
Power Laws in Object Oriented Systems

Architectures

Nicola Serra

2005

Contents

Acknowledgment . v
Introduction . vi

1 Measures in Software Engineering 1

1.1 Software Metrics Classification 2
1.2 Objectives of Software Measurements 3
1.3 Object Oriented Metrics . 5

1.3.1 CK Metrics Suite . 6
1.3.2 CK Metrics as Quality Indicators 9

2 Complex Networks 12

2.1 Introduction . 12
2.2 Networks Models and Properties 13

2.2.1 Random Graphs . 14
2.2.2 Small World Networks 15
2.2.3 Scale Free Networks 18

2.3 Software Systems as Complex Networks 22

3 Experiment Overview 24

3.1 Building the OO Graph . 25
3.1.1 The Java Graph Model 26
3.1.2 The Smalltalk Graph Model 29

3.2 Analysis Overview . 32
3.2.1 Degree Distributions 32
3.2.2 Correlation Analysis 33

4 Results 35

4.1 Smalltalk Systems . 35
4.1.1 Statistical Correlation Analysis 36
4.1.2 Distribution Analysis 38
4.1.3 More Distributions . 43

4.2 Java Systems . 49

i

4.2.1 Statistical Correlation Analysis 49
4.2.2 Distribution Analysis 51

5 Conclusions and Further Works 53

5.1 Conclusions . 53
5.2 Further Works . 54

A Metrics 56

B Statistics 62

Bibliography . 71

ii

List of Figures

2.1 Watts and Strogatz rewiring approach 19
2.2 The clustering coefficient and the minimum length path 19
2.3 Real networks degree distributions 21

3.1 The Java graph model . 28

4.1 Degree Density Functions . 39
4.2 Smalltalk Input Degree CCDFs 41
4.3 Smalltalk Output Degree CCDFs 42
4.4 Smalltalk Inheritance Metrics 45
4.5 Smalltalk Class Size Metrics 46
4.6 Smalltalk Output Degree vs. Class LOC 47
4.7 Smalltalk Method Metrics . 48
4.8 Java Distributions . 52

iii

List of Tables

2.1 Real Network Statistics . 17

3.1 Java Relationships . 28

4.1 Smalltalk Input Degree Correaltion 36
4.2 Smalltalk Output Degree Correaltion 37
4.3 Smalltalk Power Coefficients 40
4.4 Smalltalk Metrics Power Coefficients 44
4.5 Java Degree Correaltion . 49
4.6 Java Power Coefficients . 51

B.1 Graph#1 Statistics . 63
B.2 Graph#2 Statistics . 64
B.3 Graph#3 Statistics . 65
B.4 Graph#4 Statistics . 66
B.5 Graph#5 Statistics . 67
B.6 Graph#6 Statistics . 68
B.7 Ant Statistics . 69
B.8 Tomcat Statistics . 70

iv

Acknowledgment

During my PhD course I have been working as a part of a wide group, whose
main research topics have been and still are located in the field of Software
Engineering, with a special interest and attention to the Agile Methodolo-
gies and to the software systems and processes modeling. My work, study
and research activities have been always related to the work, study and re-
search activities of other people within such group. Thus, I must and want
to thank all of them. Especially, thanks to Prof. Michele Marchesi for his
guidance in the course of my research and academic experience. Thanks to
the great Stefano Chiodo Tuveri, who actively contributed to the design and
implementation of the parsing tools and to the the analysis of data results.
Thanks to the Agile Group and to the Agile Gruppo.

Grazie alla mia Famiglia, sempre presente.
Senza di loro non sarebbe stato possibile.

v

Introduction

Many real systems have been described as complex networks, where nodes rep-
resent specific parts of the system and connections represent relationships among
them. Examples of such networks come from very different contexts. For exam-
ple, technological networks such as the Internet [Faloutsos, 1999][Chen et al, 2002],
the World Wide Web [Broder et al., 2000] and the North American Power grid
[Amaral et al., 2000] have been analyzed as complex networks. Many other exam-
ples come from context such as social science, where network of acquaintance or
other relationships between individuals have been modeled and analyzed as com-
plex networks [De Castro and Grossman, 1999] [Newman, 2001]. Also biological
systems such as neural and metabolic networks, blood vessels and protein interac-
tion webs have been modeled following an analogue approach [Jeong et al., 2001].

The study of networks in the form of mathematical graph theory is a funda-
mental topic of the discrete mathematics and it has a long history, as it starts
in the eighteenth century with Euler. More recently, an important contribution
to the study of such systems came from social sciences, whose interest started to
emerge already around 1930s. However, recent years have witnessed a substantial
new movement in the study of complex networks. Driven by the the fast increas-
ing of computational power, the focus has been in fact shifted from the study of a
single relatively small graph to the analysis of the statistical properties of families
of large systems, made of thousands of nodes and intricately connected by millions
of connections.

Traditional theories suggest to represent complex systems as random graphs,
according to the models proposed by Erdős and Rényi [Erdős and Rényi, 1959]
[Erdős and Rényi, 1960]. However, there is an increasing evidence that many
real world systems behave displaying global statistical properties that are not
accounted by the random graph model. More precisely, despite the very dif-
ferent realms where complex systems can be found, almost all of them show a
high degree of self-organization into a scale-free state [Barabasi and Albert, 1999]
[Barabasi et al., 1999]. In practice, when these systems are modeled as graphs
where the vertices represent the entities of the system, and the (possibly oriented)
edges the relationships between them, the distribution of edges connected to ver-
tices follows a power-law. Power laws, also known as Pareto distributions, are not
a characteristic that needs a graph to be found, they are also found in the distribu-
tion of features related with single entities. The distribution of words in a corpus
of documents, of individuals and firms wealth, of stock market daily returns, and
even of the size of U.S. cities, all follow a power-law.

Inspired by the large interest of research on complex networks, recently it
has emerged the interest in applying such theories and models to represent large
software systems. Many software systems have reached such a huge dimension
that it looks sensible to treat them as complex networks [Focardi et al., 2000].
Software is built up out of many interacting units and subsystems at many levels

vi

of granularity (functions, classes, interfaces, libraries, source files, packages, etc.),
and the various kinds of interactions among those pieces can be used to define
graphs that form a skeletal description of a system. Moreover, these entities are
characterized by features whose distribution in turn can be studied looking for
scale-free behavior.

Some authors have already found significant power laws in software systems.
Potanin studied the graphs formed by runtime object oriented programs written
in a variety of languages, namely Java, C++ and Smalltalk, and showed that
these turn out to be scale-free networks without exception [Potanin et al., 2002].
Valverde studied the emergence of scaling in software architecture graphs belong-
ing to large Java and C/C++ open source software systems [Valverde et al., 2002]
[Valverde and Solé, 2003]. The graphs he studied did not take into account de-
tailed relationship semantics, and did not make any difference between the various
kinds of relationships among classes. He consistently found significant power laws
in the graph vertices input and output edge distribution. Myers found the same
properties, again studying open-source software systems [Myers, 2003]. Wheeldon
and Counsell studied various kinds of class properties and relationships of large
Java systems, finding many power-law distributions [Wheeldon and Counsell, 2003].
Marchesi studied and again found scale-free behavior within Smalltalk systems
[Marchesi et al., 2003].

Besides the intrinsic interest of finding scaling laws in software systems net-
works, the study of their complex structure can also be interesting from the per-
spective of the software engineering. Complex network theory, while applied to
represent software systems, provides in fact an alternative and new perspective
for the analysis of many software systems properties. This could be achieved for
example correlating the topological properties of the underlining network with
various quality indicators or general size and complexity metrics computed on
the actual represented software system. Nevertheless, while all of the previous
works gave evidence that software system networks display connectivity with scale
free distribution tails, in accordance with the statistical properties of many other
real networks, the practical implications of such results on the development and
evolution of software systems are poorly accounted.

Starting from the above observations, this work aims to a double objective.
First, to study the general statistical properties of the network representation
of a software system and, second, to provide an interpretation of such analysis
within the boundaries of software engineering. More precisely, we will focus on the
representation of the object oriented software systems and on the analysis of their
topological graph properties in terms of software quality.

So far, the application of complex networks theory to the representation of

software systems have been mainly focusing on evaluate whether or not the degree

distributions of the software graphs follow a power law. This work goes further,

providing evidence that such distributions can be also found for other software

properties not requiring a graph representation. Moreover, it will be shown how

vii

the degree distribution themselves can be fitted also by other types of distribution

such as lognormal and sometimes normal functions. Nevertheless, the best contri-

bution to the state of the art is given by the correlation analysis of the network

topological properties with the most important object oriented software quality

indicators. This for the first time provides a quantitative and formal interpreta-

tion of the global statistical properties displayed by software networks and shows

that the scale free behavior of software networks reflects the scale free behavior

of well defined software properties, which are in turn independent of the graph

representation.

Chapter One gives an overview of the software measurement theory and
presents the main object oriented metrics proposed in literature, namely the
Chidamber and Kemerer metric suite [Chidamber and Kemerer, 1994]. On
the specific, it presents the main literature results relative with the empirical
validation of such metrics in terms of code quality. This provides a basis for
the interpretation of further results within the terms of a software engineering
approach. More details about other software metrics adopted in this study
are given in Appendix A. Chapter Two presents the main issues around
the complex network theories. The main results will be presented, starting
from the small world effect to the emergence of scaling properties revealed
by real networks. A specific section is dedicated to give an overview of the
application of the complex network theory to the representation of software
systems. Chapter Three describes the approach followed to perform the
statistical analysis and also provides a description of the method adopted
for the definition and implementation of the software graph representation.
The exaustive descriptive statistic of each analyzed system is provided in
Appendix B. Chapter Four is dedicated to the presentation and discussion
of the analysis results. Finally, Chapter Five provides the conclusions and
proposes some cue for further works. The study has been performed both on
Smalltalk and Java systems.

Both modeling and metric extraction required the design and implemen-
tation of specific parsing tools. Few details about tools architectures are
given both in Chapter Three and in Appendix A. Nevertheless, the deep
explanation of the parsing tools implementation is not explicitly accounted
here, where I chose to give more relevance to the modeling aspects. The
work presented here represents the main part of the research activity of my
PhD course, in fact focused on the study of graph based models for the rep-
resentation of object oriented software systems and on the implementation
of parsing tools for the extraction and definition of software metrics.

viii

Chapter 1

Measures in Software

Engineering

Measurement is an inherent and fundamental activity of all engineering dis-
ciplines. Measurement provides the ability to control activities, products and
resources of a specific process.

Compared with other traditional engineering disciplines, software engi-
neering is for sure the youngest and most immature. On the other hand it
is surprising how fast, above all during the last decade, software engineer-
ing has increased its power to deliver and produce large, reliable and high
quality software systems. Always new methodologies, techniques, process
models and tools have been proposed and successfully applied to improve
and support the production of high quality software systems.

The aim of software engineering is to provide the technologies which ap-
ply an engineering approach to the development and support of software
products and processes. Software engineering activities includes managing,
planning, modeling, analyzing, designing, implementing, testing and main-
taining. Engineering approach means to well define in order to control all
these process activities. To achieve this goal measurement plays a key role,
allowing to understand, control and improve software development processes
and products.

Measurement provides the mechanism to create the aid in answering a va-
riety of questions associated with the enactment of any software process. It
helps to support project planning, to determine the strengths and weaknesses
of the current processes and products, to evaluate the quality of specific pro-
cesses and products. Measurement also helps, during the course of a project,
to assess its progress, to take corrective action based on this assessment, and
to evaluate the impact of such action.

Moreover, measurement becomes essential to provide visibility to enti-

1

1.1. SOFTWARE METRICS CLASSIFICATION

ties and relationships, to quantitatively assessing problems and to suggest
adequate solution scenarios. It happens at all different levels of details and
abstraction, helping engineers to make the better decision about methodolo-
gies, techniques and tools to improve or to simply understand the status of
processes, products and resources.

This section will give a brief introduction about the software measure-
ment practice. The first part will provide the background theory of software
measurement. Then the focus will be moved on the specific of the object
oriented paradigm and the main object oriented metrics will be presented
and discussed.

1.1 Software Metrics Classification

The first obligation of a measurement process is to establish what to measure.
This is a general concept whose validity also address software engineering.
Thus, the primary objective in applying a measurement approach upon soft-
ware development is to identify the entities and attributes to be measured.

Following Fenton [Fenton, 1997] software entities may be of three different
types:

• Processes are collections of related software engineering activities.

• Products are any artifacts produced as output of any software engi-
neering activity.

• Resources are any artifacts required as input of any software engi-
neering activity.

Typically, the definition of a process is related with a timescale. Thus,
the activities of a process are related in some way which depends on time.
Resources and products are related with processes. Each process activity
is characterized by the resources it uses and by the products it produces.
Any artifact can be considered both a resources or a product according to
the specific associated process. More specifically, an artifact produced by a
specific activity can feed another activity.

Measurement is the activity of quantify in some way any attribute of
a process, product or resource. Given any specific activity or artifact to
measure, we can distinguish two different types of attributes:

• Internal Attributes of a process, product or resource are those that
can be measured in terms of the sole process, product or resource. Thus,
internal attribute can be measured considering the process, product or
resource on its own, independently of its behavior.

Power Laws in Object Oriented Systems Architectures 2

1.2. OBJECTIVES OF SOFTWARE MEASUREMENTS

• External attributes of a process, product or resource are those that
can not be measured in terms of the sole process, product or resource.
Thus, external attribute can only be measured considering the process,
product or resource related with the external environment and context.
In this case the behavior becomes as important as the entity itself.

For any industrial process quality and productivity are indeed the most
important parameters to be controlled and quantitatively assessed. This is
true for industrial software development, too. Nevertheless, a formal defini-
tion of terms such like quality and productivity is far to be simple. Typically,
business level roles, such as managers and customers, are more interested on
external attributes, because quality and productivity are expressed in terms
of such kind of attributes. For example, Boehem expressed software quality
in terms of portability, reliability, efficiency, human engineering, testability,
understandability and modifiability. Thus, quality attribute is decomposed
in other external attributes, which in turn are still far to be simply definable.
In practice, the decomposition goes on in order to finally express external
attributes in terms of internal attributes, which are directly measurable.
Similarly, McCall proposed an alternative model, which became the basis
for the ISO 9126 software quality standard. The standard express quality
again in terms of external attributes like functionality, reliability, usability,
efficiency, maintainability and portability.

While external attributes are highly important on business level, internal
attributes are fundamental as they are the ones that can be directly mea-
sured. Internal attributes represent the last step on the decomposition of
external attributes, that is, external attributes are typically quantified in
terms of internal attributes. Early and modern approaches such like top-
down design, low-coupling-high-cohesion structured design, object orienta-
tion and design patterns are all based on a common principle: good internal
structure leads to good external quality. This principle underlines the tight
relationships between internal and external attributes and points that the
establishment of a good level of desirable internal attribute leads to the
consequent establishment of a good level of the high abstraction desirable
attributes.

1.2 Objectives of Software Measurements

There are compelling reasons to consider measurement as a fundamental
activity of software production process.

Following Fenton [Fenton, 1997], independently of the specific perspec-
tive, measurement is fundamental to achieve three main objectives:

Power Laws in Object Oriented Systems Architectures 3

1.2. OBJECTIVES OF SOFTWARE MEASUREMENTS

• Understanding

• Control

• Improvement

First of all, measurement allows to asses the current situation about pro-
cesses or products within a given development phase or within a more specific
context. In this sense, measurement makes aspects of process and products
more visible, providing a better understanding of entities, relationships and
activities. This helps the involved roles to establish the baselines to set the
goals for future behaviors.

Consequently, measurement becomes the basis to control the software
development processes and products. Starting from the assessment of the
current status and then establishing the future goals, it becomes possible to
make predictions about what is likely to happen and to perform changes and
corrections to processes, products and resources, in order to maintain the
evolution inside acceptable bounds.

Last, measurement supports and encourages improvement of processes
and products. For example, the quantitative assessment of the current prod-
uct quality level, or process productivity is the starting point to search for
new solutions in order to increase the same levels.

The early establishment and definition of the objectives in a measure-
ment process is the basis of the Goal Question Metric (GQM) measure-
ment framework [Basili and Rombach., 1988] [Basili, 1992]. According to the
GQM framework, measurement is a top-down process, which start defining
a set of operational goals as a basis to select the appropriate set of metrics
to achieve those goals. There are a variety of uses for measurement, thus the
purpose should be clearly stated. Moreover, measurement needs to be viewed
from the appropriate perspective. The manger, the developer, the customer
and the final user each view the final product in a different perspective, thus
they may want to know different things about the project and with a very
different level of detail. The measurement model is based on a set of tree
different levels:

• Conceptual level - GOAL: a goal is defined for an object from a
specific point of view, relative to a particular environment. Objects of
measurement may be products, processes or resources.

• Operational level - QUESTION: a set of questions is used to char-
acterize the way the assessment/achievement of a specific goal is going
to be performed based on some characterizing model. Questions try

Power Laws in Object Oriented Systems Architectures 4

1.3. OBJECT ORIENTED METRICS

to characterize the object of measurement (product, process, resource)
with respect to a selected quality issue and to determine its quality
from the selected viewpoint.

• Quantitative level - METRIC: a set of data is associated with every
question in order to answer it in a quantitative way

The process of setting goals and refining them into quantifiable questions
is critical and complex and requires a great level of experience. In order to
support such step, Basili provided both the templates for the definition of
the conceptual level and the guidelines for deriving questions and metrics
[Basili, 1992].

1.3 Object Oriented Metrics

Management of complexity plays a key role in the development of high quality
software systems. While it is nowadays well accepted that there is no silver
bullet to deliver the perfect system [Brooks, 1987], also there is the evidence
that the Object Oriented paradigm has been playing a fundamental role
in software engineering, as an optimal technology to successfully apply the
divide et impera principle for managing high complexity of large systems.

According to the object oriented paradigm a software system is made of
objects which interact one to each other by passing messages. A software
object is the abstraction of a real object within an existing real domain.
Each object is characterized by its state and behavior, the first describing
the internal information structure and the second the way it can interact
with external environment.

An object oriented system starts by specifying a class containing the def-
inition of related attributes and operations, that is the definition respectively
of the state and behavior of its instances (objects). Thus, a class is used
as the basis to instantiate objects. In this sense, a class plays the role of a
common interface shared by all its objects.

Classes and objects can be related across different mechanisms and re-
lationships. First, classes and objects are related across inheritance rela-
tionship. A child class inherits all of the attributes and operations from its
ancestor classes, having in addition its own attributes and operations. A
child class can also become a parent class for other classes, forming another
branch in the hierarchical tree. Second, objects interact by passing messages.
When a message is passed between two objects, the object classes are said
to be coupled.

Power Laws in Object Oriented Systems Architectures 5

1.3. OBJECT ORIENTED METRICS

The application of object orientation pervades all software development
process activities, from the requirement specification, to the analysis and
design, to the implementation. Obviously, object orientation itself cannot
be considered the warranty of good software delivery, if not supported by an
adequate engineering approach.

The object oriented paradigm inherits part of its concepts, such like cou-
pling, cohesion and information hiding, from traditional modular software
engineering approaches [Parnas, 1972]. On the other hand, there are con-
cepts, such like inheritance and overloading, which are new and object ori-
ented specific. While other general software concepts, such like size and
complexity, need to be reinterpreted in the perspective of object oriented
approach. Thus, a formal definition of object oriented structure attributes
and concepts is needed, in order to achieve the application and the extension
of software measurement principles to object oriented systems. Moreover,
object oriented approach requires the definition and validation of ad-hoc
metrics, which should be able to measure processes and product attributes
of object oriented software systems.

This section will present and discuss the main object oriented metrics
proposed in the software engineering literature. Metrics will be presented
and compared on the basis of their practical implementation and theoretical
validation.

1.3.1 CK Metrics Suite

Chidamber and Kemerer [Chidamber and Kemerer, 1994] have suggested a
suite of six object oriented design metrics. The theoretical basis for the defi-
nition of such metrics, is the set of ontological principles proposed by Bunge
[Bunge, 1979] and later applied to the formal definition of object oriented
systems by Wand and Weber [Wand and Weber, 1990]. The Bunge ontology
has largely interested researchers involved in the formal modeling of object
orientation, since it deals with concepts inherent to the real world, which is
the claimed basis of object oriented approach. According to Bunge ontology
the world is viewed as composed of substantial individuals having a finite set
of properties. These concepts can be formally translated and encapsulated
in the object oriented paradigm definition, where an object is equivalent to a
substantial individuals collectively considered with its properties. Similarly,
attributes such as coupling, cohesion, complexity and inheritance can be de-
fined in terms of Bunge ontology. This approach provides for the first time a
theoretical and formal basis of metrics definition. As pointed by Chidamber
and Kemerer themselves, not only previous attempt to define object oriented
metrics, but more generally the large part of traditional metrics definition

Power Laws in Object Oriented Systems Architectures 6

1.3. OBJECT ORIENTED METRICS

lacked such theoretical basis.
In this section we will present the CK Suite metrics and discuss them

in terms of their implementation and empirical validation. All the following
definitions are directly referred to the original paper.

• WMC - Weighted Methods per Class

Definition: consider a class C, with methods M1,...,Mn that are defined
in the class. Let c1,...,cn be the complexity1 of methods. Then:

WMC =
n

∑

i=1

ci (1.1)

If all method complexities are considered to be unity, then WMC is the
number of methods (NOM) for the class C:

WMC = NOM = n (1.2)

Interpretation: this metric provides a measure of the complexity of a
class. Complexity is intended in terms of Bunge ontology, where it is
defined as the cardinality of properties of a substantial individual. The
number of methods and their complexity are predictors of the effort
required to develop and maintain the class. The larger the number of
methods, the greater the potential impact on children classes, as they
inherit all methods of parent classes. Moreover, a class with a large
number of methods are likely to be application specific, limiting the
possibility of reuse.

• DIT - Depth of Inheritance Tree

Definition: the DIT metric is the number of ancestors of a given class,
that is the number of nodes (classes) to be crossed to reach the root of
the inheritance tree. In cases involving multiple inheritance, the DIT
will be the maximum length from the node to the root of the tree.

Interpretation: DIT is a meusere of how many ancestors may poten-
tially affect a class. The deeper a class is in the hierarchy tree, the
greater the probability of inherit a large number of methods, thus in-
creasing class complexity. On the other hand, the deeper a class is in

1Complexity is deliberately not defined more specifically here in order to allow for the
most general application of this metric.

Power Laws in Object Oriented Systems Architectures 7

1.3. OBJECT ORIENTED METRICS

the inheritance tree, the greater the potential level of reuse of inherited
methods.

• NOC - Number of Children

Definition: the NOC metric is the number of immediate subclasses
subordinated to a class in the class hierarchy.

Interpretation: NOC is a measure of how a class can potentially affect
its subclasses. The greater the number of children, the larger the level
of reuse. On the other hand, a high value for this metric may warn a
misuse of inheritance mechanism.

• CBO - Coupling Between Object Classes

Definition: the CBO metric for a given class is a count of the number
of other classes to which it is coupled.

Interpretation: two classes are coupled when methods declared in one
class uses methods or instance variables defined by other class. High
coupling negatively affects modularity of the design. In order to pro-
mote encapsulation and improve modularity, class coupling must kept
to the minimum.2

• RFC - Response For a Class

Definition: the RFC metric is the cardinality of the response set for a
class. Given a class C, with methods M1,...,Mn, let Ri with i = 1, .., n
to be the set of methods called by Mi. Thus, the response set for the
class C is defined as:

RC =
n

⋃

i=1

Ri (1.3)

the RFC metric is then given by:

RFC = |RC| (1.4)

Interpretation: the response set for a class is the number of methods
that can be potentially executed in response of a message received by

2Low coupling as indicator of good design does not belong only to object orienta-
tion approach. Rather, it comes from the modular design theory, formally proposed by
Parnas[Parnas, 1972].

Power Laws in Object Oriented Systems Architectures 8

1.3. OBJECT ORIENTED METRICS

an object of that class. This is a measure of the communication of
the class with other classes in the system. The greater the number of
methods that can be invoked by a class, the larger the complexity of
the class. RFC gives a measure of the effort required for maintain a
class in terms of testing time.

• LCOM - Lack of Cohesion in Methods

Definition: Given a class C, with methods M1,...,Mn, let Ii with i =
1, .., n, to be the set of instance variables accessed by Mi. We define
the cohesive method set and the non-cohesive method set as:

CM = {(Mi, Mj)|Ii ∩ Ij 6= ∅, i 6= j} (1.5)

NCM = {(Mi, Mj)|Ii ∩ Ij = ∅, i 6= j} (1.6)

the LCOM metric is then given by:

LCOM =

|NCM | − |CM | if |NCM | > |CM |

0 otherwise
(1.7)

Interpretation: the LCOM metric is refers to the notion of degree of
similarity in methods. The degree of similarity is formally given by:

σ(Mi, Mj) = Ii ∩ Ij (1.8)

The larger the number of similar methods, the more cohesive the class.
This approach is coherent with traditional notion of cohesiveness, which
is intended to account the inter-relatedness of different part in a pro-
gram. Cohesiveness of methods in a class is a desirable attribute, since
it promotes encapsulation. Lack of cohesion implies classes should
probably split into two or more specialized subclasses.

1.3.2 CK Metrics as Quality Indicators

The object oriented approach has been claimed as a key technology to better
manage software complexity and to provide improvement of systems quality.
Software engineering researchers spent great efforts to empirically validate
such claims. The object oriented research mainly has been studying the re-
lationship between object oriented metrics and quality in terms of defects,

Power Laws in Object Oriented Systems Architectures 9

1.3. OBJECT ORIENTED METRICS

specifically those reported during customer acceptance testing. Defect den-
sity is considered to be an indicator of fault proneness at class level and
then a measure of maintenance effort. Similarly, defect density is reasonably
related with extent of code change, which is again a surrogate measure of
maintainability.

Early studies found the existence of a relationship between defects and
both traditional complexity measures, such as the McCabe ciclomatic com-
plexity, and size measures, such as the LOC family metrics. More recently
many empirical experiments have been performed to find similar relation-
ships between defects and object oriented metrics such like the Chidamber
and Kemerer metrics previously described.

Li and Henry investigated the six metrics, including some simple size
metrics, on two commercial projects to determine whether such metrics can
be linked to the extent of code change, which in turn has been consid-
ered as an indicator of maintenance effort. On the basis of an empirical
study based on regression analysis, they concluded these metrics to be in-
deed useful for such purpose [Li and Henry, 1993]. Following Li and Henry,
Basili and his colleagues investigated the CK suite on eight medium-size
projects performed in an academic context. On the basis of a statistical
regression analysis, they gave evidence on the ability of such metrics to
be early quality indicators in terms of fault-proneness prediction at class
level [Basili et al., 1996]. On three financial applications, Chidamber found
that coupling and cohesion metrics are in fact related with productivity, re-
work and design effort [Chidamber at al, 1994]. Briand and his colleagues,
investigated all CK metrics and again they found a relationship between
all metrics of the suite, except for LCOM, and fault proneness at class
level [Briand et al., 1999][Briand et al., 2000]. Similar results have been con-
firmed by Subramanyam and Krishnan on data collected from an industrial
context [Subramanyam and Krishnan, 2003]. More recently, Alshayeb and
Li performed an empirical study validating DIT, WMC, LCOM and other
object oriented metrics as predictors of evolution changes in short iteration
processes [Alshayeb and Li, 2003]. They found such metrics to be good pre-
dictors of maintenance effort in Extreme Programming environments.

While there is large number of studies which validate CK metrics on em-
pirical basis, also literature presents some critics mainly on theoretical ba-
sis. Churcher and Shepperd criticized CK metrics on the basis that there
is no consensus on the definition of the underlining measured attributes
[Churcher and Shepperd, 1995]. They argued that even the notion of method
per class is ambiguous, in relation of the specific adopted language. Neverthe-
less, Chidamber and Kemerer themselves pointed that this lack of precision
in the definition of the attributes is due to the fact that all metrics of the suite

Power Laws in Object Oriented Systems Architectures 10

1.3. OBJECT ORIENTED METRICS

are intended to be design metrics. This implies the metric definition to be
independent of the specific language implementation. Henderson-Sellers and
his colleagues [Henderson-Sellers et al., 1996] criticized the definition of CBO
and LCOM as lacking of mathematical basis and proposed their alternative
definition. Moreover, CK metrics did not account for complexity which can
arise from object oriented design factors such like polymorphism and encap-
sulation. An example of metrics suite accounting such factors is the MOOD
suite proposed by Abreu [Abreu and Carapuca, 1994][Abreu et al., 1995].

More metrics, with some implementation detail, will be provided in Ap-
pendix A.

Power Laws in Object Oriented Systems Architectures 11

Chapter 2

Complex Networks

2.1 Introduction

A network is made of a set of entities, which are usually called vertices
or nodes, and a set of connections between them, which are usually called
edges. There is a great number of real systems that can be and in fact
have been described as complex networks. Examples include the Internet,
the World Wide Web, social networks of acquaintance between individuals,
organizational networks and networks of business relations between compa-
nies, metabolic networks, food webs, distribution networks such as the postal
delivery routes, networks of citations between papers, and many others.

The origin of networks theory starts in the far 1735, when Euler gave
the solution of the Kőnigsberg bridge problem. This is often cited as the
first proof in the theory of networks and as the seed of the mathematical
graph theory. The mathematical graph theory has been largely developed
during the twentieth century and networks have also been largely studied in
the social sciences. Although the graph theory and the interest in networks
have a remote origin, during recent years has emerged a new approach in the
study of such systems. What makes the recent approaches new, if compared
with the previous traditional studies, is the large extension of the considered
networks. This shifted the focus from the properties of a single small graph,
or even of a single node, to the global statistical properties of the entire
network. Moving from small graphs to billion nodes networks represents
the boundary between the traditional graph theory and the modern complex
networks theory. Moreover, this is the main characteristic which makes a
simple network to become complex.

The body of the new approach aims to a double goal. First, to under-
stand the global statistical properties of complex network, in terms of the

12

2.2. NETWORKS MODELS AND PROPERTIES

distributions of topological entities such as the nodes degree. Second, to ex-
tract network models in order to understand the meaning of such properties
and how they emerge.

The very first attempt to model complex networks in terms of statis-
tical properties is represented by the random graphs theory proposed by
the two Hungarian mathematician Erdős and Rényi [Erdős and Rényi, 1959],
[Erdős and Rényi, 1960].

Using the classical random graph theory to model complex networks looks
sensible, but in fact a great number of real systems behave according to laws
significantly different from those predicted by Erdős and Rényi theory.

More precisely, there is increasing evidence that several real networks
behave as small worlds, simultaneously showing short length path and high
clustering behaviors [Watts and Strogatz, 1998]. Moreover, many real net-
works show interesting laws in the distribution of the number of links con-
nected to a node. The tails of such distributions follow a power law, that is
a significant deviation from the gaussian behavior that would be expected if
links were randomly added to the network [Barabasi and Albert, 1999].

Large software applications are considered to be among the most complex
artifacts ever produced by man [Brooks, 1995], and consequently are good
candidates to be modeled as complex networks. This is particularly true
for object-oriented systems, where objects and classes are natural candidates
to be represented as nodes, while the various possible relationships between
them – such as inheritance, instantiation, composition, dependence – can be
represented as arcs connecting nodes.

Very recently, some studies have been performed on software systems
showing that run-time objects [Potanin et al., 2002] and static class struc-
tures of object oriented systems are in fact governed by scale free power law
distributions [Valverde et al., 2002][Valverde and Solé, 2003]. Other studies
have been performed by Myers [Myers, 2003] and Wheeldon and Counsell
[Wheeldon and Counsell, 2003], leading to similar results. While, most of
these studies of complex software systems are based on static languages such
like C++ and Java, Marchesi [Marchesi et al., 2003] provides evidence that
similar behaviors are displayed also by dynamic languages such like Smalltalk.

2.2 Networks Models and Properties

This section will present the main differences between early and modern
networks theories, starting from the random graph model and then moving
to small world and scale free models. Some real system examples will be
provided.

Power Laws in Object Oriented Systems Architectures 13

2.2. NETWORKS MODELS AND PROPERTIES

2.2.1 Random Graphs

The random graphs theory have been first proposed by Solomonoff and Rap-
port [Solomonoff and Rapport, 1951] and independently around 60’s by the
two Hungarian mathematicians Erdős and Rényi [Erdős and Rényi, 1959]
[Erdős and Rényi, 1960].

Following Erdős and Rényi, a random graph Gn,p is simply made staring
from a given set of n nodes, then considering each possible pair and inde-
pendently drawing a connection with probability p or doing nothing with
probability 1 − p. Formally, Gn,p is the family of all graphs where a single
instance with m connections appears with probability pm(1 − p)M−m, where
M = 1

2
n(n − 1) is the maximum possible number of connections. Erdős

and Rényi proposed the alternative model Gn,m, which is the family of all
the graphs having n nodes and exactly m connections, where each graph
instance appears with equal probability. The two models are equivalent and
quite all properties displayed by one can be translated to the second, if pre-
serving the condition of independence and in the limit of large number of
nodes n.

In a series of articles, Erdős and Rényi gave proof of many properties of
random graphs . All properties are exactly solvable in the limit of large graph
size [Erdős and Rényi, 1959][Erdős and Rényi, 1960][Erdős and Rényi, 1961].

One of the main characteristic of a random graph is the Poisson distri-
bution of the node degree. The degree of a node is the number k of edges
directly connected with the node itself. Since the presence or absence of a
connection between each pair of nodes is independent, the probability of a
node to have k directly connected edges in a graph of n nodes is given by:

pk =

(

n

k

)

· pk · (1 − p)n−k ∼=
zk · e−z

k!
(2.1)

The second approximation becomes exact in the limit of large n and
holding the mean degree z = p(1 − n) constant. The degree distribution
given in equation 2.1 is the reason why the above random graph model is
also called Poisson Random Graph.

The expected behavior of a random graph varies with the value of p.
Erdős and Rényi demonstrated what is considered the most important prop-
erty of a random graph, that is the existence of a transition phase from a
low-p state where there are lots of small disjoined elements with a few number
of connection, to a high-p state where the large part of nodes are joined to-
gether in a single giant element. The transition phase can be easily explained
following Janson, who provides an alternative evolution model of a random
graph [Janson, 2000]. Following Janson, a random graph can be easily rep-

Power Laws in Object Oriented Systems Architectures 14

2.2. NETWORKS MODELS AND PROPERTIES

resented as a growing process where, starting from a given set of n nodes,
edges are added one by one. Each connection is chosen uniformly at random
among all possible remaining pair of nodes within the graph. According to
this model and adding each edge at fixed times t = 1, 2, 3, ..., we obtain the
Gn,m model exactly at time m, while adding each edge at random time uni-
formly and independently taken from the interval (0, 1), we obtain the Gn,p

at the time t = p. The evolution of the graph starts from the n nodes without
any connection. During the entire process the graph becomes first a forest of
small trees, then the giant element appears and at the end the process lead to
the birth of the complete graph, that is the graph with all the possible connec-
tions. The study of the behavior near the transition phase was treated first by
Solomonoff and Rapport and then by Erdős and Rényi. More recently others
such like Luczak [Luczak, 1990][Luczak et al., 1994][Luczak, 1996] and Jan-
son [Janson, 2000] deeply explained this issue.

For an exhaustive mathematical treatment of random graph theory see
the books by Bollobás [Bollobás, 1995] and by Janson, Luczak and Rucinski
[Janson et al., 1999].

2.2.2 Small World Networks

Given an undirected network, we define the mean geodesic length between
vertex pairs as follow:

l =
2

n(n + 1)

∑

i≥j

dij (2.2)

where dij is the geodesic distance between vertex i and vertex j, that is
the minimum number of adjacent edges that links vertex i and vertex j. The
geodesic distance between two vertexes is also known as short length path.
Consequently, the mean geodesic length given in equation 2.2 is also called
mean short length path of the network. The definition given in equation 2.2
becomes problematic while applied on networks having disjoined elements.
In this case, two nodes which respectively belong to disjoined subgraphs have
infinite geodesic distance, that is the mean geodesic distance l becomes also
infinite. To avoid this problem, pairs that falls in disjoined subgraphs are
typically excluded from the average.

A large number of real networks display a small value of the mean geodesic
length l, if compared with the number of nodes n. For examples, many so-
cial networks such as the movie actors network, where Hollywood actors are
linked if they have worked together for the same movie, the science coauthor-
ship networks, where scientists are liked if they are coauthors of the same

Power Laws in Object Oriented Systems Architectures 15

2.2. NETWORKS MODELS AND PROPERTIES

paper, display values of l between 3.5 and 7.5. Also, many information,
technological and biological networks display similar values (Table 2.1).

The small value of the mean geodesic length is known as small world
effect. The small world effect was described for the first time in the 60’s
with a famous experiment carried out by Stanley Milgram [Milgram, 1967].
The experiment consisted in passing a letter from person to person to reach
a designed target, with the constraint that one individual had to pass the
letter only to a first-name acquaintance. The experiment showed that a any
generic target could be reached staring from any far individual with around
six steps. This result is known as the six degree of separation.

The small-world effect has a great impact and implication on real net-
works. Mainly, it plays a fundamental role on the dynamics of network, since
it impacts the fastness of spread across the network itself. For examples, the
rapid spread of information around the Internet, the efficiency of a postal de-
livery system or the time it takes for a disease to spread across a population
are all closely related to existence of the small world effect on the underlining
network.

Recently, the term small world effect has assumed a more formal mean-
ing. Mathematically, we say that a network shows the small world effect
if the value l scales logarithmically or slower with the network size n and
for fixed mean degree. Logarithmic scaling can be proved for a variety of
network models. For examples, Bollobás [Bollobás, 1981] and Chung and
Lu [Chung and Lu, 2002] showed that random graphs in fact display such
behavior, while Bollobás and Riordan [Bollobás and Riordan, 2002] provide
proof that networks with power law degree distributions behave displaying
the small world effect.

While random graph model reflects the small world effect displayed by
many real networks, a clear deviation of random graphs is the transitivity of
actual nets. Transitivity, also known as clustering, reflects the presence of a
high number of triangles in the network, where a triangle is a set of three
vertices connected one to each other. That is, if the node A is connected to
the node B and the node B is connected to the node C, then there is an high
probability for the presence of a link between the node C and the node A.
In social terms, this means that the friend of your friend is also likely to be
your friend.

Mathematically, we define the local clustering coefficient for a given node
as:

Ci =
NumberofActualLinksAmongNeighbors

NumberofPossibleLinksAmongNeighbors
(2.3)

If the node has degree k, the local clustering coefficient is a fraction of

Power Laws in Object Oriented Systems Architectures 16

2
.2

.
N

E
T

W
O

R
K

S
M

O
D

E
L
S

A
N

D
P

R
O

P
E

R
T

IE
S

Network n m z l C α refs

Movie Actors 449,913 25,516,482 113.43 3.48 0.78 2.3 [Watts and Strogatz, 1998]
Math Coauthorship 253,339 496,489 3.92 7.57 0.34 - [De Castro and Grossman, 1999]
Phys. Coauthorship 52,909 245,300 9.27 6.19 0.56 - [Newman, 2001]
Biol. Coauthorship 1,520,251 11,803,064 15.53 4.92 0.60 - [Newman, 2001]
WWW Altavista 203,549,046 2,130,000,000 10.46 16.18 - 2.1/2.7 [Broder et al., 2000]
Paper Citations 783,339 6,716,198 8.57 - - 3.0/ - [Render, 1998]
Internet 10,697 31,992 5.98 3.31 0.39 2.5 [Faloutsos, 1999][Chen et al, 2002]
Power Grid 4,941 6,594 2.67 18.99 0.080 - [Amaral et al., 2000]
Protein Interaction 2,115 2,240 2.12 6.80 0.071 2.4 [Jeong et al., 2001]

Table 2.1: Statistics for some real networks. Data are about the total number of nodes n, the total number of connections
m, the mean degree z, the mean geodesic length l, the clustering coefficient C and the exponent α of the power
law degree distribution for scale-free networks. A double value of the power law coefficient means a directed
network, where both input and output degree are defined. The networks showed come from very different
contexts. The movie actors network is a social network where each node is the representation of a movie
actor. Two actors are linked if they have been working together on some movie. Math, physics and biological
coauthorship networks are all social network, where scientists are linked together if they are coauthors on the
same publication. The Altavista is the network representing the Altavista search engine database, where each
node is the representation of a specific document on the web and a link is the representation of an hyperlink
connection between two of such documents. The paper citation is an information network where each nodes
represents a specific paper cataloged by the Institute for the Scientific Information between 1981 and 1997.
Two paper are linked if one has been cited by the other. Follow the network representation of the Internet
at level of autonomous systems and the network representing the power grid of the western north America.
The last one is a biological network representing the interaction of proteins in the metabolism of the yeast
S. Cerevisiae.

P
o
w
er

L
a
w
s

in
O

bject
O

rien
ted

S
ystem

s
A

rch
itectu

res
17

2.2. NETWORKS MODELS AND PROPERTIES

1
2
n(n − 1) in the interval 0 ≤ C ≤ 1.

We also define a network global clustering coefficient, as the average of
the local clustering coefficient computed for each node of the network:

C =
1

n

n
∑

i=1

Ci (2.4)

For the large part of real networks the clustering coefficient is considerably
higher than for a random graph with the same number of nodes. This is one
of the main limit that makes a random graph not suitable to model many
real-world networks.

Watts and Strogatz overcame this limit introducing a new model of net-
work still characterized by a small minimum length path, but simultaneously
displaying a large clustering coefficient. They called their model small world
network and proposed an interesting method to build such networks starting
by a lattice [Watts and Strogatz, 1998]. Following their approach, we can
start from a regular ring of L nodes each one connected with its k neigh-
bors (Figure 2.1 - a). Then, we consider each edge and with probability p we
rewire it moving one of its end to a new location chosen uniformly at random
among the lattice nodes. This rewiring procedure perform a transformation
of the well determined lattice structure, to a new one that is somehow ran-
dom (Figure 2.1 - b). For p = 1 the lattice becomes something very close,
while not identical, to a random graph. Figure 2.2 shows the variation of
both minimum length path and clustering coefficient at the variation of p,
that is, moving from a well defined structure such like the lattice to a random
graph.

Watts and Strogatz showed how the random graph model is not suitable
to represent certain real networks behaviors. Although their model is able to
capture both clustering and small world effect, something more important is
not still accounted. That is, the deepest gap between real networks and the
early model proposed by Erdős and Rényi is about the shape of the degree
distribution. While the theoretical model suggests the Poisson trend given in
equation 2.1, many real networks in fact behave displaying heavy tail power
law degree distributions.

2.2.3 Scale Free Networks

The term scale free refers to a functional form f(x) which remains unchanged
in response of the rescaling of the independent variable x. This implies
a power law shape for f(x), as this is the only solution of the equation

Power Laws in Object Oriented Systems Architectures 18

2.2. NETWORKS MODELS AND PROPERTIES

Figure 2.1: Watts and Strogatz rewiring approach. Starting from a lattice
(a), we rewire each edge moving one of its end to a new location
chosen uniformly at random among the lattice node (b).

Figure 2.2: The clustering coefficient and the minimum length path in the
small world network model proposed by Watts and Strogatz. Be-
tween the two extremes, the p = 0 well determined structure and
the p = 1 completely random structure, there is a region where
the clustering coefficient is high and the minimum length path is
small. This is the region where the small world rises up.

f(ax) = bf(x). Thus, the terms scale free and power law can be used for the
same purpose.

Power Laws in Object Oriented Systems Architectures 19

2.2. NETWORKS MODELS AND PROPERTIES

Referring to networks, the term scale free network implies the considered
network to have a power law degree distribution. That is, the probability for
a node to have k directly connected edges is given by:

pk ∝ k−α (2.5)

Power law degree distribution have been the focus of a great deal of
attention. Recently, scale free behavior has been observed in a large num-
ber of real networks, including citation networks [Render, 1998], portions of
the world wide web [Albert et al., 1999][Barabasi et al., 1999], the Internet
[Faloutsos, 1999][Chen et al, 2002], telephone call graphs [Aiello et al., 2000],
human sexual contacts [Liljeros et al., 1990], metabolism protein interaction
networks [Jeong et al., 2001] and others. While some of these networks, such
the WWW and the Internet, display a global power law shape within the
whole degree distribution, many real networks show the scale-free trend ef-
fects only in the tail of the distribution. Figure 2.3 shows the degree distri-
bution of some real networks.

According to the random graph theory the number of edges directly con-
nected to a node is randomly distributed around an average value. The large
part of the nodes have a number of edges close to this average, while the num-
ber of nodes having a number of connection substantially different from the
average value decreases rapidly following an exponential trend. Real scale-
free networks diverge from theoretical random model. The power law shape
implies the network to have no average value of the node degree. Rather,
there is a large number of nodes having a small number of connections, while
there are few nodes very highly connected. A node with a large number of
connections is called hub.

Barabasi and Albert [Barabasi and Albert, 1999] showed how the incon-
gruence between the random graphs theory and real networks is due to two
main factors not accounted for by the Erdős and Rényi model:

• Real networks expand continuously by the addition of new vertexes in
contrast with the random graph model, which assumes a fixed start-
ing number of nodes that remains unaltered while randomly adding
connections between them.

• According to Erdős and Rényi each connection is added independently
with the same value of probability, while many real networks grow up
according to a preferential connectivity. More precisely, the probability
for a new vertex to be connected to any existing vertex is not uniform.
Rather, there is a higher probability that it will be linked to a vertex
that already has a large number of connections, that is a hub.

Power Laws in Object Oriented Systems Architectures 20

2.2. NETWORKS MODELS AND PROPERTIES

Figure 2.3: Degree distributions of four real networks. Plots are displayed in
logarithmic scale. This provides a better visualization, as loga-
rithm performs a transformation of the power law into a straight
line. Plots are respectively relative to the following networks: (a)
mathematic collaboration network, (b) scientific paper citation
network, (c) a subset of the World Wide Web, (d) the Inter-
net considered at the level of autonomous systems. Two of these
networks, (c) and (d), display a straight line in the log-log scale,
which suggest a power law degree distribution across the whole
interval. Two of them, namely (a) and (b), show a significant
deviation from a power law in the small value region, while they
still suggest a scale free behavior in the tail of the distribution.

Barabasi and Albert gave proof that the above conditions are sufficient for
displaying a power law tail in the distribution of the node degrees. Moreover,
this preferential attachment model suggests a theoretical value for the power
coefficient of α = 2.9±0.1, which is quite close to the actual values empirically
found for many real networks (see Table 2.1).

Power Laws in Object Oriented Systems Architectures 21

2.3. SOFTWARE SYSTEMS AS COMPLEX NETWORKS

2.3 Software Systems as Complex Networks

The management and control of complexity is a main issue in the develop-
ment of large software systems. In fact, complexity control is the first step
to lead to high quality software systems. Software engineering has spent a
great deal of effort to achieve this goal, always providing new technologies,
methodologies and tools. Decomposition is historically a key factor in soft-
ware complexity handling and it has been the main objective both of early
development approaches such like the modular decomposition and the ab-
stract data typing, as well as of the modern object oriented (OO) approach.
Thus, typically software systems are build up out of many interacting mod-
ules and subsystems at many detail levels. For example, according to the
object oriented paradigm a software system is made of objects which send
messages one to each other, where an object is the abstraction of a real entity
living in the represented domain. Similarly, following the more traditional
structured programming, a software system is made of modules which in-
teract one to each other across routines calls. Both object orientation and
structured programming aim to build independent entities that perform all
desired computation across different kind of collaborations and relationships.
This modular structure, where software entities interact reciprocally suggest
a graph based representation, where software entities can be represented as
nodes and all different relationships, such like object interactions and routine
calls, can be represented as connections between them.

Moreover, software applications and architectures have become ever larger
and more complex over the past years. Thus, the idea of applying complexity
and graph theories to model large software applications and to interpret their
global statistic properties seems sensible.

Although the study of software systems as complex networks has a great
scientific interest, to date it has received relatively little attention.

There is a main reason which awards a special role to software networks in
the context of random networks theory. That is, software systems are explic-
itly build to be simultaneously highly functional and highly evolvable. Evolv-
ability and functionality do not rise up as a peculiarity of the underlining
network, rather are directly implemented following specific design practices
such as responsibility-collaboration design and design patterns, or applying
general optimization principles. Traditional principles, such as encapsula-
tion and information hiding, low coupling and high cohesion design, and
the modern object oriented approach are focused on the purpose of building
high quality software systems, where quality is often pointed up in terms of
functionality and evolvability.

This may suggest alternative scenarios for generating complex networks,

Power Laws in Object Oriented Systems Architectures 22

2.3. SOFTWARE SYSTEMS AS COMPLEX NETWORKS

which are more related to optimization rather than to preferential attachment
or random generation hypothesis[Valverde et al., 2002].

On the other side, the analysis of software systems structure and evolution
as complex networks could also be of practical interest from the software
engineering point of view, as it might provide an alternative perspective able
to help a better understanding of the mechanisms ruling software production
and evolution, or the relationships among network structure and software
quality. For instance, an entire new bunch of topological metrics computed
on the network model could be introduced, and correlated with external
software metrics.

Recently, few studies have been performed to explore how complex net-
work theories applies to the modeling and representation of software systems,
revealing that software networks display both small world and scale free ef-
fects. In one of the first studies of this kind, Potanin has shown that the
graphs formed by run time objects, and by the references between them in
object-oriented applications are characterized by a power law tail in the dis-
tribution of node degrees [Potanin et al., 2002]. Valverde found similar prop-
erties studying the graph formed by the classes and their relationships in large
object-oriented projects. He found that software systems are highly heteroge-
neous small worlds networks with scale-free distributions of connections de-
gree [Valverde et al., 2002][Valverde and Solé, 2003]. Wheeldon and Coun-
sell performed similar studies on Java projects [Wheeldon and Counsell, 2003].
Myers found analogue results on large C and C++ open source systems, con-
sidering the collaborative diagrams of the modules within procedural projects
and of the classes within the OO projects. He also computed the correlation
between some size software metrics with graph topological measures, revel-
ing that nodes with large output degree tend to evolve more rapidly than
nodes with large input degree [Myers, 2003]. While, most of these studies of
complex software systems are based on static languages such like C++ and
Java, Marchesi provides evidence that similar behaviors are displayed also
by dynamic languages such like Smalltalk [Marchesi et al., 2003].

There are still a lot of open issue. While all of the previous works gave
evidence that in fact software system networks behave as small worlds and
display connectivity with scale free distribution tails, the practical implica-
tions of such results on the development and evolution of software systems
are poorly accounted.

Power Laws in Object Oriented Systems Architectures 23

Chapter 3

Experiment Overview

The goal of this study is to provide the analysis of an object oriented soft-
ware systems under the light of the complex network theory. The work aims
to a double objective, first to analyze the general statistical properties of an
object oriented system in terms of the degree distribution of the underlining
network, second to interpret the network topological informations in terms of
software quality. Previous studies on this field mainly focused their attention
on the analysis of the degree distributions, which is in fact the main topic of
the complex network theory. Nevertheless, such studies lacked of practical
and quantitative interpretation of the results, for example, in terms of sta-
tistical correlation between any measures directly performed on the topology
of the network and any typical software metric usually computed to gather
informations about the quality of the design.

Our study is based on the analysis of some object oriented systems de-
veloped using two different programming languages, namely Smalltalk and
Java. This section will describe the various steps followed across this work.
First, we will provide a description of the used approach to build the software
graph. More precisely, we will separately consider the two cases of Smalltalk
and Java systems, as the different nature of the respective languages ask for
a different parsing code approach and for a different criteria in the mapping
of the software entities upon the network elements. Second, we will describe
and discuss the approach we used to analyze the degree distributions and
how we have tested the scale free condition on them. Last, we will give some
detail about the software metrics that we have correlated with topological
graph properties and about the statistical approach we have adopted in the
correlation analysis.

24

3.1. BUILDING THE OO GRAPH

3.1 Building the OO Graph

According to the object oriented paradigm, a software system is the abstrac-
tion of a real domain, where objects interact reciprocally sending messages
one to each other. The common interface of a family of similar objects is
embodied in the class construct. Different classes can be related across dif-
ferent type of relationships such as inheritance, composition, aggregation,
association and dependence. Not only classes and objects, but also many
other elements, such as attributes, methods and interfaces, are defined in an
object oriented system, representing entities at a different level of granularity
and abstraction.

Thus, for any software system built according to the object oriented ap-
proach, it is possible to easily define different kind of networks made of nodes
representing specific software entities and connections representing specific
relationships between them. For example, it is possible to define the network
made of the run time objects, where two class instances are connected as one
send a message to the other; a static class network where a node is the rep-
resentation of a class and a connection is the representation of a relationship
such like inheritance or dependence; a more detailed network, where differ-
ent types of node represent different types of entities, such classes, attributes
and methods, and different types of connection are defined to represent spe-
cific relationships among them, such as instantiation between classes and
attributes, calling between methods and so on.

This study will exclusively focus on the representation of classes and
their relationships. Specifically, we will consider inheritance and dependence
relations. We will describe the definition of the graph representation, respec-
tively for Java and Smalltalk systems. The main difference between Java and
Smalltalk is that the first is statically typed, while the second is dynamically
typed, which requires a substantial different approach in the graph model
definition.

Once defined the graph model used to capture the structure of the soft-
ware system under study, then a code analyzer must provided to generate
such a graph, starting from the software system code. With strong typed
languages, this would be accomplished by parsing the source code, recog-
nizing class and variable definitions, and generating the graph. This is the
approach followed in this work to produce the graph representation of Java
systems. Also, a similar approach can be found in the work of Wheeldon and
Counsell [Wheeldon and Counsell, 2003]. Alternatively, the analyzer may
lean on CASE tools able to reverse-engineer the code and to generate the
related UML class diagram [Los Tres Amigos, 1999]. The code analyzer can
then take advantage of the navigation API of the CASE tool, to explore class

Power Laws in Object Oriented Systems Architectures 25

3.1. BUILDING THE OO GRAPH

relationships and to build the graph. This is the approach followed in the
work of Valverde and Solé [Valverde and Solé, 2003].

As regard of Smalltalk systems, no source code parser or reverse engi-
neering is needed as we can take full advantage of the introspection of the
language, to analyze the code and to capture any kind of information. On the
other side, the dynamic nature of the Smalltalk language make the code less
generous of information, which introduce a certain amount of uncertainty in
the graph definition.

3.1.1 The Java Graph Model

Java is a static typed language. This means that coding requires to specify
statically a great amount of information about variables type. In turn, this
means that the code of a Java application provides the same amount of
information, which can be captured across the parsing of the code itself.
Thus, it is possible to define a graph model based on the type of information
that can be extracted from the code.

According to our model, a Java system is represented by a graph made
of a set of five different types of node and nine different types of links. Each
type of node captures a specific Java entity, while each type of link captures
the specific kind of an existing relationship between two Java entities.

The four types of node defined in the Java graph model are the following:

• Class - Representation of a Java class;

• Interface - Representation of a Java interface;

• Method - Representation of a Java class method;

• Attribute - Representation of an attribute. An Attribute node as-
sumes one of the following different meanings:

→ representation of a class attribute (instance variable);

→ representation of an interface attribute (instance variable);

→ representation of a method parameter;

→ representation of a method local variable;

→ representation of anywhere referenced variables.

The nine types of connection defined in the Java graph model are the
following:

Power Laws in Object Oriented Systems Architectures 26

3.1. BUILDING THE OO GRAPH

• Contains - Representation of the relationship between a class (inter-
face) and its class variables; Also, it could be the representation of the
relationship between a method and its local variables;

• InnerClass - Representation of the relationship between two classes,
one defined inside the other;

• Extends - Representation of the inheritance relationship between classes
or interfaces;

• Function - Representation of the relationship between a class (inter-
face) and its methods;

• Calls - Representation of the relationship between two methods, one
calling the other;

• Uses - Representation of the relationship between a method and an
attribute, when the attribute is a referenced variable (both local and
non local) in the body of the method;

• Instance - Representation of the relationship between a class and its
instances;

• Parameter - Representation of the relationship between a method and
its parameters;

• Implements - Representation of the relationship between a class and
an interface, where the class is the implementation of the interface.

The resulting graph is an oriented graph, where an orientation is defined
for each connection. Figure 3.1 gives a global view of the possible connec-
tion between the different types of node. Table 3.1 shows the meaning and
orientation for each type of connection.

The built of the Java graph is performed by a smalltalk application based
on the SmaCC parser generator 1. The application performs a double parsing
task. The first task parses the pure Java code and extracts all the needed
information as a list of statements of the form Relation(Entity, Entity), cap-
turing the information about a specific relationship between two specific Java
entities. The second task performs a new parsing process on the statement

1The application is developed in the Cincom VisualWorks environment
(smalltalk.cincom.com). The SmaCC (Smalltalk Compiler Compiler) is a freely available
parser generator for Smalltalk, developed by The Refactory, Inc. (www.refactory.com).
The details of the implementation can be found in [Serra, 2001][Tuveri, 2004](Italian).

Power Laws in Object Oriented Systems Architectures 27

3.1. BUILDING THE OO GRAPH

Figure 3.1: The graph representation of a Java system. The graph is made
by a set of nodes from four different types: Class (C), Interface
(I), Attribute (A) and Method (M). A couple of nodes can be
connected by a link from nine different types: Contains, Inner-
Class, Extends, Function, Calls, Uses, Instance, Parameter and
Implements.

Java Relationship Starting Node ⇒ Ending Node

Contains Class ⇒ Attribute
Interface ⇒ Attribute
Method ⇒ Attribute

InnerClass Class ⇒ Class

Extends Class (subClass) ⇒ Class (superClass)
Interface ⇒ Interface

Function Class ⇒ Method
Interface ⇒ Method

Calls Method (calling) ⇒ Method (called)

Uses Method ⇒ Attribute

Instance Attribute ⇒ Class

Parameter Attribute ⇒ Method

Implements Class ⇒ Interface

Table 3.1: The Java system is represented as an oriented graph, where each
relationship defines an orientation from a starting node of a well
given type to an ending node of a well given type.

Power Laws in Object Oriented Systems Architectures 28

3.1. BUILDING THE OO GRAPH

list and definitively builds the Java graph as a persistent object. The above
process leads to a graph representation displaying a large amount of infor-
mation that could be translated, for instance, on the computation of many
object oriented metrics. Nevertheless, we are explicitly interested on the
statistical analysis of the relationships among classes, thus the application
needs a one more task to perform a sort of compression of the above structure.
More precisely, the application should translate each implicit path between
two Class nodes on an explicit path. For example, if two Method nodes are
connected with a Call link, then this relationship has to be translated in
a connection between the Class nodes respectively representing the classes
which those methods belong to. Following similar rules, the first complete
graph is reduced in a new structure made of Class nodes only, and rela-
tionships between them. The reduced Java graph still remains an oriented
graph. Thus, for a given node, it is possible to define both input and output
degree, respectively as the number of out-going and in-coming links directly
connected with the node itself.

This approach has a general value and could be extended to build the
class graph of any software system with the only constraint of modifying the
first parsing task according to the adopted programming language. Dynamic
languages, such like Smalltalk, play a special role, as they do not provide
much information in the code about variable typing, thus the model must
be revisited and simplified. The next section provide an alternative ad hoc
approach for smalltalk software systems.

3.1.2 The Smalltalk Graph Model

Similarly with the case of Java systems graph, also for the Smalltalk systems
graph representation, we focused only on two kinds of relationships: inher-
itance and dependence. While the Smalltalk code exhaustively provides all
needed information about inheritance relationship among classes, this is not
the case for dependence. Typically, we say that class A depends on class B
when class A has an instance variable whose type is B, or when class A has
a method that access or defines an instance of class B.

The dependence analysis must consider that Smalltalk is not a typed
language, then objects instead of variables, carry type information. This frees
the programmer from declaring variable types, but embeds less information
into the source code. Thus, the conditions reported above become difficult
to test by a direct analysis of the code. However, we may say that the access
to a variable of a given class is significant only if one or more messages are
sent to that variable. That is, a dependence between two classes exists only
if there is any kind of message sending among instances of those classes.

Power Laws in Object Oriented Systems Architectures 29

3.1. BUILDING THE OO GRAPH

So, we define that class A depends on class B if a method of class B is
called from within a method of class A. If the considered method has only
one implementor, class B, the dependence link is clearly unambiguous. If the
method has more than one implementor class, say n, it is not possible to as-
certain with a static analysis which one is the right one. In this situation, we
decided to introduce a dependency towards all implementor classes, weight-
ing such a dependency with weight 1/n. Inheritance is not considered in the
dependency analysis. For instance, let us suppose that class C is subclass of
class A, that class D is subclass of class B, and that a method of B – which
is not overridden in class D – is called inside a method of A, which in turn
is not overridden in class C. At run time, it may be possible that an object
belonging to class C calls the method, and/or that such a method is in fact
executed on an object belonging to class D. Nevertheless, in this case only
a dependence between class A and class B is recorded. Note that this issue
holds also for typed languages, such as Java or C++, when dynamic binding
is used.

Formally, our graph is a collection of nodes:

G ≡ {Ni}i=1..Nc
(3.1)

where Nc is the total number of classes within the represented software
system. Thus, the graph contains one node for each system class Ci. A node
Ni has a collection of links, each representing a relationship that the class
represented by Ni has with other classes in the system. Links, or arcs, are
pairs of nodes representing respectively the starting and the ending class:

Lij = (Ni, Nj) (3.2)

A link Lij, carries also a weight that we indicate as W (Lij). Now let’s
introduce the symbols we use for representing methods, messages and imple-
mentors:

M(Ci) = {methods of the class Ci}

S(m) = {messages sent inside m}, m ∈ M(Ci)

P (s) = {implementors of message s}, s ∈ S(m)

dim(P (s)) = number of implementors of message s

We define the weight of a link as the sum of related dependence, Wdep,
and inheritance, Winh, contributions:

W (Lij) = Wdep(Lij) + Winh(Lij) (3.3)

Power Laws in Object Oriented Systems Architectures 30

3.1. BUILDING THE OO GRAPH

Wdep(Lij) =
∑

m∈M(Ci)

∑

s∈S(m)

1

dim(P (s))
· Is(Cj) (3.4)

Is(Cj) = {
1 if Cj∈P (s) (Cj is an implementor of s)
0 otherwise (3.5)

Winh(Lij) = {
1 if Cj is the direct superclass of Ci

0 otherwise (3.6)

Now we can define both the input degree, and output degree of node Ni:

outputDegree(Ni) =

Nc
∑

j=1

W (Lij) (3.7)

inputDegree(Nj) =

Nc
∑

i=1

W (Lij) (3.8)

The graph built in this way reflects the relationships between the classes,
using in the least biased possible way the information that can be inferred by
static analysis of a Smalltalk system. The input degree of a class is directly
linked to the usage of this class in the system.

To perform the code analysis, in order to build the graph representation
previously defined, we can take full advantage of the introspection of the
Smalltalk language. The whole system is accessible from within itself, and
no source code parser or reverse engineering is needed. Moreover, Smalltalk is
endowed of powerful query methods able to return useful information, as for
instance the set of all the classes of the system, the set of classes implementing
a given selector, the set of messages sent within a given method, and so on.
This is the approach followed in this work and previously in the work of
Marchesi [Marchesi et al., 2003]2.

2To give an insight on how the dependence analysis is performed, we shortly provide
some details of the implementation in Squeak (www.squeak.org). The main classes in-
volved in the computation are SystemNavigation, Class and CompiledMethod. The method
allClasses of SystemNavigation returns the collection of all classes in the system. For a
given class, the method selectors returns all selectors of that class. A selector is an in-
stance of the class Symbol and it represents the method signature. The whole method,
instance of class CompiledMethod, can be obtained by sending the message compiledMetho-
dAt: aSelector to the class. The CompiledMethod class implements the method messages
which returns the collection of all messages sent inside the CompiledMethod. A message
is in turn a Symbol representing the selector of the corresponding invoked method. The
SystemNavigation class implements the method allClassesImplementing: aMessage which
returns a collection of all classes implementing the given message. In this way, it is possible
to navigate the system, building the graph described in this section.

Power Laws in Object Oriented Systems Architectures 31

3.2. ANALYSIS OVERVIEW

3.2 Analysis Overview

The body of this study aims to a double objective:

First, to analyze the degree distributions of the graph representation
of an object oriented system;

Second, to compute the statistical correlation between quality indica-
tors and the graph topological properties.

The first is a wide scope objective, and targets to answer questions such
like: “What kind is the network underlining a software system? That is, what
are the general statistical properties of such networks?”

While the second one has a more focused scope, and targets to answer
questions such like: “What kind of practical information could be extracted
from the network representation of a software system? For instance, could the
network give us informations about the quality of the represented system?”

3.2.1 Degree Distributions

We want to verify if the degree distributions of a graph representing an object
oriented system displays a scale free effect at list in the tail, that is:

pk ∼ ck−α as k → ∞ (3.9)

where k is the random variable representing the node degree, c is a loca-
tion parameter and α is the power shape parameter. Typically, such study is
performed observing the cumulative distribution function (cdf) or the com-
plementary cumulative distribution function (ccdf), rather than the pure
distribution function.

Given the random variable X, the cumulative distribution function is
given by:

F (x) ≡ P{X < x} (3.10)

then, the complementary cumulative distribution is then given by:

1 − F (x) ≡ P{X > x} (3.11)

The derivate of the cumulative distribution function is the distribution:

f(x) =
dF (x)

dx
(3.12)

Power Laws in Object Oriented Systems Architectures 32

3.2. ANALYSIS OVERVIEW

Note that the function given in 3.12 is also known as density function. In
this case, the cumulative distribution is simply called distribution function
and the complementary cumulative distribution is called survival distribution
function.

When the distribution follows a power law, thus the ccdf still is a power
law with a shape power coefficient β = α − 1. Moreover, the condition:

1 − F (X) = ccdf(X) = P{X > x} ∼ ck−βas k → ∞ (3.13)

gives the definition of heavy tailed distribution. Then, the study of the ccdf
is perfectly equivalent to the study of the distribution and more it provides
a test of the condition 3.13.

An easy way to test the power law trend of a distribution is to plot its
ccdf in a log-log scale. In fact, the log-log plot performs a transformation
of a power law function into a straight line with a trend equal to the power
coefficient of the original. This approach has the disadvantage that it requires
the selection of a value x0 above which the plot appears to be linear. This is
the approach followed in this study. 3

3.2.2 Correlation Analysis

We want to test if there is any statistical correlation4 between network topo-
logical metrics, such the input and output degree, and those traditional object
oriented metrics, typically used as quality indicators. For a such purpose,
we have analyzed the correlation among the graph node degrees and some
of the Chidamber and Kemerer metrics, some of the Martins metrics and
some size metrics, such as the LOC. Note that for the Smalltalk systems,
the computation of such metrics is inevitably limited by the dynamic nature
of the language. More details about the selected software metrics will be
provided in the next section, dedicated to presentation of the results, and in

3The log-log plot of the ccdf is not the only approach to test the heavy tail condition.
For example, an alternative approach is given by the traditional Hill test, which neverthe-
less still displays the problem of the selection of critical value x0 [Hill, 1975]. This problem
was overcame by Crovella and Taqqu, which recently provided an alternative approach to
test the heavy tail effect of a distribution [Crovella and Taqqu, 1999].

4Given two random variables X and Y , the correlation coefficient is defined as:

ρX,Y =
cov(X, Y)

XY
(3.14)

where cov(X,Y) is the covariance of X and Y, and X and Y are respectively the standard
deviations of X and Y. It has the range −1 ≤ ρX,Y ≤ 1 and vanishes for independent
variables. The extreme values reveal a linear correlation between X and Y.

Power Laws in Object Oriented Systems Architectures 33

3.2. ANALYSIS OVERVIEW

Appendix A, explicitly dedicated to the description of all metrics adopted in
this study.

The typical test to verify the correlation between two samples is the
traditional Pearson correlation estimator. Given two sample Xi and Yi, the
Pearson coefficient is given by:

r =
1

1 − N

∑N

i=1(Xi − X)(Yi − Y)

SXSY

(3.15)

where X and Y are respectively the sample means of Xi and Yi, and where
SX and SY are respectively the sample standard deviations of Xi and Yi. The
Pearson coefficient 3.15 is the simplest way to compute an estimation of the
actual correlation coefficient. Nevertheless, it is based on the assumption
that the random variables from which the samples have been extracted are
normally distributed [Wonnacott, 1998].

When the considered variables are not normally distributed, which is the
case of this study, the correlation is typically estimated by the Spearman
rank correlation coefficient, given by:

rs = 1 − 6

∑N

i=1 d2
i

N(N2 − 1)
(3.16)

where di is the distance between the rank of the samples [Frund and Simon, 1997].
The computations of the current study are based on the Spearman correlation
coefficient, as the considered variables are far to be normally distributed.

Power Laws in Object Oriented Systems Architectures 34

Chapter 4

Results

4.1 Smalltalk Systems

This section presents the results of the experiment performed on some Smalltalk
systems. We have considered two main Smalltalk environments: VisualWorks
Cincom Smalltalk 7.2 and Squeak. Cincom VisualWorks is a professional
environment to develop both commercial and non-commercial applications,
while Squeak is an Open Source free Smalltalk-80 implementation.

VisualWorks has been first analyzed considering the base image contain-
ing all environment classes and all the standard parcels. Then we considered
the base image with all the Store 1 parcels loaded. This allows to observe
how the graph properties varies as a response of the image growth. Follow-
ing this approach, we also considered some isolated parcels and categories in
order to observe statistical properties of smaller graphs. For such purpose,
we considered the Store parcels separately from the base image and the core
classes separately from all other system classes. Moreover, we analyzed a
reduced version of VisualWorks image after unloading the large part of the
default parcels. Squeak has been analyzed considering the only base image,
so far.

First, we will show the results of the statistical analysis displaying the
Spearman correlation coefficient among the graph topological metrics and a
selected group of object oriented metrics. The discussion of correlation results
will provide the base for the interpretation of graph topological properties
and for the interpretation of further distribution analysis. Second, for each
project we will show the how the tails of the complementary cumulative
distribution functions of the input and output degree are fitted by the power

1Store is the VisualWorks environment extension to support distributed team develop-
ment and project management.

35

4.1. SMALLTALK SYSTEMS

law distribution model.

4.1.1 Statistical Correlation Analysis

The following smalltalk graphs have been analyzed:

• Graph#1: representation of all VisualWorks base image. The graph
is made of 2,345 nodes and 1,593,073 arcs.

• Graph#2: representation of all VisualWorks base image with Store
parcels loaded. The graph is made of 2,607 nodes and 2,008,752 arcs.
This is the largest graph considered in this study.

• Graph#3: representation of a reduced VisualWorks base image. We
proceeded starting from the base image and then unloading all parcels
ensuring not to break the systems image integrity. The resulting graph
is made of 1,685 nodes and 947,497 arcs.

• Graph#4: representation of all Store classes without all other system
classes. The graph is made of 210 nodes and 173,392 arcs.

• Graph#5: representation of Core namespace classes without all other
system classes. The graph is made of 186 nodes and 186,907 arcs.

• Graph#6: representation of all Squeak base image classes. The graph
is made of 1,798 nodes and 1,232,032 arcs.

For each systems class, metrics LOC, WMC, DIT, NOC and RFC have
been computed and correlated with input and output degree. Table 4.1 and
table 4.2 respectively show the Spearman correlation coefficient computed
first between input degree and the above metrics and second between output
degree and the same metrics. The descriptive statistic of each analyzed
system is provided in Appendix B.

LOC WMC DIT NOC RFC

Graph#1 0.7103 0.8394 -0.2666 0.3552 0.7466
Graph#2 0.7059 0.8397 -0.2730 0.3545 0.7465
Graph#3 0.6902 0.8494 -0.2870 0.3538 0.7228
Graph#4 0.7459 0.9058 -0.2675 0.3361 0.8085
Graph#5 0.8170 0.8737 -0.0797 0.3463 0.8259
Graph#6 0.7050 0.8115 -0.2494 0.3376 0.6933

Table 4.1: Statistical correlation between Input Degree and software metrics.

Power Laws in Object Oriented Systems Architectures 36

4.1. SMALLTALK SYSTEMS

LOC WMC DIT NOC RFC

Graph#1 0.8615 0.8816 -0.0674 0.2283 0.9835
Graph#2 0.8583 0.8816 -0.0764 0.2187 0.9827
Graph#3 0.6356 0.8706 -0.0723 0.2242 0.9795
Graph#4 0.8307 0.8719 -0.1107 0.0990 0.9753
Graph#5 0.9541 0.9563 -0.1625 0.2204 0.9848
Graph#6 0.9056 0.8885 -0.0401 0.2250 0.9827

Table 4.2: Statistical correlation between Output Degree and software met-
rics.

Results show that both Input Degree and Output Degree are strongly
correlated with the computed size metrics (LOC and WMC) and with the
RFC metric, which is an indicator of the coupling between class. Rather, no
correlation emerges with the inheritance metrics (DIT and NOC).

The Output Degree, that is the number outgoing links directly connected
with a node, gives a measure of how many messages are sent from within
the methods of the class represented by such node, to other classes in the
system. Thus, the Output Degree is an indicator of how a certain class de-
pends on other external classes while providing its services. The correlation
between the Output Degree and the class size indicators, namely the class
LOC and the WMC, shows that big classes are more likely to depend on
external classes. Specifically, the WMC metric, which in fact corresponds
to the number of methods of a class, is reasonably related with the num-
ber of outgoing links, as each outgoing link represents a message sent by a
method of the represented class. Moreover, the correlation with RFC metric
shows that classes with a great number of outgoing links are more likely to
be strongly coupled with external classes. Thus, the Output Degree, which
for construction is an indicator of the dependence of a class with other ex-
ternal classes, in fact also brings information about the class size and about
the class coupling. Note that the Output Degree also takes account of the
inheritance relations, which is usually considered orthogonal with respect to
dependence and thus it is typically not accounted for while measuring cou-
pling. Nevertheless, since all classes have a single superclass in Smalltalk,
the link representing this relationship adds one to the outgoing links value of
all classes, and is therefore immaterial. This explains the low values of the
correlation coefficient among Output Degree and inheritance metrics.

The Input Degree, that is the number of incoming links directly connected
with a node, gives a measure of how many messages a certain class receives by
other classes of the system. Thus, Input Degree is an indicator of how much a
certain class is referenced by other classes, while they provide their services.

Power Laws in Object Oriented Systems Architectures 37

4.1. SMALLTALK SYSTEMS

Here the interesting result is represented by the correlation of the Input
Degree with the RFC metric. This suggests a reasonable scenarios, where
a class largely used by other classes in the system, is more likely to have
a large response set, that is the number of methods that can be potentially
executed in response of a received message. Then, the Input Degree provide a
better indicator of the class coupling, which is counted in a double direction,
both from the environment to the considered class and from the considered
class to the external environment. Inheritance is simply not accounted by
the construction of the Input Degree of a class, which determines low values
of the correlation coefficient among the Input Degree and the inheritance
metrics.

The high values obtained for the correlation also need a certain amount
of attention and warning in their interpretation. The main problem consists
with the fact that all metrics have been directly computed upon the code
using the same mechanisms adopted to build the graph (see Appendix A).
The problem can be partially overcame comparing the above results with the
results obtained for the Java systems and presented in section 4.2, where the
graph analysis is completely independent from the software metrics compu-
tation.

4.1.2 Distribution Analysis

The first set of plots given in Fig.4.1 display the frequency distributions of
Input Degree and Output Degree respectively, both in a standard and in a
log-log plot, for the graph representation of the base image of VisualWorks
(Graph#1). These plots do not give much information about the best theo-
retical underlining distribution. Anyway, they give a first idea of the general
shape. As we can see, there is a large number of classes having few links and
a small number classes having a large number of links. Moreover, there is no
“typical” mean value, which represents a first shift from the random graph
Poisson model to the scale-free mode.

Following the approach described in section 3.2.1, we will provide the
analysis of the complementary cumulative distribution functions (ccdf) both
of input and output degree. We remind that, given a random variable X
the ccdf gives the probability of such variable to be greater than the current
value, that is:

1 − F (X) = ccdf(X) = P{X > x} (4.1)

All the complementary cumulative distribution functions have been plot-
ted in a log-log scale. The log-log plot performs a transformation of the power

Power Laws in Object Oriented Systems Architectures 38

4.1. SMALLTALK SYSTEMS

Figure 4.1: Density functions for both the Input Degree and Output Degree
for the Visual Works graph (Graph#1). Starting from the high
plot on the left and moving clockwise, the first and the second
windows display respectively the output degree and the input de-
gree density in a standard plot; the third and the fourth display
the same functions in a log-log scale plot. The above plots don’t
give much information about the underlining theoretical distri-
bution. Nevertheless, above all the log-log scale plots suggest a
slow decreasing trend. Moreover, it is clearly shown how there is
no “typical” mean value, which represents a first shift from the
random graph Poisson model to the scale-free model.

law function into a straight line function, with slope equal to the power expo-
nent of the original curve. This allows to visually better verify the presence
of a power law and to estimate the power coefficient.

Plots displays how the ccdf tails are in fact well fitted by a straight line
in a log-log scale, which suggests the existence of the heavy tail effect in
such distributions. Figures 4.2 and 4.3 display respectively the Input Degree
and Output Degree ccdf tails for each analyzed Samlltalk system. Table

Power Laws in Object Oriented Systems Architectures 39

4.1. SMALLTALK SYSTEMS

4.3 shows the power exponent α of the power law distribution which best
fits the empirical distributions of each system graph. Note that α represent
the power coefficient of the distribution function, while the complementary
cumulative distribution coefficient is given by β = α − 1

The power exponent α of the distributions is quite close to the theoretical
value (α = 3) obtained by Barabasi and it is coherent to the empirical values
(2 < α < 4) obtained for many real networks. An higher exponent denotes
a tail decreasing quicker. A small exponent denotes a “fatter” tail, that is a
bigger deviation from the behavior of a Gauss or Poisson distribution.

Input Degree Output Degree

Graph#1 α = 2.5689 α = 2.8554
Graph#2 α = 2.5877 α = 2.8289
Graph#3 α = 2.5769 α = 2.9218
Graph#4 α = 3.7320 α = 2.4974
Graph#5 α = 2.1779 α = 2.9254
Graph#6 α = 2.2835 α = 2.5946

Table 4.3: Power Coefficients. Power coefficient of the Distribution Func-
tion for each analyzed smalltalk system. Note that this is the
α parameter previously described in section 3.2.1. The relative
CCDF power coefficient is given by: β = α − 1.

Despite this is a general result, which is in fact shared by various kind of
different real networks, our main interest is to interpret its meaning in the
specific context of software systems. The number of outgoing links of a node
is a measure of how many messages are sent from within the methods of the
corresponding class. A high value of the number of outgoing links denotes
that the class performs many message calls from within its methods. This
can be considered also as a measure of the coupling between classes. Thus,
a power law distribution with fat tails is a clue that the system is charac-
terized by a certain number of classes with an high level of coupling, while
the bulk of the classes tends to be much less coupled. This interpretation
is supported by other previous studies. For example, Chidamber and Ke-
merer [Chidamber at al, 1994] and Basili [Basili et al., 1996] found similar
distributions for coupling metrics.

Since the Output Degree of a node is not divided by the number of meth-
ods of the related class, it is reasonably proportional to the number and
size of methods of the class, as suggested by the previous correlation analy-
sis. Consequently, the power law behavior of the Output Degree distribution
surely reflects the distribution of class sizes, and then suggests that, when

Power Laws in Object Oriented Systems Architectures 40

4.1. SMALLTALK SYSTEMS

Figure 4.2: Input Degree CCDFs. Distributions tails plotted for each
Smalltalk system: Graph#1, Graph#6, Graph#2, Graph#3,
Graph#4 and Graph#5. The linear trend in a log scale pro-
vides the evidence of the presence of the scale-free effect in all
the analyzed networks.

Power Laws in Object Oriented Systems Architectures 41

4.1. SMALLTALK SYSTEMS

Figure 4.3: Output Degree CCDFs. Distributions tails plotted for each
Smalltalk system: Graph#1, Graph#6, Graph#2, Graph#3,
Graph#4 and Graph#5. The linear trend in a log scale pro-
vides the evidence of the presence of the scale-free effect in all
the analyzed networks.

Power Laws in Object Oriented Systems Architectures 42

4.1. SMALLTALK SYSTEMS

a new method is added to the system, it is more likely that it belongs to a
class that already has many methods.

Note that both high coupling and large classes are not considered good
object oriented programming style. A good object oriented system should
be composed of many cohesive classes, at different detail levels, each one
focusing on a single task, and endowed with a few, short methods. The
empirical analysis of the Smalltalk system shows that this is not the case, as
displayed by the distribution of the number of outgoing links decaying as a
power law.

The other main indicator we examined is the input degree, which gives
a measure of how a certain class is referenced by other classes in the sys-
tem. The shape of the distribution is due to the fact that in Smalltalk
system, there are “service” classes that are used by almost all other classes.
For the largest analyzed images holding all the system classes (Graph#1,
Graph#2, Graph#3 and Graph#6), classes such as Object, the Collection

and the Magnitude hierarchies, come immediately to mind. Nevertheless,
the fact that this behavior is still displayed by the small images (Graph#4
and Graph#5), suggests that this is a more general effect.

There are also classes which are fairly used, both in the system and in
specific parcels, while most other classes are rarely used. The usage rate is
certainly not random. This behavior suggests the hypothesis that when writ-
ing a new method the probability to send a message implemented in another
class is roughly proportional to the number of sending of that message in the
system. More precisely, such probability seems to be more than proportional
to this number, as the coefficient values smaller than 3 suggest.

4.1.3 More Distributions

This section presents some results relative to an extra analysis performed
on the VisualWorks system image represented by the Graph#1. We will
show that the scale free effect, displayed by the Input Degree and Output
Degree indicators, is also displayed by other software properties not requiring
a graph modeling. The results presented here are related with the work of
Concas and his colleagues [Concas et al., 2005], where the following results
and discussion have been also extended on two Java systems, namely the
Eclipse2 project and the JDK3 project.

Figures 4.5 and 4.6 are relative to measures performed at class level, while
plots in figure 4.7 are relative to measures performed at method level. The

2An Open Source free IDE for Java development (http://www.eclipse.org).
3The Java Development Kit provided by Sun Microsystems (http://java.sun.com)

Power Laws in Object Oriented Systems Architectures 43

4.1. SMALLTALK SYSTEMS

plot in figure 4.4 shows the best power law fit for the distribution tails respec-
tively of the NoC (Number of Children) and of the number of all subclasses.
The plot in figure 4.5 shows the distribution tails of the class size both in
terms of line of code (LOC) and of number of methods (NoM). As one can
see, such distributions is better fitted by a lognormal function, rather than
a power law. In some way, this still implies the presence of a fat tail effect
4, then showing that the system is made of a large number of small size
classes, while there is a certain number of classes having a great length. This
feeds the suspect that the degree distributions reflects in fact this behavior,
as the high correlation coefficient between size metrics and degree metrics
warn. This idea is finally confirmed by the plot of figure 4.6, which repre-
sents perhaps the most interesting result. The plot show the distribution of
the Output Degree scaled on the class size in terms of LOC. Surprisingly,
the trend is fully fitted by a Gaussian shape, rather than a power law. The
meaning is that the pure Output Degree of a class, once cleaned of the class
size information, is randomly distributed according to a Gaussian law, then
following the traditional Random Graph model rather than the modern scale
free network model.

Metric Power Coefficient

Method LOC α = 3.0967
Calls to Method α = 2.0135
Method Implementors α = 2.5693
Calls Vs. Implementors α = 2.1993
Class NoC α = 2.0850
Class Number of All Subclasses α = 2.1573

Table 4.4: Power Coefficients. Power coefficients of the Distribution Func-
tion for each metric computed on all the Smalltalk systems.

The last set of plots in figure 4.7 shows the analysis of the distributions
of some method indicators. Namely, the method size in terms of line of code;
the number of implementors of a given method selector, that is how many
times a given selector name has been used within the systems by different

4The formal definition of heavy tailed distribution is the one given in 3.13. Thus, is
not formally correct to say that a lognormal distribution displays the heavy tail effect.
Moreover, the lognormal shape is not free of scale, as it presents a peak similar to the
gaussian distribution. However, the tail of the lognormal function still appear to be a
straight line if plotted on a log scale. This is the main reason why, in this context, this
kind of trend is considered more closer to the power law rather to the gaussian behavior.
More details about the lognormal distribution and a wide view of other distributions could
be find in the ARL Report indicated in [Saucier, 2000].

Power Laws in Object Oriented Systems Architectures 44

4.1. SMALLTALK SYSTEMS

classes; the number of calls of a given selector performed within the system by
other methods, that is the number of senders of a given message selector; the
number of calls of a given method selector scaled on its number of senders.
Each metric distribution is again characterized by fat tails following a power
law.

Table 4.4 provides the power coefficients for each analyzed case. Note
that all values remain around the theoretical value and then close to those
obtained for other previous studies relative to both software networks and
non-software networks.

Figure 4.4: CCDF of the inheritance metrics for the base image of the Vi-
sualWorks environment (Graph#1). Two metrics are plotted:
Number of Cildren (*) and Number of All Subclasses (o).

Power Laws in Object Oriented Systems Architectures 45

4.1. SMALLTALK SYSTEMS

Figure 4.5: Class Size Metrics. CCDF tails of the system class size in
terms of class LOC (o) and in terms of Number of Methods per
class (*), for the base image of the VisualWorks environment
(Graph#1). Both plots show that the size distribution of the Vi-
sualWorks system is well fitted more by a lognormal trend rather
than a power law. The lognormal distribution formally differs
from the heavy tailed distribution and does not display the scale
free effect. However, if plotted on a log scale it still appears, at
least in the tail, as a straight line. Thus, in this context, the
lognormal behavior still can be considered close to a power law
distribution.

Power Laws in Object Oriented Systems Architectures 46

4.1. SMALLTALK SYSTEMS

Figure 4.6: CCDF of the Output Degree normalized by the class size in terms
of class LOC for the base image of the VisualWorks environ-
ment (Graph#1). Surprisingly, this indicator is fully fitted by a
normal Gaussian distribution, rather than a power law or a log-
normal. This means that the power-law or lognormal behavior
found in the output links distribution here and by other authors
in their works is in artifact. They in fact measured the lognormal
or power law distribution of class sizes. The use of external ser-
vices by segments of code of the same size looks fairly random and
independent. So far, this is the only normal distribution found
in our and other related works about software systems networks.

Power Laws in Object Oriented Systems Architectures 47

4.1. SMALLTALK SYSTEMS

Figure 4.7: Method Metrics. CCDF tails of some method metrics for the
base image of the VisualWorks environment (Graph#1). Star-
ing from the top left and moving clockwise: Method Size, Method
Names, Method Calls, Method Calls vs. Number of Implemen-
tors. The size of a method is given in terms of number of line of
non-commented code. The method name metric gives the number
of times a certain selector name is implemented in the systems,
that is the number of implementors of a given selector. The
Method Calls metric gives the number of times a given selector
is referenced within the system, that is the number of all senders
of a given selector. The last gives the rank of the method calls
up the number of implementors for each method in the system.

Power Laws in Object Oriented Systems Architectures 48

4.2. JAVA SYSTEMS

4.2 Java Systems

This section presents the results of the experiment performed on two Java
systems, namely the Apache Ant system and the Apache Jakarta Tomcat
system. The first is a Java-based build tool, while the second is an application
server for Java web components.

Similarly to what has been made on the Smalltalk systems, for each sys-
tems we first built the graph representation, according to the approach de-
scribed in section 3.1.1, and then we performed the statistical correlation
among the node degrees and some object oriented metrics. Second, we per-
formed the analysis of the degree distributions showing how the tails of these
distributions display the scale-free effect.

4.2.1 Statistical Correlation Analysis

The following Java graphs have been analyzed:

• Ant: The system is made up of 901 class, which is in turn the number
of nodes of the relative graph representation. The distribution analysis
has been performed on such data set, while the correlation analysis has
been computed on a subset of 611 classes.

• Tomcat: The system is made up of 677 class, which is in turn the
number of nodes of the relative graph representation. The distribution
analysis has been performed on such data set, while the correlation
analysis has been computed on a subset of 243 classes.

Metrics LOC, Ce, LCOM-CK, LCOM-HS and WMC have been com-
puted and correlated with input and output degree. Table 4.5 shows the
Spearman correlation coefficient computed first between input degree and
the above metrics and second between output degree and the same metrics.
The descriptive statistic of each analyzed system is provided in Appendix B.

LOC Ce LCOM-CK LCOM-HS WMC

Ant - InDeg -0.0056 0.0936 0.1588 0.0929 0.1298
Ant - OutDeg 0.6366 0.8125 0.4325 0.4174 0.7483
Tomcat - InDeg 0.0320 0.1048 0.2232 0.2147 0.1856
Tomcat - OutDeg 0.6800 0.8093 0.4703 0.5799 0.7647

Table 4.5: Statistical correlation of Input Degree and Output Degree with
software metrics.

Power Laws in Object Oriented Systems Architectures 49

4.2. JAVA SYSTEMS

The correlation analysis performed on the Java systems differs from the
previous analysis made on the Smalltalk systems, for two main reasons:

1. First, the set of selected metrics is different between the two case study.
For the Smalltalk case, we have considered two metrics related with the
inheritance mechanism, namely the DIT and NOC metrics. Inheritance
resulted to be statistically uncorrelated with the graph properties and
this is reasonable as the graph brings information about dependence in
terms of message sending rather than in therms of inheritance. Similar
observations can be done on the Java graph model, where inheritance
is still not significant as a consequence of the single inheritance mech-
anism. In the Java analysis the only metric that in some way takes ac-
count of the inheritance is the Ce metric, which nevertheless is a general
coupling metric. Differently of the Smalltalk case, we have computed
two cohesiveness metric, namely the LCOM-CK and the LCOM-HS.
The dynamic nature of the Smalltalk language make these metric diffi-
cult to practically define and implement, which is not the case for Java,
that brings in the code a great amount of information about types. For
both Smalltalk and Java, we have computed the same size metrics,
namely the LOC and the WMC.

2. Second, the computation approach of software measures is different
between the two case study. More precisely, the metric computation
on the Smalltalk systems has been made directly on the code relying on
the system self inspecting ability. It is important to note that the same
mechanism and quite the same peaces of code have been used to build
the graph representation (see Appendix A). This reasonably affects the
statistical correlation computation among the software metrics and the
graph topological indicators. This is not the case of the Java systems,
where the software metrics computation and the graph analysis are
independently computed relying on two different tools.

The correlation analysis shows a fundamental difference if compared with
the Smalltalk case study. As we can see in table 4.5, while the Output De-
gree is still correlated with about all computed metrics, the Input Degree is
no more correlated with them. This confirm that the Output Degree brings
in fact information about the class size and that a large class with a great
number of methods is more likely to depend on external classes. This line is
still enforced by the correlation of the Output Degree with the cohesiveness
metrics, which in fact suggests a scenarios where classes with a great number
of outgoing links are more likely to be poorly cohesive. Moreover, the corre-
lation with the Ce metric, which is a coupling indicator warns that classes

Power Laws in Object Oriented Systems Architectures 50

4.2. JAVA SYSTEMS

with a large number of outgoing links are likely to be also heavily coupled
with external classes.

The Input Degree remains difficult to interpret in terms of software qual-
ity, as a consequence of the low correlation values found. Such results also are
in great contrast with previous Smalltalk analysis, that consequently needs
more caution in its interpretation.

4.2.2 Distribution Analysis

Following the approach described in section 3.2.1 and then in the previous
Smalltalk anlysis, we will provide the complementary cumulative distribution
functions (ccdf) both of Input and Output Degree. Once more, all the com-
plementary cumulative distribution functions have been plotted in a log-log
scale to better verify the presence of a power law and to easily estimate the
power coefficient.

Plots displays that similarly to the previous analysis the ccdf tails are in
fact well fitted by a straight line in a log-log scale, which confirms the exis-
tence of the heavy tail effect in such distributions. Figure 4.2.2 displays both
the Input Degree and Output Degree ccdf tails for each analyzed Java system,
while Table 4.6 shows the power exponent α of the power law distribution
which best fits the empirical distributions of each system graph.

Results are quite close to those provided by the Smalltalk case study. Note
that the power exponent α of the distributions is still close to the theoretical
value (α = 3) obtained by Barabasi and to the empirical values (2 < α < 4)
obtained for many real networks.

Input Degree Output Degree

Ant α = 2.2560 α = 3.4135
Tomcat α = 2.4969 α = 2.5972

Table 4.6: Power Coefficients. Power coefficients of the Distribution Func-
tion for each analyzed Java system. Note that this is the α pa-
rameter previously described in section 3.2.1. The relative CCDF
power coefficient is given by: β = α − 1

For the analyzed Java systems, we can replay the same observations made
for the Smalltalk systems.

With respect to the Output Degree, the power law distribution shows
that the system is characterized by a certain number of classes with an high
level of coupling, while the great part of them tends to be much less coupled.
This interpretation is here enforced by the high correlation found between

Power Laws in Object Oriented Systems Architectures 51

4.2. JAVA SYSTEMS

Figure 4.8: Java Distributions. Input Degree and Output Degree distribu-
tions tails for each analyzed Java system: Tomcat Input Degree
and Ant Input Degree on the top; Tomcat Output Degree and
Ant Output Degree on the bottom.

the Output Degree and the Ce metric, which is a coupling indicator. While
the correlation with the size metrics LOC and WMC, again suggest that the
Output Degree power law distribution reasonably reflects the distribution of
class sizes and that when a new method is added to the system, it is likely
that it belongs to a class that already has many methods.

The Input Degree gives a measure of how a certain class is referenced by
other classes in the system. The distribution trend is due to the fact that
also in the Java system, there are “service” classes that are used by almost
all other classes, while there are also classes which are fairly used and many
classes that are rarely used.

Power Laws in Object Oriented Systems Architectures 52

Chapter 5

Conclusions and Further Works

Modeling deals with providing an abstraction of any reality aspect, in order
to strip away needless details while focusing on needed ones. Measuring and
modeling are strictly related one to each other. A measure definition needs
in fact to be associated with a model, which in turn provides the abstraction
of the entities and attributes to be measured. In this work we have pre-
sented a model representing a general object oriented software system. The
model definition is inspired by the Complex Network and Random Graphs
theories. According to such model, an object oriented system is made of a
set of entities, such as classes, methods and attributes, related across specific
relationships. First, the model can be useful to provide a base for the design
and implementation of tools for both the definition and extraction of many
software metrics. Second and more important, the same model provides a
new perspective and view from which to analyze object oriented software
system general properties. This is the perspective of the Complex Network,
where a real system and the relationship among its subparts are analyzed on
a statistical base. This study has been mainly focusing on the second aspect.

5.1 Conclusions

This work started with a double goal:

• Analyze the general statistical properties of an object oriented system
in terms of the degree distribution of the underlining network repre-
sentation;

• Interpret the network topological informations in terms on software
quality;

53

5.2. FURTHER WORKS

We model and analyze six different Smalltalk systems and two different
Java systems. For each system, we built the network representation using ad-
hoc designed parsing tools, we analyzed the degrees statistical distributions
of the relative network representation and we performed the statistical cor-
relation among the topological network properties and some software quality
indicators.

We systematically found power law heavy tailed distributions for both
input and output degree, denoting that the programming activity in no way
can be simply modeled as a random addition of dependent increments, but
exhibits strong dependencies on what has been already developed. We tried
to explain the reasons behind the power law behavior of the distributions
studied, discussing how a program is built and which dependencies may arise.
We also discussed how quality measures of object oriented systems can be
linked with the behavior of the studied distributions. This could be a starting
point to devise a set of quality metrics based on overall statistics behavior of
large systems.

We explained why the distribution of output links in the class graph,
which represents the number of other classes used by a single class has been
consistently found by us, and by other authors in other previous studies,
as power law or sometimes lognormal. This behavior is directly linked to
the power law or lognrmal distribution of the class sizes - the bigger the
code of a class, the more the dependencies on other classes in the system.
Normalizing the output links number on the class size, the resulting output
degree distribution becomes very close to a Gaussian distribution. Interest-
ingly, this is the only case of quasi-Gaussian distribution we found in our and
other related studies. The idea of the existence of a strong relation among
the output degree and the class size is also confirmed and enforced by our
statistical correlation analysis. The output degree has been also found to
be strongly correlated with other quality indicators, such like coupling and
cohesion metrics.

The input degree remains less clear in its interpretation. While it is
not difficult to give a qualitative interpretation of such indicator, it results
difficult to find a more quantitative interpretation in terms of quality.

5.2 Further Works

The study presented here suggests new ideas and scenarios for further works.
First of all, it could be useful to repeat the analysis on other software systems
in order to confirm the above conclusions and eventually overcome any doubt.
This could be achieved relying on the large amount of code maintained by

Power Laws in Object Oriented Systems Architectures 54

5.2. FURTHER WORKS

the Open Source community across the Internet.
Going further, it could be useful to perform more correlation analysis

considering other software metrics not necessarily related with quality, but
rather accounting different software product and process properties. Also,
complex networks provide a new perspective to evaluate the evolution of a
software system in terms of the underlining graph evolution. Moreover, this
gives the opportunity to develop new models of networks having power law
degree distribution, as an alternative to the Barabasi preferential attachment
model. This could the starting point to evaluate how the network model
attributes varies for examples as a response of the different development
methodology used to produce the represented software system.

Last, following the state of the art of the Complex Network theory, it
could be interesting to evaluate the presence of self similar structures inside
the software networks, and then provide an interpretation in terms of software
evolution.

Power Laws in Object Oriented Systems Architectures 55

Appendix A

Metrics

This section describes all metrics computed in this study, both for Smalltalk
and Java systems. It also explains some implementation detail above all
for the part relative to Smalltalk. The list of all computed metric is the
following:

• LOC - Lines Of Code - Gives a code size measure. There is not a uni-
fied definition of such metric, but usually the name LOC is intended to
give the number of uncommented lines, where CLOC gives the number
of commented lines. Nevertheless, note that the meaning of line of code
itself is not unambiguous. For examples, it sometimes gives the actual
number of carriage return characters, while sometimes it is intended as
the number of statements, where multiple lines statements are counted
once. This last definition comes from the Hewlett-Packard where a line
of code has been in fact formally defined as: Any statement in the pro-
gram except for blank lines and comments [Grady and Caswell, 1987].
The Hewlett-Packard definition of a line of code is actually the most
widely used. In a sense, valuable length information is lost while using
this definition, for example when deciding how much computer storage
is required. Nevertheless, it is a reasonable and useful metric definition
for instance if we are interested in estimate the effort from the point of
view of the productivity assessment [Fenton, 1997].

In this study we counted the actual number of carriage return charac-
ter, both in Java and in Smalltalk systems. For the Java systems we
computed the LOC metric with the TEAMINABOX Eclipse Metrics
Plugin (http://www.teaminabox.co.uk). For the smalltalk systems we
based the computation on some system methods allowing to perform
a direct parsing code. More precisely, the computation is based on the
method sourceCodeAt: messageSelector of the class Behavior, which

56

answers the string corresponding to the source code for the argument,
namely a method selector. Thus, a peace of code like the following:

theClass sourceCodeAt: messageSelector

returns a string containing the code which implements the method of
the class theClass and with selector messageSelector. The the returned
string could be parsed to count special characters such like the carriage
return. Note that while the Java metric counts also the length of the
header of the method, this is not counted in the Smalltalk case.

• WMC - Weighted Methods per Class - Gives a code size measure
both in terms of length and complexity. The formal definition of the
metric has been given in equation 1.1. Each method complexity is usu-
ally computed as the McCabe Ciclomatic complexity [McCabe, 1976]
or alternatively is considered unitary then giving the number of meth-
ods for a class, which is a pure class length measure. The number of
methods and their complexity are predictors of the effort required to
develop and maintain the class. The larger the number of methods,
the greater the potential impact on children classes, as they inherit all
methods of parent classes. Moreover, a class with a large number of
methods are likely to be application specific, limiting the possibility of
reuse.

In this study the metric has been computed with unitary complexity
both for Java and for Smalltalk. For the Java systems we computed
the WMC metric with the TEAMINABOX Eclipse Metrics Plugin. For
the smalltalk we computed the metric directly inspecting the code from
the environment. The computation is based on the method selectors
of the class Behavior, which return the collection of all selectors of the
class receiving the message. Thus, the required measure is simply given
by a peace of code like the following:

theClass selectors size

• DIT - Depth of Inheritance Tree - Gives a measure of the use of
inheritance mechanism. The formal definition of the metric has been
given in section 1.3.1. The DIT metric gives the number of ancestors
of a given class, in cases involving multiple inheritance, the DIT will be
the maximum length from the class to the root of the tree. This metric
has been computed only on the Smalltalk systems. The computation

Power Laws in Object Oriented Systems Architectures 57

is easily provided by the method allSuperclasses of the class Behavior,
which return a collection of all the classes in the hierarchy of the class
receiving the message. Thus, the required measure is simply given by
a peace of code like the following:

theClass allSuperclasses size

• NOC - Number of Children - An other measure of the inheritance.
NOC is simply the number of direct subclasses of a given class. Like the
DIT metric, it has been computed only on the Smalltalk systems. The
computation is easily provided by the method subclasses of the class
Behavior, which return a collection of all the direct child classes of the
class receiving the message. Thus, the required measure is simply given
by a peace of code like the following:

theClass subclasses size

• RFC - Response for a Class - This is a measure of the communi-
cation of the class with other classes in the system. The greater the
number of methods that can be invoked by a class, the larger the com-
plexity of the class. RFC gives a measure of the effort required for
maintain a class in terms of testing time. The formal definition of RFC
has been given in equation 1.4. This metric has been computed only
on the Smalltalk systems. The computation is hardly influenced by the
dynamic nature of the smalltalk language. Thus, the measure results
to be not fully coherent with the original definition given by Chidember
and Kemerer. More precisely, as there is no way to statically detect
the class implementing a given method selector, methods having the
same name, but potentially implemented within different classes, are
counted only once. Thus, the required measure is computed by a peace
of code like the following:

| set |

set := Set new.

aClass selectors do:

[:selector |

set add: selector.

set addAll: (aClass compiledMethodAt: selector) messages].

^set size

Power Laws in Object Oriented Systems Architectures 58

It is important to note that the above code is quite close to the code
which implements the building of the smalltalk graph. Thus, it is
reasonable that such metric will be heavily correlated with the Input
Degree and Output Degree of a class.

• Ce - Efferent Coupling - Gives a measure of the coupling between
classes. This metric has been proposed by Robert Martin as a part of
a suite of metrics known as Martin Package [Martin, 1994].

The metric definition is based on the idea of the Class Category. Re-
ferring to the original paper, a Class Category is a group of highly
cohesive classes that obey the following three rules:

1. The classes within a category are closed together against any force
of change. This means that if one class must change, all of the
classes within the category are likely to change. If any of the
classes are open to a certain kind of change, they are all open to
that kind of change.

2. The classes within a category are reused together. They are
strongly interdependent and cannot be separated from each other.
Thus if any attempt is made to reuse one class within the category,
all the other classes must be reused with it.

3. The classes within a category share some common function or
achieve some common goal.

These three rules are listed in order of their importance. Rule 3 can be
sacrificed for rule 2 which can, in turn, be sacrificed for rule 1.

If categories are to be reused, they must also be released and given
release numbers. If this were not the case, reusers would not be able to
rely upon the stability of the reused categories since the authors might
change it at any time. Thus the authors must provide releases of their
categories and identify them with release numbers so that reusers can
be assured that they can have access to versions of the category that
will not be changed.

Since categories are both the granule of release and reuse, it stands to
reason that the dependencies that we wish to manage are the dependen-
cies between categories rather than the dependencies within categories.
After all, within a category, classes are expected to be highly interde-
pendent. Since all the classes within a category are reused at the same
time, and since all classes in a category are closed against the same

Power Laws in Object Oriented Systems Architectures 59

kind of changes, the interdependence between them cannot do much
harm.

Starting from these statements, Martin provides the following metric
definitions:

• Ca - Afferent Couplings: The number of classes outside this
category that depend upon classes within this category;

• Ce - Efferent Couplings: The number of classes inside this
category that depend upon classes outside this categories;

• I - Instability:

Ce

Ca + Ce
(A.1)

This metric has the range [0,1]. I=0 indicates a maximally stable
category. I=1 indicates a maximally instable category.

In this study only Ce metric has been computed and only for the an-
alyzed Java projects. The computation has been automatically per-
formed by the TEAMINABOX Eclipse Metrics Plugin. Where the
dependence has been checked in terms of inheritance, interface imple-
mentation, parameter types, variable types, thrown and caught excep-
tions. In short, all types referred to anywhere within the source of the
measured class. Most important is that the the concept of category
has been lost in the computation, thus the category becomes the same
as the class itself.

• LCOM-CK - CK’s Lack of Cohesion in Methods - Gives a mea-
sure of the cohesion between the methods of a class. The formal defi-
nition has been given in equation 1.7. This metric has been computed
only on the Java systems using the TEAMINABOX Eclipse Metrics
Plugin. This metric is part of the Chidamber and Kemerer suite.

• LCOM-HS - HS’s Lack of Cohesion in Methods - Gives a mea-
sure of the cohesion between the methods of a class. This metric has
been proposed by Henderson-Sellers as an alternative definition for the
LCOM metric preposed by Chidamber and Kemerer. The major cri-
tique to the original version is that with the LCOM-CK, there are a
lot of dissimilar examples all giving a zero value. Hence, while a large
value of LCOM suggests a poor cohesion, the zero value does not neces-
sarily indicate good cohesion. More over the original definition lacked of
guidelines for the measure interpretation [Henderson-Sellers et al., 1996].

Power Laws in Object Oriented Systems Architectures 60

Thus, he suggested that the requirements for LCOM definition must
include:

1. The ability to give values across the full range;

2. The measure must give values which can be uniquely interpreted
in terms of cohesion.

Henderson-Sellers defines Lack of Cohesion in Methods as follows.
Let:

M be the set of methods defined by the class (see note 1 below);

F be the set of fields defined by the class (see note 2 below);

r(f) be the number of methods that access field f, where f is a
member of F ;

< r > be the mean of r(f) over F .

Then:

LCOM =
< r > −|M |

1 − |M |
(A.2)

Note 1: The TEAMINABOX Metric Plugin only includes methods in
M if they access at least one field. The reason for this is that methods
that do not access fields are often required to be non-static for reasons
of polymorphic dispatch. However, these kinds of methods skew the
value of this metric in a way that is not helpful.

Note 2: The TEAMINABOX Metric Plugin only includes fields in F if
they are accessed by at least one method in the class. A good compiler
can tell you if fields are unused, and leaving them in the calculation of
this metric skews the value.

Power Laws in Object Oriented Systems Architectures 61

Appendix B

Statistics

This section collects for each analyzed system the descriptive statistics of all
computed metrics. Tables B.1 - B.6 show the descriptive statistic for all the
Smalltalk system. Tables B.7 and B.8 show the descriptive statistic respec-
tively for the Ant and for the Tomcat systems. The descriptive statistics are
given in terms of Max, Min, Median, Second and Third percentiles, Mean
and standard Deviation.

62

METRIC Max Min 75oPercentile Median 25oPercentile Mean Std. Deviation

InputDegree 1.3016 · 104 0.0000 · 104 0.0057 · 104 0.0019 · 104 0.0003 · 104 0.0067 · 104 0.0305 · 104

OutputDegree 2.5900 · 103 0.0010 · 103 0.0720 · 103 0.0240 · 103 0.0070 · 103 0.0673 · 103 0.1363 · 103

LOC 5.2040 · 103 0.0000 · 103 0.1582 · 103 0.0610 · 103 0.0210 · 103 0.1453 · 103 0.2711 · 103

WMC 356.0000 0.0000 19.0000 8.0000 3.0000 16.2102 24.1195
DIT 12.0000 0.0000 4.0000 3.0000 2.0000 3.4038 1.9357
NOC 367.0000 0.0000 1.0000 0.0000 0.0000 1.0000 8.1438
RFC 902.0000 0.0000 53.2500 23.0000 9.0000 42.0401 58.7881

Table B.1: Statistics. Statistics for each metric computed on the VisualWorks base image (Graph#1).

P
o
w
er

L
a
w
s

in
O

bject
O

rien
ted

S
ystem

s
A

rch
itectu

res
63

METRIC Max Min 75oPercentile Median 25oPercentile Mean Std. Deviation

InputDegree 1.4836 · 104 0.0000 · 104 0.0061 · 104 0.0019 · 104 0.0004 · 104 0.0070 · 104 0.0326 · 104

OutputDegree 2.6640 · 104 0.0010 · 104 0.0740 · 104 0.0250 · 104 0.0070 · 104 0.0699 · 104 0.1412 · 104

LOC 5.2040 · 103 0.0000 · 103 0.0720 · 103 0.0240 · 103 0.0070 · 103 0.1453 · 103 0.2711 · 103

WMC 356.0000 0.0000 20.0000 9.0000 4.0000 16.7886 25.0157
DIT 12.0000 0.0000 4.0000 3.0000 2.0000 3.3544 1.9035
NOC 419.0000 0.0000 1.0000 0.0000 0.0000 1.0000 8.7231
RFC 902.0000 0.0000 55.0000 24.0000 9.0000 43.4089 61.1317

Table B.2: Statistics. Statistics for each metric computed on the VisualWorks image with the Store parcels loaded
(Graph#2).

P
o
w
er

L
a
w
s

in
O

bject
O

rien
ted

S
ystem

s
A

rch
itectu

res
64

METRIC Max Min 75oPercentile Median 25oPercentile Mean Std. Deviation

InputDegree 1.0067 · 104 0.0000 · 103 0.0059 · 104 0.0021 · 104 0.0005 · 104 0.0067 · 104 0.0280 · 104

OutputDegree 1.4110 · 103 0.0010 · 103 0.0760 · 103 0.0290 · 103 0.0097 · 103 0.0674 · 103 0.1215 · 103

LOC 1.1174 · 106 0.0000 · 106 0.0421 · 106 0.0140 · 106 0.0046 · 106 0.0404 · 106 0.0796 · 106

WMC 234.0000 0.0000 20.0000 9.0000 4.0000 17.0944 23.9047
DIT 12.0000 0.00000 4.0000 3.0000 2.0000 3.4475 2.0427
NOC 264.0000 0.0000 1.0000 0.0000 0.0000 1.0000 6.8157
RFC 550.0000 0.0000 55.0000 26.0000 11.0000 43.4890 55.5285

Table B.3: Statistics. Statistics for each metric computed on the short version of the VisualWorks image (Graph#3).

P
o
w
er

L
a
w
s

in
O

bject
O

rien
ted

S
ystem

s
A

rch
itectu

res
65

METRIC Max Min 75oPercentile Median 25oPercentile Mean Std. Deviation

InputDegree 543.7770 0.0000 76.0730 21.4701 6.7333 57.9806 83.3947
OutputDegree 1.4390 · 103 0.0010 · 103 0.0860 · 103 0.0370 · 103 0.0100 · 103 0.0931 · 103 0.1800 · 103

LOC 2.1510 · 103 0.0000 · 103 0.2400 · 103 0.0900 · 103 0.0380 · 103 0.2075 · 103 0.3170 · 103

WMC 270.0000 0.0000 27.0000 11.0000 5.0000 22.4333 31.7312
DIT 7.0000 1.0000 4.0000 3.0000 2.0000 3.0905 1.5732
NOC 7.0000 0.0000 1.0000 0.0000 0.0000 0.6190 1.2932
RFC 615.0000 0.0000 66.0000 31.0000 13.0000 56.6571 79.5737

Table B.4: Statistics. Statistics for each metric computed on VisualWorks Store parcels (Graph#4).

P
o
w
er

L
a
w
s

in
O

bject
O

rien
ted

S
ystem

s
A

rch
itectu

res
66

METRIC Max Min 75oPercentile Median 25oPercentile Mean Std. Deviation

InputDegree 1.4836 · 104 0.0000 · 104 0.0247 · 104 0.0057 · 104 0.0008 · 104 0.0302 · 104 0.1138 · 104

OutputDegree 629.0000 87.0000 1.0000 24.5000 3.0000 64.7043 101.9011
LOC 1.7280 · 103 0.0000 · 103 0.2100 · 103 0.0695 · 103 0.0140 · 103 0.1642 · 103 0.2425 · 103

WMC 249.0000 0.0000 26.0000 9.0000 2.0000 20.4247 30.5548
DIT 7.0000 0.0000 5.0000 3.0000 2.0000 3.3925 1.7620
NOC 419.0000 0.0000 2.0000 0.0000 0.00000 3.8441 30.9399
RFC 364.0000 0.0000 55.0000 22.0000 4.0000 39.5054 53.1350

Table B.5: Statistics. Statistics for each metric computed on the VisualWorks Core classes (Graph#5).

P
o
w
er

L
a
w
s

in
O

bject
O

rien
ted

S
ystem

s
A

rch
itectu

res
67

METRIC Max Min 75oPercentile Median 25oPercentile Mean Std. Deviation

InputDegree: 8.9831 · 103 0.0000 · 103 0.0766 · 103 0.0235 · 103 0.0051 · 103 0.1012 · 103 0.3961 · 103

OutputDegree 5.1468 · 103 0.0010 · 103 0.0980 · 103 0.0340 · 103 0.0080 · 103 0.1012 · 103 0.2471
LOC 7.3770 · 103 0.0000 · 103 0.1770 · 103 0.0640 · 103 0.0220 · 103 0.1840 · 103 0.4244 · 103

WMC 1.0900 · 103 0.0000 · 103 0.0220 · 103 0.0100 · 103 0.0040 · 103 0.0202 · 103 0.0429 · 103

DIT 10.0000 0.0000 5.0000 4.0000 3.0000 3.8682 1.6347
NOC 410.0000 0.0000 0.0000 0.0000 0.0000 1.0000 10.0404
RFC 1.7930 · 103 0.0000 · 103 0.0670 · 103 0.0300 · 103 0.0110 · 103 0.0553 · 103 0.0903 · 103

Table B.6: Statistics. Statistics for each metric computed on the Squeak base image (Graph#6).

P
o
w
er

L
a
w
s

in
O

bject
O

rien
ted

S
ystem

s
A

rch
itectu

res
68

METRIC Max Min 75oPercentile Median 25oPercentile Mean Std. Deviation

outputDegree 149.0000 0.0000 7.0000 3.0000 1.0000 5.8433 9.8184
inputDegree 152.0000 0.0000 1.0000 1.0000 0.0000 2.1456 8.6221
LOC 518.0000 56.0000 71.0000 64.0000 61.0000 69.3856 29.4673
Ce 54.0000 2.0000 17.0000 10.0000 7.0000 12.9068 8.4778
LCOM-CK 1.2990 · 104 0.0000 · 104 0.0075 · 104 0.0000 · 104 0.0000 · 104 0.0281 · 104 0.1186 · 104

LCOM-HS 100.0000 0.0000 86.0000 73.0000 0.0000 55.9047 36.9537
WMC 279.0000 2.0000 41.0000 20.0000 10.0000 32.5614 36.8838

Table B.7: Statistics. Statistics for each metric computed for Ant system.

P
o
w
er

L
a
w
s

in
O

bject
O

rien
ted

S
ystem

s
A

rch
itectu

res
69

METRIC Max Min 75oPercentile Median 25oPercentile Mean Std. Deviation

outputDegree 113.0000 0.0000 15.0000 6.0000 2.0000 11.8182 17.4705
inputDegree 115.0000 0.0000 2.0000 0.0000 0.0000 2.7810 9.9783
LOC 714.0000 61.0000 88.0000 77.0000 71.0000 90.5950 71.8778
Ce 76.0000 2.0000 23.0000 12.0000 6.0000 15.8223 12.8476
LCOM-CK 4.5820 · 103 0.0000 · 103 0.0040 · 103 0.0000 · 103 0.0000 · 103 0.0435 · 103 0.3045 · 103

LCOM-HS 100.0000 0.0000 83.0000 50.0000 0.0000 45.1818 38.0667
WMC 434.0000 2.0000 60.0000 27.0000 11.0000 50.6033 62.6515

Table B.8: Statistics. Statistics for each metric computed for Tomcat system.

P
o
w
er

L
a
w
s

in
O

bject
O

rien
ted

S
ystem

s
A

rch
itectu

res
70

Bibliography

[Abreu and Carapuca, 1994] Abreu, F.B., Carapuca, R., Object-oriented
software engineering: Measuring and controlling the development pro-
cess, Proceeding of the 4th International Conference on Software Qual-
ity, 1994.

[Abreu et al., 1995] Abreu, F.B., Goulao, M., Esteves, R., Toward the De-
sign Quality Evaluation of Object-Oriented Software Systems, Proceed-
ing of the 5th International Conference on Software Quality, 1995.

[Aiello et al., 2000] Aiello, W., Chung, F., Lu, L., A random graph model for
massive graphs, in Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing, Association of Computing Machinery, New York,
pp. 171180, 2000

[Albert et al., 1999] Albert, R., Jeong, H., Barabasi, A., Diameter of the
World Wide Web, Nature Vol. 401, pp 130-131, 1999

[Alshayeb and Li, 2003] Alshayeb, M., Li, W., An Empirical Validation of
Object Oriented Metrics in two Different Iterative Software Processes,
IEEE Transaction on Software Engineering, 29(11) pp. 1043-1049, 2003

[Amaral et al., 2000] Amaral, L.A.N., Scala, A., Barthèlèmy, M., Stanley,
H.E., Classes of small-world networks, Proc. Natl. Acad. Sci. U.S.A. 97
(21), pp. 11149-11152, 2000

[Basili and Rombach., 1988] Basili, V.R., Rombach, H.D., The TAME
Project: Towards Improvement-Oriented Software Environment, IEEE
Transaction on Software Engineering, 14(6) pp. 758-73, 1988

[Basili, 1992] Basili, V.R., Software Modeling and Measurement: The Goal
Question Metric Paradigm Computer Science Technical Report Se-
ries, CS-TR-2956 (UMIACS-TR-92-96), University of Maryland, College
Park, MD, September 1992.

71

BIBLIOGRAPHY

[Basili et al., 1996] Basili, V.R., Briand, L.C., Melo, W.L., A validation of
object-oriented design metrics as quality indicators, IEEE Transaction
on Software Engineering, 22(10) pp. 751-61, 1996

[Barabasi and Albert, 1999] Barabasi, A., Albert, R., Emergence of scaling
in random networks, Science Vol. 286, pp. 509-512, 1999

[Barabasi et al., 1999] Barabasi, A., Albert, R., Jeong, H., Scale-free char-
acteristics of random networks: the topology of the World Wide Web ,
Phys. A Vol. 281, pp 69-77, 2000

[Bollobás, 1981] Bollobás, B., The diameter of random graphs, Trans. Amer.
Math. Soc., 267, pp. 4152, 1981

[Bollobás, 1995] Bollobás, B., Random Graphs, Academic Press, London,
1985

[Bollobás and Riordan, 2002] Bollobás, B., Riordan, O., The Diameter of a
Scale-Free Random Graph, preprint, Department of Mathematical Sci-
ences, University of Memphis, 2002.

[Briand et al., 1999] Briand, L.C. , Wst, J., Ikonomowsky, S., Luonis, H.,
Investigating Quality Factors in Object-Oriented Designs: an Industrial
Case Study, Proceedings of the 21st International Conference on Soft-
ware Engineering, 51(3) pp. 245-54, 1999

[Briand et al., 2000] Briand, L.C. , Wst, J., Daly, J.W., Porter, D.V., Ex-
ploring the Relationships between Design Measures and Software Quality
in Object-Oriented Systems, Journal of Systems and Software, 51(3) pp.
245-73, 2000

[Broder et al., 2000] Broder, A., Kumar, R., Maghoul, F., Raghavan, P.,
Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J., Graph structure in
the web, Computer Networks, 33, pp. 309320, 2000

[Brooks, 1987] Brooks, F.P., No Silver Bullet: Essence and Accidents of Soft-
ware Engineering, Computer, 20(4) pp. 10-19, 1987

[Brooks, 1995] Brooks, F.P., The Mythical Man-Month, Addison-Wesley,
1995

[Bunge, 1979] Bunge, M., Treatise on Basic Philosophy: Ontology II: the
World of Systems, Riedel, Boston, MA, 1979

Power Laws in Object Oriented Systems Architectures 72

BIBLIOGRAPHY

[Chen et al, 2002] Chen, Q., Chang, H., Govindam, R., Jamin, S., Shenker,
S.J., The origin of power laws in Internet topologies revisited, Proceed-
ings of the 21st Annual Joint Conference of the IEEE Computer and
Communications Societies, IEEE Computer Society, Los Alamitos, CA,
2002.

[Chidamber and Kemerer, 1994] Chidamber, S.R., Kemerer, C.F., A Metric
Suite for Object Oriented Design, IEEE Transaction on Software Engi-
neering, 20(6) pp. 476-93, 1994

[Chidamber at al, 1994] Chidamber, S.R., Darcy, D.P., Kemerer, C.F., Man-
agerial Use of Metrics for Object Oriented Software: An Exploratory
Analysis, IEEE Transaction on Software Engineering, 24(8) pp. 629-39,
1994

[Chung and Lu, 2002] Chung, F., Lu, L., The average distances in random
graphs with given expected degrees, Proc. Natl. Acad. Sci. USA, 99, pp.
1587915882, 2002

[Churcher and Shepperd, 1995] Churcher, N.I., Shepperd, M.J., Comment
on - A Metric Suite for Object Oriented Design, Correspondence of IEEE
Transaction on Software Engineering, 21(3) pp. 263-65, 1995

[Concas et al., 2005] Concas, G., Marchesi, M., Pinna, S., Serra, N., Power-
laws in a Large Object-Oriented Software System, Submitted for Publi-
cation to PNAS, 2005

[Crovella and Taqqu, 1999] Crovella, M.E., Taqqu, M.S., Estimating the
heavy tail index from scaling properties, Methodology and computing
in applied probability 1 (1), pp. 5579, 1999

[De Castro and Grossman, 1999] De Castro,R., Grossman, J.W., Famous
trails to Paul Erdos, Math. Intelligencer, 21, pp. 5163, 1999

[Erdős and Rényi, 1959] Erdős, P., Rényi, A., On random graphs, I, Publ.
Math. Debrecen 6, pp. 290-291, 1959

[Erdős and Rényi, 1960] Erdős, P., Rényi, A., On the Evolution of random
graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5, pp. 17-61, 1961

[Erdős and Rényi, 1961] Erdős, P., Rényi, A., On the strength of connected-
ness of a random graphs, Acta Math. Hungar. Acad. Sci. 12, pp. 261-67,
1961

Power Laws in Object Oriented Systems Architectures 73

BIBLIOGRAPHY

[Faloutsos, 1999] Faloutsos, M., Faloutsos, P., Faloutsos, C., On power-law
relationships of the Internet topology, Computer Communications Rev.,
29, pp. 251262, 1999

[Fenton, 1997] Fenton, N.E., Pfleeger, S.L., Software Metrics, a Rigorous and
Practical Approach, Second Edition, PWS Publishing Company, Boston,
MA, 1997

[Focardi et al., 2000] Focardi, S., Marchesi, M., Succi, G., Extreme Program-
ming Examined, Addison-Wesley, pp. 191-206, 2000

[Frund and Simon, 1997] Frund, J.E., Simon, G.A, Modern Elementary
Statistics, Prentice-Hall, Upper Saddle River, NJ, 1997

[Grady and Caswell, 1987] Grady, R.B., Caswell, D., Software Metrics: Es-
tablishing a Company-wide Program, Prentice Hall, Englewood Cliffs,
NJ, 1987

[Grossman, 1995] Grossman, J.W., Ion, P.D.F., On a portion of the well-
known collaboration graph, Congr. Numer., 108, pp. 129131, 1995

[Henderson-Sellers et al., 1996] Henderson-Sellers, B., Constantine, L.L.,
Graham, I.M.,Coupling and cohesion: towards a valid metrics suite for
object-oriented analysis and design, Object Oriented Systems, 3(3), pp.
143-58, 1996

[Hill, 1975] Hill, B.M., A simple general approach to inference about the tail
of a distribution, The Annals of Statistics, 3, pp. 1163-74, 1975

[Janson et al., 1999] Janson, S., Luczak, T., Rucinski, A. Random Graphs,
John Wiley, New York, 1999

[Janson, 2000] Janson, S., Growth of components in random graphs, Random
Structures and Algorithms 17, pp. 343-356, 2000

[Jeong et al., 2001] Jeong, H., Mason, S., Barabasi, A., Oltvai, Z.N., Lethal-
ity and centrality in protein networks, Nature, 411, pp. 4142, 2001

[Li and Henry, 1993] Li, W. and Henry, S., Object-Oriented Metrics that Pre-
dict Maintainability, Journal of Systems and Software, vol. 23, pp. 111-
122, 1993.

[Li and Henry, 1993] i, W. and Henry, S.,, Maintenance Metrics for the
Object-Oriented Paradigm, Proceedings of the First International Soft-
ware Metrics Symposium, pp. 52-60, Baltimore, MD, 1993

Power Laws in Object Oriented Systems Architectures 74

BIBLIOGRAPHY

[Liljeros et al., 1990] Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley,
H.E., Aberg, Y., The web of human sexual contacts, Nature, 411, pp.
907908, 2001

[Los Tres Amigos, 1999] Booch, G., Jacobson, I., Rumbaugh, J., The Unified
Modeling Language User Guide, Addison-Wesley, Reading, MA, 1999

[Luczak, 1990] Luczak, T., Component behavior near the critical point of
the random graph process, Random Structures and Algorithms 1, pp.
287310, 1990.

[Luczak et al., 1994] Luczak, T., Pittel, B.G., Wierman, J.C., The structure
of a random graph near the point of the phase transition, Transactions
of the American Mathematical Society 341, pp. 721-48, 1994.

[Luczak, 1996] Luczak, T., The phase transition in a random graph, In Com-
binatorics, Paul Erdos is Eighty, vol. 2, pp. 399-422, eds. D. Miklos, V.T.
Sos & T. Szonyi, Budapest, 1996.

[Marchesi et al., 2003] Marchesi, M., Pinna, S., Serra, N., Tuveri, S., Power
Laws in Smalltalk, Twelfth Smalltalk Joint Event, Koethen, Germany,
2004

[Martin, 1994] Martin, R., OO Design Quality Metrics, An Analysis of De-
pendencies, objectmentor.com, 1994

[McCabe, 1976] McCabe, T., A software complexity measure, IEEE Trans-
action on Software Engineering, SE-2(4) pp. 308-20, 1976

[Milgram, 1967] Milgram, S., The small world problem, Psych. Today, 2,
pp.60,67, 1967

[Myers, 2003] Myers, C.R., Software systems as complex networks: structure,
function, and evolvability of software collaboration graphs, Phys. Rev. E
68, 046116, 2003

[Newman, 2001] Newman, M.E.J., Scientific col laboration networks: I. Net-
work construction and fundamental results, Phys. Rev. E, 64, art. no.
016131, 2001

[Newman, 2001] Newman, M.E.J., The structure of scientific col laboration
networks, Proc. Natl. Acad. Sci. USA, 98, pp. 404409, 2001

Power Laws in Object Oriented Systems Architectures 75

BIBLIOGRAPHY

[Parnas, 1972] Parnas, D.L., On the criteria to be used in decomposing sys-
tems into modules, Communications of the ACM, 15(12), pp 1052-8,
1972

[Potanin et al., 2002] Potanin, A., Noble, J., Frean, M., Biddle, R., Scale-free
geometry in Object Oriented programs, Victoria University of Welling-
ton, New Zeland, Technical Report CS-TR-02/30, 2002

[Render, 1998] Render, S., How popular is your paper: an empirical study of
the citation distribution, Eur. Phys. J.B., 4, pp. 131-34, 1998

[Saucier, 2000] Saucier, R., Computer Generation of Statistical Distribu-
tions, Army Research Laboratory, ARL-TR-2168, 2000

[Serra, 2001] Serra, N., Rappresentazione di un Sistema Software e Simu-
lazione del Processo di Manutenzione Utilizzando i Grafi Casuali, Tesi
di Laurea, DIEE, Università di Cagliari, 2001

[Solomonoff and Rapport, 1951] Solomonoff, R., Rapport, A., Connectivity
of random nets, Bull. Math. Biophys. 13, pp. 107-17, 1951

[Subramanyam and Krishnan, 2003] Subramanyam, R., Krishnan, M.S.,
Empirical Analysis of CK Metrics for Object-Oriented Design Complex-
ity: Implications for Software Defects, IEEE Transaction on Software
Engineering, 29(4) pp. 297-310, 2003

[Tuveri, 2004] Tuveri, S., Analisi dell’Evoluzione di Sistemi Open Source Uti-
lizzando Modelli Basati sui Grafi Casuali, Tesi di Laurea, DIEE, Uni-
versità di Cagliari, 2004

[Valverde et al., 2002] Valverde, S., Cancho, R.F., Solé, R.V., Scale-Free net-
works from optimal design, Eur. Phys. Letters 60, pp. 512-517, 2002

[Valverde and Solé, 2003] Valverde, S., Solé, R.V., Hierarchical small worlds
in Software Architecture, Submitted to IEEE Transactions of Software
Engineering, 2003

[Vázquez et al., 2002] Vázquez, A., Pastor-Satorras, R., Vespignani, A.,
Large-scale topological and dynamical properties of the Internet, Phys.
Rev. E, 65, art. no. 066130, 2002

[Wand and Weber, 1990] Wand, Y., Weber, R., An Ontological Model of an
Information System, IEEE Transaction on Software Engineering, 16(11)
pp. 1282-92, 1990

Power Laws in Object Oriented Systems Architectures 76

BIBLIOGRAPHY

[Watts and Strogatz, 1998] Watts, D.J. Strogatz, S.H., Collective dynamics
of ’small-world’ networks, Nature Vol. 393, pp. 440-442, 1998

[Wheeldon and Counsell, 2003] Wheeldon, R., Counsell, S., Power law dis-
tributions in class relationships, Proc. Third IEEE Int. Workshop on
Source Code Analysis & Manipulation, Amsterdam, The Netherland,
2003

[Wonnacott, 1998] Whonnacott, T.H., Wonnacott, R.J, Introduzione alla
statistica, Franco Angeli Editore, Milano, It, 1998, italian translation,
Vitali, O., “Introductory Statistic”, John Wiley & Sons, New York, USA

Power Laws in Object Oriented Systems Architectures 77

