 2.2: Scenario tree representation for the situation illustred in figure 2.1

rules adopted to organise a set of scenarios are:

e Branching: to identify branching-times 7 as time-periods at which to
bundle parallel scenarios, while identifying the stages at which to divide

the scenario horizon.
e Bundling: to identify the number, /3,, of bundles at each branching-time.

e Grouping: to identify groups, [';, of scenarios to include in each bundle.

The root of the scenario-tree corresponds to the time at which decisions have been
taken (common to all scenarios) and the leaves of the scenario-tree represent the
system performance at the end of the time-horizon. Each back path from a leaf

to the root identifies a possible scenario.
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Now, let ty, 11, %o, 15 ...., a set of increasing times in the horizon 7" and [ a
set of system components, a system is dynamic if each component ¢, 7 € I is asso-
ciated to a discrete time ¢ € T, and if z; ; is a decision variable, ¢; > ¢;. In figure
2.1, fixed a scenario, each node represents a time ¢;. Given &, a scenario input
uncertain parameter (i.e. capacity, deficit, supply ), a set G of different scenar-
ios and a time ¢, we define for each couples of scenarios the so called branching
time 7(g;, g;) = max(t : &(gf) = €(95), E(gi™) # €(957)5 90,95 € G, 0 # j), as
the maximum time the input parameters ¢, and &, are identical. In this way,
we obtain a set of branching time 7, the part of the dynamic system among
two branching-times is called stage, the stages are ordered in increasing mode.
Given a set of scenarios G, the time min(r(g;,g;) : (1,j) € G) divides the
deterministic part by uncertain part of the dynamic problem. The deterministic
part is called first stage. For illustrative purposes in the following model is given
an example with 2 stages and 3 scenarios. In the model, the RHS vector b will
be composed by subvectors by, by, b3. The vector x will include the subvectors
71, T2 and w3, the scenario variables. Each subvector z,, g=1,2,3 is grouped in
tree subvectors x,,xz;?, x7, where x; describes the first stage variable, z)* the
so-called interlink variables which is included in the first stage and xg describes
the variables include in the second stage. In general given a set of scenarios if it
has been decided to move the branching time to an other instant of time then the
uncertain parameters change. For a fixed scenario g we assume the constraint
matrix associated to model Pa decomposed in A, that represents the matrix
of coefficient constraints describing the deterministic part, B, the matrix of co-
efficient constraints for the second stage, A;’z and B;’Q, g € G the coefficient

constraint matrix for the linking variables. the constraints matrix can be written

as in table and assumes the shape reported in figure 2.1.
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Model (Pe)

: 3 1,.1 2,.1,2 3,2
min ) ;_, ¢;x; +cjx;” + ¢ x;

Azl + (AP + BY)a? 4 Bia? = by
Aozl + (Ay® + By*)ay® 4 Bya? = by
Aszl + (Ay® + By?)ay® 4 Bsa? = bs
[lx% — szé =0

Lzl — Lzl =0

Lowy? — Lowy” =0

Lowy® — T s25° =0

I <=1 <=u; (24)
<=1} <=u}

<=1 <=ul

I3 <= 13 <= u}

3 <=1zj <=uj

13 <= 13 <=u}

1,2 1,2 1,2
ll’ <= 1‘1, <= ul,

1,2 1,2 1,2
12’ <= 1‘2, <= U/2,

1,2 1,2 1,2
137 <= 1‘3, <= U/3,

Where c;, x; represent respectively, the cost vectors and the vectors of the de-

L2 212 represent

cisional variable associated to scenario g and first stage. ¢;~, z,

respectively, the cost vectors and the vectors of the linking decisional variable
associated to scenario g among stages 1 and 2. [ and [, ,1’2 are two identity ma-
trices defining the so called coupling constraints. Hence, the scenario analysis
approach attempts to face the uncertainty factor by taking into account a set
G, of different supposed scenarios corresponding to the different possible time

evolution of some crucial data. Unlike simulation, the different scenarios can be
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x% x}’z x% x% xé’z x% xé xé’z x§
A | AP
By”? By
Ay Ay?
By* By
As Ay?
By?| B
Il _IZ
]%,2 _ %,2
P —1Is
]%,2 _ ;,2

Table 2.1: Matrix of constraints in a 3 - scenario tree and 2 stages




16

considered together to obtain a global set of decision variables on the whole set
of scenarios. More precisely, two scenarios sharing a common initial portion of
data must be considered together and partially aggregated with the same deci-
sion variables for the aggregated part, in order to take into account the possible
evolutions in the subsequent non-common part. The aggregation rules guaran-
tee that the solution in any given period is independent of the information not
yet available. In other words, model evolution is only based on the information
available at the moment and, if necessary, scenario modification is allowed. The
problem supported by the scenario tree, is described by a mathematical model
that includes all single-scenario problems (Pg), ¢ € G, plus some inter-linking
scenario constraints representing the requirement that if two scenarios ¢g; and
go are identical up to time 7 on the basis of information available at that time,
then the corresponding set of decision variables, x; and x5, must be identical
up to time 7. This means that the subsets of decision variables corresponding
to the indistinguishable part of different scenarios must be equal among them-
selves. In table 2.2, the constraint matrix structure is shown after the first stage
decision variables are grouped, it is visible the structure called L-shaped. For

4

each scenario a “weight” can be assigned representing the "importance” given
by the manager to the running configuration. In the model the weights can be
viewed as the probability of occurrence of the examined scenario. More often
they are determined on the basis of background knowledge about the system.
The resulting mathematical model is named ”chance-model” to indicate that it
is not stochastically based but, due to the impossibility of adopting probabilistic
rules and/or to the necessity of inserting information that cannot be deduced by
historical data, it attempts to represent the set of possible performances of the

system, as uncertain parameters change. The chance model can be expressed as

the collection of one deterministic model for each scenario ¢ € G plus a set of



x! xh? x% x% x%
A | AP
B?| B
A | AP
B,? Bs
A | AP
B3? Bs

Table 2.2: Matrix of constraints
variables are grouped

17

in a 3 - scenario tree and 2 stages. First stage
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congruity constraints representing the requirement that the subsets of decision
variables, corresponding to the indistinguishable part of different scenarios, must
be equal among themselves. In this case, the chance mathematical model has
the following structure:
Model (Pc)

min (Y wycyt,) (2.5)

9
Dyxy=b,, Vg € G

lg<wzg<uy, Vged

e S

Where: w, represents the vector of weights assigned to a scenario g € G; 2°
represents the vector of variables submitted to congruity constraints; xz®¢S, the
set of congruity constraints. Regarding weight definitions, if the manager were
able to evaluate the weight w, as the probability that scenario g will occur, he
could estimate it by some stochastic technique or statistical test. More often
the manager has no, or a few, possibilities to do this due to the difficulty in
deriving a probabilistic rule from conceptual considerations. Instead, in scenario
analysis, a weight w, assigned to a scenario g can be interpreted as the "rela-
tive importance” of that scenario in the uncertain environment. In other words,
in scenario analysis, weights are interpreted as subjective parameters assigned
on the basis of the experience of management. Different weights can also be
assigned to different stages. Then, the definitive weight in the objective func-
tion will be calculated considering the contribution of scenarios and stages. A
good compromise in weight settlement might be to assign scenario importance
on the basis of subjective considerations, and assign weights to stages on the
basis of statistical tests. Deterministic equivalent model can be solved by using

decomposition iterative algorithms such as Benders decomposition, Lagrangian
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relaxation techniques, bundle methods, cutting plane methods and their vari-
ants. Such exploit the special structure of constraints and are also called rows
generation methods because at each iteration insert a new row of constraints that
restrict the research area, such methods approach the problem under a dual point
of view. Dantzig-Wolfe approach is a column generation methods, at each itera-
tion. The mentioned methods are equivalent among them, it is possible starting
from the structure model (for example Bender’s scheme), by making some simple
algebra, recognizing the structure of an alternative scheme. When the problem
is huge, resort to parallel computing can be adopted, such as in ([79],[15], [36])
whilst in [57] has been proposed a decomposition algorithm running on a com-
putational grid. Because constraints make the model redundant we have seen
that some scenarios are overlapped in some time-periods and some variables are
redundant as a consequence, the model components (variables and constraints),
that are associated to overlapped scenarios, can be reported only once, this get
us to introduce the so-called deterministic equivalent problem, table 2.2 shows
the associated matrix constraints representation. The optimal solution z* in (Pc)
hedge against all possible events or scenario g that can occur. Model (Pc) is know
as a multistage uncertainty problem with recourse. The model is supported by a
scenario tree of multiperiod stages, subjected to non-anticipativity constraints,
a decision made in time ¢ should take into account all future achievements of un-
certainty parameters. In other words a final decision at time t should be taken

only after decisions at time ¢ + 1,¢ + 2, .... are decided.

2.1 The deterministic equivalent model

The vector b, in (Pc), can be decomposed in by, the deterministic part

and the vector d, that contain uncertainty. Since, in (Pc) redundant first stage
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variables,considering matrix constraints in 2.2, we can rewrite the first stage of
(Pc) as
Model (Pc,)

min cjzt + ¢y’ry? + > wgchz (2.6)
9

Alx% + A%’2ZL’1’2 = b1 (27)

B,x? +Bll2x}2—dg, Vg e G (2.8)

0<zy, Vg el

Where, I supposed -, w, = 1,9 € G and scenarios have the same first stage
costs. this permits to use ¢! and ¢;”® in model Pe,. In general, if a distribution
of probability does not exist, given a "chance” or "weight” w,, the cost vector
associated to x is computed as Y, wyc;. The linking vector of variables z'* of

proper dimension appear in both the set of constraints in 3.29. Moreover I define

the convex sets (closed and bounded):
X = {(z},27°) | Azl + AP%20% = by} (2.9)
and

X, ={(a7",2)) | Byal + By*ay” = dy, Vg € G} (2.10)

and Conv(X) = {(z1?(t),21()) | t = 1,..v} and Conv(X,) = {(x}Q(t),xZ(t) |t =
1,..,v,} respectively the extreme points of the convex sets X (convex hull) and
{X, | g € G}. The dual model for Pc, can be written in the following manner:

Model (DPc,)

maz yby + > myd, (2.11)
g

A1Ty <
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ATy + (B Ty < cin
g

(B,

g)Tﬂ'g < wgcz, Vg e G

y, T4 s unconstrained, Vg € G

Where, I designated as y, m,, with ¢ € G respectively, the dual variable vectors
associated to constraints 2.7 and 2.8 in Pc¢,.. Deterministic equivalent model
can be rewritten as a sum of two linear programming problems which have in

common the interlink variables, as follow:

Model (Pc,)

min cir} + c’ry” + Y w,Q(x, g) (2.12)
g

1,2 1,2
All'i +A1’ 1'1’ = b1

where: PQ(z,g)

Q(z,9) = H’(dg - B;’zxi’Z) = min c,x

ox (2.13)
By, =d, — B)’n*, Vg € G

xﬁZO, Vg € G

For a given scenario ¢ € G, the dual problem of PQ(x,g), can be state as:

PDQ(7,g)

DQ(m,g)=r(dy — B;’Qxi’Z) = max m,(d, — B;’Qxi’Z)
(2.14)
B, < ¢ Vg € G

Ty, unconstrained



22

The function Q(x,g) also referred to as the “recourse function”, is in turn
defined by the linear program. Recourse function include the “technology ma-
trix” By, also known as the “recourse matrix”, the right-hand side d,, the objec-
tive function coefficient cg contains uncertain parameters. The presence of un-
certainty has effect in the dimension of the problem, as the number of scenario
grows, the full problem could become hard to solve with standard algorithms
such as simplex methods. Some constraint can be relaxed and decomposition
methods can be useful to implement quantitative methods. Such methods re-
turn a lower bound for the full problem. In optimization under uncertainty,
convex properties can be exploited in order to implement decomposition based
methods can be adopted. In fact, let v € (0, 1), it is possible to show that x(z),

the function defined in 2.15 is a piecewise linear concave function in z, that is:

v(R(z1) + (1 = 7)(K(22)) (2.15)

< R(y(z) + (1 =7)2)
Hence, if k(z1), ..., k(%) is an arbitrary set of concave functions also
maxi:i:1,..,t/€(zi)

is concave.
Moreover, let z; and z5 two solutions for the function Q(z,g) is a piecewise

linear convex function in z, that is:

YQ(z1,9) + (1 = 7)Q(22,9) (2.16)

> Q(vz1 4+ (1 =)z, 9)
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Hence, the sets X, are convex closed polyhedron [96], for a complete understand
[82]. Q(x, g) is also piecewise because the set of items of the admissible region
is finite. Objective function convexity (or concavity) is important as (Pe¢,;)
can in principle be solved by a method for piecewise linear problems or by a
general algorithm for constrained non-smooth optimization. Although, the pieces
of k'(x) and the facets of X, are not given explicitly, it is possible to extract
from Q(z, g) at successive points z*(1), z;?(2), z;*(3)... information about the
piece of #'(z1?) [82]. Hence, let II, = {ml : 1 = 1,. v} the set of extreme
points for DQ(x,g), each of these points is potentially an optimal solution for
(Pc¢yq). In fact, we know that no optimal solution better occur in an extreme
point. For a given achievement of g, the corresponding recourse action xg is
obtained by solving the problem PQ(x,g). Assuming z}*(1), z1(1) is the optimal

result inhering the first stage problem, we can formulate the so called “Master

problem”:

(PCTZ)

min Y cjxy + ¢’y (2.17)
9

1,2 1,2
AﬂL’i‘i‘Al’ IL'I’ :b1

xi’Q >0

Once solved the master problem, it is possible to obtain a current approximation
of Q(x,g) by fixing z}*(1), the interlink primal vriables result at first iteration.
Now, if we set Q(x)= X, wyQ(z, g)), we can observe that u = 3, —By?w,m, is
a sub-gradient for Q(x) in the point 21?(1), where m,, for each scenario, is the
optimal result obtained by solving the dual problem PDQ(7, g), obtained at first

iteration. For sub-gradient inequality we have:
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Q(x,8) > Q(z1*(1),9) — 7, B}*(z — 27*(1)) in other words ¥, Q(z17(1),g) —

W;B;’z(x—ﬁﬂ(l)) is a supporting hyperplane of Q(x)(2.3) at point = = (z}*(1)),

where Q(#1%(1),9) = 22(1) = DQ(a}?(1),g) = (d, — BL22}*(1))7m). This

Figure 2.3: A set of supporting hyperplanes

suggest to build up, an increasingly better approximation of Q(x), by adding
to each step a new supporting hyperplane, i.e. an other row of constraints is
added to the master problem 2.20. Hence, given a set of v — 1 sub-gradients of
Qx),u1 € 0Q(z17(1)), up € 6Q(x%(2)),us € 6Q(x7%(3))...up—10Q(z17 (v — 1)),
we can obtain a current approximation of starting problem obtaining new values
z1(1), zo(1), zy*(1), I = 1,..,u — 1, at each iteration. Then, the current approxi-
mation to the original problem (Pc,) is:

(PCCQ)

min Y czy + o’z + 0 (2.18)
9
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Azt 4+ AP = by

0> Qz1*(1) + ug) (e — 2*(D), 1=1,.,0—1

As Q(x1?(1) =X, wy(dy — BY?ay? (1))l — 7l Bl2(x — 21%(1)) the sub-gradient
inequality Q(z1%,9) > Q(z1?(1),9) — m! BM*(21? — 27%(1)) can be reduced to
2

Q17 9) > Qx1*(1), g) — m BY?(x7? — 21%(1)) and (Pcs) can be restated as:

min Y cjx) + e’z 46 (2.19)
g
Azl 4+ AP = by
6> ngwédg — B;’Qxi’Z, I=1,.,v—1,
g r; > 0

xi’Q >0

The structure of (Pc,) model can be exploited in order to build an algorithm
producing a new cut for the “Master” problem to each iteration and returning
both a lower bound and an upper bound for the (Pa) problem. This is known
as “Benders decomposition” or “L-shaped” algorithm. The general idea which is
applied in such algorithms is that the ” Master” problem starts with computing a
solution where the complicating constraints involving asg, are relaxed in a manner
that the starting problem is composed only of simple constraints involving | and
z1?, the first stage variables. The dual information obtained in the second stage
problems, by solving the inner problems, is used in the first stage in order to
produce a new constraint involving both first stage variables, interlink variables
and 0. The solution of the outer problem produces a lower bound for the original
problem because first stage variables deal with less constraints but, if the new

solutions satisfy the constraints in (Pc,1), we have done. Once fixed first stage
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variables, the inner problem produces an upper bound for (P¢,;) and a new dual
vector which will produce a new cut in the "Master” problem. If at the current
step [ the master problem proposes the point x%’Z(Z) and it produces infeasibility
in the inner problem for each scenario, this new point z1%(1) introduces a feasible
cut which cut-off the current point. If the inner problem is feasible, all the
artificial variables t are out the final basis. Otherwise, the problem Pc,, has

solution:

Model Q(z, g,t)

min et (2.20)
ngz +It=d, — Bgl’Qx}’z, Vg € G

x> 0,t >0

where e is a row vector (m-dimensional) with all coefficients 1. We can observe
that the supplemental problem is feasible and et > 0. If the solution is zero, we
can take out all the auxiliary variables t and we have a solution to the first system.
If the minimum is greater then zero, applying the duality theorem to PQ(x,g), we
can assert that a vector u exists such that u(d, — B}2x1?%) > 0, uB, <0, ul <e.
In order to prevent infeasibility z}*(I) again, we set u = 7}, and introduce the
feasibility cut ! (d, — B)?z1*) < 0 in the master problem. Thus for a scenario
g, a matrix basis R exists such that R[z] tg]" + Nty = dy — B;’Qxi’Z, where ty
are the artificial variables settled to zero. If the optimal value of the problem is
positive, then inequality m, ,(d, — B;’zx?) is a feasible cut for problem PQ(x,g).
Let t;,t; > 0,1 = 1,..,m be the largest value artificial variable. Multiplying
by the inverse of the basis matrix and by the i-th unit vector e; we obtain
t; = e’ R7Y(d, — BY?2)?). Finally, a variable change 6z = 27°(I) — x of the
trial point z%(1) is needed to reduce t; is reduced to zero, by requiring that

e’ R7Y(d, — B;’%iﬂ) < 0. In the following general algorithmic scheme we shown



the main step of Benders decomposition algorithm:
\* Initialization *\

1 = 1: (iteration counter);
UB = MAXINT (Best Upper Bound);
LB = -MAXINT (Best Lower Bound);

\* Solve the initial master problem ( first stage ) *\

1 1,2,.1,2

min ¢ Ty + ¢ xy

Ayl + APPay? =d
T 2 0

x}’Q >0

\* Check if the initial master problem is feasible x\

if (a1(1) Uy (1))
\* read the optimal value of the master problem *\

X1 = 3;‘1(1) U xi’Z(l),
else

Stop; (Problem Unfeasible);

\* Main Loop *\

While (UB — LB)/(1+ LB) > TOL)

27
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\* Solve the second stage problem *\

for (¢ € Q)
do

(

min 053«"3 (2.21)
Byzy = dy — B;’Qxig
xg >0
T, = m, (return optimal dual value vector);

if (second stage problem is feasible)

o =Ty (return optimal primal value vector);

else

T2 (dg — B;’Za:}’z) <0 (return a feasibility cut);

) (end for;)
if (All the second stage problems return feasible solution)

UB = min(UB, ¥,[c', c"?]|X; + c;2%(2)); (update upper bound);

\* Solve the master problem *\

min 3 elx} + e’y + 0 (2.22)
g

Azl + APey? =y
6> ng(ﬂ'é[dg - B;’Qxi’Q ) l=1,..,v VgeG (optimality cut)
g

7l (dg — B;’zx?) <0 1l=1,..,v—v (feasibility cut)



29

x%’2 >0

X, =x () Uxy®(l) (assign primal optimal value at iteration l; x; );
LB = [c, ¢;*] X; + 0 (compute lower bound);
l=1+1;

)

This process is finite because there is a finite number of possible cuts, and
we shall find an optimal solution or detected the infeasibility. In fact, in case
some second stage problem is infeasible at iteration [ for some scenario g, a cut
ml(dy— Bl?21?) < 0, is generated and z1%(1) is cut off since 7 (d, — B)?z1%) > 0
by construction. If termination has been obtained then the upper bound UB
has been reached. Otherwise, if the second stage problems are feasible, an
optimality cut is generated and the constraint 6 > >, wgﬂlg(dg — B;’zxi’Z) is
added to the model. From 0 < 3o, wgnl(d, — Bgm:v%g), it follows that the pair
(X1, 0) is cut off as possible future solutions. To prove optimality, we note that
[¢h, M) X + 2, wecta(1)) is always an upper bound on the value of Pc,;. This
sort of decomposition is used very often. Some advantages are: the subproblems
can be solved independently, even on different computers! At no time is any
large l.p. solved, only ones as big as the subproblems plus the master problem,
the central controller does not need to get into details on how the proposals are
generated. It is enough that it can be for any cost function. If the subproblems
have special structure (e.g. the subproblems are transportation problem or min
cost flow problems) then those specialized optimization techniques can be used.

Practically, the main drawback of this approach is in possible convergence prob-

lems. In fact sometimes Benders decomposition suffers of "stability” problems,
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especially in the first iterations when a good enough approximation of Q(z, g) is
not known or if started at a good guess at the solution. Hence, the trust region
concept is borrow from non linear programming and applied in the model at the

generic iteration k as adding constraint: ||z — 2¥|| < Ay, where z*

is supposed a
primal admissible solution at iteration k. If Ay is taken ”large”, then the algo-
rithm is the same as Benders decomposition. If A, is taken ”small” the solution
2F*1 at step k + 1 stays very close to z*. This is called "regulating” the method
[82]. An other way to reduce instability consists in dually penalizing the step
that will be taken min Y, cla} + cy?zp? + 0 4+ 1/20||z — 2|2, this is known as
regulated decomposition method [80]. If p is taken "large”, the the behaviour is
like Benders decomposition, if o is taken ”small” the solution stay very close

Generally, if the number of scenario is not very large, Benders decomposi-
tion produces fast solutions.

A possibility to face huge deterministic equivalent problems can be given
by so called stochastic quasi gradient methods [34]. In the simplest case they
start from some initial point zy and update the current approximation of x step
by step. Because Q(x,g) convex function of z with sub-gradient 0Q(z,g) =
—(B;’Z)Twé, where 7ré is the optimal dual solution for the dual problem, such
information can be exploited, in order to compute a new current point. In
quasi-gradient method, the iteration scheme considers an initial point X, to
each iteration is updated by making a step ¢(l) and a direction ¢ taken as
o(l) = cp* — (By*)"n. According to quasi-gradient method, the new first stage
solution X, is computed in the following manner X;,; = Ix(X; — ¢(1)¢(1)),
where the direction o(1)is taken opposite to the current estimate ¢. Ily is the
projection operator on X which transforms an arbitrary z € R" into the point

[Ix(z) € X such that ||z —IIx(2)|| = mingex||z —z|| (2.4). This last formulation

is a quadratic programming problem for for which fast efficient solver algorithms
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exist. Now, by introducing a new dual variable z, we can rewrite the problem

Constraint set X

Figure 2.4: Projection on X of an arbitrary point z

Pc,q in the equivalent model:

Model (Pc,3)

max z (2.23)
z < cjrl 4 o’ay? + Y wy(my(dy — ByPz?)) (2.24)
g

1,2 1,2
Alx% +A17 xf — d

BgTﬁg < wgcz, Vg e G (2.25)
T Z 0
x%’Q >0

Assuming now (z1(1), z;*(1)), .., (z1(t), 2;°(t)) as the extreme points of Conv(X),
potentially each pair (z!(i), z;%(i)), i = 1,..,t could be an optimal solution of

the Master Problem, so if we rewrite the model as combination of such points,
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we obtain:

Model (Pc,4)

maz, Y l()el() + (20l G) + Y wymd, - BYal*()  (2:26)
G=1,.,t g

BgT7rg < wgcz, Vg e G (2.27)

In fact, starting from the dual problem (D;Pc,), (Pc.4) can be obtained by
modifying the structure of the problem. Hence, we obtain:

Model (D;Pe¢,)

maz yby + > myd, (2.28)
9
Aipy <a
Z(Blm)T(Wg) + A{Q?J < cip
9

BgT7rg < wgcz, Vg € G

Y, T4, g =1,2,3 unconstrained (2.29)

hence, if the second line of constraint is relaxed with respect to the linking
variable 21 and moved in the objective function, there obtain:

Model (Pc,4)

min,amaz, «, y(—Araet? +b) + S (mgdy + (era — S(BE (n)ah?)(2.30)
9 9
AlTy <a
Blmg <wycl, Vg € G
w, vy, g = 1,2,3 unconstrained
a:%’2 >0
and after if it is reintroduced the variable x;, (Pc,4) becomes:

Model (Pc,s)

min,iz2 . C1T1 + Maly, S (medy + (10 — S (B (my))21?) (2.31)
g g



33
1,2
Az + Az = by
BgT7rg < wgcz, Vg e G

Ty, 9 = 1,2,3 unconstrained

z1 >0, 277 >0

At end, by introducing a new dual variable z, (P¢,5) can be rewritten in the
following manner:

Model (Pc,)

minxi,z,xlclxl + Max(r,: g G),2 Z Tgdy + 2 (2.32)
9
2 <Y ((erg = (Bura) mg)ar?) (2.33)
9
Ay + 141,2515%2 =
BgT7rg < wgcz, Vg € G

z2>0

Now,by enumerating all the ¢ vertexes of Conv(X), the above problem Pc,s can

be rewritten as:

Model (Pc,7)

minj—1,. 1121 (J)Mat(r, gca),- Z Tgdg + 2 (2.34)
g
2< Y ((e1p — B{ﬂg)ﬁg(j))
9
Bgﬂg < wgcz, Vg e G

z>0

deleting z in Pc,7, Pc,4 is obtained. Because in most cases the above problem is
hard to solve directly because it typically involve too many constraints, as ben-
der’s decomposition this problem can be face with a row generation (constraints

generation) technique called cutting plane method (outer linearization), as same
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as in bender’s algorithm is adopted a relaxation strategy in which only a few set
of constraints are explicitly maintained. Let be Xpg, a subsets of X, a constraints
generation algorithm at each iteration try to enlarge the set Xg by adding new
solutions to the inner problem.

Model ( Pe,rp )

ming cgC101(J)MaT(x, g c @),z Z Tgdy + 2 (2.35)
9
2 <Y ((e12 — By pmy)zy” (7))
9
BgT7rg < wgcz, Vg e G

z2>0

Assuming z(.) the optimal solution, we have z(Pe¢75) > 2(Pe¢7). A typical
cutting plane algorithm, starting by a initial set X3 search among the first stage
primal (inner problem) solution, that are used in order to add new cuts in the
master problem, obtaining at every step a better approximation at the model.

Following it is given the algorithmic scheme of a typical cutting plane algorithm:

Initialize f3;

1=1;

/* Solve the master problem */

while (z(.) > gp(ﬂlg) —c1zi(1))
(
((7Tlg 19 =1,2,.),2) = argmag(z,.g-12.): {XqTgdyg+ 2 |
2 < Ny~ BLm)a (), 1€ §

Bimy <wyci, Vg € G}

/* Solve the inner problem */
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(z1(D), xiZ(Z)) = argmin{c,z} + A(ETE B1,27ré)x%2) |

Alxl + ALQ.’L‘%Q = bl}
/* Update partial solutions */

P(1) = (T 7 (dy — Byaah?(1)) + et (D) + e1021° ()

X5 = X5 Ut (1,2 (1))

=141,

) (end while)

We can observe that at each iteration (d, — By 217 (1)) is a subgradient for ¢(.)
at point ﬂgl), it is the only change present in the inner problem, the convex set
X does not change, so the solution returned is in one of the extreme points.
For each iteration it is also valid (z > ¢((g){1)) — c1zi(l)), otherwise we are
done. An other general price directive optimization strategy can equivalently
state by considering the problem ((Pc.4)) as a problem depending on the dual
variables 7y, .., m,, with g is the number of scenarios. Hence, we define a function
p(my,..,mg) as :
(Pcerg) = max{p(my, .., my) : Bfmy <wyct, Vg € G}

where:
p(TL, . Tg) =2y Tedy +min{cizy + (c12 — 2, 7, Bra)al? s Ay + Apoz? = by}

(Pcrg) is know as a lagrangian dual to original scenario problem and p(my, .., 7y)
is the associated lagrangian subproblem. Because X is close and bounded, as
same as in the previous approach, we can rewrite the inner problem p(rm, .., 7,)=
Yy Tody +min{ciz1(j) + (cr2 — Xy Ty Bi2)x1(j) : = 1, .., t} that is a piecewise
concave function of (7, ..,m,). In this row generation approach we can main-
tain a set of indexes (3, where the constraints z < >, mydy, + min{ciz:(j) +
(crp — 2, TaB12)1%(j) : j € B} are the tangential supports that actually de-

scribe the function p(.) and z the value along the p(.) axis. Assuming w =
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(m1(%),..,m4(*)) a set of admissible dual solutions Z is an upper bound to dual
lagrangian whilst if Z = p(w) we are done. Otherwise, if at iteration k, z >
p(w) = X, me(*¥)dy + min{cizy + (c1p — X, 7rg(*)B1,2):1¢}’2 Ay + ALQ.’L‘%Q =
b} = 2, my(x)dg +min{eixi (k) + (cro — X, Ty (* ¥)B1s)z1” (k) a new tangential
support z < 3o, my (¥)dg +min{eiri (k) 4+ (cr — X, Ty ( %) By 5)x1” (k) is generated
and included in the outer linearization of p(.), the set Xz is enlarged with the
couple z;(k), z;>(k). This process is repeated until termination is obtained. It
is possible to demonstrate that to solve p(my,..,m,) by using primal decisional
variables of type either integers or real is equivalent [29]. If we suppose that a
set of cardinality [ of tangential supports have been generated, the following row

generation problem:

Model (DDW)

maxzmg, gea z

2 <Y medy 4+ ming je g{cizi(j) + (c12 — ZWgB1,2)$1’2(]'), j € B}
g g

BgTﬂg < wgcg, Vg e G

in the variables (z, 7, 4 ¢ ¢) can be exploited to generate an other classical scheme
called Dantzig-Wolfe, called also column generation scheme. Let X as bounded,
in order to obtain the Dantzig-Wolfe scheme, for each row, we introduce a new
variable 0;, j = 1,...t, t = |S|:

Model (DW)

ming; 42C1 Z (x1())0;) + €12 Z zp? )+ Z wg

JEB JEB

BIQle )0, + Byx; =dy, Vg € G

JEB
Z 9]:]_

G=1,.t

zg>0,Vg e G

where 6 is the unitary simplex of proper dimension, with © = 37, ,0; =
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1 is called the convexity constraint. In (DW) given X compact, the optimal
solution of xi’Z and x1, given a set [ of vertices are computed respectively as
Yiesr’(4)0; and X ¢ 521(4))0;, otherwise if X is not compact then x7? =
Yiep 21(4)0; + Xjep x1()u(s) | BrU B2 = B, p(j) > 0 are the extreme the
rays of X. Assuming the master problem (DW) has been solved using a method
that for each scenario yields a dual vector calling 7TZ, g € G corresponding to
the constraint: (BioY;¢5(21%(5)0;) + Byxy =dy, Vg € G

can be computing for example by using a method that solves simultaneously
both the primal and the dual of a linear program, such as the simplex method.
Once computed, ﬁg can be used in in a column generation algorithm in order to
compute a new primal solution, having a promising reduced cost, by solving the

inner problem (pricing problem) and to extend the set £:

(x1(j), 21%(j)) = argmin{ciz} + £,((c12 — Biom)ay?) : Aywy + Ajpay? = by}

The main steps of a delayed column generation technique can be resume d in the

following way:

Procedure Dantzig-Wolfe

Initialize [ = 1,6, = (1,0, ...,0), m};
while (true)
do
(z1(1), 2% (1) = argmin{clx%Jng((CLz—B1,27réxi’2)| Ay + A a0 = by}
if ( 6, can be added to DW)
{

add the new variable 6; to DW with:

coefficient cost (c;21(1) + ey 007%(1));
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coefficient column ([Byy217(1) 1]);
}
solve the master problem DW and return 7Tlg, g € Gand 0;, j=1,..,1;
l=1+1,
if (termination conditions are verified) break;

end ( while )
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Chapter 3

Bundle methods

The dual structure of the scenario models we deal with, using lagrangean
relaxation, are particular concave functions, called polyhedral functions, that can
be expressed as: p(y) = min;—1, {b; + yg;}, where g; represents the gradient of
one of the defining hyperplanes in a point y € Y, where Y is a convex subset
of R". The goal is to find the maximum value of the function ¢(y), in general
difficult to solve, because ¢(.) is unknown. The useful information that can be
retrieved from ¢(.) by giving a vector § as input parameter, can be the value
of o(y) and a sub-gradient g = ¢(y) of (.) in g, that satisfies the following

inequality:

o) <oy +9ly—9), Yy € R"

Assuming ¢(.) unconstrained, an other way to represent these kind of problems,

can be done by introducing the definition of epigraph of ¢(.), Epi(¢(.)), as:

Epi(e()) = {(y,v) € B"" | v < p(y)}
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3.1 The dual viewpoint

Geometrically, a sub-gradient is the gradient of a supporting hyperplane
of Epi(()). The maximization problem we have to solve is:

Model (D)
max,{v : v < mini=,{b; +yg:}}

As example, in figure 3.1, we report a set of supporting hyperplanes for problem
D. An upper approximation of (D) can be done by considering a set 8 = (1, .., q)
of points y; such that:

Model (Dg)

max,{v : v < (¢s(y) =)min; c s{o(vi) +y (v —vi) }

We cannot guarantee the sub-gradient is an ascent direction, however it can be
used to implement algorithms (see figure 3.2) which maximize such polyhedral
functions exploiting, at each iteration, the information regarding both ¢(7) and
g(y) in order to compute a tentative ascent direction d = y—g. The displacement
with respect to the current point ¢ and a new current point y = y + d, adding a
new index on set 3. Hence, Dg can be rewritten in function of the displacement
d = y — y with respect to the current point y. As a conseguence y, the new

displacement d can be computed as:

MOdel (Dﬁ,]j)

maxy{v : v < (pg(d) =)min; ¢ s{bi + gy,(d)}

Bundle methods have been used frequently to solve non-smooth optimization
problems. In these methods sub-gradient directions coming from past iterations,
are accumulated in a bundle and a trial direction is obtained by performing

quadratic programming based on the information contained in the bundle. The
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F
() —
g +g, (v—v Ps)+ 8, (V=23
P+, (v=12)

Figure 3.1: A set of supporting hyperplanes generated using a cutting plane
method
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@) —

,V 4_-’,-I|,J,|f-ecunu:n!

Figure 3.2: ¢3(.) approximates ¢(.)
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algorithms based on bundle methods employ a concept called e—subdi f ferential,

defined as:

bep(y) ={g € R": 0(7) < oly) +9(y—7) +¢, Vi € R}

Elements in 6.p(y) are called € — subgradients. In figure 3.4, we show two
€ — subgradients at point y. Correspondingly, the € — directional derivative

along the direction d at y is defined as:

0.y, d) = supeso[e(y + td) — p(y) — €]/t

Where:

0.y, d) = infs. o9 d

For a convex function ¢q(y,d) V y and V direction exists.
If a direction d can be found such that ¢, (y,d) > 0, then the dual cost can be
increased by at least e. Therefore, it is desidered to select a search direction d*

such that the directional derivative is maximized, i.e.:

d* = a?”gmal“ndu:l{@;(ya d)}
= argmaXHd”ﬂ{SO’E(ya d)}
= argminge;,,(y)Maz)q|-19'd

= argming&&w(y)” g ||

Generally, since the € — subdif ferential is very difficult to obtain, the
idea of bundle methods is to accumulate sub-gradients of the past iterates in
a bundle 8 = {g1, .., s} and to approximate d.p(y) by the convex hull of the

bundle elements:



44

4
p(d)
gl
/ g
&( /
R

=1

Figure 3.3: two e-subgradients
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Po={g9]|g=20 g0 €0U; >0, 0, =1, a;0; < ¢}

where «;, the linearization error for element i, is:

a; = {oi) +9i(ly —vi) — o(y)}

the € — subgradient enjoys the so-called ”information transport property”:

gedpo(y) =g€dply) Ww>a=pU) +9ly—y) —ey) +e€

That is, a vector g belonging to the € — subdif ferential of ¢(.) in some point g
also belongs to the oo — subdif ferential of ¢(.) in any other point y. Hence, the
first order information about ¢() in a point g, can be translated into an informa-
tion about a completely unrelated point y, at the cost of a known linearization
error «. Historically, the first algorithm presented as bundle method was based
on the following (QP) problem:

Model (Dj)

ming{|| X5 9505 It Xjepgics < €, je0; = 1}

where, «; is the ”cost”, of proper dimension, associated to each ¢;. Such approach
depends on critical parameter €, that must be dynamically update in order to
achieve good practical performance. In order to avoid working with € parameter,

it has been proposed a new approach working with a fixed parameter ¢:

Model(Dg,)
ming{1/2t || Xjcp 9;0; I +Xjep 9505 : XjesV; = 1}

that can be considered as the lagrangean relaxation of (Dj) different from (Dpg;).
It can be viewed as the relaxation of (Dj), where a lagrangian multiplier (2/t)

is used to dualize the constraint 3,5 g;ja; < €, having the following problem:
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ming{1/2t || ;e ) 9505 |1 + X e p) 9505+ LjesVy = 1} — et/2
that differs from (Dpg,) for the parameter ¢ in the objective function. The Karush-
Khun-Tucker conditions for the two problems are essentially the same, i.e. return

the same optimal primal solution 6 and the respective (v,d) are scaled of a

factor of ¢. This problem can be viewed as minimizing the distance between

t2

7p(d)

A

&4 dz ds d

¥

Figure 3.4: Effects of the stabilizing term: for ¢; < {5 < ¢35 and given a set f3, d;,
i=1,..,3 are the optimal solutions for ¢g

the functions @g and 1/2¢ || ¢ ||?, that is the point of contact among the two
functions, as reported in figure 3.4. The choice of the parameter ¢ (t-strategy),
is a critical part of all bundle algorithms. We can prove that the quadratic dual
of (Dg,):
(ILg:)

maxq,{v —1/(2t) || d ||*: v < dg; + «j, j € B}
is equivalent to (Dpg;) in the sense that, being 6 the optimal solution of (Dg,).

Proof: Ilg is equivalent to the problem: (IIg; )
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ming,{1/(2t)d"d —v:v —d"g; < «j,j € B}
the corresponding lagrangian relaxation is given by:
L(d,v,0) =1/2t)d"d — v + ¥ ;c50;[v — dTg; — o]
for the Karush-Khun-Tucker condition, we have the following relations:
Val(d,0,0) =0 = (1/t)d =¥ es0;9; =0
ViL(d,v,0) = 0 = Y,s0; —1 = 0 where, from the first one we have
d =13 ;cp0;9; and from the second 3°;c450; = 1.

Hence, the dual lagrangian problem can be formulated as:

Model (DLd’U’g)

mazgyoL(d,,v,0) (3.1)
1=1Y b9, 3.2
jep
JjeB
6>0 (3.4)

By making some simple algebra in DL, ¢ it follows that:

L(d,,v,0) = =1/2t)d"d+ 1/(t)d"d — v+ >_ 0;[v — d" gja;] = (3.5)
JjeB
=—1/@2t)d"d + d[(1/t)d = > 0;g;) +v]>_0; — 1]+ 0;c; = (3.6)
JEB JEB JEB
= —1/(2t)| %gﬂjﬂé - Zﬂaﬂj (3.7)

From the second and third eqaulity by using Karush-Khun-Tucker conditions
and by substituting d with ¢ 3" ;¢4 g;0;, the problem DLy, can be reformulated
as:

mazg — (1/2)t] 3_ g;05115 — 3_ ;0 (3-8)

JjEB JEB
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S0, =1 (3.9)
JEB

6 >0 (3.10)

that it is equivalent, except for the sign, to the primal quadratic problem:

mazy(1/2)t) Y ;0,5 + 3 o6 (3.11)
Jjes Jjes
6 =1 (3.12)
JEB
0 >0 (3.13)

The optimal solution d and v of (Ilz;) can be computed as:

d =tz where z=3,c3 g;0;
v=t||z||* + o where

g = Zjeﬁ Oéjej

the new tentative point y is found along the direction z (convex combination
of the currently available sub-gradient) , using ¢ as predefined step-size. In this
approach, called ”trust region approach”, ¢ is increased or decreased depending
on the outcome of the previous step: increasing ¢ can be preferred to move to
y whenever ¢3(.) is a good approximation of ¢ also outside the current trust
region. In case of null step, decreasing t can be preferred respect to inserting
the new g, if g is not believed to return new useful information about ¢ in a
neighbourhood of 7 (i.e. due to a large «). As a conseguence, cutting plane
and conjugate sub-gradient algorithms represent the limit cases respectively for
t — 0 and ¢ — oo using (IIg). If we formulate:

Model ((p)

maza{ps(d) —1/(2t) || d ||} (3.14)

(3.15)
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as:

Model ((s:)

mazq, v —1/(2t) || d ||? (3.16)

v<dgi+ai,j € f

we can prove that:

maza, v —=t/2 32 90 I (3.17)
i
tl Y g0 ll gk +ax—v>0,VEk € p

JjEB

Proof: At first the two problems differ in the space of the admissible solutions.
The second problem is a max problem in # but the objective function depends
on a combination of the g;. The first problem is a max problem in the vector
d in the wider region of the possible solutions. A possible solution of the first
problem can be written as d* = d"* + d®* where d'* € Conv{g;: i € B}
and d®* is the ortogonal component of d* ortogonal to d(V*. Hence, the optimal
value is the sum of vectors both belonging to the admissible region of the dual
lagrangian problem or ortogonal to it (the admissible region). Now we show
that the component ortogonal to the admissible region of the dual lagrangian
problem is null in the optimum of the problem of the first problem. Hence the
two problems coincide. It decomposes a generic admissible vector in the ortogonal
components d = dV + d® with dV 1 d® in a such a way that:

dY =3 g;6; (3.18)

JEB
dPTg;=0,Vj € B

hence, dV) belongs to the admissible region of the dual lagrangian problem and

d® is ortogonal to it. Substituting the first problem becomes:

mazg, v —1/(2t) || dV +d® ||? (3.19)
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v < (d(l) + d(2))9i +a;, ] €0
hence, the constraint can be expressed as:
v<dVg +0;, 7 € B (3.20)
If a feasible solution exists, considering the objective function:
maxa, v — 1/(2t) | dV || + || d® ||

the maximum value is obtained for || d® ||= 0.

The dual lagrangian problem has been obtained except for a factor ¢ that can be
introduced by considering d = d") = t > jep 9;0;- Hence, the bundle algorithm
can be viewed as a stabilized version of the cutting plane algorithm, in other word
we can obtain a new point §+ d* far from y, also if y is close to the solution. The
stabilizing term introduces a measure of the distance from the proximal point 7,
discouraging directions leading too away. A scheme of a bundle algorithm can

be resumed as:

Procedure bundle

let * > 0 and € > 0 be fixed, initialize y, t and

do

solve problems (Dg;) and (Ilg;) and (o, ||2]]) ;

find a direction d, move along d, generating some new g; and a trial
point y ;
if (a large enough improvement has been obtained)
then y = y; make a serious step

update 3, (possibly) including some new g;, deleting old ones and/or adding
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convex combination of the present ones (typically z); (8 — strategy)
update ¢, depending on the previous iterations; (¢ — strategy)

while (o + t*]|2]]* > € );

For any 6 the vector z = 3=, g;07 belongs to the o —subdi f ferential of the current
point g, and the following relation holds ||z|| = 0 = 7 is 0 —optimal. This can be
used in order to obtain the following ”standard” stopping condition [|z]|* < g
and o < g7 where g and ¢, are two fixed tollerance parameters. In fact, the
stopping criteria should be p(y*) — ¢(7) < &, but it is not implementable and if
y* was known, it could be substituted by o+ (y*—7)z < ¢, because z € 5,0((y)),
in other words py*x < ¢(y) + (¥ — y*) + 0. An even stronger condition could be
o+t (y,2)|]z]|> < e that can be turned in the ”standard” stopping criteria by
letting e, = £/2 and choosing at each step some e < 1/t (y, z), if the function
t*(y,2) = |y * —y| \ |2| is known. Hence, ¢ * (7, 2) can substitute by a fixed

parameter tx, that represents un upper approximation of the function ¢ * (.).

3.2 The primal viewpoint

Bundle algorithms can be applied to all problems having a set of constraints
simple to deal with and a set of complicating constraints, such as in scenario
analysis where the complicating constraints are represented by linking constraints
that make the problem more difficult to solve. Generally, if we regard a primal

viewing to such problems, they have the following primal structure:

Model (H)
min {cx |z € X, Ax = b} (3.21)

where X is a set closed and bounded, Az = b are the complicant constraints. X

could be a structured polyhedron, a convex set, a discrete set or a combination
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of them, so it is possible substituting X with X = Conv(zy, .., 7,), where each
z; is an extreme point in X. The problem (H) is then equivalent to: Model (P)

min{cr | v € X, Az = b} (3.22)
(3.23)

at the place of (H).

Hence, if we apply the Dantzig-Wolfe structured problem at P :

Model (M)
min c( Y x;0;) (3.24)
7j=1,..,p
Z $j9j =b
71=1,..,p
> 0i=1
7j=1,..,p

where © = {3, ,0; = 1} is the unitary simplex and each z € X is described
as a convex combination of the vertices x; using multipliers . The fundamental
strategy of the (DW) algorithm is to solve (M) by generating subset 3 of the
vertices, and solve the master problem:

(MDW)

min c(>_ z;0;) (3.25)

jep

Zl‘jgj =b

JEB
> 0i=1
Jinp
Which is equal to:

(MDW)

min cx (3.26)

r € | Xg]
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the linear dual problem of (MDW) is:
Model (DDW)

mazx yb+ v (3.27)
v<(c—yA)z;, x € Xp

Az =10

and its optimal solution (v,y) is used in the DW approach for the so-called
”mechanized pricing”, for obtaining N optimal solution x=x(y) of the pricing
problem:

Model (PcfyA)

yb+ min (¢ — yA)x (3.28)

ze X

that gives a new tentative optimal vertex z;(= x(y;)) € |X| which updates the
inner approximation Xg. If the corresponding constraint v < (c—yA)z;, i € f,
is satisfied, then we have an optimal dual solution for the starting problem,
otherwise a new column [Az;(y) 1] is added to Dantzig-Wolfemaster model and
the process is repeated. As example, we report in figure 3.5 the sequence of z;
obtained at each iteration of the Dantzig-Wolfe algorithm.

Now, rewriting the problem in the equivalent lagrangian dual form we have:

max, cx; + (b — Az;)(y) (3.29)

For any dual vector y, ¢(.) can be written as ¢(y) = cx(y) + yg(y) and the

linearizzation error a; of ¢(.), with respect to any point y, is:

a; = o(y;) — (1 —v5)g — ¢y) = (c — yA)(v; — 2(y)) = (3.30)

= (c—yA)zr; — o(y) +yb=cx; + yg; — p(y) (3.31)



o4

v

Figure 3.5: Sequence of the optimal solutions z;(y) obtained in Dantzig-Wolfe
algorithm
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As a conseguence the problem (Lg) can be expressed as:

Model (Lg)

mazxy,v:v < (¢ —yA)x; — p(7) + gb} + ©(7)

the above relations on the «;, the definition y = § 4+ d and some simple algebra
yields:
Model (Dﬁ)

mazxy,{v:v <dg;+a;, j€B}+o(y)

we can show that (Lg), with respect to the current y point, is equivalent to the
following model:
Model (Mp)
ming{ad : > g;0; =0, > 0; =1}

JjEB JEB
(M) has a non empty feasible region, any feasible solution # returns an upper
bound o = afl + ¢(y) to the optimal value ¢(y*).
Moreover, by setting 1(p) = min,(c — p)x : x € X = z((Pc — p)) we have p(p) =
(yA) + yb and it is possible to proof the relation between the e-optimality and
the e-subgradient for ¢)(.). There are a set of important theorems involving the
quality of the primal solution x with the subgradient information.
Theorem: let ¥(y) = {(¢ — y)z : @ € X}, x is e-optimal for problem P, 4 [&]
-x is a e-subgradient for (.) in 7.
proof: [=] By e-optimality of z, ¥(y) + ¢ > (¢ — 7)z, clearly for any +', = is in
general suboptimal i.e. (¢ —~") > ¢ ('), hence:
() Lle=F)r+yr—qr=(c=7r+ (v =)z <Pp() + (¥ =7)(~2) +¢
Conversely, assuming V79 (7") < ¥(v) + (v — v)(—z) + € holds, but ¢(y) <

(c—7)x —¢) (x is not e-optimal ); then by taking 7' = ¢ in the previous relation,
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we get:

0=19(c) <)+ (c=7)(=2)+e<[(c=7)r—e] = (c—7)+e=0.

The linearizzation error o; = ¢©(y;) + ¢:(§ — vi) — p(7) of the i-th subgradient
g; = b — Ax; with respect to the current point §

a; = @(yi) + gi(J — i) — p(7) =

= [ (id) + yib] + (7 — y:) (b — Azi) — [V (1:A) + 7b] =

= (yiA) + (=) (A — yiA) — ¥(YA) = o(n) + (v — %) (—z:) = ¥(9)

(where ¥ = yA and ; = y;A), i.e. it is as well the linearizzation error of —x; (as a
sub-gradient of ¢(.) € 7;) with respect to 7: in other words, x; is an «; — optimal
solution for the pricing subproblem (P._5) corresponding to the current point y.
This immediatly implies that for any 6 € ©,7 = ¥ ,c532;0; is a o-subgradient
of ¢(.) in 7, that is o-optimal for (P._5). Hence, it is possible to measure the
"quality” of the current point g.

Lemma: let z*x be the optimal solution for the Dantzig-Wolfe problem and
z=b— AT =3cp gt (for any 6 €0); hence, crx > ¢T + gz — 0.

Proof: o-optimality of Z implies (¢ — gA)x * +0 > (¢ — gA)Z, that is cxx >
cT + §(Ax * —AZ) — o, but zx is feasible, in other word Az = b, this complete
the proof.

Lemma: for any 0 € ©, ¢z — ¢(y) < 0 — yz.

Proof: By c-optimality of &, oy = 1 (yA) + yb > (¢ — yA)x — o + yb.

However, the above theorems are not exploited in order to use them as stopping
criteria, such rules are a generalizetion of Dantzig-Wolfe stopping conditions,
since they hold when the constraint Az = b are slightly violated ||b — Az|| < eg
and 7 is almost optimal for the current pricing problem. Hence £ is a measure
of the maximum mass balance constraints violation accepted for the termination

rules. A primal interpretation of (dz;) can be obtained from:
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(M5)
ming of (3.32)
|Gsb]> <&, 0 €0 (3.33)
Where G is the matrix having {g; : ¢ € §} as columns, where the mass balance

constraints are relaxed as ||b— Az||* < &, where Mj is a langrangian relaxation of

dp- In a practical approach using (M5) instead of (Mp) is profitable because it

Figure 3.6: (Mp) can be empty while (M) it is not

1/2 around it, as reported in

extends the region {z| Az = b} to a cylinder of ray 2¢
figure 3.6. It is always possible to find a large enough ¢ which make (M3) feasible,
in order to mitigate the instability problems due to Dantzig Wolfe algorithm,
while if Mp is used the algorithm can return unbounded as result until Xp is
enough large.

Proposition: g is bounded if and only if exists § € © such that Ggf =0

Proof: Gl = 0 implies that (Mp) has a feasible solution, therefore its dual (Lg)
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(equivalent to the maximization of ¢3) cannot be unbounded; in other words if it
exists a vector 0 € 0. then ¢z is bounded. Proposition: if the stopping condition
o+ tx|z[*> < e holds, and |GO % | = 0 for any optimal solution of (Ay), then
p(yx) — o(7) = 2(0) < e.

Proof: |GO x| = 0 implies vx = ¢(0 + dx) = 2(Il) = 2(As) = abfx with 0% is
optimal to (A;) for any t > tx and 2(4;) > 2(Asw) (2(A;) = ming {t|GO|* + b}
is a non decreasing function). It is also true that z(A; < t0 + afx) = zA,
since fx is a feasible solution for solution (4A;) the model is bounded, so that
©(7)+ps(dx) = o(y+dx) is at the same time an upper bound and a lower bound
on ¢(yx*), hence yx = § + dx is an optimal solution for max{p(y) : v € Y}.

Since o+t |z]* > 2(Aw), then ¢(y*) — o(y) = pa(d) = 2(An) < o+tx|z]* <e.
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Chapter 4

First application: an application of
scenario analysis to water system

management

4.1 Introduction

Water Resources dynamic management (WR) problems with a multi-period
feature are associated with mathematical optimization models that handle thou-
sands of constraints and variables depending on the level of detail required to
reach a significant representation of the system ([53], [100]). One optimiza-
tion approach is to model the WR problem as a dynamic multi-period network
flow problem, where all data are fixed and no level of uncertainty is considered
([83],[55]). Efficient optimization algorithms have been used to solve this kind of
problem [84]. But, WR problems are typically characterized by a level of uncer-
tainty regarding, among other things, the value of hydrological exogenous inflows
and demand patterns. Assigning inaccurate values to them could well invalidate
the results of the study. Consequently, deterministic models are inadequate for

the representation of these problems where the most crucial parameters are either
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unknown or are based on an uncertain future.Many dynamic planning and man-
agement problems are typically characterized by a level of uncertainty regarding
the value of data input such as supply and demand patterns [44]. The traditional
stochastic approach gives a probabilistic description of the unknown parameters
on the basis of historical data. This is a very efficient approach when a substan-
tial statistical base is available and reliable probabilistic laws can adequately
describe parameters, uncertainty and their possible outcome ([52],[54],[81]). It is
well known that stochastic optimization approaches cannot be used when there
is insufficient statistical information on data estimation to support the model,
when probabilistic rules are not available, and/or when it is necessary to take
into account information not derived from historical data. In these cases, the
scenario analysis technique could be an alternative approach ([30], [77]). The
aim of this paper is to apply the scenario analysis framework approach to WR
problems and investigate its effectiveness with respect to traditional approaches.
A WR model is usually defined in a dynamic planning horizon in which man-
agement decisions have to be made sequentially or globally decided as a decision
strategy referred to a predefined scenario, where a scenario represents a possible
realization of some sets of uncertain data in the time horizon examined. One
common approach is to carry out a set of experiments on a number of generated
series (parallel scenarios) followed by a simulation-testing phase of each scenario
in order to validate the solutions under investigation. All the solutions (each
one is a sequence of decisions) are completely independent one from the other
because they are obtained from scenarios analyzed separately. As a consequence,
the decisions adopted are closely related to the scenario selected at the end of the
simulation and the study must start all over again if a different scenario comes
true. To overcome the above difficulties, in this paper we analyzed the scenario

approach for WR offering some general rules for organizing a predefined set of
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scenarios into the scenario tree and for identifying a complete set of decision
variables relative to all the scenarios under investigation. The scenario tree is
obtained by aggregate common portions of scenarios; the aggregation condition
guarantees that the solution (that is, the decisions) in any given period is inde-
pendent of the information not yet available. Scenario analysis approach for WR
was proposed in [31] and in Wam-Me EU project [85], and tested on some real

physical systems.

4.2 Water Resource Dynamic Model

A successfully applied approach is to model the problem by an optimisation
network flow model supported by a multi-period dynamic graph where all data
are fixed and no level of uncertainty is considered [83]. Network flow models
allow adopting highly efficient computational algorithms even when thousands
of variables and constraints are required [6]. In WR management problems,
some author explored the possibility of maintaining network flow structure even
if non-network constraints are present in the model [58]. Referring to a ”static” or
single-period situation, we can represent the physical system by a direct network
(basic graph), derived from the physical sketch.

Figure 4.1 shows a physical sketch of a simple water system. In the figure,
nodes maintain the shape of the common hydraulic notation in order to recall
the different function of system components. Nodes could represent sources, de-
mands, reservoirs, groundwater, diversion canal site, a hydro-power station site,
etc. Arcs represent the activity connections between them. Physical compo-
nents corresponding to nodes and arcs can be in the project stage (work planned)
and/or operational (existing works with a known dimension). Nodes correspond-

ing to reservoirs represent the system memory since they can store the resource



Figure 4.1: Physical sketch
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in one period and transfer it in a successive period. A dynamic multi-period
network is generated by replicating the basic graph for each period t. We then
connect the corresponding reservoir nodes for different consecutive periods by
additional arcs carrying water stored at the end of each period. We call these

inter-period arcs.

T

15t time-petiod 2nd time-period 3rd time-period dth time-period....

Figure 4.2: Dynamic network sketch generated by simple basic graph

Figure 4.2 shows a segment of a dynamic network generated by the sim-
ple basic graph of figure 4.1. Reservoir-nodes are supply-nodes that store and
supply the resource. Demand-nodes use and consume the resource. Junction-
nodes allow resource passage without consumption. It may be convenient to add
"dummy” nodes and arcs to represent not only physical components but also
events that may occur in the system.

Figure 4.3 shows the dynamic multi-period network, corresponding to that
of figure 4.2, including dummy nodes and arcs marked with a dot. The basic
graph is in the frame. The dummy node, U, represents a possible ”external
system” acting as a supposed source or demand of flow. In this way each arc (i, U)
represents a spillway from reservoir-nodes i, each arc (U, i) represents a supposed
additional flow in case of shortage in order to meet request in the demand-nodes
i and prevent solutions which are not feasible. Flow on arcs (U, ) highlights
possible system deficits and the need to modify the dimensions of the works or,

alternatively, to make recourse to external water resources. In this paper at first
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Figure 4.3: Dynamic network generated by simple basic graph

we identifies the components of the deterministic mathematical model and then
we provide a formulation for a reduced model that can be adopted to formalize

uncertainty in water resources management.

4.2.1 Definition of Water Resources Optimization Model

Components

Though it is almost impossible to define a general mathematical model for
water resources planning and management problems, our model makes it possible
to take into account all possible general system components based on the most
typical characterization of these types of models. Different components can be
added or deleted updating constraints and objectives. In this paper, we describe
only a few of them. A more detailed description of the model supported by a
Decision Support System (DSS) can be found in [67] and [84]. Hereafter, we
refer to the dynamic network R = (N, A), where N is the set of nodes and A
is the set of arcs. T represents the set of time-steps t. Sets of nodes (subsets of
N) can represent reservoir nodes, demand nodes (such as civil, industrial, irriga-
tion, etc.), hydroelectric nodes associated with hydroelectric plants, confluence
nodes (such as river confluence, withdraw connections for demands satisfaction),

etc. Sets of arcs (subsets of A) can represent conveyance work arcs, artificial
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channels, transfer arcs, spilling arcs, etc. Variables considered in the LP model
can be divided into operation and project variables. Operation variables can
refer to different types of water transfer (flow on arcs) such as water-transfer in
space along an arc connecting different nodes at the same time, water transfer
in an arc connecting similar nodes at different times and so on. Project vari-
ables are associated to the dimension of future works: reservoir capacities, pipe
dimensions, irrigation areas, etc. Constraints in the LP model can represent
mass balance equations, demands for the centres of water consumption, evapora-
tion at reservoirs, relations between flow variables and project works, upper and
lower bounds on decision variables. To illustrate this concept, we provide here-
under, some details of possible variables, constraints and related data referred
to a reservoir-node and a demand node. For a reservoir-node, 3¢, represents the
portion of water stored in the reservoir at the end of period ¢ that can be used

in subsequent periods. A corresponding constraint, for each time period ¢ is:
thninYmaw < yt < Tfnaxymal’ (41)

Where Y., represents the max storage volume for inter-period transfer arcs and

rfnax (r

t
min

) represents the ratio between max (min) stored volume in each period
t and reservoir capacity. These constraints ensure that, in each period, used
volume y' of the reservoir is in the prescribed range. In an operational state
Yinax is known while in a project state it is a decision variable. In the latter case

it is bounded by:

Where M (m) represents the maz (min) allowed capacity. For a demand-node,
e.g. a civil demand, p’ represents the water demand at the civil demand centre

in period t. A corresponding constraint, for each time period ¢ is:
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p' =n'd'P (4.3)

Where P represents the size of the population whose demand can be ful-
filled, ' the request program in each period ¢ and d’ the water requirement for
unit of population. These constraints ensure the fulfillment of the demand in
each period, no matter if it comes from the system or from dummy resources. In
an operational state, P is known while in a project state it is a decision variable.

In the latter case it is bounded by:

Pin < P < P (4.4)

Where P4 (Prin) represents the max (min) estimated population. More-
over, mass balance constraints are introduced, involving all flows that are going in
or out the reservoir or demand node, including hydrological input to the reservoir
in each period. The objective function considers costs, benefits, and penalties
associated with flow and project variables as well as dummy costs or benefits

associated with the dummy components of the multi-period dynamic network.

4.3 A simple system

To illustrate the scenario analysis approach we refer to a sample water
system with a reservoir and a demand centre (e.g. civil demand). The supply
centre can deliver a resource or store it to deliver in a successive time-period.
We assume that dimensions of the reservoirs and the demand centre are known,
that is the system is in an operational state. We want to determine the resource
management policy over a time horizon such that the known resource demand is

satisfied (as much as possible) and the total cost is minimized. Objective function
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and constraints will be analytically expressed on the basis of the feature of the
examined system. Variables of the optimization problem are referred to stored
water y; flows transferred from reservoir to demand centre z;, deficits uz in each
period ¢ and in each scenario g. Water demand pz is assigned as population P is
known. We adopt, as historical data, a hydrological series of 48 monthly time-
periods (4 years) reproducing typical behaviour of the Mediterranean system:
a wide range of inflow variability between humid and drought periods. Inflows
average is adopted as civil demand by the demand centre assuming that the
water system is balanced. Moreover, in order to facilitate result interpretation,
we assume that the volume, Y., of the reservoir is large enough to prevent
spillage and that evaporation losses are negligible. We generate two scenarios, g1
and ¢2, assuming that uncertain parameters correspond to hydrological inflows,
mp;, i.e., supplies in reservoir node in period t in scenario g. Costs and bounds
associated to variables are considered without uncertainty and, as a consequence,
are the same in both scenarios. We generate a scenario-tree with two stages

and one branching-time 7. Figure 4.4 shows the scenario-tree for this simple
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Figure 4.4: Scenario tree

example. In the figure, variables up to branching time ¢ are reported without

scenario subscribe because they are the same in the two scenarios, as required
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by congruity constraints. Dummy node U and dummy arcs, corresponding to
deficit uz , are not reported in the figure. The two scenarios are both identical to
the historical data up to 7 = 12" time-period. Scenario g, follows the historical
data from represent costs per unit of flow xz and uz respectively, for g = g1, go.
The objective is to minimize operative total costs, that is, transfer costs from
reservoir to demand centre plus deficit costs. The chance model, for this simple

example, can be written as follows:

min (ctxgl + cta:§2 + atuzl + atu§2) (4.5)
PhinYimas < Y < ThawYimas (4.6)

Yy | =Yg — Ty = inp, (4.7)

Ty + Uy =1y (4.8)

y21 = y22 (4.9)

Tyt = Ty (4.10)

Ugr = gy (4.11)

Where constraint (1.8) represents the bounds on stored volumes, (1.9) represents
the mass balance in reservoir-node and (1.10) the mass balance in demand-node,
with t=2,..,48 and g = g1, go. Moreover (1.11), (1.12) and (1.13) represent the
congruity constraints (set S in the chance model) with ¢ = 2,..,7. Hereunder we
illustrate some results concerning stored volumes in reservoir, y;, and transferred
water to demand centre, xz, obtained by scenario analysis, solving the above
optimisation chance model.

Figure 4.5 shows stored volumes with 7 = 12 time-period. Moreover the
figure shows stored volumes obtained by an optimisation deterministic model
when the scarce scenario g; is assumed as database. We call s; this independent

scenario. The graph referred as scenario s; represents decisions, in water trans-
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fer, in a deterministic optimisation process. The zone (band) between the two
graphics of the aggregated scenarios, g; and go, represents the possible decisions
that can be taken for stored volumes. Then we can say that the part of s; that
does not stay between g; and g, represents the error that the manager would
have made if he had adopted decision s;. Figure 4.6 shows the transferred wa-
ter, xg, from reservoir to the demand center in aggregated scenarios, and in the
independent scenario. The behaviour of these flows shows that in the scenario g
demand is fulfilled while in scenario g; deficits are present after branching time
7. But, comparing this with results in deterministic optimization under scenario
s1, we can see that as regards the scarcity of resources conditions, scenario op-
timization gives a smoother distribution, i.e., with a lower variance of resource
distribution in scenario g; even though the average is almost the same as sce-
nario s;. Thus, when planning for scarce resources, scenario analysis provides
less dramatic and more easily implementable results then using deterministic

optimization to determine management policy.

4.4 A barycentric chance reoptimisation model

In the previous section we showed how scenario analysis could be more
useful than the deterministic approach in deciding water management policy.
This can be crucial if scarce water resources events occur and a rationing policy
must be adopted. But, an effective management policy must be able to establish a
target value for delivering resources to the demand centre. The community suffers
less from resource rationing if it has been forewarned of a possible shortage.
This target value should take into account the entire range of possible scenarios
of resource availability, neither too pessimistic in case of abundance, nor too

optimistic in case of scarcity of resources. In other words, a target value should
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be sufficiently barycentric in respect to the different possible scenarios that could
take place. Establishing the resource demand level at this target value would
permit notifying the resource users (the community) in a timely fashion. As a
consequence, preventive measures could be adopted in order to avoid, at least in

part, damages derived from an unexpected drastic cut in water resources.

demand p
e
baricentric programmed deficits
“'3|U9_’ _________________
unprogrammed deficits
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Figure 4.7: Delivered resource

Figure 4.7 shows the resources delivered to demand centre in deterministic
reoptimisation, if f; are the decision variables representing the resources that
can be delivered to a demand centre in time-period ¢ under scenario g, we want
to determine a target demand as the value 2° that is barycentric with respect to
all 552. To obtain this value we introduce in the objective function of problem
(Pc) a function measuring the weighted distance from z” to z, for all g and ¢. If
we adopt the Euclidean norm to measure this distance, the chance barycentric

model can be expressed as:
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min()_ wyc,ry + Y Xt: A (24 — ")) (4.12)

Agzy = by, Vg e G
lg < g < uy, Vg e G
x e S

where ), is the weight associated to the norm. Once the value 2° is determined,
a re-optimization process can be adopted in order to identify the sensitivity of
the examined system with respect to deficit programming. We construct a deter-
ministic dynamic model in which the predefined demand is settled equal to the
barycentric value 2° and adopting as data input, those corresponding to the most
crucial scenario (e.g. what the manager considers the most risky for the system).
The difference between the new configuration of delivered resources in each time-
period ¢ and the value %, identifies the set of programmed deficits for the system.
In the sample system illustrated in the previous section we determine a value z°
in such a way that it is barycentric with respect to all zg. then, we reoptimize
the system solving a deterministic model assigning to the demand centre the ob-
tained value 2’ as target value and adopt, as data input, those corresponding to
scarce scenario. Figure 4.7 shows the resources delivered to the demand centre in
the reoptimization phase together with the programmed deficits (difference be-
tween the new configuration of delivered resources in each time-period t and the
value 2°) and unprogrammed deficits (difference between the original resource
demand and the value z°). Moreover, comparing the behaviour of delivered re-
sources with that showed in figure 4.6, we observe that management policy is
even better than the policy corresponding to scenario g;. The programming of
deficits makes it possible to set up adequate preventive measures, which permit

a notable reduction in the event of resources scarcity.
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4.5 Test Case II: A Real Physical System

Scenario analysis was performed on the FCC (Flumendosa, Campidano,

Cixerri) system in Sardinia, Italy.

EI civil demand

irrigation area

industrial demand

Figure 4.8: System Flumendosa-Campidano-Cixerri

Figure 4.8 shows a sketch of the system. Since 1987, the Sardinia-Water-
Plan has highlighted the necessity of defining an optimal water works assessment
and the urgency of defining optimal management rules for the water system.
Correct evaluation of system performances and requirements became increas-
ingly urgent, as system managers were obliged to face serious resource deficits
caused by the drought events of the past decade accompanied by an almost total
uncertainty in hydrological inflows. The main infrastructures were built in the
mid 50’s and supply most of southern Sardinia. The main water supply source of
the system is represented by the three reservoirs with a total storage capacity of
666.4 million cubic meters (Mm3). Gravity galleries connect the reservoirs. Total

yearly average distributed volume in the period examined is 225 Mm3 for civil,
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industrial and agricultural demands. No significant aquifers are present in the
system. The principal works can be identified in 13 water supply sources (dams
and weirs), 3 water diversion and communication galleries, 5 main water supply
and distribution networks, 2 hydroelectric power stations, 1 irrigation distribu-
tion network, 11 pumping stations, and 2 drinking water plants. A number of
synthetic series is generated and adopted as the set of predefined scenarios. The
basic hydrological data is derived from the report in RAS (2003) and different
scenario generation techniques have been compared. Starting from a database
with a time-horizon up to 75 years, corresponding to 900 monthly time-periods,
a set of 30 scenarios was submitted to statistical validation and selected. Sce-
nario analysis was performed on a scenario-tree of 2 and 3 stages up to 30 leaves.
Since each scenario involves about 3,000 variables, the chance model supports
several thousands of variables and constraints. In this paper, I report some re-
sults selected among a wide set of output information. In particular, we report
some results obtained adopting a time-horizon of 48 time-periods and a branch-
ing time in the 12th time period as in the sample system. Illustrated results are
referred to the ”Nuraghe Arrubiu” reservoir (the red arrow in figure 4.8) that is
considered one of the main pivots of the system as it can control water transfers
to the principal demand centres. Two scenarios are deduced from the last 4 years
of hydrological inflows reported in [70]. We adopt these data as scenario g while
scenario g; is derived from it assuming that a reduction of 50 percent will occur
after the branching-time.

Figure 4.9 shows the behaviour of stored volumes obtained by scenario
analysis (aggregation of ¢g; and g») and the behaviour obtained by deterministic
optimisation using the reduced independent scenario s;. The figure shows that
decision policy, corresponding to deterministic optimization, induces an early

empty reservoir with respect to the decision policy given by scenario analysis
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in the equivalent scenario ¢g;. This corresponds to the behaviour of transferred
water to demand centres as illustrated in figure 4.10. As in the sample system,
decision policy g¢;, resulting from scenario analysis, exhibits smoother resources
distribution and a lower variance with respect to deterministic policy s;. The

analysis of the FCC system by barycentric chance reoptimisation is in progress.

4.6 Conclusions

In this chapter I showed how scenario analysis can be more useful than
the deterministic approach in deciding water system management policy when a
level of uncertainty affects data input such as supply and demand patterns. De-
cision policy under uncertainty condition can be crucial if scarce water resources
events occur and a rationing program must be adopted. The scenario analysis
approach considers a set of statistically independent scenarios, and exploits the
inner structure of their temporal evolution in order to obtain a "robust” decision
policy, in the sense that the risk of wrong decisions is minimized. This can be
done by a re-optimization deterministic process using a barycentric value derived
from a previous scenario optimization. Finally, this make it possible to identify
programmed deficits to control the negative consequences deriving from wrong
decisions allowing the system manager to adopt preventive measures avoiding, at

least in part, damages derived from an unexpected drastic cut in water resources.
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Chapter 5

Second application: an application of
scenario analysis to air traffic delay

management

5.1 Introdution

Air Traffic Delays occur for a variety of reasons ranging from bad weather
conditions, such as runway closure, de-icing, cross-wind limitation (nobody’s re-
sponsability), to technical /operational problems with flight preparation (that is
the aircraft operator’s responsability), customer service issues, air traffic control
system decisions, equipment failures, airport congestion and lack of Air Traffic
Management (ATM) capacity (i.e.: the inability of certain Air Traffic Control
Units to handle all the flights wanting to cross the airspace at a certain time). Air
Traffic Management System must provide Air Navigation Services to a certain
volume of air traffic, in line with the targeted high level of safety and with-
out imposing significant operational, economic or environmental penalties under

normal circumstances.
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5.2 Air traffic management outline

The aim of the ATM is to maintain efficient the flow in the air traffic system
and the safety measures, protecting air traffic services from over-deliveries, while
at the same time enabling aircraft operators to carry out their intended flight
operations with the minimum penalty. Examples of operational penalties are:
ground delay, assignment of a cruise level different from the optimum one during
a long period of flight, extra mileage, holding pattern. Both Unpredictability and
predicability events responsible of airports congestion and lack of ATM capacity

can be classified as:

e Catastrophic events: relatively rare, major events typically related to
factors external to system operation, such as: terroristic attacks (e.g.
11/09/00) or labor strikes that disrupt operations on a large scale, com-
puter fault (e.g. 24/08/05, 03/06/04, the system produces paper slips
which tell air traffic controllers each individual aircraft’s height, route,
destination and contact information, allowing them to direct the planes
correctly. When it is not working, controllers have to produce these

forms by hand so it cause delays and backlogs).

e Complicatedness: Many factors interact and affect system behaviour,
making it difficult to predict what will happen, a typical manifestation
is the interacting of traffic flow in congested air airspace and around

congested airports.

e Criticality: system elements are often "near the edge” so behavior is
sensitive to small perturbations, it this case demand can be near or
above capacity for some NAS resource, making the system sensitive to

small changes.
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e Distributed adaptive decision making: airspace users (multiple decision-
makers) acting in self-interest adapt to changing circumstances, but may

over-congesting system resources making the system hard to predict.

e "Shaky-hand” effects: this is when actions taken produce large errors
(deliberate or accidental) in execution such as non compliance to ini-
tiatives or ineffective communication of an initiative that produce large

variance in actual aircraft arrival time compared to scheduled times.

e "blurred vision” effects: decision are made based on imperfect informa-
tion, this can generate for example problem in assigning airline priorities,
weather and demand imperfect forecast. Negative economic conjuncture
can produce an important impact in the number of delays, as well. This
was observed in the United States airports during 2001, when the decline
of delays was far greater than the decline in the number of operations
because both the system and many of the largest airports had been oper-
ating at or near their theoretical capacity. In these cases, the decrease in
the number of operations has had a disproportionate impact on delays.
A related response was observed in 1999 and 2000, when a relatively
small increase in the number of operations produced a large increase in
the number of delays. For many years, in Europe the delay was due to
the fact that the air traffic control system was not adapt to manage the
continuous growth of the civil air traffic, this fact produced yearly a large
quantity of delay. Figure 5.1 reports the portion of each cause of delay
on the total delay in 2005. The goal of Air Traffic Flow Managment
(ATFM) is to apportion capacity to minimize disadvantageous effects
when capacity is reduced. The flow management problem in ATFM oc-

curs when flights arriving at an airport must be delayed because that
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airport suffers of reduced capacity. Hence, ATFM try to reduce conges-
tion delay effects as-needed while optimizing capacity. The CFMU is now
evolving towards air traffic flow and capacity management, where the em-
phasis is on optimizing available capacity whilst maintaining the safety
levels required by European air navigation service providers (ANSPs).
These objectives are achieved by assessing the planned traffic load and,
where necessary, acting upon this planned traffic data through the im-
plementation of ATFM measures. In Europe the ATFM is covered by
the CFMU and in the USA Air Traffic Control System Command Center
(ATCSCC), in Europe this service is paid by passengers. Facility con-
struction, fundamental procedural changes, improvement in navigational
equipment, new transport aircraft, new landing procedures are long term
solutions. In Europe, an important event that has given a significant con-
tribute to reduce the air delay is the implementation of Reduced Vertical
Separation Minimal (RVSM), the most important structural change to
the European air traffic control system in 50 years, allowing more air-
craft to fly in the same volume of airspace, allowing more aircraft to
operate at fuel-efficient altitudes, helping decrease aircraft emissions by
between 1 and 2 percent. Thanks to this initiative in these years the de-
lay due en-route has been reduced consistently. This solution has been
activated from 2002 and has increased capacity in upper airspace by 14
percent. An other important contribution towards the effectiveness of
the CFMU’s role will be the collaborative decision-making between all
the players. This inclusive and transparent process has enabled trust to
be built between the CFMU, aircraft operators and ANSPs. In 2002,
this process in USA was used extensively to address areas of congestion.

These developments allow greater efficiency to be achieved throughout
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the entire flow management process. They will also provide the aircraft
operator with the ability to interact with these processes and use them to
his advantage without requiring detailed knowledge of what has already

become a very complex system.

Unfortunately, the delays reduction involve only en-route ATFM delays.
As result, the proportion of the airports delay, was in the last five years
was around 22 percent of the ATFM delays, it has increased significantly
reaching 33 percent in 2002, 45 percent in 2003 and 48 percent in 2004, as
reported in figure 5.2. In order to reduce both delay and operational costs
in short time and improve the congestioned airport capacity, a tactical
procedure can suggest a model based on both ground holding and holding
pattern assigments. However, a tactical optimization is a difficult process
which require a practical implementation of the model and the solutions
strictly depends on the airport capacity uncertainty. Methodological
approaches used to deal with unpredictability are: scenarios analysis,
agent-based modelling, sensitivity analysis, game-theoretic modelling,
bayesian networks. In a scenarios analysis context a tactical strategy
which explores all the possibly scenarios returning a quickly solution is
important to aid the controllers to take tactical decisions. In this case,
the solutions strictly depends on the uncertainty parameters regarding
the future airport capacity due to some congestion cause. In this thesis, I
introduce a tactical flow management procedure for the Ground Holding
Problem (GHP) which optimize the arrival /departure daily plan, based
on scenario analysis, trying to manage the uncertain future events that
could reduce the runway capacity, congestioning the airport. The tacti-

cal flow and capacity management model minimizes the costs associated
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to delays and reduces the domino effects. This model reacts to unpred-
icabilty negative future events, minimizing disruptions impact and/or

taking benefit of opportunities.

5.3 Literature review

If airport capacity was deterministic, we would be able to precisely deter-
mine the Airport Arrival Rate (AAR) for each time period, and could use
the exact AAR to make optimal decisions regarding a new flight sched-
ule. However, Airport Arrival Rate in case specific events is difficult to
calculate. GHP is a specific example of the generic flow management
problem where the objective is to minimize the expected total cost of
delay by assigning delays to aircraft. The GHP is stochastic since the
airport capacities are random and is dynamic since the weight associ-
ated to capacities change with time. Literature reports several decision
support for traffic flow management, in [66] general flow management is
posed. [66] provides a comprehensive examination of the flow manage-
ment, problem, this paper outlines the stochastic and dynamic problem
characteristic and proposes several methods for approaching the prob-
lem. [66] proposes that the generic flow management problem can use
any objective function related to ground and air delays and further sug-
gests that the natural objective function is that which minimizes the
total cost of delays. Although GHP is a stochastic and dynamic prob-
lem, deterministic formulations are often used as a first step in solving
the GHP. In this case, the capacity for each time period is assumed to

be known. Andreatta and Romanin-Jacur [4] gave a linear program for-
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mulation and propose a polynomial algorithm which finds an optimal
ground delay decision for the single airport GHP. [72] provides a deter-
ministic linear program formulation for the single airport GHP. In [86]
is formulated the GHP for a single airport as an integer program and
solve the integer program as a minimum cost flow problem. The single
airport GHP has been expanded to consider multiple airports as well.
Bertsimas and Stock Patterson [11] propose an integer program formu-
lation of the multi-airport GHP and solve this problem using a linear
program relaxation. They are able to solve realistic size problems in an
acceptable amount of time since most solutions to the linear program
relaxation were integral. Navazio and Romanin-Jacur [64] formulate the
deterministic multi-airport GHP with banking constraints as an integer
program. Due to high computation time, they provide an alternative
heuristic algorithm. Vranas, et al. [13] propose an integer program for-
mulation and solve the multi-airport GHP using a linear program relax-
ation. They solved the problem for six airports and 3000 flights. Several
stochastic models have been proposed to solve the GHP. Andreatta and
Romanin-Jacur [4] adapt their polynomial solution algorithm to solve a
single airport GHP for one period where the capacity is stochastic with
a known distribution. Terrab and Odoni [86] explore using a dynamic
program to find the exact solution to the probabilistic formulation, but
were constrained by time and memory since they consider each flight
individually. They further suggest using several heuristic algorithms to
solve the stochastic GHP. Their heuristic algorithms were able to pro-
vide reasonable solutions. Several models also include dynamic updates
of weather information which may be used to modify ground holding

decisions periodically. Vranas, et al. [13] extend their research from [12]
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by modifying their linear program relaxation of the integer program to
include dynamic updating. To solve the stochastic dynamic version of
GHP, they select either the most likely or worst case policy and then
evaluate that policy against the stochastic capacities. Furthermore, they
give a dynamic first-come first-serve heuristic for the stochastic problem
but this heuristic was highly inefficient. Panayiotou and Cassandras [68]
use a finite perturbation analysis to solve the single airport GHP dynam-
ically using an event-driven model to assign ground delays as opposed
to a time-driven model used in integer, linear, and dynamic program-
ming approaches. Since their approach is scalable, they were able to
solve a realistic size problem. Unlike the previous papers which consider
flights individually, Richetta [71] and Richetta and Odoni ([72], [73])
make decisions on a collection of flights. They first solve the probabilis-
tic GHP deterministically by selecting the most likely capacity profile
and solving the deterministic linear program. This formulation is the
foundation of the policy-based approach discussed in Chapter 3. Next,
Richetta and Odoni provide a stochastic linear program formulation of
the single airport multi-period dynamic stochastic GHP. The resulting
stochastic linear program is easily solved by transforming the problem
to a minimum cost network flow model. [68], this formulation requires
time discretization. Both [40] and [4] give ground delay model based on
dynamic programming that incorporate uncertainty in forecasting ca-
pacity. Unfortunately, these model grow exponentially complex with the
number of time periods, making them virtually impossible to solve for
real-sized problems. Moreover,[73], [13], [12] are based essentially on as-
signment models, they assign a departure time to each fly. Next, [42]

focus on the ground delays problem to find a good trade-off between the
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ground delays introducing the airborne hold. [42] proposes a lagrangian
decomposition based algorithm. Given a flight schedule and a probabil-
ity distribution of AAR profiles, the decision makers must decide how to
alter the flight schedule by instituting both ground holding and holding
patterns to accommodate a probable reduction in capacity. If T deal all
the scenarios separately, a possible policy decision is an AAR for each
time period. As an example, the decision may be to do nothing and
keep the AAR at the original value. Another decision may be to select
the most likely AAR or the expected AAR based on the AAR profile
distribution. In this thesis I present a model that consider the scenario

analysis throughout the scenario tree generation.

5.4 The air traffic delay model

Given a congestioned airport, I afford the GHP on a given horizon time,
typically one day. I propose a methodological approach in order to reduce
the negative effects due to unpredicability events, minimizing delays and
maximizing air system components efficiency. When an airport is con-
gestioned for a interval of time, the runway future capacity is reduced,
but is not known in practice. In these cases the scenario analysis can
be used to model the problem, in order to obtain a robust solution for
each fan of considered scenarios. Scenario analysis model supports the
decision maker to decide how much time to assign, in terms of ground
holding at departures airports and airborne holding at arrival airport,
assuring an high level of safety. Assuming the airplanes have all the

same priority, a simple high cost solution can be obtained by assigning
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the slots with a FIFO (First In First Out) politic. Available slots are
assigned to first airplane arrived in the aerodrome airspace and by as-
signing, in some manner, a ground holding to all airplanes waiting the
take off at departure airport. this politic a possible drawback is that the
delay costs could not be well distributed among the airplanes, without
to exploit in optimal manner the residual runway capacity. Both ground
holding and airborne holding can be distributed in optimal manner as-
signing the delays among the airplanes, minimizing the total cost of the
system. Assuming the horizon time 7" divided in equidistant instants of
times (1,2,...), typically in air traffic this interval is taken as 15 minutes,
this because [torrival, tarrivar+ 15], is the interval of time the fly is consid-
ered in time, where t,,,;,a represents the scheduled time of landing. We
model the assignment of the airplane delay by using a direct multiperiod
graph, representing a temporal network, where a number € of airplanes
are in competition among them in order to obtain a future slot either to
land or to take off. Each arc contains a set of information that is the link-
ing cost, the upper bound capacity. Given a set of starting airports and a
destination airport, a tactical approach permits to allocate the airplane
departures, by assigning, for each fly, a possible both ground holding and
airborne holding, in the right manner, minimizing the total delay cost
of the system. As slots are assigned to airplane having the minimum
cost, airplanes are in competition among them to obtain the resource.
Such approach permits to decision maker to use in optimal manner the
resources of landing airport in case of congestion. Information returned

by scenario tree optimization is useful to:

x identify the “critical time”. The airplane take off before the critical
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time have not delay assigned and the landing time is that scheduled.
Airplanes taking off after the “critical time” are subjected to delay,
the number of airplane to deal requires to utilize extra-resources
of the air-traffic system. This is important in ATF management
because it is an exact information about which set of airplanes are
involved in the restriction. In a collaborative decision making envi-
ronment, this information permits to controllers to know, rapidly,
the other airports involved in the the ground delays restrictions.
Once known the airplanes involved in delays restriction pointed out
by optimization process, departure airport controllers must be in-
volved in a process of collaborative decision making, to decide if
the solution is effectively applicable. The “negotiation” among de-
cision makers (controllers) involved in the control regards of other

available airspace system components;

x view both which airplanes will be in airborne holding and the seg-
ment of time the runway works near the maximum capacity. This is
very important because is known that runways working near their
maximum capacity generate large scale delays and an overwork of
the air traffic control resources. Moreover, in such situation there
is a risk to produce domino effects, that is delays are distributed in

other areas of the airspace system.

As shown in figure 5.3, we model the determistic problem with a graph
G = (N, A) with |N| = n nodes and |A| = m arcs. The model at each
starting airport associates a column of nodes representing sequentially
different periods of time, nodes at same levels represent same instants of

time called periods. Arrival airport is modeled by utilizing two temporal
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columns, such columns are linked among them by direct diagonal arcs,
in order to put in evidence the arcs model the runway and its actual
capacity, vertical nodes in the first columns model the airborne holding,
in the second columns model landing. Given two instants of time, time(z)
and time(j), with time(j)>time(¢) since the graph is direct, we model
various types of arcs. Because the optimization model have to decide a
path, it is introduced a decision variables z; ;, it values 1 if the airplane
runs through the arc (7, j) and 0 otherwise. In order to better understand
the meaning of the arcs (i,7), I introduce the notation (i, j)>?, where o
means a departure airport and d a destination airport, if o = d, then it
means a temporal transfer, that is a delay assignment. The meaning of

the principal arcs is the following:

x (i,7)>% j =i+ 1,0=d, dis a departure airport: ground holding

arc;

x (i,7)%%, j =i+1, o =d, d is the arrival airport: airborne holding
arc;

x (i,7)%%, o is a departure airport, d is the arrival airport: linking arc
between airport, a linking arc exists among two nodes if the time

difference between the node covers the fly duration;

x (i,7)>%, 7 = 1+ 1, o and d are node in the first and the second
column of the arrival airport: runway arc. The capacity associated

depends on the AAR value.

In this model the associated costs for both airborne and ground holding
are kept high while the other arc costs are kept low. Each airplane is rep-

resented by a certain commodity and the take off is scheduled at a certain
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time, in terms of network flow this event is model as an entering flow in
the node that represents the take off time. Since it is important to know

the path of each airplane, for each commodity r, an arc x;-’,’;-i’r, simplified

r.
l7],

as x] ., models the decision binary variable regarding the fly starting from
node i and ending to node j. Fixed an arc (7, ) and a scenario r, the pa-
rameter u; ; represents the upper limit of mutual capacity. In our model
runway uncertainty is described changing the value of mutual capacity for
all arcs modelling the runway. Each particular realization of the future
runway capacity is modeled as an independent scenario. As example, in
figure 5.4 is reported a bundle of direct temporal networks, where each
direct temporal network represents a different scenario. Let K a set of

different scenarios, uf ., k = 1,..,|K|, the mutual capacity associated to

irj?
scenario k, it is defined as 7(k,k') = maz{t| uj; = uf'], k. k' € K}
the last time the mutual capacity is identical for all scenarios. In other
words for each pair of scenarios (k, k'), the time 7(k, k') characterises the
branching time among two scenarios. The instant of time min{7(k, k') }

divides two different stages. We assume the model contains a set € of

commodities, and a set K of different scenarios. Fixed an arc (i,7) € A,

hk  hk
ij o Yigo

a commodity h and a scenario k, we adopt the notation: =z
cZ’jk to describe respectively, the decision variable, the single capacity,
the cost. Now, we define for each pair (k, k') of scenarios, (k,k') € K
the set S1 = {(4,7)| time(i) < 7(k, k") and time(j) < 7(k,k")}, S2 =
{(4,7)| time(i) > 7(k,k')}, the set of arcs in A whose both tail node
and head node belong to either first stage or second stage. Moreover,
we define as Sy 0y = {(4,7)| time(i) < 7(k, k') and time(j) > 7(k, k')},
the set of arcs whose tail node belongs to first stage and the head node

belongs to second stage. We adopt temporal direct network scenarios
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with a topology as in figure 5.4, where the grouping process produces

two-stage scenario trees, as reported in figure 5.5.

The air traffic delay problem under uncertainty capacity can be modeled
in the following way:
Model (AR)

1 |K]

mMin, Z ZZwkchk ok

(i,j) € Ah=1k=1

Sooalt— Y alf=ut i=1,.,|N|,VheQ, Vk e K

lh]

Ji (i,5)€A j: (4)eA
St <ub V(i j) € A, Yk € K
heQ
0<all <ulf V(i j)e A Vke K, YVheQ

x};f = x?:erla v (Sat) €5, k=1,., |K - 1|7 Vh e Q
ot =2V (i, 5), (s,1) € Sig, k=1,.,|K — 1|, Vh € Q

e 10,1}, V (i,§) € A, Vk € K,Yh € Q

2Y)

Where the vector b?’k, of proper dimension, in the right side of the mass
balance constraints, for each fixed scenario £ and commodity h is the
vector of the supply/deficit parameters. Besides the mass balance con-
straints, we have to satisfy both the single commodity capacity and the

mutual capacity constraints. In the model, each scenario defers from

k

the others, for the mutual capacity parameters u;;,

assigned to run-
way arcs and the parameter wj describing the ”subjective” probabil-
ity associated to each scenario. Non anticipativity constraints involve
the set of arcs belonging to S; and S; . Assuming we dualize the non

anticipativity constraints for arcs in S(; ), using a new vector y, with

D = (|9]|Sa,2)|| K — 1|) dimension, we obtain:
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Model (ASR)

12 K]

h,k hk hk
maz, cporming Y Y wptdalt +
(i,j) € Ah=1k=1

= h,k h,k+1
+ Z Z Zy(']“s,’t _xst )

(S t) €S 2 k=1 h=1

Sooalt— Y alf=bti=1,.,|N,VheQ VEk € K

Ji (i,5)€A J: (41 €A
Soalf <uf, V(i,j) € A VEk € K
heQ
0<alf <ult, V(ij) € A, Vh e Q,
ot =2l (s, t) € S, Vhk=1,,|K-1,Vh € Q, Vk € K

€ (0,1}, V (i,j) €A, VE € K, Vh € Q

Supposing a problem having a single-commodity and two linking-arcs
(s1, t1), (s2,t2), and three commodities, the components of y associated

to each arc are:

yi(ayly, —2i%) =0
y2(x;12,t1 - x;ﬁtl) =0
ys(ey, —2il,) =0
ya(zhly, — 24%,) =0
y5(x§;2,t2 - x;im) =0
yo(zi, —2il,) =0

Hence, the dimension of the dual vector y depends on the number of
arcs in S 5. If we relax the congruity constraints for the arcs in S 5, the
congruity constraints for arcs in S; become redundants. Now, if we fix y,
it is possible to solve a set of independent multicommodity subproblems

of reduced dimension as reported in figure 5.6.
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5.5 A decomposition algorithm

When we deal with complex models, the choice of a good methodolog-
ical approach is a critical phase, especially if a fast solution is needed.
Many practical problems need of a general directive, about the best
approach in terms of quantitative methods. In order to evaluate dif-
ferent resolutive approaches, I have developed a framework to handle
scenario trees, composed of GHP instances using different resolution ap-
proaches. The framework has been developed in C++ language. It has
been implemented following the open source philosophy and standardiza-
tion rules adopted in deterministic multicommodity source codes ([60]).
I exploited the encapsulation and polymorphism features inhering C+-+
languange developing an articulated code, where the core of the data
structure is represented by a set of abstract classes. In order to com-
pare results obtained by using the decomposition solver, the source code
of MMCFCplex (a solver for deterministic multicommodity problems
downloadble on sorsa.unica.it) has been adapted to solve scenario tree
instances. MMCFCplex defines an interface between the solver Cplex
and the multicommodity instances and accepts instances written in a
standard format. The original source code has been modified and ex-
tended by introducing new methods, such methods permit to manage
a given set of scenarios and to insert the non anticipativity set of con-
straints for each given set of scenarios, in a standard format. I called
this package MMCFSCCplx. In MMCFSCCplx, both network topology
and data parameters about multicommodity instances are maintained
in a object of type MMCFCplex. The class MMCFCplex derived from

basis class MMCFClass and inherits from it most of its data and code.
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The derived methods (publics, private and protected) are redefined in
part exploiting the mechanism of the virtual functions. The methods

included in MMCFClass permit to:

x read the input data of each associated multicommodity flow prob-

lem;

* change the input data of the problem without to reset the proceed

obtained solutions (re-optimization);
x choice one of the multicommodity solver available, at compile time;

x read the results obtained from optimization process.

The decomposition based code called MMCFSCDcmp and it is orga-
nized in different independent modules. Modular programming permits
to include, if available, new optimization computer code in the software
package MMCFSCDcmp, implementing a new class derived from basis
class. New available modules can be included in MMCFSCDcmp writ-
ing in C++ language the original code following standardization rules,
rewriting associated both virtual and private methods and updating the
makefile in the proper manner. Hence, this package permits to decide
at compile time which solver to use, choicing among a set of different
available solvers. The goal is to assess the solver effectiveness compar-
ing together, different both non-smooth function and multicommodity
solvers, that it is not known in practice. The architecture of MMCEF-

SCDcmp is composed of different directories:

* Main: it contains the file Main.C, this file reads k£ + 1 input in-
stances. The first instance describes the first stage parameters, the

other instances describe the second stage parameters associated to
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scenarios. Assuming k (the number of scenarios) object of Class
MMCFClass (the abstract Class MMCFClass implements a wrap-

per class for the multicommodity problems) are generated.

SCNRBundle: it contains the file SCNRBundle.C implementing an
interface between multicommodity and non differentiable function
solvers. The class SCNRBundle is defined as Bundle derived class.
The public methods SetGi(.) and Fi(.) represent the only ”point”
to load the results (lagrangian dual vector) coming from bundle
solver and to return to the bundle the results obtained from op-
timization process of the multicommodity instances. As reported
in figure 5.7, an object of type SCNRBundle works as coordina-
tor, sending, updating and receiving both data and results with the
other objects. At each iteration, everyone of the k£ + 1 objects of
class MM CFClass receive from the coordinator process the new dual
vector gy, update their own costs, re-solve the multicommodity in-
stance and resend the obtained solution x to the coordinator. Then,
the coordinator calculates the new subgradient and send them to
the bundle object. At each iteration, the best found value of the

dual lagrangian function is maintained and if necessary updated.

Graph: it contains the Graph.C, this file implements the methods
used to read the files containing the input parameters in different

standard format.

Bundle: this class contains the basis bundle class and methods

which implement the non-smooth functions solver.

MMCEFCplex: this directory contains the definition of the class MM-

CFCplex derived from MMCFClass, representing a basis class for
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the linear multicommodity solver, this class contains the descrip-
tion of a set of "pure” virtual methods proper, the code (data) of

each available solver is included in a file derived from basis class.

Starting from the set of input instances, it has been implemented a pro-
cedure to pprn format, in order to obtain a easily readable format of
the scenario tree structure. This format is used as input instance in the

MMCFSCCplex solver. All basis source codes are available on-line.

5.6 Computational experience

Once, I decided the standard to write instances and implemented the
various modules about the decomposition algorithm, I wrote a converter
from a quasi-pprn format to a pprn standard format and a generator of
GHP instances. The goal is to understand, through the computational
experience, if an instance regarding the GHP can be solved either using
directly a scenario tree or the given decomposition approach. The advice
to return depends on the characteristic of the problem. The dimension of
each instance depends on the number of departure airports, the number
of airplanes, the number of periods, the number of scenarios. In this
thesis I decided to report only the results about the instances that can
have the same dimension of possible real instances. The experiments
were executed on a Pentium IV 1.7 GHz 256 Mb computer with a Linux
RedHat 7.2 operative system installed. I have built instances up to one

million of arcs.

Results about the instances reported in figure 5.8 show that, GHP in-

stances by using MMCFSCCplex can be solved very quickly. In this
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case, the decomposition algorithm using a bundle approach returns a
good ”speed up”, only if the solver converges at the optimal solution in
less then 5 iterations. The fact that there are only binary variables seems
to advantage the MMCFSCCplex solver, this is interesting because it is
not obvious to obtain quickly results by using instances of such dimen-
sion. Assuming we have solved the first stage instance and the optimal
result returns that the airplanes land before the branching time, then

the instances can be solved separately, stage for stage.

5.7 Conclusions

Scenario analysis applied to air traffic delay problems permits us to solve
large dimension real-size instances in a short time. Both model and solver
packages can be adopted as an operational tool to control both landing
and departure procedures. I have implemented two computer codes in-
cluded in a framework, permitting us to know when flights are delayed,
where they are delayed and which flights are delayed. This framework
can be adopted as a DSS to evaluate the maximum level of air traffic
capacity supported by aerodrome utilizing its own resources, in a tacti-
cal approach. Decision makers can generate a set of different scenarios,
based on their own experience. Quality about obtained results must be
evaluated in a collaborative decision making environment, because other
arrival /departure airports could have future capacity problems, as well.
Whatever, such model can be effectively adopted in facing all those prob-
lems asking for assignment of a set of J jobs to a set of M machines,

having a bounded work-capacity to a given temporal horizon t. A new
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interface among scenario tree problem and the solver Cplex has been
implemented. This interface permits us to solve scenario tree instances
with multicommodity network topology. A new framework has been im-
plemented handling scenario tree problems. The framework permits us
to:

x decide the set of scenarios involved in the optimization process;

x extend the set of available solvers rewriting the associated basis

classes;

* build a readable scenario tree instance starting from deterministic

instances in pprn format.
x read the optimal value of the decisional variables;
x change the topology of the network;

This work can be extended following different paths. It should be inter-

esting to:
* interface the package with new non-smooth convex optimization
solvers. For example, interior point based multicommodity solvers;
* test the model with instances coming from real world data;

x extend the model with a network of arrival airports and the con-

straints concerning the runway capacity in the departure airports;
* permit to airplanes taking off before the scheduled time;

* evaluate the potential benefits in terms of money saving in air traffic

costs returned by scenario analysis model,

* evaluate instances with hundreds of scenarios in a parallel environ-

ment.
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Figure 5.3: Direct temporal network for air traffic delay management
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Figure 5.4: A bundle of scenarios generated for the GHP
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Figure 5.7: A scheme of the decomposition algorithm
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File Swslem time System time Number Number Numbet Number of
name | Scenario tree | Decomposition | of periods of ol airplanes
Cplex Base approach scenarios | departure
(1 seconds) { in seconds) alrports
Net | 3608 14.66 (2) 0 1{) 10 27
Net 2 | 0.31 274 (21 20 3 L) 10
Net 3 .31 0.67 (5) 20 3 10 ]
Net 4 159 6354 {125) 80 1) 10 22
Net 5 171 199 (3) 80 [ 1) [} (i)
MNel 6 159 770 (116 40 | £ |1 0
Net 7 199 6691 (49) 40 6 | () Gl
Nel 8 1528 143 {23) 40 5 LO 6l
Nel 9 39.066 360 (27T 40 [0 L0 a0
Net 10| 696 1454 (5) 32 7 [0 30
Net |1 ) 20.97 222 (30) 32 1{) LO 30
Net 12 [ 4.07 965  (T) 40 5 L0 20
Net 13 ] 39.09 14.86 (2) 80 Kt L0 20

Figure 5.8: Results obtained for real size instances
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