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Abstract

The increasing complexity of modern computer and information processing
systems goes together with an increasing complexity of their applications.
New systems are required, which are able to operate robustly in rapidly
changing and unpredictable environments, where there is a significant pos-
sibility that actions can fail. An emergent research area in this field is that of
intelligent agent systems, which are able to exhibit autonomous and flexible
behaviour. In particular, multiagent systems offer a promising and innov-
ative way to manage and use distributed, large-scale, dynamic, open, and
heterogeneous computing and information systems.

This thesis faces with several issues surrounding the development of mul-
tiagent systems. To manage the inherent complexity of such applications,
abstraction-based techniques are investigated. Abstraction allows to con-
centrate on the most important aspects of a problem first – according to
a “divide et impera” stategy – instead of managing at the same time all
details.

In particular, a novel multiagent architecture is described, designed to
support the implementation of applications aimed at: (i) retrieving hetero-
geneous data spread among different sources, (ii) filtering and organizing
them according to personal interests explicitly stated by each user, and (iii)
providing adaptation techniques to improve and refine throughout time the
profile of each selected user. The architecture has been called PACMAS,
which stands for “Personalized Adaptive Cooperative MultiAgent System”.
The effectivenes of the architecture is highlighted by two relevant case stud-
ies that have been implemented exploiting the PACMAS architecture: the
first one is focused on giving a support to undergraduate and graduate
students in their university activities; the second one is devoted to create
press-reviews from online newspapers through the classification of news-
paper articles. Successfull tests, performed on the developed applications,
demonstrate the effectiveness of the architecure.

In order to equip the involved agents with pro-active capabilities, ad-
vanced planning algorithms are needed. To this aim, the parametric system
HW[ ] has been devised and implemented to perform planning by abstrac-
tion that is an effective approach for implementing the planning capabilities
of an intelligent agent. In particular, HW[ ] is able to improve the per-
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formances of a generic planner in complex domains through abstraction
techniques, and to solve problems of high complexity that cannot be solved
with traditional approaches.

Since finding good abstractions by hand is a long and difficult process,
a system devoted to automatically generate abstraction hierarchies, called
DHG, has been devised to support HW[ ]. Experimental results are en-
couraging and highlight that abstraction is useful for improving the perfor-
mances of classical planners. Moreover, a direct comparison between the
performances of automatically-generated versus hand-coded abstraction hi-
erarchies demonstrates the validity of the approach.
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Chapter 1

Introduction

We are in the Information Age. The amount and availability of electron-
ically stored information is continually growing. The last few years have
seen an information explosion due to significant cost reductions in data
storage technologies, and telecommunications developments that have en-
hanced the inter-connectivity and efficiency of data transfer among sites.
Modern computing platforms as well as information environments are large,
open, heterogeneous, and distributed. Computers are no longer stand-alone
systems, but have become tightly connected both with each other and their
users. The increasing complexity of computer and informatics systems goes
together with an increasing complexity of their applications.

1.1 Motivation

Traditional techniques reveal inadequate to cope with modern applications.
In fact, present application environments are complex, dynamic, and par-
tially accessible. The Internet is perhaps the most prominent example of
such an environment. Therefore, new systems are required, which are able
to operate robustly in rapidly changing and unpredictable environments,
where there is a significant possibility that actions can fail.

Software engineering has evolved together with the complexity of ap-
plications. In particular, computer programming has evolved from simple
low-level programs to progressively more complex software systems: it has
progressed through sub-routines, procedures and functions, abstract data
types, objects, components, and is flowing naturally towards agents.

Agent-oriented programming is a modern paradigm that provides a tech-
nology for developing system that decide for themselves what they need to
do in order to satisfy their design objectives. In other words, autonomy and
flexibility become the central aspects in this context. In particular, multia-
gent systems offer a promising and innovative way to understand, manage,
and use distributed, large-scale, dynamic, open, and heterogeneous comput-
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ing and information systems.
There exist many potential applications for multiagent systems; for ex-

ample:

• electronic commerce, where agents purchase and sell goods on behalf
of their users;

• real-time monitoring and management of telecommunication networks,
where agents are responsible for call forwarding and signal switching;

• modelling and optimization of transportation systems;

• information handling in information environments like the Internet,
where agents are responsible - for example - for information gathering
and filtering;

• improving the flow of urban or air traffic, where agents are responsible
for appropriately interpreting data arising at different sensor stations;

• automated meeting scheduling, where agents fix meeting details like
location, time and agenda, to their users;

• electronic entertainment and interactive computer games, where agents
equipped with different characters play against each other or against
humans.

These applications have in common that they are inherently distributed
in data and information to be processed, and they are inherently complex in
the sense that they are too large to be solved by a single, centralized system
beacuse of limitations available at a given level of hardware or software
technology.

1.2 Objective and Approach

The main objective of this research work is to provide methodologies that
are effective to develop such applications. In particular, they must be able
to manage the inherent complexity of the corresponding environments. We
need applications “user-oriented”: they must be personalized to users’ needs,
and able to adapt themselves to the evolving environment.

We said that a succesfull approach is represented by multiagent tech-
nology. In fact, multiagent systems can offer several desiderable properties,
such as:

• speed up and efficiency: agents can operate asynchronously and in
parallel, and this can result in an increased overall speed;
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• robustness and reliability: the failure of one or several agents does
not necessarily make the overall system useless, because other agents
already available in the system may take over their part;

• scalability and flexibility: the system can be adopted to an increased
problem size by adding new agents, and this does not necessarily affect
the operationality of the other agents;

• costs: it may be much more cost-effective than a centralized system,
since it could be composed of simple subsystems of low unit cost;

• development and reusability: individual agents can be developed sep-
arately by specialists, the overall system can be tested and mantained
more easily, and it may be possible to reconfigure and reuse agents.

On the other hand, there are several issues to be taken into account while
developing such systems. In particular, agents should be able to communi-
cate with other agents and the user, to adapt themselves to user’s needs.
Therefore, suitable architecture are needed. Moreover, agents need to act in
their environments, so that effective planning algorithm are also needed.

The proposed approach exploits abstraction techniques to manage the
inherent complexity of such systems. Abstraction allows concentrating on
the most important aspects of a problem first, according to a “divide et im-
pera” stategy, instead of managing at the same time all the detailed aspects
of the problem itself.

Abstraction is therefore used to model a multiagent system through a
layered architecture that allows to manage complexity at different levels of
granularity, thus separating the different aspects of the problem.

Abstraction is also used to manage the complexity of agent’s planning
capabilities, by exploiting a hierarchy of abstraction spaces to improve the
performances of the search process.

1.3 Contributions

My research work has mainly focused on: intelligent agents, with particular
emphasis on the study and realisation of multiagent systems able to sup-
port the user by adapting to her/his personal needs; automated planning,
with particular emphasis on the study and realisation of abstraction-based
algorithms to implement effective agent’s pro-active behaviour. This thesis
gives therefore contributions in two areas: agent systems and planning.

1.3.1 Agent Systems

Research in this area has lead to a novel multi-agent architecture designed
to support the implementation of applications aimed at:
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1. retrieving heterogeneous data spread among different sources (e.g.,
generic html pages, news, blogs, forums, and databases);

2. filtering and organizing them according to personal interests explicitly
stated by each user;

3. providing adaptation techniques to improve and refine throughout
time the profile of each selected user.

The architecture has been called PACMAS, which stands for “Personalized
Adaptive Cooperative MultiAgent System”.

Upon the PACMAS architecture, two applications have been developed
as case studies: an e-service devoted to support undergraduate and graduate
students in their university activities, and a classification system devoted to
create personalized press-reviews from online newspapers.

The first one is able to retrieve relevant information from heterogeneous
sources (e.g.: files, forums, databases, professor homepages, department web
pages, etc.), and then filter, organize, and present it to the user, according
to her/his personal needs and preferences.

The second one is able to extract from web sites of online newspapers
the articles deemed relevant for a specific user, and to improve user’s profile
through learning algorithms. The selection procedure is made by suitable
classifying algorithms.

1.3.2 Planning

Research in this area has lead to the realisation of two systems: the Hierar-
chical Wrapper HW[ ] and the Domain Hierarchy Generator DHG.

The parametric system HW[ ] is able to improve the performances of
a generic planner in complex domains through abstraction techniques, and
to solve problem of high complexity that cannot be solved with traditional
approaches.

DHG is a supporting system able to automatically generate abstraction
hierarchies to be used by HW[ ] to plan hierarchically.

1.4 Outline

This thesis is divided into three parts.
Part I is organized into three chapters, which describe agent systems,

planning, and abstraction. Chapter 2 presents the basic issues surround-
ing the design and implementation of intelligent agents. Chapter 3 focuses
on the aspects regarding the pro-active capability of agents. Chapter 4
illustrates the abstraction techniques that can be exploited to improve the
performances of automated classical planners, which allow implementing the
planning capabilities of intelligent agents.
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Part II is organized into two chapters, which describe the proposed Per-
sonalize Adaptive Cooperative MultiAgent System that is one of the major
contributes of this work, together with two relevant case studies. Chapter
5 describes the PACMAS architecture, designed to support the implemen-
tation of applications aimed at: (i) retrieving heterogeneous data spread
among different sources, (ii) filtering and organizing them according to per-
sonal interests explicitly stated by each user, and (iii) providing adaptation
techniques to improve and refine throughout time the profile of each selected
user. Chapter 6 presents two relevant case studies that have been imple-
mented exploiting the PACMAS architecture: the first one being focused on
giving a support to undergraduate and graduate students in their university
activities; the second one being devoted to create press-reviews from online
newspapers through the classification of newspaper articles.

Part III is divided in two chapters, and is aimed at presenting two fur-
ther contributes of this thesis: the parametric system HW[ ] for planning
by abstraction, and the DHG system for automatically generate abstrac-
tion hierarchies. Chapter 7 presents a novel approach for implementing the
planning capabilities of an intelligent agent, which exploits the parametric
system HW[ ] that has been devised and implemented to perform planning
by abstraction. Chapter 8 describes a novel system, called DHG, devised to
automatically generate abstraction hierarchies, by macro-operator extrac-
tion after a static domain analysis.

The final chapter 9 draws conclusions and outlines some possible future
work in this research area.
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Chapter 2

Agent Systems

Intelligent software agents are a popular research topic in various fields,
such as psychology, sociology and computer science. They are particularly
studied in the discipline of Artificial Intelligence. The increasingly interest
in agent-based systems has introduced a kind of new paradigm for software
engineering, i.e., the agent-oriented programming (AOP). Researchers in this
area claim that computer programming has progressed through sub-routines,
procedures and functions, abstract data types, objects, components, and it
is flowing naturally towards agents.

The most important theoretical and practical issues associated with the
design and implementation of intelligent agents can be organized into three
areas: agent theory, agent architectures, and agent languages.

Agent theory is concerned with the question of “what an agent is”, and
the use of mathematical formalisms for representing and reasoning about
the properties of agents.

Agent architectures can be considered as software engineering models of
agents; researchers in this area are primarily concerned with the problem
of designing software or hardware systems that will satisfy the properties
specified by agent theorists.

Agent languages are software systems for programming and experiment-
ing with agents; these languages may embody principles proposed by theo-
rists.

This chapter introduces the basic issues surrounding the design and im-
plementation of intelligent agents. Section 2.2 begins by motivating the idea
of an agent, presents a definition of agents and intelligent agents, defines the
properties of the environment in which agents act, and then discusses the
relationship between agents and other software paradigms (in particular,
objects and expert systems).

Section 2.3 describes agent architectures, first by an abstract point of
view, then by a more concrete point of view, focusing on the major ap-
proaches for building agents.

8
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In general, there is a distinction between the agent level, the “micro”,
and the group level, the “macro” (see [MCd96]). The question how agent-
level (individual activity) and group-level (societal rules and structures)
are related to each other is known as the micro-macro problem in sociol-
ogy. According to this distinction, section 2.3.2 discusses four major micro-
architectures for building agents (logic based, reactive, layered, and belief-
desire-intention - BDI), while section 2.3.3 describes macro-architectures,
through which agents can operate and interact with each others.

Finally, section 2.4 introduces some prototypical programming languages
for agent systems.

2.1 Introduction

The interest about agents systems has undergone a strong growth since the
mid-1980s. Since then, many new discussion topics have been proposed,
including the definition of agent itself, as well as the most important prop-
erties that characterize agent-based systems. It could be surprising that,
despite the term agent is widely used by many people working in the AI
community, nowadays a single universally accepted definition does not ex-
ist. Strangely enough, it seems that the question of what exactly an agent
is, has only very recently been addressed seriously. Carl Hewitt, during an
international workshop on distributed AI, remarked that the question “what
is an agent?” is embarrassing for the agent community in just the same way
that the question “what is intelligence?” is embarrassing for the mainstream
AI community.

2.2 Agent Theory

Since the term agent is currently used by many parties in many different
ways, it has became difficult for users to make a good estimation of what the
possibilities of the agent technology are. Moreover, given the multiplicity of
roles agents can play, a rock-solid formal definition of the concept agent is
quite impossible and even very impractical. However, a certain agreement
concerning the general characteristics that agents system should possess,
has been reached. Together these characteristics give a global impression of
what an agent “is”.

2.2.1 What is an agent?

Suprisingly, there is no agreement on what an agent exactly is. Despite of
there is a general consensus that autonomy is the central notion in agent-
based systems, there is, however, little agreement beyond this. Part of
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the difficulty is that properties associated with agents are often of differ-
ent importance for different domains. Nevertheless, to avoid that the term
agent will lose all meanings, we retain the definition proposed by Wooldridge
[RN95]:

An agent is a computer system (hardware and/or software) that
is situated in some environment, and that is capable of au-
tonomous actions in this environment to meet its design objec-
tives.

Like agency itself, autonomy is a somewhat tricky concept to be ex-
pressed precisely. Anyway, we mean that agents are said to be autonomous
if they are able to act without the intervention of humans or other systems:
they have control both over their internal state, and over their behaviour.

Figure 2.1: Abstract view of an agent in its environment.

Figure 2.2.1 gives a general abstract view of an agent. Note that an
agent is strictly related to the environment in which it acts: the agent takes
sensory input from the environment, and produces as output actions that
affect it.

According to the previous definition, many systems can be considered
as agents (although not intelligent). In principle, any control systems can
be viewed an agent. Common examples of such systems are a thermostat
and UNIX daemons. In fact, both of them monitor the environment, and
perform action to modify it. Thermostats have a sensor for detecting room
temperature, and produce two possibile outputs through two different sig-
nals: one that indicates that the temperature is too low, another one indi-
cating that temperature is OK. Thus, the action available to the thermostat
are “heating on” or “heating off”. Many software daemons monitor a soft-
ware environment (e.g. system events or user inputs) and performs actions
(e.g. displaying dialogs, executing a program). Of course, we do not think
thermostats as agents, and certainly not as intelligent agents! So, when can
we consider an agent to be intelligent? Similarly to the question “What is
intelligence?”, this is not an easy question to answer.
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According to Wooldridge [Woo02], an intelligent agent is a computer
system capable of flexible autonomous action in order to meet its design
objectives. Flexibility means three things:

• pro-activity: intelligent agents are able to exhibit goal-directed be-
haviour by taking the initiative, in order to satisfy their design objec-
tives;

• reactivity: intelligent agents are able to perceive their environment,
and respond in a timely fashion to changes that occur in it in order to
satisfy their design objectives;

• social ability: intelligent agents are capable of interacting with other
agents (and possibily humans) in order to satisfy their design objec-
tives.

These properties are more demanding than they might at first appear,
and they will be described in more detail in section 2.2.3.

2.2.2 Environments

Agents act in an environment. Often, they are said to be situated in a precise
environment. The environment can be either real (like a robot world) or a
simulation (like a computer game). It is clear that actions and perceptions
will differ depending on the specific case. In case of software agents, for
example, they could be procedure calls or software events.

The main problem facing an agent is that of deciding which of its actions
it should perform in order to satisfy its design objectives. In other words,
agents are a kind of decision-making systems that are embedded in an envi-
ronment. The complexity of the decision-making process can be affected by
a number of different environmental properties. Therefore, it is important
to define a classification of environmental properties. Let us briefly recall
the classification suggested by Russel and Norvig [RN95] that is the most
commonly accepted in the field of Artificial Intelligence research.

Accessible versus inaccessible

An accessible environment is one in which the agent can obtain complete,
accurate, up-to-date information about the environment’s state. Most mod-
erately complex environments (including, for example, the everyday physic
world and the Internet) are inaccessible in this sense. The more accessible
an environment is, the simpler it is to build agents to operate in it.

Deterministic versus non-deterministic

A deterministic environment is one in which any action has a single guar-
anteed effect. In other words, there is no uncertainty about the state that
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will result from performing an action. The physical world can be condidered
as non-deterministic. Non-deterministic environments present greater prob-
lems for the agent designer.

Episodic versus non-episodic

In an episodic environment, the performance of an agent is dependent on
a number of discrete episodes, with no link between the performance of an
agent in different scenarios. Episodic environments are simpler from the
agent developer’s perspective because the agent can decide what action to
perform based only on the current episode. Therefore, it needs not to reason
about the interactions between the current episode and future episodes.

Static versus dynamic

A static environment is one that can be assumed to remain unchanged except
by the actions of the agent itself. In contrast, a dynamic environment is
one that has other processes operating on it, and which hence changes in
ways beyond the agent’s control. The physical world is a highly dynamic
environment, as is the Internet.

Discrete versus continuous

An environment is discrete if there are a fixed, finite number of actions and
percepts in it. Russell and Norvig give a chess game as an example of a
discrete environment, and taxi driving as an example of a continuous one.

It is worth noting that if an environment is sufficiently complex, then
the fact that it is actually deterministic is not much help: to all intents and
purposes, it may as well be non-deterministic. The most complex general
class of environments are those that are inaccessible, non-deterministic, non-
episodic, dynamic, and continuous.

2.2.3 Agent Properties

As mentioned above, intelligent agents must exhibit flexible behaviour. In
the literature, two different definitions of flexible behaviour have been given,
depending on the characteristics that agents possess: the weak notion and
the strong notion.
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Weak notion

According to the weak notion, an agent is a hardware- or software-based
computer system that enjoys the following properties 1:

Autonomy. Agents operate without the direct intervention of humans or
others, and have some kind of control over their actions and internal state.

Proactivity. Agents do not simply act in response to their environment,
they are able to exhibit goal-directed behaviour by taking the initiative and
not driven solely by events. To this end, is fundamental the ability of plan-
ning, i.e. finding sequences of actions (i.e. plans) that solve some problems
(defined in term of an initial state of the world and a goal to be reached),
which will be described in chapter 3.

Note that building purely goal-directed systems is not particularly hard.
We want agents to do things for us, which will attempt to achieve their goal
systematically by using suitable complex procedures. On the other hand,
we do not want agents to continue blindly execute a procedures in attempt
to achieve a goal, either when it is clear that the procedure will not work or
when the goal is no longer valid. In such circumnstances, we want agents
to react to the new situation, in a timely fashion. Building purely reactive
systems is also not difficult. What turns out to be hard is building a system
that achieves a balance between goal-directed and reactive behaviour.

Reactivity. A reactive system is one that maintains an ongoing interac-
tion with its environment, responding to changes that occur in it, in time for
the response to be useful. Since real word environments (as well as many
interesting simulated environments) are dynamic, agents must be able to
perceive their environment (which may be the physical world, a user via a
graphical user interface, a collection of other agents, the Internet, or per-
haps all of these combined), and respond in a timely fashion to changes that
occur in it.

Social Ability. Agents interact with other agents (and possibly humans)
via some kind of agent-communication language. The interation level de-
pends on the specific system: it ranges from a simple communication to
complex forms of cooperation or competition. In a sense, social ability is
trivial: every day, millions of computers exchange information with both
humans and other computers. But the ability of exchange bit stream is
not social ability! Agent systems consider a type of social ability much

1The fact that an agent should possess most, if not all of these characteristics, is
something that most scientists have agreed upon at this moment.
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more complex, which usually refers to concepts including cooperation and
negotiation: some goals can only be achieved with the cooperation of other
agents.

Strong Notion

For some researchers, the term agent has a stronger and more specific mean-
ing than that sketched out above. These researchers generally mean an agent
to be a computer system that, in addition to having the properties as they
were previously identified, is either conceptualised or implemented using
concepts that are more usually applied to humans. For example, it is quite
common in AI to characterise an agent using mentalistic notions, such as
knowledge, belief, intention, and obligation. Some AI researchers have even
gone further, and considered “emotional” agents.

Agents that fit the strong notion of agent usually have one or more of
the following characteristics:

mobility: is the ability of an agent to move around an electronic network,
retaining its current state;

veracity: is the assumption that an agent will not knowingly communicate
false information;

benevolence: is the assumption that agents do not have conflicting goals,
and that every agent will therefore always try to do what is asked of it;

rationality: is (crudely) the assumption that an agent will act in order to
achieve its goals, and will not act in such a way as to prevent its goals being
achieved at least insofar as its beliefs permit;

learning/adaptation: is the ability of an agent to improve its perfor-
mance over time, as well as being able to adjust itself to the habits, working
methods and preferences of its user;

collaboration: an agent should not unthinkingly accept (and execute)
instructions, but should take into account that the human user makes mis-
takes (e.g. give an order that contains conflicting goals), omits important
information and/or provides ambiguous information. For instance, an agent
should check things by asking questions to the user, or use a built-up user
model to solve problems like these. An agent should even be allowed to
refuse to execute certain tasks, because (for instance) they would put an
unacceptable high load on the network resources or because it would cause
damage to other users.
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2.2.4 Agents and Objects

Object-oriented programmers often fail to see any thing novel or new in
the idea of agents. When one stops to consider the relative properties of
agents and objects, this is perhaps not surprising. Objects are defined as
computational entities that encapsulate some state, are able to perform ac-
tions, or methods on this state, and communicate by message passing. While
there are obvious similarities, there are also significant differences between
agents and objects. The first is in the degree to which agents and objects
are autonomous. Recall that the defining characteristic of object-oriented
programming is the principle of encapsulation the idea that objects can
have control over their own internal state. In programming languages like
JAVA, we can declare instance variables(and methods) to be private, mean-
ing they are only accessible from within the object. (We can of course also
declare them public, meaning that they can be accessed from anywhere,
and indeed we must do this for methods so that they can be used by other
objects. But the use of public instance variables is usually considered poor
programming style.) In this way, an object can be thought of as exhibiting
autonomy over its state: it has control over it. But an object does not ex-
hibit control over it’s behaviour. That is, if a method m is made available
for other objects to invoke, then they can do so whenever they wish once
an object has made a method public, then it subsequently has no control
over whether or not that method is executed. Of course, an object must
make methods available to other objects, or else we would be unable to
build a system out of them. This is not normally an issue, because if we
build a system, then we design the objects that go in it, and they can thus
be assumed to share a “common goal”. But in many types of multi-agent
system, (in particular, those that contain agents built by different organisa-
tions or individuals), no such common goal can be assumed. It cannot be
for granted that an agent i will execute an action (method) a just because
another agent j wants it to a may not be in the best interests of i. We thus
do not think of agents as invoking methods upon one-another, but rather as
requesting actions to be performed. If j requests i to perform a, then i may
perform the action or it may not. The locus of control with respect to the
decision about whether to execute an action is thus different in agent and
object systems. In the object-oriented case, the decision lies with the object
that invokes the method. In the agent case, the decision lies with the agent
that receives the request. The distinction between objects and agents nicely
summarised in the following slogan:

Objects do it for free; agents do it for money.

Note that there is nothing to stop us implementing agents using object-
oriented techniques. For example, we can build some kind of decision making
about whether to execute a method into the method itself, and in this way



CHAPTER 2. AGENT SYSTEMS 16

achieve a stronger kind of autonomy for our objects. The point is that
autonomy of this kind is not a component of the basic object-oriented model.

The second important distinction between object and agent systems
is with respect to the notion of flexible (reactive, pro-active, social) au-
tonomous behaviour. The standard object model has nothing to say about
how to build systems that integrate these types of behaviour. Again, one
could object that we can build object-oriented programs that do integrate
these types of behaviour. But this argument misses the point, which is that
the standard object-oriented programming model has nothing to do with
these types of behaviour.

The third important distinction between the standard object model and
agent systems is that agents are each considered to have their own thread of
control in the standard object model, there is a single thread of control in the
system. Of course, a lot of work has recently been devoted to concurrency
in object-oriented programming. For example, the JAVA language provides
built-in constructs for multi-threaded programming. There are also many
programming languages available (most of them admittedly prototypes) that
were specifically designed to allow concurrent object-based programming.
But such languages do not capture the idea of agents as autonomous entities.
Perhaps the closest that the object-oriented community comes is in the idea
of active objects: An active object is one that encompasses its own thread
of control. Active objects are generally autonomous, meaning that they can
exhibit some behaviour without being operated upon by another object.
Passive objects, on the other hand, can only undergo a state change when
explicitly acted upon [Boo94]. However, active objects do not need to exhibit
flexible behaviour, differently from agents.

To summarise, objects and agents have at least three distinctions:

• agents are autonomous: they embody stronger notion of autonomy
than objects, and in particular, they have control on their behaviour,
and decide for themselves whether or not to perform an action on
request from another agent;

• agents are smart : they are capable of flexible (reactive, pro-active,
social) behaviour, and the standard object model has nothing to say
about such types of behaviour;

• agents are active: a multi-agent system is inherently multi-threaded,
in that each agent is assumed to have at least one thread of active
control.

2.2.5 Agents and Expert Systems

Expert systems were the most important AI technology of the 1980s (see,
for example [HRWL83]). An expert system is one that is capable of solving
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problems or giving advice in some knowledge-rich domain [Jac86]. A clas-
sic example of an expert system is MYCIN, which was intended to assist
physicians in the treatment of blood infections in humans. MYCIN worked
by a process of interacting with a user in order to present the system with
a number of (symbolically represented) facts, which the system then used
to derive some conclusion. MYCIN acted very much as a consultant : it
did not operate directly on humans, or indeed any other environment. Thus
perhaps the most important distinction between agents and expert systems
is that expert systems like MYCIN are inherently disembodied. By this, we
mean that they do not interact directly with any environment: they get their
information not via sensors, but through a user acting as middle man. In
the same way, they do not act on any environment, but rather give feedback
or advice to a third party. In addition, we do not generally require ex-
pert systems to be capable of co-operating with other agents. Despite these
differences, some expert systems, (particularly those that perform real-time
control tasks), look very much like agents. A good example is the ARCHON
system (see [JhMC+96]).

2.3 Agent Architectures

An agent architecture is essentially a map of the internals of an agent –
its data structures, the operations that may be performed on these data
structures, and the control flow between these data structures. Generally
speaking, there are two different approaches to the design of agent systems:
micro-architecture and macro-architecture. The former focuses on the char-
acteristics of an agent as stand-alone entity, whereas the latter is related to
agents acting as a group, i.e. the social level.

This section discusses a number of different types of agent architecture,
first by an abstract point of view by surveying some fairly high-level deci-
sions, and then from a more concrete point of view - distinguishing between
the micro and macro aspects - on the data structures and algorithms that
can be present within an agent or a society of agents.

2.3.1 Abstract Architectures

To introduce a simple formal model of agents, let us assume that the the state
of the agent’s environment can be characterised as a set S of environment
states

S = {s1, s2, . . . sn} .

We can consider S as a set of discrete, instantaneous states, since it is a fairly
standard assumption that any continuous environment can be modelled by
a discrete environment to any desidered degree of accuracy. Agents are as-
sumed to have a repertoire of possible actions available to them, represented
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by the finite set A:
A = {a1, a2, . . .} .

Thus, an agent can be abstractly viewed as a function

action : S∗ → A

which maps sequences of environment states to actions. S∗ is the set of
sequences of elements of S. Intuitively, an agent decides what action to
perform on the basis of its history, i.e. its experiences to date. These expe-
riences are represented as a sequence of environment states, i.e. those that
the agent has encountered thus far. The behaviour of a non-deterministic
environment can be modelled as a function (being ℘(S) the power set of S):

env : S ×A → ℘(S)

which takes the current state of the environment s ∈ S and an action a ∈ A
(performed by the agent), and maps them to a set of environment states
env(s, a) those that could result from performing action a in state s. Note
that if all the sets in the range of env are all singletons, (i.e., if the result
of performing any action in any state is a set containing a single member),
then the environment is deterministic, and its behaviour can be accurately
predicted.

We can represent the interaction of agent and environment as a history
(or run). A history h is a sequence:

h : s0
a0→ s1

a1→ s2
a2→ s3

a3→ . . .
au−1→ su

au→ . . .

where s0 is the initial state of the environment (i.e., its state when the
agent starts executing), au is the u’th action that the agent chose to per-
form, and su is the u’th environment state (which is one of the possi-
ble results of executing action au−1 in state su−1). We will denote by
hist(agent, environment) the set of all histories of agent in environment.

Two agents ag1 and ag2 are said to be behaviourally equivalent with
respect to environment env if and only if hist(ag1, env) = hist(ag2, env),
and simply behaviourally equivalent if and only if they are behaviourally
equivalent with respect to all environments. In general, we are interested
in agents whose interaction with their environment does not end, i.e., they
are non-terminating. In such cases, the histories that we consider will be
infinite.

Purely Reactive Agents

Some agents decide what to do without reference to their history. In other
words, they base their decision making entirely on the present, with no
reference at all to the past. Such agents are called purely reactive, since
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they simply respond directly to their environment. Formally, the behaviour
of a purely reactive agent can be represented by a function

action : S → A

For each purely reactive agent, there is an equivalent standard agent; the
reverse is not generally the case. A thermostat is an example of a purely
reactive agent. Assume, without loss of generality, that the thermostat’s
environment can be in one of two states either too cold, or temperature
OK. Then the thermostat’s action function is simply:

action(S) =

{
heater off if e = temperature OK,
heater on otherwise.

Perception

Viewing agents at this abstract level does not help to construct them, since
it gives us no clues about out to design the decision function action. Thus,
we begin refining the abstract model of agents by breaking it down into two
sub-systems: perception and action (see Figure 2.2). The idea is that the

Figure 2.2: Agent’s perception and action subsystems.

function see captures the agent’s ability to observe its environment, whereas
the action function represents the agent’s decision making process. The see
function might be implemented in hardware in the case of an agent situated
in the physical world: for example, it might be a video camera or an infra-
red sensor on a mobile robot. For a software agent, the sensors might be
system commands that obtain information about the software environment.
The output of the see function is a percept a perceptual input. Let P be a
(non-empty) set of percepts. Then see is a function

see : E → P

which maps environment states to percepts, and action is a function

action : P ∗ → A
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which maps sequences of percepts to actions. An agent ag is then considered
to be a pair Ag =< see, action >, consisting of a see function and an action
function.

Agents with state

Modelling an agent as a decision function from sequences of percepts to
actions, can be a somewhat unintuitive representation. An equivalent but
more natural scheme considers agents that maintain state (see Figure 2.3)
These agents have some internal data structure, which is typically used to

Figure 2.3: Agents that mantain state.

record information about the environment state and history. Let I be the
set of all internal states of the agent. The perception function see for a
state-based agent is unchanged:

see : S → P

The action-selection function action is now defined as a mapping

action : I → A

from internal states to actions. An additional function next is introduced,
which maps an internal state and percept to an internal state:

next : I × P → I.

The behaviour of a state-based agent can be summarized as follows. The
agent starts in some initial internal state i0. It then observes its environment
state s, and generates a percept see(s). The internal state of the agent is
then updated via the next function, becoming set to next(i0, see(s)) . The
action selected by the agent is then action(next(i0, see(s))). This action is
then performed, and the agent enters another cycle, perceiving the world
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via see, updating its state via next, and choosing an action to perform via
action. It is worth observing that state-based agents as defined here are in
fact no more powerful than the standard agents introduced earlier. In fact,
they are identical in their expressive power, since every state-based agent
can be transformed into a standard agent that is behaviourally equivalent.

2.3.2 Micro Architectures

So far, we have considered agents only in the abstract, without discussing
how to implement their functionality. In this section we move away from
the abstract view of agents, and begin to make quite specific commitments
about the internal structure and operation of agents. In each subsection,
the nature of these commitments, as well as the assumptions upon which
the architectures depend, and the relative advantages and disadvantages of
each, are briefly explained. In particular, we will consider four classes of
agents architectures:

• symbolic/logic-based architectures: in which decision making is
realised through logical deduction; originally (1956-1985), pretty much
all agents designed within AI were symbolic reasoning agents. Its
purest expression proposes that agents use explicit logical reasoning
in order to decide what to do.

• reactive architectures: in which decision making is implemented
in some form of direct mapping from situation to action; problems
with symbolic reasoning led to a reaction against this – the so-called
reactive agents movement, 1985present.

• hybrid architectures: which attempt to combine the best of reason-
ing and reactive architectures; they have been proposed since 1990; a
significant case is represented by layered architectures – in which de-
cision making is realised via various software layers, each of which is
more-or-less explicitly reasoning about the environment at different
levels of abstraction;

• belief-desire-intention architectures: in which decision making
depends upon the manipulation of data structures representing the
beliefs, desires, and intentions of the agent.

Logic-based

Logic-based architectures are the oldest ones in building agents. According
to them, the decision making strategy of an agent is viewed as deduction:
agent’s program is encoded as a logical theory, and the process of selecting
an action is reduced to a problem of proof. Such architectures have the ad-
vantage of semantic clarity, and in addition allow us to bring to bear all the
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apparatus of logic and theorem proving that has been developed in AI and
computer science over the years. In other words, logic-based architectures
are elegant, and have a clean logical semantics – wherein lies much of their
long-lived appeal. However, such architectures have many disadvantages. In
particular, the inherent computational complexity of theorem proving makes
it questionable whether agents as theorem provers can operate effectively in
time-constrained environments. Decision making in such agents is predi-
cated on the assumption of calculative rationality the assumption that the
world will not change in any significant way while the agent is deciding what
to do, and that an action which is rational when decision making begins will
be rational when it concludes. The problems associated with representing
and reasoning about complex, dynamic, possibly physical environments are
also essentially unsolved.

Reactive

Reactive architectures eschew representations and models in favour of a
closer relationship between agent perception and action. They are more
economical in computational terms, and well-suited to episodic environments
that require real-time performance. However, the process of engineering such
architectures in not well understood.

The seemingly intractable problems with symbolic/logical approaches for
building agents led some researchers to question, and ultimately reject, the
assumptions upon which such approaches are based. These researchers have
argued that minor changes to the symbolic approach, such as weakening
the logical representation language, will not be sufficient to build agents
that can operate in time-constrained environments: nothing less than a
whole new approach is required. In the mid-to-late 1980s, these researchers
began to investigate alternatives to the symbolic AI paradigm. It is difficult
to neatly characterise these different approaches, since their advocates are
united mainly by a rejection of symbolic AI, rather than by a common
manifesto. Alternative approaches to agency are sometime referred to as
behavioural (since a common theme is that of developing and combining
individual behaviours), situated (since a common theme is that of agents
actually situated in some environment, rather than being disembodied from
it), and finally reactive (because such systems are often perceived as simply
reacting to an environment, without reasoning about it).

The subsumption architecture is arguably the best-known reactive agent
architecture [Bro85]. It was developed by Rodney Brooks, one of the most
vocal and influential critics of the symbolic approach to agency that have
emerged in the literature. There are two defining characteristics of the
subsumption architecture.

The first is that an agent’s decision-making is realised through a set
of task accomplishing behaviours; each behaviour may be though of as an



CHAPTER 2. AGENT SYSTEMS 23

individual action function, which continually takes perceptual input and
maps it to an action to perform. Each of these behaviour modules is intended
to achieve some particular task. In Brooks’ implementation, the behaviour
modules are finite state machines. An important point to note is that these
task accomplishing modules are assumed to include no complex symbolic
representations, and are assumed to do no symbolic reasoning at all. In
many implementations, these behaviours are implemented as rules of the
form situation → action which simple map perceptual input directly to
actions.

The second defining characteristic of the subsumption architecture is
that many behaviours can “fire” simultaneously. There must obviously be
a mechanism to choose between the differentactions selected by these mul-
tiple actions. Brooks proposed arranging the modules into a subsumption
hierarchy, with the behaviours arranged into layers (see Figure 2.4). Lower
layers in the hierarchy are able to inhibit higher layers: the lower a layer
is, the higher is its priority. The idea is that higher layers represent more
abstract behaviours.

Figure 2.4: The subsumption architecture.

In short, there are obvious advantages to reactive approaches such as
that Brooks’ subsumption architecture: simplicity, economy, computational
tractability, robustness against failure, and elegance all make such archi-
tectures appealing. But there are some fundamental, unsolved problems,
not just with the subsumption architecture, but with other purely reactive
architectures:

• If agents do not employ models of their environment, then they must
have sufficient information available in their local environment for
them to determine an acceptable action.

• Since purely reactive agents make decisions based on local informa-
tion, (i.e., information about the agents current state), it is difficult
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to see how such decision making could take into account non-local
information it must inherently take a “short term” view.

• It is difficult to see how purely reactive agents can be designed that
learn from experience, and improve their performance over time.

• A major selling point of purely reactive systems is that overall behav-
iour emerges from the interaction of the component behaviours when
the agent is placed in its environment. But the very term “emerges”
suggests that the relationship between individual behaviours, environ-
ment, and overall behaviour is not understandable. This necessarily
makes it very hard to engineer agents to fulfill specific tasks. Ulti-
mately, there is no principled methodology for building such agents:
one must use a laborious process of experimentation, trial, and error
to engineer an agent.

• While effective agents can be generated with small numbers of behav-
iours (typically less that ten layers), it is much harder to build agents
that contain many layers. The dynamics of the interactions between
the different behaviours become too complex to understand.

Hybrid

Given the requirement that an agent be capable of reactive and pro-active
behaviour, an obvious decomposition involves creating separate subsystems
to deal with these different types of behaviours. This idea leads naturally
to a class of architectures (i.e. layered architectures) in which the various
subsystems are arranged into a hierarchy of interacting layers. In layered
agent architectures, decision making is partitioned into a number of differ-
ent decision making layers, each dealing with the agent’s environment at
a different level of abstraction; they provide a natural way of decomposing
agent functionality, and are currently a popular approach to agent design.

Typically, there will be at least two layers, to deal with reactive and pro-
active behaviours respectively. In principle, there is no reason why there
should not be many more layers. However, many layers there are, a useful
typology for such architectures is by the information and control flows within
them. Broadly speaking, we can identify two types of control flow within
layered architectures: horizontal layering and vertical layering (see Figure
2.5 and Figure 2.6, respectively):

Horizontal layering. In horizontally layered architectures (Figure 2.5),
the software layers are each directly connected to the sensory input and
action output. In effect, each layer itself acts like an agent, producing sug-
gestions as to what action to perform.
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Figure 2.5: Horizontal Layered Architectures.

The great advantage of horizontally layered architectures is their concep-
tual simplicity: if we need an agent to exhibit n different types of behaviour,
then we implement n different layers. However, because the layers are each
in effect competing with one-another to generate action suggestions, there
is a danger that the overall behaviour of the agent will not be coherent. In
order to ensure that horizontally layered architectures are consistent, they
generally include a mediator function, which makes decisions about which
layer has “control” of the agent at any given time. The need for such central
control is problematic: it means that the designer must potentially consider
all possible interactions between layers. If there are n layers in the architec-
ture, and each layer is capable of suggesting m possible actions, then this
means there are mn such interactions to be considered. This is clearly dif-
ficult from a design point of view in any but the most simple system. The
introduction of a central control system also introduces a bottleneck into the
agent’s decision making. These problems are partly alleviated in a vertically
layered architecture.

Vertical layering. In vertically layered architectures (Figure 2.6a and
2.6b), sensory input and action output are each dealt with by at most one
layer each.

Vertically layered architectures can be subdivided into one pass archi-
tectures (Figure 2.6a) and two pass architectures (Figure 2.6b). In one-pass
architectures, control flows sequentially through each layer, until the final
layer generates action output. In two-pass architectures, information flows
up the architecture (the first pass) and control then flows back down. There
are some interesting similarities between the idea of two-pass vertically lay-
ered architectures and the way that organisations work, with information
flowing up to the highest levels of the organisation, and commands then
flowing down. In both one pass and two pass vertically layered architec-
tures, the complexity of interactions between layers is reduced: since there
are n − 1 interfaces between n layers, then if each layer is capable of sug-
gesting m actions, there are at most m2(n−1) interactions to be considered
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between layers. This is clearly much simpler than the horizontally layered
case. However, this simplicity comes at the cost of some flexibility: in order
for a vertically layered architecture to make a decision, control must pass
between each different layer. This is not fault tolerant: failures in any one
layer are likely to have serious consequences for agent performance.

Figure 2.6: Vertical Layered Architectures: (a) one pass control; (b) two
pass control.

To summarize, layered architectures are currently the most popular gen-
eral class of agent architecture available. Layering represents a natural de-
composition of functionality: it is easy to see how reactive, pro-active, social
behaviour can be generated by the reactive, pro-active, and social layers
in an architecture. The main problem with layered architectures is that
while they are arguably a pragmatic solution, they lack the conceptual and
semantic clarity of unlayered approaches. In particular, while logic-based
approaches have a clear logical semantics, it is difficult to see how such a
semantics could be devised for a layered architecture. Another issue is that
of interactions between layers. If each layer is an independent activity pro-
ducing process (as in TOURINGMACHINES [Fer92]), then it is necessary
to consider all possible ways that the layers can interact with one another.
This problem is partly alleviated in two-pass vertically layered architecture
such as INTERRAP [Mül96].

BDI

Belief-desire-intention (BDI) architectures have their roots in the theory of
human practical reasoning developed by the philosopher Michael Bratman
[Bra87] in the mid 1980s. Pratical reasoning is the process of deciding,
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moment by moment, which action to perform in the furtherance of our
goals. The conceptual framework of the BDI model is described in [BIP91].

Practical reasoning involves two important processes: deciding what
goals we want to achieve, and how we are going to achieve these goals. The
former process is known as deliberation, the latter as means-ends reasoning.
Intentions play a number of important roles in practical reasoning:

• Intentions drive means-ends reasoning;

• Intentions constrain future deliberation;

• Intentions persist;

• Intentions influence beliefs upon which future practical reasoning is
based.

A key problem in the design of practical reasoning agents is that of of achiev-
ing a good balance between these different concerns.

Figure 2.7: The Belief-Desire-Intention architecture.

The process of practical reasoning in a BDI agent is summarised in
Figure 2.7. As this Figure illustrates, there are seven main components to
a BDI agent:
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• a set of current beliefs, representing information the agent has about
its current environment;

• a belief revisionfunction (brf), which takes a perceptual input and the
agent’s current beliefs, and on the basis of these, determines a new set
of beliefs;

• an option generation function (options), which determines the options
available to the agent (its desires), on the basis of its current beliefs
about its environment and its current intentions;

• a set of current options, representing possible courses of actions avail-
able to the agent;

• a filter function (filter), which represents the agent’s deliberation process,
and which determines the agent’s intentions on the basis of its current
beliefs, desires, and intentions;

• a set of current intentions, representing the agent’s current focus those
states of affairs that it has committed to trying to bring about;

• an action selection function (execute), which determines an action to
perform on the basis of current intentions.

In short, BDI architectures are practical reasoning architectures, in
which the process of deciding what to do resembles the kind of practical
reasoning that we appear to use in our everyday lives. The basic compo-
nents of a BDI architecture are data structures representing the beliefs,
desires, and intentions of the agent, and functions that represent its de-
liberation (deciding what intentions to have i.e., decidingwhat to do) and
means-ends reasoning (deciding how to do it). Intentions play a central role
in the BDI model: they provide stability for decision making, and act to
focus the agent’s practical reasoning. A major issue in BDI architectures is
the problem of striking a balance between being committed to and overcom-
mitted to one’s intentions: the deliberation process must be finely tuned
to its environment, ensuring that in more dynamic, highly unpredictable
domains, it reconsiders its intentions relatively frequently in more static
environments, less frequent reconsideration is necessary.

The BDI model is attractive for several reasons. First, it is intuitive we
all recognise the processes of deciding what to do and then how to do it,
and we all have an informal understanding of the notions of belief, desire,
and intention. Second, it gives us a clear functional decomposition, which
indicates what sorts of subsystems might be required to build an agent. But
the main difficulty, as ever, is knowing how to efficiently implement these
functions.
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2.3.3 Macro-Architectures

The environment in which agents operate might contain or not other agents.
Although there are situations where an agent can operate usefully by itself,
the increasing interconnection of computers is making such situations rare,
and usually an agent interacts with other agents. To cope with environ-
ments that contain societies of agents, a computational infrastructure that
includes protocols for agents to communicate and interact, is needed. In
particular, the environments must provide a computational structure for in-
teractions that includes communication protocols and interation protocols.
Communication protocols allow agents to exchange and understand mes-
sages; interaction protocols enable agents to have conversations (structured
exchange of messages).

A Multi-Agent System (MAS) is a system composed of a population of
autonomous agents, which cooperate with each other to reach common ob-
jectives, while simultaneously each agent pursues individual objectives. The
rationale for interconnetting agents is to enable them to cooperate in solv-
ing problems, to share expertise, to work in parallel on common problems,
to be developed and implemented modularly, to be fault tolerant through
redudancy, to represent multiple viewpoints and the knowledge of multiple
experts, and to be reusable.

Multiagent systems are a relatively new field of computer science. They
have only been studied since about 1980, and they gained widespread recog-
nition since about the mid-1990s. International interest in the field has then
grown enormously, since agents are considered a suitable software paradigm
to exploit the possibilities presented by massive open distributed systems
such as the Internet.

There is a popular slogan in the multiagent systems community:

“There’s no such thing as a single agent system.”

The point of the slogan is that interacting systems are the norm in the
everyday computing world. Almost all the systems contain a number of
sub-systems that must interact each other to successfully carry out their
tasks. The typical multiagent system contains a number of agents, which
interact with one another through communication.

The agents are able to act in an environment; different agents have
different “spheres of influence”, in the sense that they will have control
over - or at least be able to influence - different parts of the environment.
These spheres of influence may coincide in some cases, thus giving rise to
dependency relationships among the agents. Agents will also typically be
linked by other relationships, such as “power” relationships, where one agent
fully controls another agent. When facing with multiagent domains, it is
critical to understand the type of interaction that take place between the
agents.
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MultiAgent Systems and Distributed Artificial Intelligence

Multiagent systems are strictly related to the context of Distributed Artifi-
cial Intelligence (DAI). The broad scope and the multi-disciplinary nature of
the Distributed Artificial Intelligence make it difficult to characterize DAI
in a few words. As starting point, it can be said that DAI is the study,
construction, and application of multi-agent systems. Traditionally, two
main types of DAI systems have been distinguished: multiagent systems
and distributed problem-solving systems. In the first ones, several agents
coordinate their knowledge, activity and reason about the processes of co-
ordination. In the second ones, the work of solving a particular problem is
divided among a number of nodes that divide and share knowledge about
the problem and the developing solution. The modern concept of multia-
gent systems covers both type of systems. The role that the concept of a
multiagent system plays in DAI is comparable to the role the the concept of
an individual agent plays in traditional AI. The elementary question faced
by DAI is “When and how should which agents interact – cooperate and
compete – to successfully meet their design objectives?”

An agent has the ability to communicate. This ability is part perception
(the receiving of messages) and part action (the sending of messages). Com-
munication can enable the agents to coordinate their actions and behavior.

Coordination is a property of system of agents performing some activity
in a shared environment.

Cooperation is coordination among non-antagonistic agents, while nego-
tiation is coordination among competitive or simply self-interested agents.
A problem of a multiagent system is how it can mantain global coherence
without explicit global control. In this case, the agents must be able on
their own to determine goals they share with other agents.

Communication. In order for a MAS to solve common problems coher-
ently, the agents must communicate amongst themselves, coordinate their
activities. Coordination and communication are central to MAS, for with-
out it, any benefits of interaction vanish and the group of agents quickly
degenerates into a collection of individuals with a chaotic behaviour.

Coordination. There are several reasons why multiple agents need to be
coordinated:- Prevent chaos. No agent possesses a global view of the entire
agency to which it belongs, as this is simply not feasible in any community
of reasonable complexity. Consequently, agents have only local views, goals
and knowledge that may interfere with rather than support other agents’
actions. Coordination is vital to prevent chaos during conflicts. Meet global
constraints. Agents performing network management may have to respond
to certain failures within seconds and others within hours. Coordinating
agents’ behaviour is therefore essential to meet such a goal. - Agents in
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MAS possess different capabilities and expertise. Therefore, agents need
to be coordinated in just the same way that different medical specialists,
including anesthetists, surgeons, ambulance personnel, nurses, etc., need
to coordinate their capabilities to treat a patient. - Agent’s actions are
frequently interdependent and hence an agent may need to wait for another
agent to complete its task before executing its own. Such interdependent
activities need to be coordinated.

The most renowned coordination is based on the Contract-Net Proto-
col (CNP). In this approach, a decentralized market structure is assumed
and agents can take on two roles: a manager and a contractor. The ba-
sic premise of this form of coordination is that if an agent cannot solve
an assigned problem using local resources/expertise, it will decompose the
problem into sub-problems and try to find other willing agents with the
necessary resources/expertise to solve these sub-problems. Assigning the
sub-problems is solved by a contracting mechanism. It consists of contract
announcement by the manager agent, submission of bids by contracting
agents in response to the announcement, and the evaluation of the submit-
ted bids by the manager, which leads to awarding a sub-problem contract to
the contractor(s) with the most appropriate bid(s). Another important com-
ponent of agent scheduling is the communication protocols among agents.
In order to achieve this coordination, the agents might have to interact and
exchange information; therefore they need to communicate by sending mes-
sages. KQML (Knowledge Query and Manipulation Language) is a good
example of communication language.

2.4 Agent Languages

The need for software support tools for the design and implementation of
agent systems was identified as long ago as the mid-1980s (see, for example
[GBH88]).

2.4.1 Agent-oriented programming

The agent-oriented programming is a new programming paradigm, based on
a social view of computation, which has been proposed by Yoav Shoham
[Sho93]. The main idea is to directly program agents in term of mentalistic
notions, such as belief, desire, and intention, which represent the properties
of agents. The motivation behind the proposal is that humans use such
concepts as an abstraction mechanism for representing the properties of
complex systems: it might be useful to use them to program machines, in
the same way that we use these notions to describe the behaviour of humans.
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AGENT0

The first implementation of the agent-oriented programming paradigm was
the AGENT0 programming language. In this language, an agent is specified
in terms of a set of capabilities (things that the agent can do), a set of initial
beliefs (playing the role of beliefs in BDI architectures), a set of initial com-
mitments (playing a role similar to that of intentions in BDI architectures),
and a set of commitment rules. The key component, which determines how
the agent acts, is the commitment ruleset. Each commitment rule contains
a message condition, a mental condition, and an action. In order to deter-
mine whether such a rule fires, the message condition is matched against the
messages the agent has received; the mental condition is matched against
the beliefs of the agent. If the rule fires, then the agent becomes committed
to the action. Actions may be private, corresponding to an internally ex-
ecuted subroutine, or communicative, i.e., sending messages. Messages are
constrained to be one of three types: “requests” or “unrequests” to perform
or refrain from actions, and “inform” messages, which pass on information.
Request and unrequest messages typically result in the agent’s commitments
being modified; inform messages result in a change to the agent’s beliefs.

It is important to note that AGENT0 language is essentially a proto-
type, not intended for building anything like large-scale production systems.
The main drawback is that the relationship between the logic and interpreted
programming language is only loosely defined. The programming language
cannot be said to truly execute the associated logic.

Concurrent METATEM

Fisher made a stronger claim in the respect of the association between lan-
guage and logic by introducing of the Concurrent METATEM language
[Fis94], which is based on the direct execution of logical formulae. A Con-
current METATEM system contains a number of concurrently executing
agents, each of them being able to communicate with its peers via asynchro-
nous broadcast message passing. Each agent is programmed by giving it a
temporal logic specification of the behaviour that it is intended the agent
should exhibit. An agent’s specification is executed directly to generate its
behaviour. Execution of the agent program corresponds to iteratively build-
ing a logical model for the temporal agent specification. It is possible to
prove that the procedure used to execute an agent specification is correct,
in that if it is possible to satisfy the specification, then the agent will do so.

The logical semantics of Concurrent METATEM are closely related to
the semantics of temporal logic itself. This means that, amongst other
things, the specification and verification of Concurrent METATEM systems
is a realistic proposition.

An agent program in Concurrent METATEM has the form ΛiPi ⇒ Fi,
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where Pi is a temporal logic formula referring only to the present or past,
and Fi is a temporal logic formula referring to the present or future. The
Pi ⇒ Fi formulae are known as rules. The basic idea for executing such a
program may be summed up in the following slogan:

on the basis of the past, do the future.

Thus, each rule is continually matched against an internal, recorded
history, and if a match is found, then the rule fires. If a rule fires, then
any variables in the future time part are instantiated, and the future time
part then becomes a commitment that the agent will subsequently attempt
to satisfy. Satisfying a commitment typically means making some predicate
true within the agent.

Concurrent METATEM is a good illustration of how a quite pure ap-
proach to logic-based agent programming can work, even with a quite ex-
pressive logic.

Related Work

Since Shoham’s proposal, a number of agent-oriented languages have been
proposed. Some examples include Becky Thomas’s Planning Communicat-
ing Agents (PLACA) language [Tho93], MAIL [HSM94], and Anand Rao’s
AGENTSPEAK(L) language [Rao96]. APRIL is a language that is intended
to be used for building multi-agent systems, although it is not “agent-
oriented” in the sense that Shoham describes. The TELESCRIPT pro-
gramming language, developed by General Magic, Inc., was the first mobile
agent programming language [Whi]. That is, it explicitly supports the idea
of agents as processes that have the ability to autonomously move them-
selves across a computer network and recommence executing at a remote
site.

Since TELESCRIPT was announced, a number of mobile agent exten-
sions to the Java programming language have been developed. One of the
most important extension is JADE (Java Agent DEvelopment Framework)
[BPR00], a software framework fully implemented in Java language. It sup-
ports the implementation of multi-agent systems through a middle-ware that
complies with the FIPA specifications. The infrastructure of the proposed
multiagent architecture presented in chapterch:pacmas is based on JADE.



Chapter 3

Planning

The previous chapter introduced the most important capabilities that an
agent should own, to exhibit a flexible behaviour. This chapter focuses
on the aspects regarding the proactive behavior, i.e. its “goal-oriented”
behaviour. In fact, to achieve their goals, agents often need to act in the
world. Acting in complex environments requires the ability of considering
which actions should be taken in order to achive a goal, that is what AI
planning systems attempt to do. In other words, agent’s proactive behaviour
is strictly related to its planning capabilities.

People, the best exemplars of intelligence we have to date, do a lot
of planning. It should be not surprising that investigating the planning
process has always been a central part of research in the field of Artificial
Intelligence. In particular, the quest of building intelligent agents has forced
researchers to investigate algorithms for generating appropriate actions in a
timely fashion.

This chapter aims to introduce the reader to the main concepts related
to planning. Section 3.2 begins by illustrating the simplifying assumptions
that characterize classical planning systems, defines formally the main con-
cepts regarding planning context, reviews the languages used to represent
planning problems, and describes the main approaches employed to solve
planning problems. Section 3.3 sketches the main issues related to planning
in more complex domains, such as those encountered in enviroments that
model real worlds. Section 3.4 presents planning by abstraction, one of the
most effective technique to manage complexity in planning systems. Finally,
section 3.5 surveys the most important planning systems that have given a
contributions to the development of automated planning in general.

3.1 Introduction

Since the mid 1960’s, researchers (mostly from the artificial intelligence com-
munity) have studied how computers can plan, including how to classify

34
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planning problems, how to represent them formally, how to solve them, and
how to integrate the resulting systems into human-machine environments.

Planning involves finding a sequence of actions that solve some problem
in a specific domain. Given a domain definition and a problem, a planner is
asked to find a solution to the problem.

A planning domain is defined by a set of legal operators and states.
The legal operators are defined in terms of preconditions and effects,

where the preconditions must be satisfied before the operator can be applied,
and the effects describe the changes to the state in which the operator is
applied.

States are snapshots of the world that include all of its aspects that are
relevant for planning. They are composed of a set of conditions that describe
the relevant features of a model of the world.

A planning problem consists of an initial state (init), which describes the
initial configuration of the world, and a set of goal conditions (goal) to be
achieved, which describes the desired configuration.

A solution to a problem is called plan, which consists of a sequence of
operators that transform the given initial state into some final state that
satisfies the goal.

Thus, a simple abstract formulation of the planning problem defines
three inputs:

• a description of initial state of the world in some formal language;

• a description of the agent’s goal (i.e., what behaviour is desired) in
some formal language;

• a description of the possible actions that can be performed (i.e., the
domain theory).

The planner’s output is a sequence of actions which, when executed in any
world satisfying the initial state description, will achieve the goal.

3.2 Classical planning

There are many possibilities to represent the world, agent’s goal, and pos-
sibile actions. However, the task of writing a planning algorithm is harder
for more expressive representation languages, and the speed of the resulting
algorithm descreases accordingly. In general, classical planners make the
following simplifying assumptions:

• Atomic Actions: The execution of an action is indivisible and unin-
terruptible, so we need not to consider the state of the world during
the execution process. Instead, execution can be modeled as an atomic
trasformation from one world state to another. Simultaneously exe-
cuted actions are impossible;
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• Deterministic Effects: The effect of executing any action is a de-
terministic function of the action and the state of the world when the
action is executed;

• Omniscience: The agent has complete knowledge of the initial state
of the world and of the nature of its own actions;

• Static Environment: The only way the world changes is by the
agent’s own actions. There are no other agents and the world is static.
This assumption means that the world description needs to be specified
only by the initial state of the world.

In short, classical planning assumes that actions and the environment are
always completely predictable and observable. Despite these assumptions
are unrealistic, they make the planning problem more tractable. However,
they often make hard to face the problem of planning in real environments.
Thus, a class of planning algorithms that relaxes one or more of the above
assumptions has been devised, which will be sketched in section 3.3.

3.2.1 Formal Definitions

A problem space Σ is formally defined by a triple (L, S, O), where L is a
first-order language, S is a set of states, and O is a set of operators. Each
state Si ∈ S is a finite and consistent set of atomic sentences in L.

Each operator α ∈ O is defined by a triple (Pα, Dα, Aα), where Pα, the
preconditions, are a set of literals (i.e. positive or negative atomic sentences)
in L, and both the deletes Dα and adds Aα are finite sets of atomic sentences
in L. The combination of the adds and the deletes comprise the effects of an
operator Eα, such that if p ∈ Aα then p ∈ Eα and if p ∈ Dα then (¬p) ∈ Eα.

A problem ρ consists of two components:

• An initial state S0 ∈ S, where S0 is a description of an initial state of
the world;

• A goal state Sg ∈ S, where Sg is a partial description of a desired
state.

The solution (or plan) Π to a problem is a sequence of operators that
transforms the initial state S0 into some final state Sn that satisfies the goal
state Sg. A plan is composed by the concatenation of operators or subplans.

Let A : O × S → S be an application procedure that applies an op-
erator to a state to produce a new state by removing the deleted literals,
and inserting the added literals. For any state Si (where \ represents set
difference),

A(α, Si) = (Si\Dα) ∪Aα.
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The application procedure can be extended to apply to plans in the obvious
way, where each operator applies to each of the resulting states in sequence.
Thus, given the initial state So, a plan Π = α1; . . . ;αn defines a sequence of
states S1, . . . , Sn, where

Si = A(α1; . . . ;αi, S0) = A(αi, Si−1); 1 ≤ i ≤ n

A plan Π is correct whenever the preconditions of each operator are satisfied
in the state in which the operator is applied:

Pαi ⊆ Si−1; 1 ≤ i ≤ n

Π solves a problem ρ = (S0, Sg) whenever Π is correct and the goal Sg is
satisfied in the final state: Sg ⊆ A(Π, S0).

3.2.2 Representations of Planning Problems

A representation language allows specifying planning problems in a way that
can be understood by a computer. In general, more expressive representa-
tion languages allow modeling a greater variety of planning problems but
are also more complicated, which makes it harder for humans to encode
planning problems and to understand planning problems that have been en-
coded by others, and also harder for computers to solve encoded planning
problems. Researchers originally tried to use logic as representation lan-
guage and theorem-proving techniques to find valid plans by proving that
there exists an action sequence that transforms the initial state to a goal
state. However, logic is very expressive and thus theorem proving turned
out to be slow. Therefore, specialized representation languages for planning
problems have been devised.

STRIPS

One of the earliest languages for describing planning problems was used by
a planning system called STRIPS [FN71]. The acronym STRIPS stands
for “Stanford Research Institute Problem Solver”, a very famous planner
built in the early 1970s to control an unstable mobile robot, affectionately
known as “Shakey”. The STRIPS representation language is still widely
used today.

The expressive power of STRIPS is the same of propositional logic: states
are specified using a subset of logic, namely as conjunctions of propositions,
that is, as sets of statements that are either true or false. STRIPS follows the
so called “Closed World Assumption” [Rei80]: all atomic formulae explicitly
listed in the state description are assumed to be true, whereas unlisted
propositions are assumed to be false.

In the STRIPS representation, actions are compactly represented with
action schemata, that is, parameterized descriptions that describe in which
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states the actions can be executed and which states result from their exe-
cution. An action is obtained from an action schema by supplying objects
for its parameters. Actions are represented with preconditions and effects.
An action can be executed in all states that contain the propositions on its
precondition list. The precondition of each action follows the same restric-
tion as the problem’s goal: they are a conjunction of positive literals. An
action’s effect, on the other hand, is a conjunction that may include both
positive and negative literals. When an action is executed, it changes the
world description in the following way. All the positive literals in the ef-
fect conjunction (the action’s add-list) are added into the state description,
while all the negative literals (the action’s delete-list) are removed. In other
words, its execution results in the state obtained from the state before its
execution by deleting all propositions on its delete list and adding all propo-
sitions on its add list. The add and delete lists address the so called frame
problem: how to specify the consequences of action executions efficiently, by
not listing those propositions that remain unaffected by action executions.

However, the expressive power of STRIPS language is limited. For ex-
ample, it cannot express the consumption of continuous resources (such as
fuel and time). Representation languages such as the Action Description
Language (ADL) and the Problem Domain Description Language (PDDL)
have therefore extended STRIPS to make it more expressive.

ADL

Despite making the description of the domains more simple, STRIPS im-
posed several limitations in the representation of real problems. One of the
most important restrictions is that literals (and consequently actions) must
be function-free. Pednault [Ped89] defined the Action Description Language
or ADL, the most important variant of the STRIPS language that tried to
narrow the gap between the expressive power of the propositional logic and
the first order logic. Table 3.1 briefly compares the ADL with the basic
STRIPS language.

PDDL

The demand for a common planning language that allows researchers to ex-
change benchmark problems and comparing results landed to the definition
of a standard syntax, called the “Planning Domain Definition Language” or
PDDL [McD98]. It mostly descended from the language of the partial-order
planner UCPOP [PW92], which supports a consistent set of ADL. PDDL
includes sublanguages for STRIPS, ADL, and the hierarchical task networks
[EHN94]. The most important PDDL extensions are:

• Actions with variable parameters
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STRIPS Language ADL Language
Only positive literals in states: Positive and negative literals in states:
Poor ∧ Unknown ¬Rich ∧ ¬Famous

Closed World Assumption: Open World Assumption:
Unmentioned literals are false. Unmentioned literals are unknown.
Effect P ∧ ¬Q means add P Effect P ∧ ¬Q means add P and ¬Q
and delete Q. and delete ¬P and Q.

Only ground literals in goals: Quantified variables in goals:
Rich ∧ Famous ∃x : At(P1, x) ∧At(P2, x) is the goal of

having P1 and P2 in the same place.

Goals are conjunctions: Goals allow conjunction and disjunction:
Rich ∧ Famous ¬Poor ∧ (Famous ∨ Smart)
Effects are conjunctions. Conditional effects allowed:

when P : E means E is an effect
only if P is satisfied.

No support for equality. Equality predicate (x = y) is built in.
No support for types. Variables can have types,

as in (p : Plane).

Table 3.1: Comparison of STRIPS and ADL languages.

• Disjunctive preconditions

• Conditional effects

• Universal quantification over dynamic universes (i.e., object creation
and destruction)

• Domain axioms over stratified theories

• Specification of safety constraints

PDDL was originally developed by the AIPS-98 Competion Committee for
use in defining problem domains. Since then, there have been several en-
hancements in the expression of the language.

The 2002 version (called PDDL2.1) [FL03] added many new features,
mainly connected with adding time and objective functions to the language.

The 2004 version (called PDDL2.2) [EH03] added derived predicates and
timed initial literals. The former are backward-chaining axioms that allow a
planner to achieve a goal by making the antecedent of one of them true. The
latter are literals that will become true at a predictable time independent
of what the planning agent does.

The 2006 version (called PDDL3.0) [GL05] is the language for the 2006
competitions, which adds strong and soft constraints on plan trajectories



CHAPTER 3. PLANNING 40

(i.e. constraints over possible actions in the plan and intermediate states
reached by the plan), and strong and soft problem goals (i.e. goals that
must be achieved in any valid plan, and goals desired to be achieved, but
not necessarily), expressed in a restricted temporal logic.

Recently, a successor to PDDL, called Ontology with Polymorphic Types
(OPT) has been proposed [McD05]. It is an attempt to create a general-
purpose notation for expressing ontologies, definied as formalized conceptual
frameworks for domain about which programs has to reason. Its syntax is
based on PDDL, but it has a more elaborate type systems, which allows
user to make use of higher-order constructs such as explicit λ-expressions.

3.2.3 Solving Planning Problems

Planning algorithms try to find valid plans for given planning problems.
Planning can be viewed as graph search, either in the state space or in
the plan space: state-space planning searches the directed graph whose
nodes correspond to states and whose edges correspond to state transforma-
tions (i.e., actions), whereas plan-space planning searches the directed graph
whose nodes correspond to (eventually incomplete) plans and whose edges
correspond to plan transformations.

State-space Planning

The simplest way to build a planner is to cast the planning problem as search
through the space of world states. Each node in the graph denotes a state of
the world, and edges connect states that can be reached by executing a single
action. When phrased in this manner, the solution to a planning problem
(i.e., the plan) is a path through state-space. In other words, the objective
of state-space planning is to find a path from the node that corresponds to
the initial state to a node that corresponds to a goal state. The advantage
of casting planning as a search problem is the immediate applicability of all
the familiar brute force and heuristic search algorithms (see, for example
[Kor87]).

Plan-space planning

Plan-space planning searches the directed graph whose nodes correspond to
(eventually incomplete) plans and whose edges correspond to plan transfor-
mations. A plan is incomplete (and thus invalid) either if it is missing actions
or if its actions are not completely ordered (partial-order planning). Par-
tially ordered plans avoid unnecessary and potentially wrong ordering com-
mitments between actions during planning (least-commitment planning).
Plan transformations therefore often add actions or ordering constraints
between actions to plans. The objective is to find a path from the nodes
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that corresponds to the empty plan to a node that corresponds to a valid
plan.

Progression and Regression Planning

The search of both state-space and plan-space planning can proceed for-
ward from the initial state node to the goal nodes (progression planning) or
backward from the goal nodes to the initial state node (regression planning).
The formulation of planning problems as state-space search problems is as
follows:

• The initial state of the search is the initial state from the planning
problem. In general, each state will be a set of positive ground literals
(literals not appearing begin false);

• The actions that are applicable to a state are all those whose precon-
ditions are satisfied. The successor state resulting from an action is
generated by adding the positive effect literals and deleting the nega-
tive effect literals;

• The goal test checks whether the state satisfies the goal of the planning
problem.

Forward search. From the earliest days of planning research (around
1961) until around 1998, it was assumed that forward state-space search
was too inefficient to be pratical. The main reasons are that forward search
does not address the irrelevant action problem (i.e., all applicable actions
are considered from each state), and the approach quickly bogs down witout
a good heuristic. In fact, the size of the search spaces often increases expo-
nentially in the size of the planning problems. This implies that the graphs
of typical STRIPS planning problems could not fit into the memories of
computers and that finding even shortest action sequences could be compu-
tationally very hard. Therefore, planning techniques exploit the structure of
planning problems in an attempt to find reasonably short action sequences
for realistically sized planning problems.

One way to exploit structure is to focus the search with heuristics, often
in the form of distance estimates to the goal vertices (HSP, UNPOP). Good
distance estimates can be obtained automatically for state-space planning,
for example from a data structure called a planning graph (FF, GRAPH-
PLAN, IPP, LPG, SGP, STAN, TGP).

A second way to exploit structure is to use knowledge about the structure
of valid plans (TLPLAN).

A third way to exploit structure is to decompose planning problems into
several subproblems that can be solved almost independently. Decomposing
planning problems does not work well for puzzles like the Rubik’s Cube but
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seems to work well in domains in which humans plan well (everyday plan-
ning). For example, one can first identify the propositions that are part of
the goal but not the start state, then find an action sequence for each of
them that transforms the start state into a state that contains the proposi-
tion and finally merge the actions sequences. This is the main idea behind
means-ends analysis, which picks each of the propositions in turn and first
finds an action whose add list contains the proposition and then recursively
tries to achieve all of those preconditions of the action that do not already
hold in the start state. One can also decompose planning problems hierarchi-
cally by refining high(level actions to take them more concrete (hierarchical
planning) (ABSTRIPS, DEVISER, FORBIN, NONLINE, O-PLAN, SHOP,
SIPE).

Finally, a fourth way to exploit structure is to speed up planning for the
current planning problem by utilizing information about how one has solved
similar planning problems in the past (replanning or plan reuse). Case-based
planning, for example, adapts plans from similar planning problems in the
past to fit the current planning problem (CAPER, CAPLAN, CHEF).

Backward search. The main advantage of backward search is that it
allows us to consider only relevant actions. An action is relevant to a con-
junctive goal if it achieves one of the conjuncts of the goal. In addition
that actions achieves some desidered literal, the actions must not undo any
desidered literals. An action that statisfies this restriction is called consis-
tent. Given a goal description G, let A be an action that is relevant and
consistent. The general process of constructing predecessors for backward
search is as follows:

• Any positive effects of A that apperar in G are deleted;

• Each precondition literal of A is added, unless it already appears.

Search termination occurs when a predecessor description is generated that
is satisfied by the initial state of the planning problem. It is worth noting
that neither forward search nor backward search is efficient without a good
heuristic function.

3.3 Planning in complex domains

So far, we have described planning approaches for classical planning prob-
lems. These planning techniques find valid plans in the form of action se-
quences, ideally sequences of small lengths. Researchers have also studied
far more complex planning pronlems, for example, where conditions have
to be maintained rather than achieved, where the world changes even if
the planning system does not execute actions, and where other systems are
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present in either cooperative or competitive situations. This section hints
at some approaches that can be used to cope with the mentioned issues.

Uncertainty about the outcomes of action executions gives rise to decision-
theoretic planning problems. In case of nondeterministic actions, a number
of successor states can result from their execution, and it cannot be pre-
dicted in advance which one will actually result. In case of states that are
not totally partially observable, some relevant aspect of the world cannot
always be observed (for example, due to sensor limitations) or cannot always
be observed correctly (for example, due to sensor noise). In the presence
of nondeterministic actions or partially observable states, planning systems
cannot always know their current states but can estimate them, for example,
in the form of sets of possible states or probability distributions over them.
Then, planning systems often find plans that achieve the goal with high
probability or, if the goal can be achieved for sure, minimize the number of
action executions either in the worst case or on average. For the objective
of minimizing the number of action executions in the worst case, planning
techniques can draw on ideas from artificial intelligence search. For the
objective of minimizing the number of action executions on average, plan-
ning techniques can draw on dynamic programming ideas from operations
research (such as value iteration and policy iteration) to solve totally and
partially observable Markov decision processes, which generalize graphs.

Totally observable Markov decision processes can model nondetermin-
istic actions, while partially observable Markov decision processes can also
model partially observable states. Decision-theoretic planning is computa-
tionally very hard, and decision-theoretic planning techniques thus exploit
the structure of planning problems again, often by generalizing ideas from
classical planning. For example, BURIDAN extends partial-order planning,
SGP extends GRAPHPLAN, and MAXPLAN extends SATPLAN (see the
last Section of this chapter).

Some planning systems rely on coercion to achieve the goal without
sensing and thus continue to find action sequences (conformant or open-
loop planning) [CGP]. However, it is not guaranteed that valid conformant
plans exist for decision-theoretic planning problems or are of good quality
because observations can now provide information about the current state.
In general, one therefore often wants to find plans that contain sensing ac-
tions and select actions depending on the observations made during plan
execution (conditional, contingent, or closed-loop planning) [WARPLAN-
C]. For Markov decision processes it is sufficient to consider only condi-
tional plans that map each state (for totally observable Markov decision
processes) or each probability distribution over the states (for partially ob-
servable Markov decision processes) to the action that should be executed
in it (policies), which reduces the search space and allows one to represent
conditional plans compactly (reactive planning). The large number of pos-
sible contingencies makes planning for decision-theoretic planning problems
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extremely time consuming.
One way of speeding up planning is to interleave planning and action

executions [CONT-PLAN, SEP-PLAN], since action executions can result
in additional observations, which can eliminate some contingencies and thus
speed up planning. For example, instead of having to plan for all states
that can result from the execution of an action, one can simply execute the
action and then plan only for the successor state that actually resulted from
its execution. There are different ways of interleaving planning and action
executions. For example, agent-centered planning techniques find only the
beginning of a valid plan by searching with a limited look-ahead around the
current state, execute the plan, and repeat the process. Assumption-based
planning techniques, on the other hand, find a plan that is valid provided
their assumptions about the outcomes of action executions are correct. If
these assumptions turn out not to hold during plan execution, they replan
and repeat the process.

3.4 Planning by Abstraction

If a problem is sufficiently complex, then the dimension of state space could
be enormous: even using new-generation planning algorithms or powerful
heuristics could be not much help. Fortunately, many application contexts
can be handled with an abstraction-based approach, by focusing the plan-
ner on the more difficult aspects of a problem, first. Once a sequence of
more important subproblems has been detected, it is possible to separately
solve each of them, then progressively add less important details, and finally
grouping the results in the solution.

When applied to planning, this technique is called hierarchical plan-
ning. It employs one or more abstractions of a problem space to reduce
the search. Instead of attempting to solve problems in the original problem
space by plowing through the morass of details associated with a problem, a
hierarchical planner first solves a problem in a simpler abstract space where
the planner can focus on the real problem and ignore the details.

Systems that exploit an abstraction mechanism to solve planning prob-
lems are called hierarchical planners. Such mechanisms can be grouped into
three categories, depending on the type of abstractions employed: abstract
problem spaces, abstract operators, macro problem spaces. These three ap-
proaches are briefly described below, and compared in more detail in the
next Chapter.

The first approach, hierarchical planning using abstract problem spaces,
employs a hierarchy of abstract problem spaces to first solve a problem in an
abstract space and then refine the abstract solution into successively more
detailed spaces until it reaches the ground space. This type of hierarchi-
cal planning is sometimes called length-first hierarchical planning since a
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problem is solved at one level of abstraction before moving to the next level.
The second approach, hierarchical planning using abstract operators,

uses a predefined set of abstractions of the operators and expands each op-
erator in the abstract plan to varying levels of detail. Instead of refining the
entire plan at one level of detail, the planner refines the plan by selectively
refining the individual operators in the plan. An operator is refined by re-
placing an abstract operator with a more detailed operator and achieving
the unsatisfied preconditions of the new operator. This approach allows one
part of the abstract plan to be expanded while another part is ignored, but
eventually the entire plan will be expanded in the ground space. Unlike
the length-first model, the abstractions need not to be a set of well-defined
abstract problem spaces. Instead, the problem solver first selects abstract
operators that directly achieve the goals and then refines the abstract op-
erators by interting preconditions of the operators that must hold before
operators can be applied in the ground space.

The third approach, abstract planning using macros, takes a problem
and maps it into an abstract space defined by a set of macro operators and
the solves the problem in the macro space. Unlike the first two approaches,
once a problem is solved in the macro space, the problem is completely
solved since the macros are defined by operators in the original problem
space.

The work on this thesis builds on the third approach: in Chapter 8 a
system to automatically generate macro-operators from static domain de-
scription is presented. The obtained macro-operators can be used, however,
to fed the parametric hierarchical wrapper HW (described in Chapter 7,
which is able to support all the three abstraction mechanisms. Actually, the
presented approach can be considered as a hybrid between the second and
the third approach. In fact, we do not consider abstract domains composed
only by macro-operators. These are, instead, used as support for generating
abstract operators.

3.5 Planning Systems: Literature Review

This section reviews the most important planning systems that have some-
how marked the history of automated planning.

The first major planning system was STRIPS [FN71]. As described pre-
viously, it was designed as the planning component of the software for the
Shakey robot project at SRI. Its overall control structure was based on that
of GPS, the General Problem Solver [NS72], a state-space search system
that used meansends analysis. STRIPS used a version of the QA3 theorem
proving system as a subroutine for establishing the truth of preconditions
for actions. However, the action representation used by STRIPS had more
success than its algorithmic approach! In fact, almost all planning systems
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have used a variant or an extension of the STRIPS language. Unfortu-
nately, the proliferation of variants has made comparisons among planning
algorithms very difficult. Moreover, there were limitations in representing
complex problems. The Action Description Language (ADL) [Ped89] relaxed
some of the restrictions in the STRIPS language and made it possible to en-
code more realistic problems. The Problem Domain Description Language
(PDDL) [McD98] was introduced as a computer-parsable, standardized syn-
tax for representing STRIPS, ADL, and other languages. PDDL has been
used as the standard language for the planning competitions at the AIPS
conference, beginning in 1998.

In the early 1970s planners generally worked with totally ordered action
sequences. Problem decomposition was achieved by computing a subplan
for each subgoal and then merging the subplans together in some order.
This approach, called linear planning was soon discovered to be incomplete.
It cannot solve some very simple problems, such as the Sussman anomaly
found by Allen Brown during experimentation with the HACKER system.
A complete planner must allow for interleaving of actions from different sub-
plans within a single sequence. The notion of serializable subgoals [Kor87]
corresponds exactly to the set of problems for which non interleaved planners
are complete.

One solution to the interleaving problem was goal regression planning, a
technique in which steps in a totally ordered plan are reordered so as to avoid
conflict between subgoals. This was introduced by Waldinger [WAL77] and
also used by Warren’s WARPLAN [War76]. WARPLAN is also notable in
that it was the first planner to be written in a logic programming language
(Prolog) and is one of the best examples of the remarkable economy that
can sometimes be gained by using logic programming: WARPLAN is only
100 lines of code, a small fraction of the size of comparable planners of the
time. INTERPLAN [Tat74] also allowed arbitrary interleaving of plan steps
to overcome the Sussman anomaly and related problems.

The ideas underlying partial-order planning include the detection of con-
flicts and the protection of achieved conditions from interference. The con-
struction of partially ordered plans (then called task networks) was pioneered
by the NOAH planner and by Tate’s NONLIN system. Partial-order plan-
ning dominated the next 20 years of research, yet for much of that time,
the field was not widely understood. TWEAK was a logical reconstruc-
tion and simplification of planning work of this time; his formulation was
clear enough to allow proofs of completeness and intractability (NP-hardness
and undecidability) of various formulations of the planning problem. Chap-
man’s work led to what was arguably the first simple and readable descrip-
tion of a complete partial-order planner. An implementation of McAllester
and Rosenblitt’s algorithm called SNLP was widely distributed and allowed
many researchers to understand and experiment with partial-order planning
for the first time. Weld’s group also developed UCPOP, the first planner
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for problems expressed in ADL [PW92]. UCPOP incorporated the number-
of-unsatisfied-goals heuristic. It ran somewhat faster than SNLP, but was
seldom able to find plans with more than a dozen or so steps.

Although improved heuristics were developed for UCPOP [GS96], partial-
order planning fell into disrepute in the 1990s as faster methods emerged.
Nguyen and Kambhampati suggest that a rehabilitation is merited: with ac-
curate heuristics derived from a planning graph, their REPOP planner scales
up much better than GRAPHPLAN and is competitive with the fastest
state-space planners. Avrim Blum and Merrick Furst revitalized the field
of planning with their GRAPHPLAN system [BF95], which was orders of
magnitude faster than the partial-order planners of the time. Other graph
planning systems, such as IPP , STAN and SGP, soon followed. A data
structure closely resembling the planning graph had been developed slightly
earlier by Ghallab and Laruelle (1994), whose IXTET partial-order planner
used it to derive accurate heuristics to guide searches. Nguyen et al. (2001)
give a very thorough analysis of heuristics derived from planning graphs.
The winner of the 2002 AIPS planning competition, LPG [GS02], searched
planning graphs using a local search technique inspired by WALKSAT.

Planning as satisfiability and the SATPLAN algorithm were proposed
by Kautz and Selman, who were inspired by the surprising success of greedy
local search for satisfiability problems. Kautz et al. (1996) also investigated
various forms of propositional representations for STRIPS axioms, finding
that the most compact forms did not necessarily lead to the fastest solu-
tion times. A systematic analysis was carried out by Ernstetal. (1997),
who also developed an automatic “compiler” for generating propositional
representations from PDDL problems.

The BLACKBOX planner [KS98], which combines ideas from GRAPH-
PLAN and SATPLAN, was developed by Kautz and Selman. The resur-
gence of interest in state-space planning was pioneered by Drew McDer-
mott’s UNPOP program(1996), which was the first to suggest a distance
heuristic based on a relaxed problem with delete lists ignored. The name
UNPOP was a reaction to the overwhelming concentration on partial-order
planning at the time; McDermott suspected that other approaches were not
getting the attention they deserved.

Bonet and Geffner’s Heuristic Search Planner (HSP) and its later deriv-
atives [BG99] were the first to make state-space search practical for large
planning problems. The most successful state-space searcher to date is Hoff-
mann’s FASTFORWARD or FF [HN00], winner of the AIPS2000 planning
competition. FF uses a simplified planning graph heuristic with a very fast
search algorithm that combines forward and local search in a novel way.

Most recently, there has been interest in the representation of plans as
binary decision diagrams, a compact description of finite automata widely
studied in the hardware verification community. There are techniques for
proving properties of binary decision diagrams, including the property of
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being a solution to a planning problem. Cimatti et al. (1998) present a
planner based on this approach. Other representations have also been used;
for example, Vossen et al. (2001) survey the use of integer programming for
planning. The jury is still out, but there are now some interesting compar-
isons of the various approaches to planning. Helmert (2001) analyzes several
classes of planning problems, and shows that constraint-based approaches,
such as GRAPHPLAN and SATPLAN are best for NP-hard domains, while
search-based approaches do better in domains where feasible solutions can
be found without backtracking. GRAPHPLAN and SATPLAN have trouble
in domains with many objects, because that means they must create many
actions. In some cases the problem can be delayed or avoided by generat-
ing the propositionalized actions dynamically, only as needed, rather than
instantiating them all before the search begins.



Chapter 4

Abstraction

In artificial intelligence, abstraction is commonly used to account for the
use of various levels of details in a given representation language or the
ability to change from one level to another while preserving useful properties.
Abstraction has been mainly studied in problem solving, theorem proving,
knowledge representation (in particular for spatial and temporal reasoning)
and machine learning. In such contexts, abstraction is defined as a mapping
between formalisms that reduces the computational complexity of the task
at stake.

This chapter focuses on abstraction techniques that can be exploited
to improve the performances of automated classical planners, which allow
implementing the problem-solving abilities of intelligent agents. First, sec-
tion 4.2 illustrates the main categories under which traditional abstraction
mechanisms are conceptually classified. Then, in section 4.3 a formal defini-
tion of abstraction hierarchy, together with its underlying elements, is given.
Section 4.4 describes the main properties that characterize abstraction hier-
archies. Finally, section 4.5 hints at the approaches useful to automatically
generate abstraction hierarchies.

4.1 Introduction

Abstraction is known to be an effective speed-up technique for classical
planners. The main idea is to reduce the search by focusing the problem on
the more difficult aspects first. A hierarchy of abstract spaces is employed to
first solve a problem in an abstract space, and then refine it into successively
more detailed spaces until the ground space is reached. Actually, abstraction
is often not effective on simple problems, due to the overhead introduced
by the need of going back and forth across abstract spaces while performing
the search. In other words, enforcing abstraction on simple problems may
end up to wasting computational resources. On the other hand, the more
planners will be used to solve problems of increasing complexity, like those

49
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encountered in real-life applications, the more abstraction techniques will
play a central role in the task of reducing the search time.

4.2 Abstraction Techniques

The most relevant abstraction techniques that have been proposed in the
literature fall into three main categories:

• state-based

• action-based

• case-based

In the following, they will be described in detail.

4.2.1 State-based

State-based techniques exploit representations of the world at a lowel level
of detail, and are mainly focused on removing predicates at different levels
of granularity (either for preconditions only or for both preconditions and
postconditions)1. These techniques do not consider abstraction on oper-
ators. Although they preserve the Upward Solution Property (USP) (see
section 4.4 and [Ten88] for further details), their main drawback concerns
the introduction of “false” solutions (i.e., not refinable solutions that any-
way hold at the abstract level(s), due to the deletion of some constraints
that apply to the ground level). Thus, the adoption of these techniques
is strictly related to the actual ratio between “false” and “true” solutions
[GW90], which must be kept reasonably low.

The most significant forms of state-based approaches rely on (a) relaxed
models, obtained by weakening operators’ applicability conditions [Sac74],
and on (b) reduced models [Kno94], obtained by completely removing certain
conditions from the problem space.

Relaxed Models

Relaxed models are constructed by removing preconditions of operators.
This is the approach implemented in the abstrips planner [Sac74], where a
criticality value is associated to each predicate, so that operators’ precondi-
tions can progressively be relaxed, while climbing the abstraction hierarchy,
by dropping those predicates whose criticality value is under the one that
characterizes the current level. It is worth noting that this approach does
not alter operators’ effects, which remain unchanged during the abstraction

1The overall technique can be classified as “a priori”, abstractions being searched with-
out resorting to information on solutions.
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process. Viewed in terms of a state-space graph, the number of states in a
relaxed model is the same as the initial model, but the possible transitions
between the states is increased.

Reduced Models

In reduced models [Kno94] each predicate is associated with a unique level of
abstraction according to the constraints imposed by the ordered monotonic-
ity property; any such hierarchy can be obtained by progressively removing
certain predicates from the domain (or problem) space. An abstract space
is formed by dropping every instance of a particular set of predicates from
both the states and the operators. Moreover, operators that only achieve
predicates dropped from the abstract space are removed from the abstract
space. In a reduced model, a single abstract state corresponds to one or
more states in the original problem space. The language of a reduced model
is a subset of the language of the original problem space.

This model has been adopted in ALPINE system (see [Kno91]), a sys-
tem equipped with a hierarchical planner, able to automatically generate
abstraction hierarchies.

It is worth noting that relaxed and reduced models are both homomor-
phisms of a problem space, which means that information is discarded in
the process of constructing these models. As such, after a problem is solved
in either type of abstract space, the abstract solution must be refined in the
original space in order to ensure that the solution applies to the original
problem.

4.2.2 Action-based

Action-based techniques use two different approaches: abstract operators
based and macro-operator based.

The former uses a predefined set of abstractions of the operators and
expands each operator in the abstract plan to varying levels of detail. Plan-
ners do not entirely refine plans at one level of detail, but they selectively
refine the individual operators in the plan. An operator is refined by re-
placing an abstract operator with a more detailed operator and achieving
the unsatisfied preconditions of the new operator. This approach allows one
part of the abstract plan to be expanded while another part is ignored, but
eventually the entire plan will be expanded in the ground space.

The latter takes a problem and maps it into an abstract space defined by
a set of macro operators and then solves the problem in the macro space. In
other words, a group of actions is combined to form macro-operators (e.g.,
[Ama68] and [Kor87]). Once a problem is solved in the macro space, the
problem is completely solved since the macros are defined by operators in
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the original problem space by a macro space.

Hierarchical Task Networks

The most significant example of operator-based approaches are Hierarchical
Task Network (HTN) (e.g., [EHN94]), in which problem and operators are
organized into a set of tasks: a high-level task can be reduced to a set of
partially ordered, lower-level, tasks. Reductions allow specifying how to
obtain a detailed plan from an abstract one.

4.2.3 Case-based

Case-based techniques are centered on a different perspective, assuming that
a solution of a given problem can be found by adapting plans already found
for similar problems. 2 Several different issues are very important in this
framework: (i) how to define suitable metrics for measuring the similarity
between problems, (ii) how to store and maintain a repository of “cases”
encountered while solving problems, and (iii) which techniques and heuristics
should be exploited to adapt a plan retrieved from the repository and deemed
useful for solving the given problem. It is worth noting that the adoption
of case-based planning is justified only agreeing with the conjecture that
“repairing” an existing solution is computationally less costly than finding
one from scratch, which is actually a very controversial issue.

In the literature, an interesting system that exploit these approach is the
PARIS system [BW95], in which abstract planning cases are automatically
learned from given concrete cases, although the user must provide explicit
refinement rules between adjacent levels of the hierarchy.

Since, in this work, we are mainly concerned with action-based tech-
niques, let us focus on the their pros and cons. The pionieristic work of Korf
[Kor87] was not explicitly tailored for abstraction hierarchies -the adoption
of macro-operators being limited to the ground level only. Although this
choice shown to be useful on several domains (see also [BS04]), it negatively
impacts on the average branching factor. On the other hand, this approach
preserves both the soundness (macro-operators represent legal sequences of
ground operators) and the completeness of the planner (none of the original
ground operators being removed from the domain). As for the HTN-based
techniques [EHN94], in a sense, they can be considered as a generalization of
Korf’s macro-operators, with a greater expressive power due to their capa-
bility of actually defining an abstraction hierarchy, together with the ability
of allowing partial ordering among operators. The main drawback of this
technique appears to be its strict dependence from the domain engineer,

2The overall technique can be classified as “a priori”, abstractions being searched with-
out resorting to information on solutions.
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which is responsible for defining a (possibly) sound and complete HTN net-
work for the given domain / problem. Furthermore, the amount of actual
search strictly depends on the domain engineer’s ability of devising high-
level tasks with the desirable property of being easily put together to form
a solution for the given problem.

4.3 Abstraction Hierarchies

In general, a planning domain can be defined in terms of two kinds of entities:
predicates and operators. A particular kind of unary predicates can also be
taken into account, giving rise to a third kind of entities -i.e., types- possibly
organized according to a suitable “is-a” hierarchy.

To improve the performance of a planning algorithm, a domain can be
organized into a set of abstraction levels, each of them containing its own
set of predicates and operators. Thus, the original search space can be
mapped into abstract spaces in which irrelevant details are disregarded at
different levels of granularity. In particular, abstracting a domain leads to
the definition of an abstraction hierarchy, consisting of a set of predicates
and operators, together with a set of mapping functions devised to specify
the mapping between two adjacent levels.

According to Giunchiglia and Walsh [GW90], an abstraction is a map-
ping between representations of a problem. In symbols, an abstraction

f : Σ0 → Σ1

consists of a pair of formal systems (Σ0,Σ1) with languages Λ0 and Λ1

respectively, and an effective total function

f0 : Λ0 → Λ1.

Extending the definition, an abstraction hierarchy consists of a list of
formal systems (Σ0,Σ1, . . . ,Σn−1) with languages Λ0,Λ1, . . . ,Λn−1 respec-
tively, and a list of effective total functions

fk : Λk → Λk+1,

(k = 0, 1, . . . , n− 2)

devised to perform the mapping between adjacent levels of the hierarchy.
Let us consider two abstraction levels, namely ground and abstract (the

extension of the definitions to an n-level hierarchy being trivial).
A deterministic ground operator is characterized by a name, a list of pa-

rameters, and the specification of its pre- and post-conditions given in terms
of ground predicates. A ground operator can be instantiated by substituting
its parameters with objects taken from the given problem, thus giving rise
to an instantiated ground operator (i.e., an action).
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An abstract operator is characterized by a name, a list of parameters,
and the specification of its overall pre- and post-conditions given in terms
of abstract predicates.

A macro-operator is any legal sequence of ground operators, together
with the specification of its overall pre- and post-conditions.

Formally, let ω be a sequence of operators (actions), a corresponding
macro-operator (macro-action) can be defined by the following formulas:

γ+
ω = γ+

ω1
∪ (γ+

σ′
\ η+

ω1
)

γ−ω = γ−ω1
∪ (γ−
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)
η+
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σ′
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)

(4.1)

where γ+, γ−, η+, and η−, represent preconditions, negated precondi-
tions, add-list, and delete-list of the resulting macro-operator, respectively.

Although -in principle- abstraction might be performed on both predi-
cates (including types) and operators, there is no a predefined ordering in the
abstraction process. In fact, one may start abstracting types, rather than
predicates or operators -although any choice performed on one kind of map-
ping may impact on subsequent choices. Nevertheless, in this work we are
mainly interested in abstracting operators starting from at least one support-
ing macro-operator, i.e., macro-operators whose pre- and post-conditions
match the one defined for the corresponding abstract operator.

It is worth pointing out in advance that the easiest way to generate an
abstract operator from a supporting macro-operator is to consider only the
preconditions and the effects of the latter. Thus, in the following, the terms
abstract- and macro-operator will be used as synonymous.

4.4 Formal Properties of Abstraction Hierarchies

To exploit and generate useful abstraction hierarchies, it is important to
define their properties in terms of the relationships between the abstract
levels and the ground level.

This section defines the properties of an abstraction hierarchy in terms
of the relationship between an abstract plan and a concrete-level plan. This
section first reviews two properties on abstraction hierarchy based on ex-
istence of planes: “Does the existence of an abstraction solution guarantee
the existence of a solution at any lower level? Or, is the converse true for
an abstraction hierarchy?”, then, it reviews properties which specificate a
precise correspondence between solutions using a refinement relationship.

Tenemberg [Ten88] identified the upward and downward solution proper-
ties, which relate a ground space to an abstract space. The upward solution
property is defined as follows:
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Upward Solution Property: the existence of a ground-level solution im-
plies the existence of an abstract-level solution.

Formally, given a n-level abstraction hierarchy, with level n − 1 being
the most abstract and level 0 the most concrete one. Let i be an integer
between 0 and n− 2.

Definition 1 (Upward Solution Property) Whenever any i-th-level so-
lution Πi exists, there exists an abstract solution Πi+1 at level i + 1.

By this definition, if a ground-level solution Π0 exists, then there exists
a sequence of abstract solutions ending with Π0, 〈Πn−1, . . . ,Π0〉, such that
each Πi is and i-th level abstract solution. By the upward solution property,
if there is no solution plan for a problem at an abstract level, then there
is no solution at any lower level either. This fact follows directly from the
upward solution property, since, if otherwise, a solution at any lower level
would imply that solutions should exists at all higher levels, contradicting
the initial assumption. This implication of the usp justifies a top-down re-
finement strategy when planning with an abstraction hierarchy. The inverse
of the upward solution property is the downward solution property, which
is defined as follows:

Downward Solution Property: the existence of an abstract-level so-
lution implies the existence of a ground-level solution. In general, given a
n-level abstraction hierarchy, with level n − 1 being the most abstract and
level 0 the most concrete one. Let i be an integer between 1 and n− 1.

Definition 2 (Downward Solution Property) Whenever any i-th-level
abstract solution Πi exists, there exists a solution Πi−1 at level i− 1.

By this definition, if an abstract solution Πn−1 exists, then there exists a
sequence of abstract solutions ending with Π0, 〈Πn−1, . . . ,Π0〉, such that
each Πi is an i-th level solution. By the downward solution property, if any
solution is found at an abstract level, then a ground-level solution exists
for the original planning problem. Conversely, if there is no solution at the
ground level, then no solutions exist at any higher level either. In other
words, this property guarantees that no false solution at abstract level exist.
Unfortunately, there are few abstraction spaces for which the downward
solution property holds. Since an abstraction space is formed by dropping
conditions from the original problem space, information is lost and operators
in an abstract space can apply in situations in which they would not apply
in the original space.

If the dsp does not hold, there is no guarantee that a refinement of the
abstract solution exists. Since the downward solution property is too strong
to guarantee, a set of weaker properties that constrain the refinement of an
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abstract solution have been defined. The dsp and usp properties lack in
the specification of a precise relationship between an abstract solution and
a lower level solution. In fact, with usp, a ground-level solution Πg implies
the existence of an abstract solution Πa, but it does not describe how Πg

is related to Πa. A property that constrains the refinement of an abstract
solution is called monotonic property, which is defined as follows:

Monotonic Property: the existence of a ground-level solution implies the
existence of an abstract-level solution that can be refined into a ground-level
solution while living the literals established in the abstract plan unchanged.
The monotonic property states that if a solution exists it can be found with-
out modifying an abstract plan in the process of refining that plan. In other
words, an abstract solution should serve as an outline to a ground solution
and thus should not be modified in the refinement process. In general, we
can assume that there is a one-to-many relation Refine which, for any given
abstract solution Π at level i, returns a set of solutions {Π1,Π2, . . . ,ΠB} at
level i−1. Let us assume that each plan in Refine(Π) leaves all causal links
of Π intact. During the transition from Π to Πi, no plan steps and causal
links are removed from Π. Then Πi is called a monotonic refinement of Π.
With the notion of monotonic refinement, we can now specify a variant of
the upward solution property. Let i be an integer between 0 and n− 2.

Definition 3 (Monotonic Property) Whenever an i-th-level solution Πi

exists, there exists an abstract solution Πi+1 at level i + 1, such that Πi is a
monotonic refinement of Πi+1. In other words, Πi ∈ Refine(Πi+1).

By this definition, if a ground-level solution Π0 exists, then there exists
a sequence of abstract solutions ending with Π0, 〈Πn−1, . . . ,Π0〉, such that
each Πi is an i-th level abstract solution, and every plan Πi−1 is a monotonic
refinement of a previous plan Πi.

The monotonicity property provides a criterion for backtracking that
does not sacrifice completeness: if a problem solver will undo a literal es-
tablished in an abstract plan while refining the plan, the system can back-
track to a more abstract level instead, since the property states that if a
problem is solvable, an abstract solution exists that can be refined leaving
the abstract plan unchanged. Tenenberg has shown that with precondition-
elimination hierarchies upward solution property always holds, implying that
the monotonic property holds, too. The monotonic property was imple-
mented in the abstract planning system ABTWEAK. It was found that often
excessive backtracking occurs due to violations of the abstract causal links.
In this case, for many hierarchies, there is no improvement in planning ef-
ficiency over not using abstraction at all. While the monotonic property is
useful for constraining the refinement process, it is rather weak. In fact,
Knoblock [Kno91] proved that every abstraction space has this property,
and introduced a restriction of it, called the ordered monotonicity property,
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which is defined as follows:

Ordered Monotonicity Property: Every refinement of an abstract plan
leaves all the literals that comprise the abstract space unchanged. To for-
mally express the property, we need the definition of an ordered refinement:

Definition 4 (Ordered refinement) A plan Πi is an ordered refinement
of an abstract plan Π if

• Πi is a refinement of Π, and

• the new plan steps added into the abstract plan Π do not add or delete
any literals with a higher criticality value

Let i be an integer from 1 to n− 1.

Definition 5 (Ordered Monotonic Property) For every i-th-level so-
lution Π, if Π has a refinement at level i− 1, then every refinement of Π at
level i− 1 is an ordered refinement of Π.

The ordered monotonicity property is more restrictive than the monotonicity
property because it requires that not only there exists a refinement of an ab-
stract plan that leaves the literals in the abstract plan unchanged, but every
refinement of an abstract plan leaves all the literals in the abstract space
unchanged. In general, not every hierarchy satisfies the ordered monotonic
property. Moreover, despite the ordered monotonic property is very strong,
backtracking across abstraction level may still occur. In other words, the
ordered monotonic property is neither necessary nor sufficient for ensuring
that backtracking never occurs across abstraction levels. In response to this
issue, Baccus and Yang identified a property as the operationalized ver-
sion of the downward solution property: the downward refinement property
(DRP).

Definition 6 (Downward Refinement Property) Every abstract solu-
tion at level i can be monotonically refined to a solution at the next lower
level, level i-1.

It is worth noting that if a hierarchy satisfies the DRP, then during planning,
we only need to keep one copy of an abstract plan. From the DRP we know
that this plan will lead to a correct plan at the next level. By induction,
we also know that a ground-level solution will eventually be found. Thus,
the DRP could be used to dramatically prune a search space without loss
of completeness. Unfortunately, the DRP is not universal: it is not satisfied
by every precondition-elimination hierarchy. Nor is it satisfied by every
task-network hierarchy.
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4.5 Automatic Generation of Abstractions

Although the use of abstraction hierarchy can significantly improve the per-
formance of a planner, it is often difficult to find good abstractions, which
often must be manually engineered by the designer of a domain. This process
is largely a black art, since it is not even well-understood what makes a good
abstraction.

The main work in this area has been done by Knoblock [Kno94], who pro-
vided algorithms for automatically generating abstraction hierarchies that
are based on reduced models. In this thesis, a novel approach to generate au-
tomatically macro-operators, to be used for generating useful abstract-level
descriptions, is described in chapter 8.

From a general perspective, macro-operators can be obtained by resort-
ing to “a posteriori” or “a priori” analysis.

An “a posteriori” analysis can be done by processing solutions of previously-
solved planning problems, under the assumption that solutions of planning
problems often contain recurrent sequences of actions. The application of
formula 4.1 to a sequence generates a macro-action that -by definition- leads
to the same state that the given sequence of actions would achieve. In an “a
posteriori” analysis, macro-actions must be uninstantiated to obtain macro-
operators. To uninstantiate a macro-action, the objects involved in all its
embedded actions are substituted by typed variables. A system able to
perform an “a posteriori” analysis has been described in [AV01], where an
adaptive mechanism that allows discovering relevant sequences from success-
ful plans is proposed. Any such sequence becomes a candidate for generating
abstract operators to be embedded into a hierarchical planner. To identify
relevant sequences, a chunking technique that processes successful plans is
exploited. Relevant sequences are identified by a feedforward neural net-
work, fed by a vector of suitable metrics evaluated for each given sequence.
A corresponding abstract operator is associated to each sequence, which
is made available to the abstract level for any subsequent planning prob-
lem to be solved. Due to the dependency between abstract operators and
already-solved planning problems, an agent equipped with such algorithm
may exhibit an individual adaptation to the given environment.

An “a priori” analysis is performed by processing the given planning
domain (and the problem, if needed), without resorting to plans previously
found (see for example, [ACV03a]). Chapter 8 describes the DHG system,
one of the contribution of this thesis, devised to automatically generate
macro-operators starting from a from a ground-level description of a domain,
to be used for generating useful abstract-level descriptions.

Analyzing the relationships among the operators of the domain, a set of
relevant sequences can be identified and used for building suitable macro-
operators. Given a sequence of operators, a corresponding macro-operator
can be defined that embeds the sequence, and whose preconditions and ef-
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fects can be evaluated according to formula 4.1. Since the parameters of a
macro-operator are in fact variables, generating pre- and post-conditions of
the resulting operator involves a variable-unification process, which may led
to semantic inconsistencies. For instance, this problem may occur when deal-
ing with “position predicates”, (at ?o - object ?l - location) taken
from the Logistics domain. According to its intended semantics, there can-
not be two predicates stating that the same object is in two different loca-
tions. This condition, not explicitly stated in the domain description, can
be expressed through the use of suitable state invariants. A detailed de-
scription about how to find state invariants is given in [FL98], where four
kinds of state invariants are defined: identity, state membership, unique-
ness of state membership, and fixed resource. The information about the
domain, enriched with invariants, allows to discriminate between different
alternatives, so that macro-operators’ parameters can be correctly unified.
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Chapter 5

The PACMAS Architecture

The information available on the WWW is continuously growing from dif-
ferent points of view: information sources are increasing, topics discussed
are becoming more and more heterogeneous, and stored data has reached
a considerable size. It has become a difficult task for Internet users to
select contents according to their personal interests, especially if contents
are continuously updated (e.g., news, newspaper articles, reuters, rss feeds,
blogs, etc.). Unfortunately, traditional filtering techniques based on keyword
search are often inadequate to express what the user is really searching for.
Furthermore, users often need to refine by hand the achieved results.

Supporting users in handling with the enormous and widespread amount
of web information is becoming a primary issue. To this end, an automated
system able to retrieve information from the Internet, and to select the
contents really deemed relevant for the user, will be described along this
chapter.

This chapter presents PACMAS (which stands for “Personalized Adap-
tive Cooperative MultiAgent System”), a novel multiagent architectures
aimed at retrieving, filtering and reorganizing information according to users’
personal interests [ACMV05]. After a brief introduction, section 5.2 de-
scribes the architecture from a “social level” point of view, by illustrating
the characteristics of agents acting as a group. Then, section 5.3 focuses on
the characteristics of agent as stand-alone entities.

5.1 Introduction

In the literature, software agents have been widely proposed for retriev-
ing information from the web (see for example [KAH94] [EW95b] [Kra97]).
Furthermore, several machine learning techniques have been applied to text
categorization (see [Yan99] for a detailed comparison).

Assuming that information sources are a primary operational context for
software agents, the following categories can be identified focusing on their
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specific role:

• information agents, able to access to information sources and to collect
and manipulate such information [Mae94];

• filter agents, able to transform information according to user prefer-
ences [LKRH90];

• task agents, able to help users to perform tasks by solving problems
and exchanging information with other agents [GSF+04];

• interface agents, in charge of interacting with the user such that she/he
interacts with other agents throughout them [Lie97];

• middle agents, devised to establish communication among requesters
and providers [DSW97].

Although this taxonomy is focused on a quite general perspective, al-
ternative taxonomies could be defined focusing on different features. In
particular, one may focus on capabilities rather than roles, a software agent
being able to embed any subset of the following capabilities:

• autonomy, to operate without the intervention of users;

• reactivity, to react to a stimulus of the underlying environment accord-
ing to a stimulus/response behaviour;

• pro-activeness, to exhibit goal-directed behavior in order to satisfy a
design objective;

• social ability, to interact with other agents according to the syntax
and semantics of some selected communication language;

• flexibility, to exhibit reactivity, pro-activeness, and social ability si-
multaneously [WJ95];

• personalization, to personalize the behavior to fulfill user’s interests
and preferences;

• adaptation, to adapt to the underlying environment by learning how
to react and/or interact with it;

• cooperation, to interact with other agents in order to achieve a common
goal;

• deliberative capability, to reason about the world model and to engage
planning and negotiation, possibly in coordination with other agents;

• mobility, to migrate from node to node in a local- or wide-area network.
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Table 5.1: Capabilities of software agents.
Capability Focus on the ability of ...
Autonomy Operating without the intervention of users.
Reactivity Reacting to a stimulus of the underlying environment

according to a stimulus/response behaviour.
Proactivity Exhibiting goal-directed behavior in order to satisfy

a design objective.
Social ability Interacting with other agents according to the syn-

tax and semantics of some selected communication
language.

Flexibility Exhibiting reactivity, proactiveness, and social abil-
ity simultaneously [WJ95].

Personalization Personalizing the behavior to fulfill user’s interests
and preferences.

Adaptation Adapting to the underlying environment by learning
how to react and/or interact with it.

Cooperation Interacting with other agents in order to achieve a
common goal.

Deliberative ability Reasoning about the world model and of engaging
planning and negotiation, possibly in coordination
with other agents.

Mobility Migrating from node to node in a local- or wide-area
network.

Table 5.1 briefly depicts such capabilities and the corresponding focus.
The following sections describe a generic multi-agent architecture de-

signed to support the implementation of applications aimed at: (i) retriev-
ing heterogeneous data spread among different sources (i.e., generic html
pages, news, blogs, forums, and databases), (ii) filtering and organizing
them according to personal interests explicitly stated by each user, and (iii)
providing adaptation techniques to improve and refine throughout time the
profile of each selected user.

Each agent is autonomous and flexible, and may implement (one or more
of) the following capabilities: personalization, adaptation, and cooperation.
The overall architecture has been called PACMAS, being designed to support
the implementation of Personalized, Adaptive, and Cooperative MultiAgent
Systems. The PACMAS architecture can easily give rise to specific systems
by (1) identifying the characteristics of the data flow that occurs from infor-
mation sources to users (and vice versa), and (2) customizing each involved
agent according to its actual role and capabilities.
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5.2 Macro-architecture

PACMAS is a generic multiagent architecture aimed at retrieving, filtering
and reorganizing information according to users’ interests. PACMAS agents
can be personalized, adaptive, and cooperative, depending on their specific
role.

The overall architecture (depicted in Figure 5.1) encompasses four main
levels (i.e., information, filter, task, and interface), each being associated
to a specific role. The communication between adjacent levels is achieved
through suitable middle agents, which form a corresponding mid-span level.

Figure 5.1: The PACMAS Architecture.

Each level is populated by a society of agents, so that communication
may occur both horizontally and vertically. The former kind of commu-
nication supports cooperation among agents belonging to a specific level,
whereas the latter supports the flow of information and/or control between
adjacent levels through suitable middle-agents.

5.2.1 Information Level

At the information level, agents are entrusted with extracting data from the
information sources. Each information agent is associated to one information



CHAPTER 5. THE PACMAS ARCHITECTURE 65

source, playing the role of wrapper. Upon extraction, the information is then
made available to the underlying filter level.

5.2.2 Filter Level

At the filter level, agents are aimed at selecting information deemed relevant
to the users, and cooperate to prevent information from being overloaded
and redundant. Two filtering strategies can be adopted: generic and per-
sonal. The former applies the same rules to all users; whereas the latter is
customised for a specific user. Each strategy can be implemented through
a pipeline of filters, since data undergo an incremental refinement process.
The information filtered so far is then made available to the task level.

5.2.3 Task Level

At the task level, agents arrange data according to users’ personal needs and
preferences. In a sense, they can be considered as the core of the architecture.
In fact, they are devoted to achieve users’ goals by cooperating together
and adapting themselves to the changes of the underlying environment. In
general, they can be combined together according to different connection
modes, depending on the specific application.

5.2.4 Interface Level

At the interface level, a suitable interface agent is associated to each differ-
ent user interface. In fact, a user can generally interact with an application
through several interfaces and devices (e.g., pc, pda, mobile phones, etc.).
Interface agents usually act individually without cooperation. On the other
hand, they can be personalized to display only the information deemed rel-
evant to a specific user. Moreover, in complex applications, they can adapt
themselves to progressively improve their ability in supplying information
to the user.

5.2.5 Mid-span Level

At the mid-span level, agents are aimed at establishing communication
among requesters and providers. In the literature, several solutions have
been proposed: e.g., blackboard agents, matchmaker or yellow page agents,
and broker agents (see [DSW97] for further details). In the PACMAS archi-
tecture, agents at the mid-span level can be implemented as matchmakers
or brokers, depending on the specific application.
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5.3 Micro-architecture

Keeping in mind that agents may be classified along several ideal and pri-
mary capabilities that they should embed, let us first recall the agent tax-
onomy proposed in [Nwa96]. In such taxonomy, three primary capabilities
have been identified: autonomy, learning, and cooperation (see Figure 5.2-a).
In our view, agents are always autonomous and flexible, hence we deem that
autonomy should not be explicitly listed in a diagram. On the contrary,
we claim that personalization should be taken into account as a primary
feature while depicting the characteristics of software agents. The resulting
taxonomy, which considers personalization, adaptation, and cooperation as
primary capabilities, is depicted in Figure 5.2-b.

Figure 5.2: Agents Taxonomies.

5.3.1 Personalization

As for personalization, an initial user profile is provided in form of a list
of keywords, representing users’ interests. The information about the user
profile is stored by agents belonging to the interface level. It is worth noting
that, to exhibit personalization, filter and task agents may need information
about the user profile. This flows up from the interface level to the other
levels through the middle-span levels. In particular, agents belonging to mid-
span levels (i.e., middle agents) take care of handling synchronization and
avoiding potential inconsistencies. Moreover, the user behavior is tracked
during the execution of the application to support explicit feedback, in order
to improve her/his profile.

5.3.2 Adaptation

As for adaptation, different techniques may be employed depending on the
application to be developed. The model adopted in the case studies de-
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scribed in chapter 6 is based on the concept of “mixtures of experts”. Each
expert is implemented by an agent able to select relevant information accord-
ing to an embedded string of feature-value pairs, features being selectable
from an overall set of relevant features defined for the given application. The
decision of adopting a subset of the available features has been taken for ef-
ficiency reasons, being conceptually equivalent to the one usually adopted in
a typical GA-based environment [Gol89], which handles also dont-care sym-
bols. Beginning with an initial population of experts, the system evolves by
the creation of further experts according to covering, crossover, or mutation
mechanisms.

5.3.3 Cooperation

As for cooperation, agents at the same level exchange messages and/or data
to achieve common goals, according to the requests made by the user. Coop-
eration is implemented in accordance with the following modes: centralized
composition, pipeline, and distributed composition (see Figure 5.3). In par-
ticular: (i) centralized compositions can be used for integrating different
capabilities, so that the resulting behavior actually depends on the com-
bination activity; (ii) pipelines can be used to distribute information at
different levels of abstraction, so that data can be increasingly refined and
adapted to the user’s needs; and (iii) distributed compositions can be used
to model a cooperation among the involved components aimed at processing
interlaced information. The most important form of cooperation concerns

Figure 5.3: Agents Connections.

the “horizontal” control flow that occurs between peer agents. For instance,
filter agents can interact in order to reduce the information overload and
redundancy, whereas task agents can work together to solve problems that
require social interactions to be solved.



Chapter 6

Case Studies

This chapter illustrates two applications that have been implemented ex-
ploiting the PACMAS architecture (which is described in the previous chap-
ter). The first one is focused on giving a support to undergraduate and
graduate students in their university activities; the second one is devoted
to create press-reviews from online newspapers through the classification of
newspaper articles. Despite the apparent differences, the two applications
have in common several issues: information retrieval and extraction, infor-
mation filtering, information processing, and results presentation. There-
fore, they can be considered as interesting case studies able to highlight the
peculiarities of the PACMAS architecture. Both the proposed case studies
have been implemented using Jade [BPR00] as the underlying framework to
support agents’ mobility and communication functionalities.

6.1 Case Study 1: Supporting Students in Univer-
sity Activities

This case study is focused on giving a support to undergraduate and grad-
uate students in their university activities 1.

6.1.1 Motivation

Let us consider a typical University Department. It generally makes avail-
able the information about courses, seminars, exams, professors, and stu-
dents on different areas, e.g.: web sites, forums, and news (NNTP) servers.
All the relevant information is not directly available but it is usually spread
on the department portal, on the web site of each course, and on the personal
page of each professor. Moreover, each professor might activate her/his own

1This work has been partially funded by the Italian Ministry of University and Research
under the program Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale
(PRIN 2003).
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news and forum services. Some of the information potentially interests all
students, such as lesson timetables, exams’ dates, taxes, and student tutor-
ing. On the other hand, students belonging to different courses are obviously
interested in different lessons and exams. For example, a student attending
the MSc in Computer Science may be interested in the Object Oriented Pro-
gramming Languages I course rather than in the Processors and Embedded
Systems Architectures one. Similarly, a student attending the MSc in Digital
Microelectronics may be interested in the Processors and Embedded Systems
Architectures course rather than in Object Oriented Programming Languages
I one. Typically, a student in search of relevant information about her/his
University activities browses web sites and reads announcements from forum
and news services. This is often a repetitive and boring task that can be
automated. From our perspective, personalization and adaptation represent
the added value of such an automated system.

6.1.2 Implementation

In order to provide an e-service able to support undergraduate and gradu-
ate students in their university activity at the Department of Electrical and
Electronic Engineering (DIEE) of the University of Cagliari, a prototype of
an e-service has been developed. This work is part of a wider network of
multiagent systems, described in [GAV05]. It is built upon the PACMAS
architecture, and exploits the JADE framework for supporting agent mobil-
ity and communication functionalities. Let us note that supporting students
involves several activities: information retrieval and extraction, information
filtering, information processing, and results presentation. Each activity is
attained by exploiting a suitable level of the PACMAS architecture.

Information Retrieval and Extraction

It is carried out at the information level by a set of information agents, de-
voted to process information sources. Each agent plays the role of wrapper,
and it is specialized for dealing with a specific information source: e.g., web
pages, forums or news services. In the current implementation, informa-
tion agents are not personalized, not adaptive, and not cooperative (PAC).
Personalization is not supported, since information agents are aimed at re-
trieving information potentially relevant to all students, regardless of their
personal interests and preferences. Adaptation is also not supported, being
the system mainly concerned with changes in users needs rather than in the
underlying environment2. Cooperation is also not supported, cause each
information agent is devoted to wrap a different information source.

2In this particular case the variability of the information sources
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Information Filtering

It is carried out at the filter level by a set of filter agents. In particular,
this level contains a set of redundancy filter agents (one for each informa-
tion source), an anti-spam filter agent and a population of personal filter
agents (one for each user of the system). Redundancy filters cooperate
together to remove the redundancy of data provided by the information
sources (throughout the information agents). Redundancy filters are not
personalized, not adaptive, and cooperative (PAC). Similarly to informa-
tion agents, personalization and adaptation are not required. On the other
hand, cooperation is required to prevent the information from being re-
dundant. The anti-spam filter is not personalized, not adaptive, and not
cooperative (PAC)3. Being not dependent from a specific student, it fil-
ters the same information by removing undesirable contents according to a
rule-based mechanism. Personal filters are personalized, adaptive and not
cooperative (PAC). As for personalization, they are sensible to any explicit
change imposed by the corresponding student or to a change that occurs in
the curriculum of the student. As for adaptation, they are able to progres-
sively adapt their filtering capabilities according to the choices performed
by the corresponding student during the lifetime of the agent. Cooperation
is not supported; in fact, in the current release of the system, only a spe-
cific support for implementing voting policies according to the guidelines of
GA-based systems is supplied.

Information Processing

It is carried out at the task level, where agents are devoted to perform dif-
ferent tasks according to the requirements imposed by the corresponding
user. In particular, each task agent is customized for a specific task (e.g.,
lessons timetable, seminars, and exams scheduling). To process informa-
tion regarding exams scheduling, the agent ExamAgent is actived, while the
CourseAgent is devoted to manage information about courses in general.

Agents belonging to the task level exploit a model centered on the con-
cept of “mixtures of experts”, each expert being implemented by an agent.
The system supports each user with a specific population of experts, handled
in accordance with the basic guidelines of online systems, expecially the ones
that characterize evolutionary environments. Task agents are personalized,
adaptive, and cooperative (PAC). Personalization is required since different
behaviors are associated to different students. Adaptation is required since
they adapt themselves to the needs of the corresponding student through a
GA-based feedback mechanism. Cooperation is required since they usually
need other task agents to successfully achieve their own goals.

3In the current release of the system anti-spam agents are not permitted to implement
adaptation, although in principle this property may be supplied in a future release.



CHAPTER 6. CASE STUDIES 71

Figure 6.1: JSP graphical interface for student support system.

Results Presentation

It is carried out at the interface level, through agents aimed at interact-
ing with the users. Agents and users interact through a suitable graphical
interface that can be run on several devices, including mobile phones. A
different interface agent has been associated to each device. In the cur-
rent implementation, the system embodies a graphical interface that runs
on several devices, including MIDP 1.0 compliant devices (as the one shown
in Figure 6.2), and JSP web pages (see Figure 6.1)4.

Interface agents are also devoted to handle user profile and propagate it
by the intervention of middle agents. Furthermore, any feedback provided
by the user can be exploited by the adaptive mechanism to improve the user
profile.

Interface agents are personal, adaptive, and not cooperative (PAC). Per-
sonalization is required to allow each student the customization of her/his
interface. Adaptation is supported, since an interface agent must adapt to
the changes that occur in the preferences and interests of the correspond-

4Available at: http://iascw.diee.unica.it/PacmasWWW
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Figure 6.2: User interface on a MIDP compliant device.

ing student. Cooperation is not supported by agents that belong to this
architectural level.

Agents at middle level are implemented as brokers. There are three
broker agents that manages communication between adjacent levels: Bro-
kerTaskInterface, BrokerFilterTask, and BrokerInformationFilter.

Table 6.1 summarizes the capabilities of the adopted agents, together
with the corresponding activity, for each level of the PACMAS architecture.

Table 6.1: Agents for supporting students.
Level Activity Agents Capabilities
Information information retrieval DBWrapper PAC

and extraction NewsWrapper PAC
ForumWrapper PAC
SiteWrapper PAC

Filter information filtering Redundancy PAC
Anti-spam PAC
Personal PAC

Task information processing ExamAgent PAC
CourseAgent PAC

Interface input handling and WebInterface PAC
results presentation PhoneInterface PAC

Middle handling interations Brokers PAC
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6.1.3 Experiments and Results

A prototype of the case study has been implemented as a web service. It has
been tested on the information system of the Department of Electrical and
Electronic Engineering (DIEE) at the University of Cagliari. The system is
able to retrieve information from a set of specific webpages and forums, and
filters and shows only the information deemed relevant by the associated
user. The system is also able to learn and refine the user profile to better
satisfy its requests. Preliminary tests on the system have shown that the
approach is effective, and the system was able to succesfully tackle with a
number of user connected contemporairly. A beta version of the web service
is available at: http://iascw.diee.unica.it/PacmasWWW.

6.2 Case Study 2: Newspaper Articles Classifica-
tion

This section describes how the generic architecture has been customized to
implement a prototype of the system devised to perform text categorization
[CDMV05]5. In the following, we illustrate how each level of PACMAS
supports the implementation of the proposed application.

6.2.1 Motivation

All the information sources belonging to the WWW make it hard for users
to choose the most suitable according to their interests. Finding useful infor-
mation of personal interest has become difficult for Internet users. Ideally,
users should be able to take advantage of the wide range of available infor-
mation while being able to find the one she/he is interested in. In particular,
manually selecting newspaper articles is quite difficult or not feasible within
the time constraints common for most users also considering that the results
could not perfectly fit with the user interests. Some systems try to perform
that task automatically, performing content-based filtering. In particular,
software agents have been widely proposed for retrieving information from
the web ([SM03], [Lie95], and [CCGJ04]).

6.2.2 Related Work

In the following, some related work on agent-based information retrieval is
briefly recalled and the text categorization problem is illustrated.

5This prototype is one of the possible implementations that can be developed starting
from the proposed generic architecture.
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Agent-based Systems for Information Retrieving

Several multiagent systems have been proposed to support the user in the
task of retrieving information from the web. Among them let us recall NewT
[SM03], Letizia [Lie95], WebWatcher [AFJM95], and SoftBot [EW95b].

NewT [SM03] is designed as a collection of information filtering interface
agents. Interface agents are intelligent and autonomous computer programs,
which learn users’ preferences and act on their behalf. This system uses
a keyword-based filtering algorithm. The learning mechanisms used are
relevance feedback and genetic algorithms.
Letizia [Lie95] is a user interface agent that assists a user browsing the
World Wide Web. The model adopted by this system is that the search
for information is a cooperative venture between the human user and an
intelligent software agent. Letizia and the user both browse the same search
space of linked web documents, looking for “interesting” ones.

WebWatcher [AFJM95] is an information search agent that follows web
hyperlinks according to users’ interests, returning a list of interesting links
to the user.

In contrast to systems for assisted browsing or information retrieval, the
SoftBot [EW95b] accepts high level user goals and dynamically synthesizes
the appropriate sequence of Internet commands using a suitable ad-hoc lan-
guage to satisfy those goals.

Finally, let us point out that current web search engines basically rely
only on purely syntactical textual information retrieval. There are only a
few approaches that try to integrate a set of different and specialized sources,
but unfortunately it is very difficult to maintain and to develop this kind of
systems [Kno94].

Text Categorization

The main goal of text categorization is to classify documents into a set of
predefined categories. Each document can be in multiple or exactly one
category. Using machine learning, the objective is to learn classifiers from
examples, which perform the category assignments automatically, according
to a supervised learning approach.

A major characteristic, or difficulty, of text categorization problems is
the high dimensionality of the feature space. The native feature space con-
sists of the unique terms (words or phrases) that occur in documents, which
can be tens or hundreds of thousands of terms, even for a moderate-sized
text collection. This is prohibitively complex for many learning algorithms.
Thus, the first step in text categorization is to transform documents into a
representation suitable for the underlying learning algorithm and the clas-
sification task.

Typycally, after counting the number of occurrences of a word w in a
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document –giving rise to an unordered bag of words [ADW94]– suitable
stemming algorithms [Por80] are applied to avoid unnecessarily large feature
vectors. Each distinct word stem wi corresponds to a feature, with the
number of occurrences (in the entire document) of the word wi as value.
Words are considered as features only if they occur in the training data
at least a predefined number of times except when they are considered as
stop-words (like and, or, is, etc.).

To further reduce the number of considered terms, suitable feature selec-
tion methods can be applied. Automatic feature selection methods include
the removal of non-informative terms according to corpus strategies, and
the construction of new features which combine lower-level features (i.e.,
terms) into higher-level orthogonal dimension. Among different feature se-
lection methods, let us recall document frequency, information gain, mutual
information, a χ2 statistic, and term strength (see [YP97] for a detailed
comparison among them).

After selecting the terms, for each document a feature vector is gen-
erated, whose elements are the feature values of each term. A commonly
used feature value is the TF (Term Frequency) x IDF (Inverse Document
Frequency) measure.

Among machine learning techniques applied to text categorization, let us
cite multivariant regression models [YC94], kNearest Neighbor classification
[YL99], Bayes probabilistic approaches [TH93], decision trees [LR94], neural
networks [EW95a], symbolic rule learning [MRG96] and inductive learning
algorithms [CS96].

6.2.3 Implementation

In the following, we illustrate how each level of the architecture supports
the implementation of the proposed application.

Information Level

At the information level, agents play the role of wrappers, each one being
associated to a different information source. The agents at this architectural
level are devoted to perform the information extraction. In the current im-
plementation, two formats of Internet sources are supported, i.e. RSS and
HTML/XHTML, each of them wrapped by a different agent. The RSS-
Wrapper agent extracts information from online newspapers in RSS format,
containing news articles. The HTMLWrapper agents extracts information by
directly parsing Internet Pages in HTML format. RSS (Really Simple Syndi-
cation) is a well-structured format and it is very simple to be processed. On
the contrary, HTML is often bad-formed and so needs ad-hoc algorithms to
be correctly parsed. Another agent, the IPTCWrapper, is devoted to wrap
the adopted “generic” taxonomy that is a subset of the one proposed by the



CHAPTER 6. CASE STUDIES 76

Figure 6.3: A fragment of the adopted (italian) taxonomy and its english
translation.

International Press Telecommunications Council 6 (a fragment is depicted
in Figure 6.3).

Information agents are not personalized, can be adaptive or not, and
not cooperative (shortly PAC or PAC). Personalization is not supported
at this level, since information agents are only devoted to wrap information
sources, which are user-independent. Adaptation is not supported by the
RSSWrapper, since we assume that the structure of the information sources
(being the RSS format a definitive standard) do not vary, and are user-
independent. On the other hand, the HTMLWrapper, supports a simple
user-assisted adaptative behaviour, since web sites often change in structure,
making difficult the automatic adaptation of the systems. Cooperation is
also not supported by the information agents, since they retrieve information
from different sources, each of them having a specific role in the chosen
application.

Filter Level

At the filter level, a population of agents manipulates the information be-
longing to the information level through suitable filtering strategies. First,
a set of filter agents removes all the non-informative words such as preposi-
tions, conjunctions, pronouns and very common verbs by using a standard
stop-word list. After removing the stop words, a set of filter agents performs
a stemming algorithm [Por80] to remove the most common morphological
and inflexional suffixes from all the words. Then, for each class, a set of
filter agents selects the features relevant to the classification task, according

6http://www.iptc.org/
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to the information gain method. Let us recall that information gain mea-
sures the number of bits of information obtained for category prediction by
knowing the presence or absence of a term in a document.

Filter agents can be personalized or not, whilst they are not adaptive and
they are cooperative (shortly PAC or PAC). Personalization is supported
by the StopWordsRemover and Stemmer agents, since the corresponding
filtering algorithms depend on the language of the texts processed. Thus,
if a user of the systems needs to process articles in a specific language,
the filter agents can be personalized accordingly 7. The FeatureSelector
agent is instead not personalized, since its filtering strategy is language-
independent (and therefore user-independent). Adaptation is not supported
at the filter level, since all the adopted filtering strategies do not change
during agents activities. Cooperation is supported by all the filter agents,
since they cooperate continuously in order to perform the filtering activity.

Task Level

At the task level, a population of agents is devoted to perform the classifica-
tion activities. Each task agent embodies a classifier specialized for handling
one specific class with one specific algorithm. In the current release, it is
possible to choose between two classification algorithms: k -NN and weighted
k -NN, altough -in principle- the system has been designed to support any
algorithm. The k -nearest neighbour is a classification method based upon
observable features. The algorithm selects a set which contains the k near-
est neighbours and assigns the class label to the new data point based upon
the most numerous class with the set. The weighted k -nearest neighbour is
a variant version of k -NN that weights the voting strength of a case to be
classified into a category, through a distance function (see [CS93]). All the
involved agents are trained in order to recognize a specific class. Given a
document in the test set, each previously trained agent, through its embed-
ded classifier, ranks its nearest neighbours among the training documents
to a distance measure8, and uses the most frequent category of the k top-
ranking neighbours to predict the categories of the input document. Each
task agent is also devoted to measure the classification accuracy according
to the confusion matrix [KP98].

Furthermore, agents at this architectural level are also devoted to per-
forming classification according to users preferences automatically compos-
ing topics. Composition has been performed through the cooperation of
the involved task agents. For instance, the “compound topic” politics and
economy is obtained by the cooperation of the task agent expert in recog-
nizing politics together with the task agent expert in recognizing economy.

7In the current release of the systems only the italian and english languages are sup-
ported.

8In the current implementation the cosine-distance measure has been adopted.
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Moreover, a number of task agents (the FeedBack agents) are devoted to
deal with the feedback provided by the user that flows up from the inter-
face level. In the current implementation, such agents embody the K-NN
initially trained with a set of examples classified as of-interest. The training
process is repeated/updated when the amount of feedback trespasses a given
threshold.

Task agents are personalized, adaptive, and cooperative (shortly PAC).
Personalization is supported at this level, since agents at this architectural
level perform the classification taking into account users needs and prefer-
ences. Adaptation is supported by the task agents since through the feed-
back mechanism they continuously adapt themselves to the user. Coopera-
tion is supported by the task agents, since agents have to interact each other
in order to achieve the classification task (expecially during classification on
multiple categories).

Interface Level

At the interface level, agents are aimed at interacting with the user. In
the current implementation, agents and users interact through a suitable
graphical interface that runs on a pc (see Figure 6.4). Interface agents are
also devoted to handle user profile and propagate it by the intervention of
middle agents. By the interacting with the interface agent, the user can set
her/his preferences. In particular, s/he can set preferences regarding the
information sources, and the topics of the required press review.

Interface agents are personal, not adaptive, and not cooperative (shortly
PAC). Personalization is supported to allow each user the customization of
her/his interface. In the current implementation, adaptation is currently not
supported, but -in general- an interface agent might adapt to the changes
that occur in the preferences and interests of the corresponding user. Co-
operation is not supported by agents belonging to this architectural level.

Table 6.2 summarizes the involved agents and their capabilities.

6.2.4 Experiments and Results

To evaluate the effectiveness of the system, several tests have been conducted
using articles belonging to online newspapers 9.

Training Task Agents

First of all, several experiments have been performed to set the optimal para-
meters for the training activity. Through a suitable graphical interface (see
Figure 6.4), the user can interact with the interface agents and sets her/him

9In the current implementation, www.repubblica.it, www.corriere.it, and
www.espressonline.it
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Figure 6.4: Interface for the newspaper articles classifying system.

preferences. In particular, experiments have been conducted adjusting the
following parameters:

• the classification algorithm 10;

• the number of documents forming the dataset;

• the training category;

• the percentage of positive examples;

• the number of features to be considered.

First, task agents have been trained by a set of newspaper articles previ-
ously classified by experts of the domain. For each item of the taxonomy, a
set of 200 documents has been selected to train the corresponding classifier.

Subsequently, to validate the training procedure of the first step of clas-
sification, the system has been fed by the same dataset used in the training
phase, showing an accuracy between 96% and 100%. It is worth pointing
out that, in this specific task, the accuracy should not be directly considered
as a measure of the system performance. On the other hand, it becomes im-
portant since the accuracy of a classifier (evaluated on a balanced test set,
i.e., with a number of negative examples that does not differ much from the

10In the current implementation kNN or W kNN
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Table 6.2: Agents for text categorization.
Level Activity Agents Capabilities
Information web data extraction RSSWrappers PAC

HTMLWrappers PAC
wrapping sources IPTCWrapper PAC

Filter information filtering StopWordsRemover PAC
(preprocessing) Stemmer PAC

FeatureSelector PAC

Task information processing Training PAC
(text categorization) Test PAC

FeedBack PAC

Interface input handling and PCInterface PAC
results presentation PAC

Middle handling interations Brokers: PAC

number of positive ones) indirectly affects the recall, under the hypothesis
that classifiers are (dynamically) combined using logical operators and/or
(statically) combined according to the given taxonomy (in this latter case,
they are in fact in a pipeline).

Testing

To test the performance of the system, random datasets for each category
have been generated. They were taken from a database containing articles
previously classified by experts of the domain.

User choices are sent from the interface agent to the task level through
the cooperation of the middle agent that belongs to the task-interface middle
level (TI agent). The TI agent generates a task agent that embodies the cor-
responding classifier algorithm and asks it to perform the classification with
the user preferences. The dataset needed for the classification is provided
by information agents and subsequently pruned by the filter agents. After
the classification activity, the task agent saves its own state in a suitable
XML-like format in order to make it available for the test phase.

The accuracy for fourteen categories is summarized in Figure 6.5. On the
average, the accuracy of the system is 80.05%. Particular care has been taken
in limiting the phenomenon of “false negatives” (FN), which –nevertheless–
had a limited impact on the percent of “false positives” (FP ). In particular,
the ratio FN/(FN + FP ) has been kept under 25% by weighting positive
prototypes with an additional factor of 1.05 with respect to negative ones.

Results are very encouraging and show that the proposed approach is
effective in the given application task, also taking into account that the
system can be improved in several and important aspects.
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Figure 6.5: Accuracy of the system.

6.3 Summary

In this chapter, the peculiarities of the PACMAS architecture have been
highlighted by depicting two relevant case studies.

The first one is the prototype of an e-service devoted to support under-
graduate and graduate students in their university activities. It is able to
retrieve relevant information from heterogeneous sources (e.g.: files, forums,
databases, professor homepages, department web pages, etc.), and then fil-
ter, organize, and present it to the user, according to her/his personal needs
and preferences.

The second one is a classification system devoted to create personalized
press-reviews from online newspapers. It is able to extract from web sites of
online newspapers the articles deemed relevant for a specific user, and select
the relevant ones – according to specific user preferences – through suitable
classifying algorithms. The categorization capability has been evaluated
using several newspaper articles previously classified by hand by domain
experts. Preliminary results are encouraging, showin an average global ac-
curacy of about 80%.
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Chapter 7

The Hierarchical Wrapper
HW[ ]

This chapter presents a novel approach for implementing the planning ca-
pabilities (that is, the pro-active behaviour) of an intelligent agent.

So far, existing planning systems have been focusing on improving a
specific algorithm (see section 3.5 for a survey), without taking into account
the possibility of generalizing the approach to a generic algorithm.

This work concentrates on the possibility of exploiting abstraction tech-
niques (in particular, organizing a planning domain into a hierarchy of ab-
stract levels, i.e. an abstraction hierarchy) to improve the performance of
a generic planner [ACV03c], instead of optimizing a particular planning
algorithm. To this end, the parametric system HW[ ] has been devised
and implemented to perform planning by abstraction (see [ACV03e] and
[ACV03f]). The parameter is an external PDDL-compliant planner, which
is exploited to search for solutions at any required level of the abstraction
hierarchy, including the ground one.

Section 7.1 illustrates the architecture of the overall planner obtained
by embedding a generic planner into the hierarchical wrapper HW[ ]. Next,
section 7.2 describes the planning algorithm of the resulting hierarchical
planner. Then, the extension to the standard PDDL notation that has
been devised to represent abstraction hierarchies, is thoroughly illustrated
in section 7.3. Finally, section 7.4 shows experiments made by embedding
several different planners into the HW[ ] system.

7.1 System Architecture

HW[ ] stands for (parametric) Hierarchical Wrapper. Note that square
brackets are part of the name, pointing to the ability of embedding an ex-
ternal planner. Being P any such planner, the notation HW[P] shall be used
to denote an instance of HW[ ] able to exploit the planning capabilities of

83
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Figure 7.1: The HW[ ] Architecture.

P. The system can embed any domain-independent planner, provided that
a compliance with the STRIPS subset of the pddl1.2 standard is ensured.
In principle, each level of abstraction may contain a different planner, thus
permitting to select the most suitable planner for each level. In this case,
a natural notation for highlighting the ordered set of embedded planners
would be HW[P0, P1, ... Pn], Pi being the planner embedded at the ith
level of the hierarchy. In the following, we assume that the same external
planner is used at each level of abstraction, and only one abstract level exists
giving rise to a two-levels (i.e., ground and abstract) hierarchical description.

Figure 7.1 sketches the architecture of the system, focusing on its two
main components, i.e., an engine and the embedded planner. The former
controls the communication between adjacent levels, whereas the latter per-
forms planning at any given level of abstraction.

7.2 The Planning Algorithm

Once instantiated with an external planner P, HW[P] takes as inputs a
ground-level problem and a structured description of the corresponding do-
main, including a set of rules to be used while mapping ground into abstract
states and vice-versa. In fact, to perform planning at different levels of ab-
straction, the engine of HW[ ] must operate bi-directional translations (up-
wards and downwards) to permit communication between adjacent levels.
To find a solution of a given problem, first the engine of HW[P] translates
the init and goal sections from the ground to the abstract level. P is then
invoked to search for an abstract solution. Subsequently, each abstract op-
erator is refined by repeatedly invoking P. The refinement of an abstract
operator is performed by activating P, at the ground level, on the goal ob-
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Figure 7.2: HW plan refinement process.

tained by translating downward its effects. Figure 7.2 shows the refinement
process. Note that the initial state of each refinement depends on the pre-
vious refinement; hence, refinements must be performed according to the
order specified by the abstract plan. To avoid incidental deletion of sub-
goals already attained during previous refinements, they are added to the
list of subgoals that results from translating downward the effects of the
current abstract operator to be refined. When the attempt to refine the
current abstract solution fails, P is invoked to find the next abstract so-
lution unless the number of abstract solutions found so far exceeds a given
threshold. Note that, due to the limitations of most of the existing planners,
the process of incrementally querying for another solution may be simulated
by preliminarily querying for m abstract solutions to be released incremen-
tally on demand. If no abstract solution could be successfully refined, to
ensure the completeness of the algorithm an overall search is performed at
the ground level. The whole process ends when a ground solution is found
or the overall search fails.

7.3 An Extension to pddl for dealing with Ab-
straction

Historically, several planning systems used abstraction hierarchies, e.g.: GPS
(Newell and Simon 1972), ABSTRIPS (Sacerdoti 1974), ABTWEAK (Yang
and Tenenberg 1990), PABLO (Christensen 1991), PRODIGY (Carbonell,
Knoblock, and Minton 1990), but each of them introduced and adopted its
own notation without following any standard. In other words, existing plan-
ning systems tailored for abstraction did not take into account the possibility
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of introducing a common notation. To contrast the lack of a standard no-
tation for supporting abstraction hierarchies, in this subsection a suitable
extension to PDDL 1.2 is proposed [ACV03b].

As defined in section 4.3, an abstraction hierarchy consists of a list of
formal systems (Σ0,Σ1, . . . ,Σn−1) with languages Λ0,Λ1, . . . ,Λn−1 respec-
tively, and a list of effective total functions

fk : Λk → Λk+1,

(k = 0, 1, . . . , n− 2)

devised to perform the mapping between adjacent levels of the hierarchy.
Assuming that standard PDDL is used to represent each Λk(k = 0, 1, . . . , n−

1), in this section we focus on the problem of extending the standard for
dealing with abstraction hierarchies, with particular emphasis on the map-
ping functions.

A problem and its corresponding domain are described in accordance
with the standard PDDL 1.2 syntax, using the define problem and define
domain statements, respectively.

The syntactic notation of the proposed extension is given according to
the Extended BNF (EBNF), whose basics are briefly recalled, to avoid am-
biguities:

• each production rule has the form <syntactic element> ::= expansion;

• angle brackets delimit names of syntactic elements;

• square brackets surround optional material;

• an asterisk means “zero or more of”;

• a plus means “one or more of”.

Furthermore, let us point out that here ordinary parentheses are an
essential part of the grammar we are defining and do not belong to the
EBNF meta language. To represent an abstraction hierarchy, the syntactic
construct define hierarchy has been introduced, able to highlight the do-
mains involved in the definition and the mapping between adjacent levels.
It encapsulates an ordered set of domains, together with a corresponding
set of mappings between adjacent levels of abstraction. Since the mappings
are given in term of types, predicates and operators, three subfields have
been defined (i.e. :types, :predicates, and :actions), to represent the
abstraction over such dimensions. The general form of the construct is:

<hierarchy> ::=
(define (hierarchy <name>)

<domain-def>
(<mapping-def>*))
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where:

<domain-def>::=
(:domains <domain name>+)

and:

<mapping-def>::=
(:mapping (<source-domain> <destination-domain>)
[:types <types-def>]
[:predicates <predicates-def>]
[:actions <actions-def>]
[:invariants <invariants-def>])

<source domain> = <name>

<destination domain> = <name>

<types-def> ::= (<types-pair>+)

<types-pair> ::=
(<destination type> <source type>)

<types-pair> ::= (nil <source type>)

<source type> = <name>

<destination type> = <name>

<predicates-def> ::= (<predicates-pair>+)

<predicates-pair> ::= (<predicate> <PT>)
<predicates-pair> ::= (nil <PT>)

<predicate> ::=
(<predicate name> <variable>*)

<variable> ::= ?<name>

<PT> ::= <typed-predicate>
<PT> ::= (and <PT>+)
<PT> ::= (or <PT>+)

<typed-predicate> ::=
(<predicate name> <typed list>*)
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<typed list> ::= <variable>+ - <type name>

<actions-def> ::= (<action-spec>+)

<action-spec> ::=
<action-pair> | <action-def>

<action-pair> ::= (<action> <AT>)
<action-pair> ::= (nil <AT>)

<action> ::= (<action name> <variable>*)
<AT> ::= <action>
<AT> ::= (and <AT>+)
<AT> ::= (or <AT>+)

<action-def> ::=
see the PDDL 1.2 standard definition

Let us briefly comment the main definitions that occur within the pro-
posed extension to PDDL, focusing on the underlying semantics.

7.3.1 Hierarchy Definition

As specified by the syntax, the define hierarchy statement contains two
subsections: <domain-def> and <mapping-def>. The :domains field lists
domains’ names according to their abstraction level, from ground to the
most abstract one. The <mapping-def> definitions specify the mapping
between adjacent levels. In general, n levels of abstraction require n − 1
<mapping-def> definitions. Therefore, a single-level hierarchy would result
in omitting the <mapping-def> definition (i.e., in this case only the ground
level exists). It is worth noting that, although it would be desirable for
the sake of clarity to give :domains and :mapping definitions (including
:types, :predicates, and :actions) according to the ordering specified
by the given grammar, nothing prevents from following a different ordering.

7.3.2 Mapping Definition

The :mapping field specifies the name of the source and destination domains,
respectively. Given a source domain, the destination domain is unambigu-
ously determined by consulting the :domains field. Nevertheless, for the
sake of readability, the destination domain must be explicitly specified.
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Types Definition

To represent how types are mapped between adjacent levels, in the :types
field a list of clauses in the following notation must be given:

(<destination type> <source type>)

It specifies that <source type> becomes <destination type> while
performing “upward” translations. In particular, <source type> is dis-
regarded when the first argument of the pair equals to nil. For example,
to disregard a ground-type, the following notation must be used:

(nil ground-type)

By default, if a type is not mentioned in any pair, it is forwarded unal-
tered to the destination level. If no :types field is provided, all constants
and variables are forwarded to the destination level, labelling them with
their <source type>.

Predicates Definition

The :predicates field declares how predicates are mapped between adja-
cent levels. Each <predicates-pair> expresses whether a predicate or a
combination of predicates, obtained using logical and, or, and not opera-
tors, will be forwarded to the destination level. Generally speaking, three
cases may arise:

• a predicate is forwarded unchanged: the pair can be omitted, being
the default;

• a predicate is disregarded: the first argument becomes nil;

• a predicate is a logical combination of some predicates belonging to
the source level: the second argument expresses the logical formula.

Note that the destination predicate accepts a list of untyped parameters,
as in this case parameter types can be deducted from the :types mapping
section. On the other hand, the source predicate needs to know the type
of each parameter. This is required to avoid ambiguities, since there might
be predicates with identical names, but different parameter types. If the
:predicates field is entirely omitted, then no predicate-based abstraction
occurs. In other words, each predicate is forwarded without any change to
the upper level.

To map a predicate between adjacent levels, in the :predicates field
the following notation must be used:

((abstract-predicate ?p11 ?p21 ...)
(ground-predicate ?p12 t12 ?p22 t22 ...))



CHAPTER 7. THE HIERARCHICAL WRAPPER HW[ ] 90

It specifies that the ground-predicate must be preserved while going up-
ward and vice-versa. If no differences exist in mapping a predicate between
adjacent levels the corresponding clause can be omitted. To disregard a
predicate while performing upward translations, the following notation is
used:

(nil (ground-predicate ?p12 t12 ?p22 t22 ...))

It specifies that ground-predicate is not translated into any abstract-
level predicate. In addition, abstract-predicate can be expressed as a logical
combination of some ground level predicates.

Actions Definition

To describe how to build the set of operators for the destination domain, in
the :actions field four kind of mapping can be expressed:

1. An action is removed: the first argument becomes nil;

2. An action is expressed as a combination of actions belonging to the
source domain (parallelization is expressed by or operator, whereas
serialization is expressed by and operator);

3. An action remains unchanged or some of its parameters are disre-
garded: the pair can be omitted by default;

4. A new operator is defined from scratch: the statement <action-def>
is used (note that this definition is not expanded in the notation, since
it follows the standard PDDL 1.2).

Invariants Definition

As briefly pointed out in section 4.5, state invariants are fundamental to
deal with the variable-unification process in operators, in order to avoid the
problem of semantic inconsistencies.

To represent state invariants, one :invariants statement for each map-
ping definition between two adjacent levels should be added. In fact, in a n-
level abstraction hierarchy, each mapping involves a specific set of invariants.
Three kinds of invariants (identity, state membership, uniqueness of state
membership) are supported. The general form of the <invariants-def> is
the following:

<invariants-def>::=
([:identity <identity-def>]
[:statemembership <statemembership-def>]
[:uniqueness <uniqueness-def>])
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<identity-def>::=
(and <typed-predicate> <typed-predicate>+)
((= <variable> <variable>)+)

<statemembership-def>::=
(or <typed-predicate> <type-predicate>+)

<uniqueness-def>::=
(not (and <typed-predicate>

<typed-predicate>+))

7.3.3 Examples of the Extension

In order to make clearer the proposed notation, in the following, some ex-
amples applied to a set of benchmark domains, are described.

Depots

Let us consider the depots domain, taken from the AIPS 2002 planning com-
petition (Long 2002). The domain was devised by joining two well-known
planning domains: logistics and blocks-world. They have been combined to
form a domain in which trucks can transport crates around, to be stacked
onto pallets at their destinations. The stacking is achieved using hoists, so
that the resulting stacking problem is very similar to a blocks-world problem
with hands. Trucks behave like “tables”, since the pallets on which crates are
stacked are limited. Let us suppose we want to create a two-level abstrac-
tion for the depot domain, composed by depot-ground and depot-abstract.
According to the above notation, we can start defining the hierarchy in the
following way:

(define (hierarchy depot)
(:domains depot-ground depot-abstract)
...

Since there are only two levels of abstraction, just one :mapping statement
is needed. To express the mapping rules (on types, predicates, and opera-
tors) from the ground to the abstract level, the following statement must be
introduced:

(:mapping
(depot-ground depot-abstract)
...

Let us start with abstracting types of the depot domain type hierarchy
(as reported in 7.3). We decided to disregard hoists and trucks, and not to
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Figure 7.3: Type hierarchy for the depots-ground domain.

distinguish between depots and distributors (i.e., considering both as generic
places).

According to the proposed notation, the translation can be expressed in
the following way:

:types
((place depot)
(place distributor)
(nil hoist)
(nil truck))

The first two statements assert that both depot and distributor become
place in the depot-abstract domain. The last two statements assert that
both hoist and truck must be disregarded. Let us recall that, by de-
fault, the types not mentioned remain unchanged at the abstract level (e.g.
locatable, crate, place, etc.). The above notation entails the type hier-
archy reported in 7.4.

Figure 7.4: Type hierarchy for the depots-abstract domain.

The choice of removing some types implies that some predicates might
become meaningless at the abstract level. In particular, predicates accepting
parameters of type truck or hoist cannot exist at the abstract level.
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(in ?c - crate ?t - truck)
(lifting ?h - hoist ?c - crate)
(available ?h - hoist)
(clear ?s - surface)
(on ?c - crate ?s - surface)
(at ?l - locatable ?p - place)

Figure 7.5: Predicates of the depots-ground domain.

7.5 lists the ground predicates of the depot domain. Since the in pred-
icate accepts a truck as a parameter, it must be explicitly disregarded by
the following statement:

(nil (in ?c crate ?t truck))

Similar considerations can be made for the lifting and available predi-
cates. The predicates (clear ?s surface) and (on ?c crate ?s surface)
remain unchanged and can be omitted in the :mapping field (being the de-
fault). Note that (at ?l locatable ?p place) is overloaded, in the
sense that it actually represents different predicates. Some examples of pos-
sible expansions are:

(at ?l hoist ?p distributor)
(at ?l truck ?p depot)
(at ?l crate ?p depot)

All expansions that accept any parameter whose type has been disregarded
at the abstract level, must be explicitly removed. In this case, the following
statements must be asserted:

(nil (at?h hoist ?p - place))
(nil (at?t truck ?p - place))

Let us point out that more complex mapping rules are admissible. For
example, two or more ground predicates could be combined to form a new
abstract predicate. Let us consider the statement below:

((moveable ?c ?h ?s ?p)
(and (lifting ?h hoist ?c crate)

(at ?h hoist ?p place)
(clear ?s surface)
(at ?s surface ?p place))

The new predicate moveable is introduced, which applies only when the
specified group of ground predicates are true. The mapping rules enforced
on types and predicates may modify preconditions and effects of some ground
operators. For example, consider the drive action:
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(:action drive
:parameters
(?t - truck ?p1 ?p2 - place)
:precondition
(and (at ?t ?p1))
:effect
(and (not (at ?t ?p1))(at ?t ?p2)))

Since the (at ?t truck ?p place) predicate has not been forwarded to
the abstract level, the drive action could not require any such precondition
or effect. Therefore, drive becomes meaningless at the abstract level, and
must be removed throughout the following statement:

((nil (drive?t ?p1 ?p2))

Similar considerations can be made for the load and unload actions:

(nil (load?h ?c ?t ?p))
(nil (unload?h ?c ?t ?p))

At this point, one may want to join the remaining actions lift and drop
to form a new abstract operator (say lift-and-drop). According to the
proposed extension, the new operator is defined as:

((lift-and-drop ?c ?s1 ?s2 ?p1 ?p2)
(and (lift?h ?c ?s1 ?p1)

(drop ?h ?c ?s2 ?p2)))

Moreover, the lift and drop actions can be ignored:

(nil (lift?h ?c ?s ?p))
(nil (drop?h ?c ?s ?p))

Alternatively, the new abstract operator lift-and-drop could be intro-
duced from scratch as follows:

(:action lift-and-drop
:parameters
(?c - crate ?s1 ?s2 surface
?p1 ?p2 - place)

:precondition
(and (at ?c ?p1) (on ?c ?s1)

(clear ?c) (at ?s2 ?p2)
(clear ?s2))

:effect
(and (not (at ?c ?p1))

(at ?c ?p2)(clear ?s1)
(not (clear ?s2))
(on ?c ?s2)
(not (on ?c ?s1))))
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For the sake of completeness, the entire hierarchy definition for the depot
domain is summarized in 7.6.

(define hierarchy depots)
(:domains depots-ground depots-abstract)
(:mapping (depots-ground depots-abstract)

:types
((place depot)
(place distributor)
(nil hoist)
(nil truck))

:predicates
((nil (lifting ?h - hoist ?c - crate))
(nil (available ?h - hoist))
(nil (in ?c - crate ?t - truck))
(nil (at ?h - hoist ?p - place))
(nil (at ?t - truck ?p - place)))

:actions
((nil (drive ?t ?p1 ?p2))
(nil (load ?h ?c ?t ?p))
(nil (unload ?h ?c ?t ?p))
(nil (lift ?h ?c ?s ?p))
(nil (drop ?h ?c ?s ?p))
((lift-and-drop ?c ?s1 ?s2 ?p1 ?p2)
(and (lift ?h ?c ?s1 ?p1)

(drop ?h ?c ?s2 ?p2))))))

Figure 7.6: Hierarchy definition for the depots domain.

Elevator

In the above example, we started by abstracting the type hierarchy. It is
worth pointing out that this choice is not mandatory; in fact abstraction
could also be started by specifying the mapping of predicates or actions. To
better illustrate an alternative approach, let us consider another example
applied to the elevator domain (Koehler and Schuster 2000), whose ground
definition is reported in 7.7. The type hierarchy of elevator is very simple and
contains only two types: passenger and floor. Thus, let us abstract the
domain from predicates. In particular, one may decide to disregard (above
?f1 ?f2 floor) and (lift-at ?f floor), so that the lift is always
available and moveable from a floor to another. This choice has an influence
on actions: up and down become meaningless, whereas preconditions and
effects of board and depart undergo some modifications on their abstract
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(define (domain elevator-ground)
(:requirements :typing)
(:types passenger floor)
(:predicates
(origin ?person passenger ?floor - floor)
(destin ?person - passenger ?floor - floor)
(boarded ?person - passenger)
(served ?person - passenger)
(above ?f1 ?f2 - floor)
(lift-at ?floor - floor))

(:action board
:parameters (?f - floor ?p - passenger)
:precondition (and (lift-at ?f) (origin ?p ?f))
:effect (and (boarded ?p)))
[...]

(:action down
:parameters (?f1 ?f2 - floor)
:precondition (and (lift-at ?f1) (above ?f2 ?f1))
:effect (and (lift-at ?f2) (not (lift-at ?f1)))))

Figure 7.7: The elevator domain.

counterparts (say load and unload, respectively). 7.8 shows the described
hierarchy definition for the elevator domain.

Blocks-world

As an example of abstraction starting from actions, let us consider the blocks-
world domain, reported in 7.10. In this case the type hierarchy cannot be
abstracted, as it contains only the type block. In this domain two macro-
operators can be identified: pick-up;stack and unstack;put-down. The de-
cision of adopting these operators entails a deterministic choice on which
predicates have to be forwarded / disregarded while performing upward
translations. More explicitly (handempty) and (holding ?b block) must
be disregarded, meaning that the “hand” can be considered always available.
7.11 shows the corresponding hierarchical definition of the blocks-world do-
main, according to the proposed notation.

7.4 Experiments and Results

To experiment with the proposed abstraction mechanism, a prototype of
the system has been implemented in C++. Experiments have been per-
formed with three planners: GRAPHPLAN [BF95], BLACKBOX [KS98],
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(define (hierarchy elevator)
(:domains elevator-ground elevator-abstract)
(:mapping

(elevator-ground elevator-abstract)
:predicates

((nil (lift-at?f floor))
(nil (above ?f1 ?f2 - floor)))

:actions
((nil (up?f1 ?f2))
(nil (down?f1 ?f2))
(nil (board?f ?p))
(nil (depart?f ?p))
((load ?f ?p) (board ?f ?p))
((unload ?f ?p) (depart ?f ?p)))))

Figure 7.8: Hierarchy definition for the elevator domain.

(define (domain elevator-abstract)
(:requirements :typing)
(:types passenger floor)
(:predicates
(origin ?person - passenger ?floor - floor)
(destin ?person - passenger ?floor - floor)
(boarded ?person - passenger)
(served ?person - passenger))

(:action load
:parameters (?p - passenger ?f - floor)
:precondition (and (origin ?p ?f))
:effect (and (boarded ?p)))

(:action unload
:parameters (?p - passenger ?f - floor)
:precondition (and (boarded ?p) (destin ?p ?f))
:effect (and (served ?p))))

Figure 7.9: The elevator-abstract domain.
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(define (domain blocks)
(:requirements :typing)
(:types block)
(:predicates

(on ?x ?y - block) (ontable ?x - block) (clear ?x - block)
(handempty) (holding ?x - block))

(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x)))
(:action put-down

:parameters (?x - block)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action stack
:parameters (?x ?y - block)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x)

(handempty) (on ?x ?y)))
(:action unstack

:parameters (?x ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (holding ?x) (clear ?y) (not (clear ?x)) (not (handempty))

(not (on ?x ?y)))))

Figure 7.10: The blocks-world domain.
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(define (hierarchy blocks)
(:domains blocks-ground blocks-abstract)
(:mapping
(blocks-ground blocks-abstract)
:predicates
((nil handempty))
(nil (holding ?b - block)))

:actions
((nil (pick-up ?b))
(nil (put-down ?b))
(nil (stack ?b1 ?b2))
(nil (unstack ?b1 ?b2))
((pick-up&stack ?b1 ?b2)

(and (pick-up ?b1) (stack ?b1 ?b2)))
((unstack&put-down ?b1 ?b2)

(and (unstack ?b1 ?b2)
(put-down ?b1))))))

Figure 7.11: Hierarchy definition for the blocks-world domain.

and LPG [GS02]. In the following, GP, BB, and LPG shall be used to denote
the GRAPHPLAN, BLACKBOX, and LPG algorithms, whereas HW[GP],
HW[BB], and HW[LPG] shall be used to denote their hierarchical counter-
parts. To assess the capability of the proposed approach to improve the
performance of the search, some tests on five domains taken from the 1998,
2000, and 2002 AIPS planning competitions ([Lon98], [Bac00], [Lon02]) have
been performed.

In particular, the domain chosen for the experiments are: elevator, lo-
gistics, blocks-world, zeno-travel, and gripper. Experiments were conducted
on a machine powered by an Intel Celeron CPU, working at 1200 Mhz and
equipped with 256Mb of RAM. A time bound of 1000 CPU seconds has also
been adopted, and the threshold (m) used to limit the search for abstract so-
lutions has been set to 1 for each planner. All domains have been structured
according to a ground and an abstract level; for each domain, several tests
have been performed characterized by increasing complexity. 7.4 compares
the CPU time of each planner over the set of problems taken from the AIPS
planning competitions. Dashes show problem instances that could not be
solved by the corresponding system within the adopted time-bound.

7.4.1 Elevator

The elevator domain was designed to optimize the travel routes of lifts
through a new intelligent lift controller based on AI Planning techniques.
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Figure 7.12: Example of problem for the elevator domain.

Figure 7.13: Results for the elevator domain.

The domain is formed by a lift, which must take passengers from one floor
to another. For each passenger the source and destination floors are known
in advance. The goal is to serve all passengers. Figure 7.12 shows an exam-
ple of initial and goal state in this domain. Experiments confirm that the
complexity of the domain increases rapidly with the number of passengers
and floors. In fact, for GP and BB the CPU time increases very rapidly
while trying to solve problems of increasing length, whereas HW[GP] and
HW[BB] keep solving problems with greater regularity (although the rela-
tion between number of steps and CPU time remains exponential). LPG is
able to solve long plans in a very short time, thus doing away the need to
resort to HW[LPG]. Figure 7.13 summarizes results obtained in the elevator
domain. Note that Y axis is expressed in logarithmic scale.

7.4.2 Logistics

The logistics domain involves transportation of packages among cities. Cities
contain several locations, some of which are airports. Trucks move packages
among locations and/or airports. Planes move packages between two air-
ports. The complexity of the domain grows with the number of objects
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Figure 7.14: Example of problem for the logistics domain.

(packages, trucks, planes, cities) involved. Figure 7.14 shows an example of
a problem in the logistics domain. In this domain GP easily solves problems
up to a certain length but it is unable to solve problems within the imposed
time limits if a given threshold is exceeded. On the other hand, HW[GP]
keeps solving problems of increasing length without encountering the above
difficulties. BB performs better than HW[BB] for small problems, whereas
HW[BB] outperforms BB on more complex problems. LPG is able to solve
long plans in a few seconds at the most. For unknown reasons LPG was
not able to refine any abstract operator when invoked by the engine of HW.
Figure 7.15 summarizes the results.

7.4.3 Blocks-world

The blocks world is one of the oldest domain known in the artificial intel-
ligence community. It has been widely used to test a number of planning
algorithms, since it is only apparently simple. For this reason it has been
chosen as test-bed to experiment abstraction techniques devised in this work.
The domain is formed by a finite set of blocks and a table large enough to
accommodate all the blocks. Each block is either on another block or on the
table. No block can be on two places at the same time (physical restriction),
and the table is always clear. The actions allowed in the domain are: tak-
ing/putting a block from/onto a set of stacked blocks, pick up a block from
the table, put down a block on the table. Figure 7.16 shows an example of
problem in this domain.

As shown in 7.17, tests performed on the Blocks-world domain reveal a
similar trend for GP and HW[GP], although the latter performs slightly bet-
ter than the former. BB performs better than HW[BB] for simple problems,
whereas HW[BB] outperforms BB on problems of medium complexity. LPG
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Figure 7.15: Results for the logistics domain.

Figure 7.16: Example of problem for the blocks-world domain.

is able to solve problems whose solution length is limited to 100 steps. In this
domain, HW[LPG] clearly outperforms LPG on more complex problems as
shown in Figure 7.18.

7.4.4 Zeno-travel

The zeno-travel domain involves transporting people around in planes, using
different modes of movement: fast and slow. The fast movement consumes
fuel faster than slow movement, making the search for a good quality plan
(one using less fuel) much harder. Figure 7.19 illustrates a problem in the
zeno-travel domain. Unfortunately, neither GP nor HW[GP] are able to
successfully tackle any problem of this domain. An improvement of HW[BB]
over BB can be observed, similar to the one shown for the blocks-world
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Figure 7.17: Perfomance comparison between GP, BB and their hierarchical
counterparts in the blocks-world domain.

Figure 7.18: Perfomance comparison between LPG and HW[LPG] in the
blocks-world domain.

domain. LPG is able to solve long plans in a few seconds at the most, thus
avoiding the need to resort to HW[LPG].

7.4.5 Gripper

Figure 7.20 shows a simple example of problem in the gripper domain. This
domain involves the trasportation of balls from a room to another, by a robot
equipped with two grippers. As shown in figure 7.21 , for the gripper do-
main, both HW[GP] and HW[BB] clearly outperform their non-hierarchical
counterparts. LPG is able to solve long plans in a very short time.
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Figure 7.19: Example of problem for the zeno-travel domain.

Figure 7.20: Example of problem for the gripper domain.

7.5 Summary

In this chapter, a novel parametric system has been presented, devised to
perform planning by abstraction. The actual search is delegated to an ex-
ternal planners, that is the parameter. Aimed at giving a better insight of
whether or not the exploitation of abstract spaces can be useful for solving
complex planning problems, comparisons have been made between any in-
stances of the hierarchical planner and its non-hierarchical counterpart. In
order to handle abstraction hierarchies, a suitable extension to the PDDL
standard notation, has been devised. To better investigate the significance
of the results, three different planners have been used to make experiments.
A set of problem of increasing complexity, taken from five significant bench-
mark domains, has been chosen to perform experiments. Experimental re-
sults highlight that abstraction is useful on classical planners, such as GP
and BB. On the contrary, the usefulness of resorting to hierarchical planning
for the latest-generation planner used for experiments (i.e., LPG) clearly
emerges only in the blocks-world domain.
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Figure 7.21: Results in the gripper domain.
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# GP HW[GP] BB HW[BB] LPG HW[LPG]
elevator

1-4 0.01 0.06 0.1 0.33 0.01 0.11
3-1 0.23 0.36 1.34 1.20 0.02 0.15
4-1 1.96 0.83 1.03 1.74 0.02 0.16
4-4 10.11 0.84 311.5 1.79 0.02 0.16
5-1 364.7 2.03 180.8 2.54 0.02 0.18
7-2 – 12.04 – 3.89 0.03 0.29

logistics
4-2 0.68 1.22 0.27 0.46 17.93 –
5-2 0.08 0.16 0.15 0.46 0.02 –
7-0 – 10.93 4.49 2.17 2.12 –
8-1 – 16.26 2.90 3.02 1.55 –
10-0 – 43.43 8.27 3.76 2.17 –
15-0 – 203.4 10.91 6.33 0.15 –

blocks-world
4-0 0.34 0.32 0.16 0.67 0.02 0.08
6-0 30.4 1.82 0.26 1.68 0.05 0.23
8-0 31.61 11.13 0.92 2.46 0.36 0.31
10-0 – – 6.82 5.00 0.62 0.67
11-0 – – 16.23 4.25 4.23 0.83
14-0 – – – 9.84 5.00 1.91
15-0 – – – – 7.49 2.07
17-0 – – – – 33.93 3.49
20-0 – – – – 66.78 7.88
22-0 – – – – 183.16 12.21
25-0 – – – – 668.98 24.94

zeno-travel
1 0.02 0.52 0.22 0.36 0.02 0.03
8 – 42.55 0.94 2.36 0.14 0.49
9 – – 0.34 3.37 0.13 1.08
11 – – 11.20 2.78 0.16 1.06
13 – – 62.99 20.52 0.42 2.47
14 – – – 20.04 3.90 21.93

gripper
2 4.72 0.56 0.42 0.63 0.02 0.07
3 7.91 1.73 5.22 1.20 0.02 0.12
4 18.32 2.63 268.7 1.55 0.02 0.14
5 57.21 4.38 421.1 1.54 0.03 0.15
6 – 7-97 586.4 2.26 0.03 0.17
9 – 24.29 – 3.63 0.05 0.36

Table 7.1: Performance comparison of BB, GP, and LPG together with their
hierarchical counterparts HW[BB], HW[GP], HW[LPG].



Chapter 8

The Domain Hierarchy
Generator DHG

The previous chapter presented the HW[ ] system, a novel approach for
implementing the planning capabilities of an intelligent agent. It uses ab-
straction techniques to improve the performance of the search in complex
domains. The systems is able to exploit a planning domain organized into
a hierarchy of abstract levels (i.e. an abstraction hierarchy) to improve the
performance of a generic planner. However, it is long and often difficult to
made by hand abstraction hierarchies.

This chapter focuses on the problem of automatically generating the
abstraction hierarchies [ACV03d]. In particular, it addresses the problem
of how to identify macro-operators starting from a ground-level description
of a domain, to be used for generating useful abstract-level descriptions
[ACV04b].

In the following, the DHG system [ACV05] – devised to automatically
generate abstraction hierarchies – will be described.

8.1 Introduction

The attempt of dealing with the complexity of planning tasks by resort-
ing to abstraction techniques is a central issue in the field of automated
planning. Although the generality of the approach has not been proved al-
ways useful on domains selected for benchmarking purposes, it will play a
central role as soon as the focus will move from artificial to real problems.
Studying abstraction may have a great impact on the “internals” of intel-
ligent agents, since -by definition- an agent must be able to generate plans
in arbitrarily complex domains, no matter which environment, real (e.g.,
robotic applications) or virtual (e.g. Internet, computer games), is being
considered. Therefore, it will be crucial to have a tool for automatically
generating abstraction hierarchies from a domain description.

107
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To this end, a system that -given a description of the domain expressed
in PDDL- outputs a set of macro-operators to be used as a starting point
for defining abstract operators, has been implemented.

8.2 The DHG system

As described in section 4.3, a planning domain can be defined in terms of
two kinds of entity: predicates and operators. A particular kind of unary
predicate can also be taken into account, giving rise to a third kind of
entity, i.e. types, possibly organized according to a suitable “is-a” hierarchy.
Although, in principle, abstraction might be performed on both predicates
(including types) and operators, the work described in this section is mainly
concerned with abstractions on operators. In particular, a novel approach
for the automatic extraction of macro-operators is presented.

It is worth noting that the definition of abstract operators is strictly
related with the definition of abstract predicates and vice versa. Keeping
this in mind, this proposal can be positioned between action- and state-based
techniques.

For the sake of simplicity, let us consider only two abstraction levels,
namely ground and abstract. Note that ground and abstract domains have
the same form and are loosely related under the assumption that (most of
the) abstract plans should be refinable at the ground level. To guarantee
this desirable property, an abstract operator should be defined on top of sev-
eral (at least one) supporting macro-operators, i.e., macro-operators whose
pre- and post-conditions match the one defined for the corresponding ab-
stract operator. On the other hand, a macro-operator can be obtained by
uninstantiating any legal sequence of ground operators.

To tackle a planning problem using abstraction, one (or more) abstract
level(s) starting from the ground one should be defined. Abstracting a
ground domain leads to the definition of an abstraction hierarchy, consisting
of a set of predicates and operators, together with a mapping function de-
vised to specify the mapping between ground and abstract level. In general,
three kinds of mappings should be defined: (i) a set of types at the ground
level can be represented by a single type at the abstract level, (ii) a single
predicate at the ground level can be represented by a logical combination
of predicates at the abstract level, and (iii) a set of macro-operators at the
ground level can be combined into a single operator at the abstract level.

There is no predefined ordering in the abstraction process. In fact, one
may start abstracting types, rather than predicates or operators although
any choice performed on one kind of mapping may impact on subsequent
choices. Nevertheless, as the section is mainly concerned on automatically
extracting macro-operators, let us adhere to the underlying assumption that
our concerns about predicates (and types) play a secondary role, with respect
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Figure 8.1: The DHG architecture.

to operators, in the process of defining an abstraction hierarchy.
Figure 8.1 depicts the architecture of the system –called DHG, standing

for Domain-oriented Hierarchy Generator– devised to automatically gener-
ate the abstraction hierarchies.

The hierarchy generator module currently takes as inputs: (i) state in-
variants mappings (generated by the invariants mapper that processes the
output produced by TIM [FL98]), and (ii) supporting macro-operators map-
pings (extracted from the sequences given by the domain analyzer de-
scribed in the following). DHG outputs a domain hierarchy, consisting of
a ground and an abstract level. Currently, abstract operators and pred-
icates are generated according to a simple strategy: for each supporting
macro-operator a different abstract operator is generated, whose pre- and
post-conditions are made coincident with the selected macro-operator. All
predicates not involved in any pre- or post-condition are deleted from the
abstract domain.1

8.2.1 Generating Abstraction

Generating abstraction basically involves executing two steps: (i) searching
for macro-operator schemata through a priori or a posteriori analysis, (ii)
selecting some of the schemata evidenced so far and translating them into
abstract operators.

1The final system, consisting of additional modules devised to map also types and
predicates (shadowed in the figure), will be able to perform abstraction along all the cited
dimensions -i.e., predicates, types, and operators.
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As briefly said in section 4.5, macro-operators can be obtained by resort-
ing to “a posteriori” or “a priori” analysis. In this section, we concentrate on
the task of finding macro-operator schemata throughout an a-priori analy-
sis performed on the given domain and problem, rather than adopting the
a-posteriori technique

Searching for macro-operator schemata

The core of the whole process consists of finding a set of relevant sequences
and then (possibly) promoting them to macro-operators. The basic steps
for identifying such sequences are performed by the DOMAIN ANALYZER using
a graph-oriented technique: first of all, a directed graph containing informa-
tion about the dependencies between ground operators is built. Being G such
graph, its nodes represent ground operators, and its edges represent rela-
tions between effects of the source node and preconditions of the destination
node. In particular, for each source node A and for each destination node
B, the corresponding edge is labelled with a pair of non-negative numbers,
say < a b >. The pair accounts for how many predicates A can establish (a)
and negate (b) that are also preconditions of B. Note that source and des-
tination node may coincide, thus giving rise to a self-reference. From each
acyclic path, a relevant sequence of operators can be extracted. As consider-
ing all possible paths would end up to a large amount of macro-operators, a
second step consists of pruning G yielding the pruned graph Gp. The prun-
ing activity is controlled by a set of domain-independent heuristics reported
in table 8.1

Note that the pruned graph does not contain edges labeled < 0 0 >,
the corresponding operators being completely independent. A set of se-
quences (candidates to generate macro-operators) is then extracted from
Gp, each path being related with a relevant sequence. In particular, se-
quences whose post-conditions are represented by empty sets are disregarded
for obvious reasons. The remaining sequences are considered for generating
macro-operators.

As an example, let us consider the well-known blocks-world domain, en-
compassing four operators: stack, pick-up, unstack, put-down. The cor-
responding graph is shown in Figure 8.2.

Bearing in mind that the same mechanism has been applied to all opera-
tors pairs, let us concentrate for instance on the relation that holds between
stack (source node) and pick-up (destination node). Considering that the
effects of the stack operator are:

(not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
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Figure 8.2: The directed graph (before pruning), representing static relations
between operators of the blocks-world domain.

(on ?x ?y)

and that the preconditions of the pick-up operator are:

(clear ?x)
(ontable ?x)
(handempty)

Figure 8.3: The directed graph (after pruning), representing static relations
between operators of the blocks-world domain.

we label the corresponding edge with the pair <2 1>. It is apparent that
stack establishes two preconditions for pick-up, while negating another. As
for the pruning activity, figure 8.3 shows the resulting graph for the blocks-
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world domain.2 The resulting macro-operator schemata are (“;” being used
for concatenation): pick-up;stack, unstack;put-down, pick-up;put-down, and
stack;unstack.

Translating relevant schemata into abstract operators

Step (ii) consists of extracting sequences from the pruned graph and then
converting them into macro-operators. The relevant sequences can be easily
extracted from the pruned graph, each path being related with a candidate
macro-operator. Among all existing paths, only those containing a single
occurrence of each operator are selected.

For each extracted relevant sequence, a corresponding macro-operator
is generated, whose pre- and post-conditions are evaluated from pre- and
post-conditions of the operators belonging to the sequence. Each extracted
macro-operator is then promoted to an abstract operator, defined according
to the define action statement of the standard PDDL notation by its name,
together with its parameters, its pre- and post-conditions.

Let us formally represent the process of promoting a sequence of ground
operators to a macro-operator. In particular, let us assume that σ is a
sequence of operators , whose application to the source state S1 leads to
the destination state S2. Under this assumption, a corresponding macro-
operator can be defined as follows where γ, η, α, and δ represent precon-
ditions, effects, add-list, and delete-list of the resulting macro-operator, re-
spectively: 

γσ = γσ1 ∪ (γωn \ ησ1)
ασ = (ασ1 \ δωn) ∪ (αωn \ γσ1)
δσ = (δωn \ ασ1) ∪ (δσ1 \ αωn)

(8.1)

The formula 8.1 can be easily evaluated if all the actions belonging to σ
are instantiated (i.e. all the involved parameters refer to a specified object).
On the contrary, applying the formula in presence of variables could lead to
semantic inconsistencies.

A typical example that highlights this problem occurs when predicates
that account for spatial relations are considered. For instance, while consid-
ering the predicate (at ?o - object ?l - location), used in the Logistics
domain to represent the position of an object, there cannot be two predicates
stating that the same object is in two different locations. This condition can
be expressed through the use of suitable state invariants. These are not ex-
plicitly stated in the domain description and can be retrieved using TIM.
A detailed description about how to find state invariants is given in [FL98],
where four kinds of state invariants are defined: identity, state member-
ship, uniqueness of state membership, and fixed resource. The information

2Since we are interested in finding macro-operators, we do not take into account self-
references.
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about the domain, enriched with invariants, allows to correctly unify macro-
operators parameters.

To automatically build the domain hierarchy, the hierarchy genera-
tor requires a set of mapping functions that contain the translation rules
(on types, predicates, operators, and invariants) between two adjacent lev-
els of abstraction. These are expressed through the :mapping clause of the
define hierarchy statement (see section 7.3 for further details).

Given the mapping functions, abstract operators and predicates can be
generated according to a simple strategy: for each macro-operator a suitable
abstract operator is generated, whose pre- and post-conditions are made co-
incident with those of the selected macro-operator; predicates at the abstract
level are the same of the ground level, except for those not involved in any
pre- or post-condition of the abstract operators.

As a final comment, let us point out that the approach described above
can be used also for generating abstractions tailored to a given problem; this
can be done by simply adding a dummy operator representing the goal(s) of
the problem itself. The “goal-oriented” operator has only preconditions (its
set of effects being empty), representing a logic conjunct of predicates that
characterize the goal of the input problem. As a consequence, all sequences
deemed relevant to solve the problem are easily put into evidence (as they
end with the “goal-oriented” operator).

8.2.2 Notes on macro-operator abstraction

The impact of abstraction on the time spent to search for a solution of a
planning problem can be positive or negative, depending on several factors
-including the average branching factor, and the plan length (see [ACV04a]).
Intuitively, in the worst case, the search time grows with the average branch-
ing factor (b) and the plan length (l) proportionally to bl. Let us note that, b
is influenced by the number of domain operators, the number of parameters
of each operator, and the adopted heuristic function; whereas l is influenced
by the problem complexity.

Typically, the abstract domain contains fewer operators than the ground
domain; nevertheless, there is a usually-negative impact on the average
branching factor, due to the increased complexity of the macro-operators.
In fact, a macro-operator has generally a number of parameters greater than
the ones belonging to each of its operators. On the other hand, using macro-
operators reduces the average plan length. Thus, the time required to search
for a solution at the abstract level (Ta) may be significantly lower than the
time required at the ground level (Tg).

Let us recall that the abstract level is used to guide the search at the
ground level. Given a plan at the abstract level, each abstract operator must
be refined, each refinement becoming a planning problem at the ground level.
For the sake of simplicity, let us suppose that the time required to solve a
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problem using a two-level abstraction (Th) is Ta + Tr, where Tr, i.e. the
time needed to perform all the refinements, is proportional to la · b

lg/la
g .

If Th is greater than Tg, the impact of abstraction is negative, especially
if a large number of refinements occurs. It is worth noting that when bg

is close to 1, Tr becomes greater than Tg. This typically occurs when a
planner equipped with a good heuristic function is used to refine the abstract
solution, thus nullifying the advantages of abstraction. On the other hand,
the more bg increases, the more abstraction becomes effective. In short,
the use of abstraction based on macro-operators is not only influenced by
the branching factor and the plan length, but also by the adopted planning
algorithm.

To verify whether an abstraction based on macro-operator can improve
the performances of the search, we made experiments on some classical
benchmarking domains. Abstraction hierarchies have been automatically
generated using the DHG system, which follows an “a priori” approach. For
the sake of simplicity, only two relevant domains have been selected, i.e.,
elevator and blocks-world.

Let us consider the elevator domain, which has been described in the
previous chapter. An example of recurrent sequence is up;board, and the
corresponding macro-operator is:

(:action up-board
:parameters
(?passenger1 - passenger ?floor2 ?floor1 - floor)

:precondition
(and (origin ?passenger1 ?floor2)

(lift-at ?floor1) (above ?floor1 ?floor2))
:effect
(and (lift-at ?floor2) (boarded ?passenger1)

(not (lift-at ?floor1))))

Note that the up;board macro-operator has three parameters, whereas both
up and board have two parameters. In this case, the number of macro-actions
corresponding to the up;board macro-operator is greater than the number of
actions corresponding to the up operator plus the number of actions corre-
sponding to the board operator. In fact, the number of actions grows with
respect to the number of objects belonging to the problem. Let nf be the
number of floors and np the number of passengers, the corresponding num-
ber of up;board instances is np ·n2

f , the number of up instances is n2
f , and the

number of board instances is np ·nf . Hence, the number of applicable actions
depends on the number of passengers and floors belonging to the problem
to be solved. The automatic hierarchy found by DHG has an abstract
domain composed by four abstract operators (obtained from the macro-
operators corresponding to the sequences up;board, up;depart, down;board,
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and down;depart). Each abstract operator has three parameters (two floors
and one passenger), being 4 ·n2

f ·np the number of applicable actions at the
abstract level. On the other hand, the number of applicable actions at the
ground level is 2 · n2

f + 2 · npnf . Comparing the two expressions, it is clear
that the branching factor at the abstract level is greater than the one at the
ground level.

As for the blocks-world domain, the automatic hierarchy found by DHG
has an abstract domain composed by two abstract operators (obtained
from the macro-operators corresponding to the sequences pick-up;stack and
unstack;put-down). Each abstract operator has two parameters, being 2 ·n2

b

the number of applicable actions at the abstract level, where nb is the num-
ber of blocks. On the other hand, the number of applicable actions at the
ground level is 2 ·nb +2 ·n2

b . Comparing the two expressions, it can be noted
that the branching factor at the abstract level is always lower than the one
at the ground level.

It is now clear that different behaviors hold, depending on the charac-
teristics of the domain taken into account. In particular, two relevant and
different cases have been briefly discussed, pointing to the theoretical and
actual branching factor. Roughly speaking, we expect that a hierarchical
planner based on macro-operators performs better in the blocks-world than
in the elevator domain.

8.3 Experiments and Results

To assess the functionality of the DHG system, we compared the automat-
ically generated domain hierarchies with the corresponding domain hierar-
chies hand-coded by a knowledge engineer, and characterized by mapping
on types, predicates, and operators. A set of benchmarking domains, taken
from the planning competitions ([Lon98], [Bac00], [Lon02]), has been se-
lected to generate the abstraction hierarchies. The domain hierarchies have
been used as input for the HW[ ] system, which has been described in chap-
ter 7, devised to perform planning by abstraction.

Let us briefly recall that, HW[ ] (which stands for Hierarchical Wrapper)
can exploit any external PDDL-compliant planner to search for solutions at
any required level of abstraction.

Experiments have been performed using FF [HN01] as external planner,
being HW[FF] the resulting system. Let us point out that the planner
chosen to be embedded into the system scarcely affects the relevance of the
experimental results. In fact, only the relative performance between the
automatic and the hand-coded versions of each domain hierarchy should be
directly compared. For the description about the performance of abstraction
mechanisms, see section 7.4.

Experiments have been conducted on several domains including Depots,
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Blocks-World and Elevator (simple-miconic). For each domain, a set of
problems has been selected to compare the performances of HW[FF] using
the DHG ’s domain hierarchies with those of HW[FF] using the hand-coded
domain hierarchies. For the sake of simplicity, since it is generally a demand-
ing work to generate by hand abstraction hierarchies having more than two
levels, the experiments have been made using two-level abstraction hierar-
chies.

Table 8.2 summarizes the results obtained for the selected domains. The
results obtained using the planner without abstraction (FF, in this case) are
not reported, since in this section we are not concerned on comparing the
performance between a planning algorithm and its hierarchical counterpart.
The columns labelled abs and refs report the time (expressed in milliseconds)
needed to find the solution at the abstract level and the time needed to
refine it, respectively. The column labelled tot reports the total time spent
by HW[FF] to solve the problem, including disk usage, conversion to/from
PDDL, etc. The column labelled steps is reported to compare the quality
of plans (in terms of the steps required to reach the goal state) between the
two counterparts.

8.3.1 Depots

The abstract level found by DHG for the Depots domain is composed by
four abstract operators, two of them (lift and drop) are identical to those
defined at the ground level, while the others are obtained from the sequences
drive;load and drive;unload. The hand-coded abstraction hierarchy defines
two abstract-operators (obtained from the sequences drive;unload;drop and
drive;lift;load), disregards the lifting predicate, and substitutes depot and
distributor with the supertype place (this one being an example of abstrac-
tion on types).

Experiments show that, for the Depots domain, the performances of
HW[FF] using the hierarchy found by DHG are in general slight worse (the
difference is about 25%) than those of HW[FF] fed with the hand-coded
hierarchy. In my opinion, the reason lies in the fact that automatically ex-
tracted hierarchy does not include abstraction on types and/or predicates,
whereas the corresponding hand-coded hierarchy introduces types and pred-
icates mappings.

8.3.2 Elevator

The abstract level found by DHG for the Elevator domain is composed by
four abstract operators: (obtained from the sequences up;board, up;depart,
down;board, and down;depart). The corresponding hand-coded hierarchy de-
fines two abstract operators (load and unload) and disregards two predicates
(lift-at and above).
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The performance measured while feeding HW[FF] with the hierarchy
found by DHG is about 20% worse than the one obtained by running
HW[FF] with the hand-coded hierarchy. Also in this case the automatic
hierarchy (being pure macro-operator based) lacks of mappings on types
and/or predicates.

8.3.3 Blocks-world

The abstract level found by DHG for the Blocks-World domain is composed
by two abstract operators: (obtained from the sequences pick-up;stack and
unstack;put-down). The corresponding hand-coded hierarchy shows an ab-
stract domain composed by the same operators, although the predicates
handempty and holding have been disregarded.

In this domain, time intervals are approximately the same, since the hi-
erarchy obtained from DHG is nearly identical to the one coded by hand.
In fact, both of them define the abstract domain by two operators with-
out abstracting types. The hand-coded hierarchy disregards two predicates,
(holding ?x - block) and (handempty), but this clearly does not intro-
duce a substantial improvement, since holding does not appear in the pre-
conditions and the effects of the macro-operators, and there is no macro-
operator that negates the handempty predicate.

8.3.4 Driver-Depots: a more complex domain

Experimental results have shown that abstraction is more effective when
the complexity of planning problems increases. To assess the advantages of
using this approach, a more complex domain has been devised by extending
the depot domain taken from the AIPS 2002 planning competition [Lon02].
The depot domain joins two well-known planning domains: logistics and
blocks-world. They have been combined to form a domain in which trucks
can transport crates around, to be stacked onto pallets at their destinations.
The stacking is achieved using hoists, so that the resulting stacking problem
is very similar to a blocks-world problem with hands. Trucks behave like
“tables”, since the pallets on which crates are stacked are limited. The
proposed domain extends the depots domain adding to it a driver able to
move trucks among places (see 8.3.4 ). Note that the driver could simulate
the behavior of an agent able to deliver objects by driving trucks from a
location to another.

8.3.4 shows the hierarchy for the driverdepotsdomain, whereas 8.3.4
shows the abstract domain, obtained by applying the mapping rules to the
ground domain.

Bearing in mind that the same mechanism has been applied to all opera-
tors’ pairs, let us concentrate for instance on the relation that holds between
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(define (domain driverdepots-ground)
(:requirements :strips :typing)
(:types
place locatable - object depot distributor - place
pallet crate - surface
driver truck hoist surface - locatable)

(:predicates
(at ?l - locatable ?p - place) (on ?c - crate ?s - surface)
(in ?c - crate ?t - truck) (lifting ?h - hoist ?c - crate)
(available ?h - hoist) (clear ?s - surface)
(driving ?d - driver ?t - truck) (empty ?t - truck))

(:action Drive
:parameters (?t - truck ?p1 ?p2 place ?d - driver)
:precondition (and (at ?t ?p1) (driving ?d ?t))
:effect (and (not (at ?t ?p1)) (at ?t ?p2)))

(:action Lift
:parameters (?h - hoist ?p place ?c - crate ?s - surface)
:precondition (and (at ?h ?p) (available ?h) (at ?c ?p)

(on ?c ?s) (clear ?c))
:effect (and (not (at ?c ?p)) (clear ?s) (lifting ?h ?c)

(not (clear ?c)) (not (available ?h))
(not (on ?c ?s))))

(:action Drop
:parameters (?h - hoist ?c crate ?s - surface ?p - place)
:precondition (and (at ?h ?p) (at ?s ?p) (clear ?s)

(lifting ?h ?c))
:effect (and (available ?h) (at ?c ?p)

(not (lifting ?h ?c)) (not (clear ?s))(clear ?c)
(on ?c ?s)))

(:action Load
:parameters (?h - hoist ?c - crate ?t truck p - place)
:precondition (and (at ?h ?p) (at ?t ?p) (lifting ?h ?c))
:effect (and (not (lifting ?h ?c)) (in ?c ?t) (available ?h)))

(:action Unload
:parameters (?h - hoist ?c - crate ?t - truck ?p - place)
:precondition (and (at ?h ?p) (at ?t ?p) (available ?h)

(in ?c ?t))
:effect (and (not (in ?c ?t)) (not (available ?h))

(lifting ?h ?c)))
(:action Board
:parameters (?d - driver ?t - truck ?p - place)
:precondition (and (at ?t ?p) (at ?d ?p) (empty ?t))
:effect (and (not (at ?d ?p)) (driving ?d ?t)

(not (empty ?t))))
(:action Disembark
:parameters (?d - driver ?t - truck ?p - place)
:precondition (and (at ?t ?p) (driving ?d ?t))
:effect (and (not (driving ?d ?t)) (at ?d ?p) (empty ?t)))

(:action Walk
:parameters (?d - driver ?p1 ?p2 - place)
:precondition (and (at ?d ?p1))
:effect (and (not (at ?d ?p1)) (at ?d ?p2))))

Figure 8.4: The driverdepots domain.
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(define (domain driverdepots-abstract)
(:requirements :strips :typing)
(:types place locatable - object

driver truck surface - locatable
pallet crate - surface)

(:predicates (at ?l - locatable ?p - place)
(on ?c - crate ?s - surface)
(in ?c - crate ?t - truck)
(clear ?s - surface)
(driving ?d - driver ?t - truck)
(empty ?t - truck))

(:action DriveUnloadDrop
:parameters (?t - truck ?p1 ?p2 - place ?d - driver

?c - crate ?s - surface)
:precondition (and (at ?t ?p1) (driving ?d ?t) (in ?c ?t)

(at ?s ?p2) (clear ?s))
:effect
(and (not (at ?t ?p1)) (at ?t ?p2) (not (in ?c ?t))

(at ?c ?p2) (not (clear ?s)) (clear ?c) (on ?c ?s)))
(:action LiftLoad
:parameters (?c - crate ?t - truck ?s - surface ?p - place)
:precondition (and (at ?c ?p) (on ?c ?s) (clear ?c)

(at ?t ?p))
:effect
(and (not (at ?c ?p)) (not (clear ?c)) (clear ?s)

(in ?c ?t) (not (on ?c ?s))))
(:action WalkBoard
:parameters (?d - driver ?t - truck ?p1 ?p2 - place)
:precondition (and (at ?t ?p2) (at ?d ?p1) (empty ?t))
:effect (and (not (at ?d ?p1)) (driving ?d ?t) (not (empty ?t))))

(:action DriveDisembark
:parameters (?d - driver ?t - truck ?p1 ?p2 - place)
:precondition (and (at ?t ?p1) (driving ?d ?t))
:effect
(and (not (driving ?d ?t)) (at ?d ?p2) (empty ?t)

(not (at ?t p1)) (at ?t ?p2))
(:action Drive
:parameters (?t - truck ?p1 ?p2 - place ?d - driver)
:precondition (and (at ?t ?p1) (driving ?d ?t))
:effect (and (not (at ?t ?p1)) (at ?t ?p2)))))

Figure 8.5: The driverdepots-abstract domain.
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(define (hierarchy driverdepots)
(:domains
driverdepots-ground
driverdepots-abstract)

(:mapping
(driverdepot-ground
driverdepot-abstract)
:types
((place depot)
(place distributor)
(nil hoist))

:predicates
((nil

(lifting ?h - hoist ?c - crate))
(nil
(available ?h - hoist))

(nil
(at ?h - hoist ?p - place)))

:actions
((nil (load ?h ?c ?t ?p))
(nil (unload ?h ?c ?t ?p)
(nil (lift ?h ?c ?s ?p))
(nil (drop ?h ?c ?s ?p))
(nil (walk ?d ?p1 ?p2))
(nil (board ?d ?t ?p))
(nil (disembark ?d ?t ?p))
(drive-unload-drop

?t ?p1 ?p2 ?d ?c ?s)
(and (drive ?t ?p1 ?p2 ?d)

(unload ?h ?c ?t ?p2)
(drop ?h ?c ?s ?p2)))

((walk-board ?d ?p1 ?p2 ?t)
(and (walk ?d ?p1 ?p2)

(board ?d ?t ?p2)))
((drive-disembark ?d ?t ?p1 ?p2)
(and (drive ?t ?p1 ?p2 ?d)

(disembark ?d ?t ?p2)))
((lift-load ?c ?t ?s ?p)
(and (lift ?h ?p ?c ?s)

(load ?h ?c ?t ?p)))))

Figure 8.6: Hierarchy definition for the driverdepots domain.
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drive (source node) and board (destination node). Considering that the ef-
fects of the drive operator are:

(not (at ?t ?p1)) (at ?t ?p2)

and that the preconditions of the board operator are:

(at ?t ?p) (at ?d ?p) (empty ?t)

we label the corresponding edge with the pair < 11 >. In fact, it is appar-
ent that drive establishes one precondition for board, while negating an-
other. shows the resulting graph for the driverdepot domain after the prun-
ing activity. The resulting macro-operator schemata are (; being used for
concatenation): drive;unload;drop, drive;load;lift, drive;disembark, lift;load,
drop;unload, load;lift, unload;drop, and walk;board. Among these, load;lift,
drive;load;lift, and drop;unload have been disregarded since they become
meaningless when applied to the same object. For instance, loading a truck
with a crate C and then lifting C back does not alter the state of the
world. Hence, drive;unload;drop, unload;drop, walk;board, drive;disembark,
and lift;load are the selected macro-operator schemata. As for the generation
of abstract-operators, let us note that drive;unload;drop and unload;drop,
can be considered alternative refinements of the same abstract-operator.
Furthermore, let us stress that the lifting predicate does not appear as
precondition or effect in any abstract operator; hence, it can be removed
at the abstract level. Since we are interested in abstracting the domain on
types, predicates, and operators, the type hierarchy could be simplified by
deleting for example- the hoist type. This choice is feasible because hoists
are always available, in every place (consequently, the available predicate
can also be removed). Moreover, the type hierarchy can be further reduced
by considering both distributors and depots as generic places.

8.4 Summary

The automatic definition of macro-operators is one the most important steps
in the task of abstracting a planning domain. In this chapter, a technique de-
vised to tackle this problem has been described, its implementation yielding
a system called DHG (standing for Domain-oriented Hierarchy Generator).

The process consists of finding a set of relevant sequences and then
promoting them to macro-operators using a graph-oriented technique. A
directed graph, containing information about the dependencies between do-
main operators, is built. Nodes represent operators, and edges represent
relations between effects of the source node and preconditions of the desti-
nation node. A relevant sequence of operators may be extracted from each
acyclic path. As considering all possible paths would end up to a large
amount of sequences, G is pruned through a set of domain-independent
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heuristics. A set of macro-operators is then generated from a selected set of
sequences. To avoid semantic inconsistencies, an analysis aimed at finding
state invariants is also performed.

Experimental results obtained comparing the performances of the hand-
coded and automatically-generated abstraction hierarchies are encouraging
and demonstrate the validity of the approach. In particular, the system is
able to identify suitable macro-operators, used as starting point for pop-
ulating the abstract level. Such macro-operators usually represent good
alternatives to those extracted by a knowledge engineer after a thorough
(and sometimes painful!) domain analysis. The slightly negative impact on
performances obtained by resorting to the automatic generation of abstrac-
tion hierarchies is more than counterbalanced by the fact that a negligible
effort is required to the knowledge engineer in order to obtain suitable ab-
stractions. The environment used to perform the experiments combines
DHG with HW[FF]. The latter is a (parametric) hierarchical planning en-
vironment able to embed and run an external planner –in this case FF– at
different levels of granularity.

We are currently experimenting a further approach to improve the perfor-
mance of planners, which exploits control knowledge to guide the search. In
particular, the system called HW[IPSS] has been implemented (see [ACVF05]).
It combines the advantages of abstraction with the use of explicit control
rules in planning. In this context, the adoption of abstraction techniques re-
markably simplify the process of acquiring knowledge done by the HAMLET
system, an incremental learning system based on Explanation Based Learn-
ing (EBL) and inductive refinement of control rules (described in [BV97]).
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Type Relationships Supporting Action
Evidence

1
(i) if a = c and
b = d there is
no supporting evi-
dence for assuming
that A usually pre-
cedes B in a plan,
and vice-versa;

remove both edges.

(ii) if a > c there
is a high likelihood
that A precedes B;

remove top edge.

(iii) if c > a, there
is a high likelihood
that B precedes A.

remove bottom edge.

2
(i) if a > c there is a
high likelihood that
A precedes B;

remove top edge.

(ii) if c > a, there
is a high likelihood
that B precedes A

remove bottom edge.

3 A(B) negates one
or more precondi-
tions required by
B(A).

remove both edges.

4 B negates one or
more preconditions
required by A.

remove bottom edge.

5 B negates one or
more preconditions
required by A.

remove both edges.

6 A and B are usually
complementary or
loosely-coupled ac-
tions.

remove both edges.

7 A precedes B with
high likelihood

remove top edge.

8 A negates one or
more preconditions
required by B

remove top edge.

Table 8.1: Heuristics for pruning the operators’ graph.
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Table 8.2: Hand-coded vs automatically generated hierarchy performance
comparison using HW[FF].

Problem
Hand-Coded Automatic

abs ref tot steps abs ref tot steps
Depot1 28 73 106 12 23 120 147 11
Depot2 54 128 187 17 33 207 245 17
Depot3 488 340 841 38 69 532 609 36
Depot4 292 416 717 43 389 581 982 31
Depot5 845 100 950 71 - - - -
Elevator1 10 51 63 8 19 57 78 8
Elevator2 17 142 163 15 20 145 170 16
Elevator3 18 226 248 4 11 28 40 4
Elevator4 18 359 383 23 23 396 427 26
Elevator5 19 740 767 28 26 566 603 28
Blocks1 11 41 54 6 11 41 54 6
Blocks2 18 104 125 14 19 107 129 14
Blocks3 40 450 497 44 41 463 513 44
Blocks4 45 479 532 48 46 471 524 48
Blocks5 55 501 564 48 58 472 538 48
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Macro-Operator Ground Preconditions Effects
Schema Sequence
(DriveUnloadDrop drive; (at ?t ?p1) (not (at ?t ?p1))
?h - hoist ?t - truck unload; (driving ?d ?t) (at ?t ?p2)
?p1 ?p2 - place drop (in ?c ?t) (at ?c ?p)
?d - driver (at ?s ?p2) (at ?c ?p2)
?c - crate (clear ?s) (not (clear ?s))
?s - surface) (at ?h ?p2) (clear ?c)

(available ?h)
(UnloadDrop unload; (at ?t ?p) (not (in ?c ?t))
?h - hoist ?t - truck drop (in ?c ?t) (at ?c ?p)
?c - crate ?s - surface) (clear ?s) (clear ?c)

(at ?h ?p) (on ?c ?s)
(available ?h)

(WalkBoard walk; (at ?d ?p1) (not (at ?d ?p1))
?d - driver board (at ?t ?p2) (driving ?d ?t)
?p1 ?p2 - place (empty ?t) (not (empty ?t))
?t - truck)
(DriveDisembark drive; (at ?t ?p1) (not (driving ?d ?t))
?d - driver ?t - truck disembark (driving ?d ?t) (at ?d ?p2)
?p1 ?p2 - place) (empty ?t)

(at ?t ?p2)
(not (at ?t ?p1))

(LiftLoad lift; (at ?h ?p) (not (at ?c ?p))
?h - hoist ?c - crate load (available ?h) (not (clear ?c))
?t - truck ?s - surface (at ?c ?p) (clear ?s)
?p - place) (on ?c ?s) (in ?c ?t)

(clear ?c) (not (on ?c ?s))
(at ?t ?p)

Table 8.3: Selected macro-operator schemata for the Driver-depot domain.
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Chapter 9

Conclusions and Future
Work

In this thesis, abstraction techniques for managing complexity in agent sys-
tems and planning have been investigated.

The research presented in this thesis was motivated by the need to cope
with applications for modern computing and information processing sys-
tems. These applications have in common that they are inherently dis-
tributed in data and information to be processed, and that are inherently
complex, since they are too large to be solved by a single, centralized sys-
tem because of limitations available at a given level of hardware or software
technology. Multiagent systems offer a promising and innovative way to
understand, manage, and use distributed, large-scale, dynamic, open, and
heterogeneous computing and information systems. The Internet is the most
prominent example of such systems.

The contributions described in this thesis are the generic multi-agent
architecture PACMAS, the parametric hierarchical wrapper HW[ ], and the
domain hierarchy generator DHG.

The PACMAS architecture has been designed to support the implemen-
tation of applications aimed at: (i) retrieving heterogeneous data spread
among different sources, (ii) filtering and organizing them according to per-
sonal interests explicitly stated by each user, and (iii) providing adaptation
techniques to improve and refine throughout time the profile of each selected
user.

HW[ ] has been devised and implemented to perform planning by ab-
straction that is an effective approach for implementing the planning capa-
bilities of an intelligent agent.

DHG has been devised to automatically generate abstraction hierarchies
to be used by HW[ ] to plan hierarchically.

In part I, the basic issues surrounding the design and implementation
of intelligent agents, together with the aspects regarding their pro-active
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capability, and abstraction techniques that can be exploited to improve their
planning performances, have been illustrated.

In part II, the PACMAS architecture has been presented in detail. To
highlight the peculiarities and the effectiveness of the proposed architecture,
two relevant case studies implemented exploiting the PACMAS architecture,
have been described: the first one is focused on giving a support to under-
graduate and graduate students in their university activities; the second
one is devoted to create press-reviews from online newspapers through the
classification of newspaper articles. Successfull tests on the developed ap-
plications demonstrated the effectiveness of the architecure.

In part III, the parametric system HW[ ] for planning by abstraction,
and the DHG system for automatically generate abstraction hierarchies,
have been presented, together with experiments on a set of benchmarking
domains. Experimental results highlight that abstraction is useful for im-
proving the performances of classical planners. Moreover, a direct compari-
son between the performances of automatically-generated versus hand-coded
abstraction hierarchies demonstrates the validity of the approach.

As for the future work, several improvements of the PACMAS architec-
ture are under investigation. In particular, new algorithms to enhance the
adaptive capabilities of the involved agents, are in development. Further-
more, the integration of the planning system HW[ ] within PACMAS agents,
to give them powerful planning capabilities, is under study.
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