UNIVERSITA DEGLI STUDI DI CAGLIARI
DIPARTIMENTO DI INGEGNERIA ELETTRICA ED ELETTRONICA

Tesi Dottorato di Ricerca — Ph.D. Thesis

OPTIMAL CONTROL OF LINEAR AFFINE
HYBRID AUTOMATA

Daniele Corona

Responsabile scientifico — Scientific Advisor
Prof. Alessandro Giua

Dipartimento di Ingegneria Elettrica ed Elettronica
Facolta di Ingegneria
(Cagliari, Italia)

Febbraio 2005

Image: Verso dentro, Tobia Rava



To all nature



Contents

ADSEraCt . .. %
Acknowledgments. .. ... vii
List of publications ............ .. i iX
1 Introduction ... ... 1
1.1 Motivation and general description . ........... ... .. ... . ... 1
1.2 Structureofthework ......... ... ... . .. 5
2  Optimal control and stability of hybrid systems: literature review .... 9
2.1 The optimal control problem for hybrid systems ................ 9
211 Antsaklisand Xu .......... ... i 9
2.1.2 Rantzer,Hedlundand Lincoln ....................... 11
2.1.3 ShaikkhandCaines ........... .. ..., 12
214 CassandrasandWardi ............. ... 12
2.15 BemporadandMorari ............oo i, 13
2.2 Miscellaneous work ... 15
2.3 Stability and stabilizability of hybrid systems ................. 15
2.3.1 Methods based on time approach .................... 16.
2.3.2 Methods based on geometrical approaches: planar systehs .
2.3.3 Methods based on multiple Lyapunov functions......... 17

2.3.4 Methods that relate a quadratic cost with stabilizability . . .18

3 Hybrid systems: models and optimization problems............... 19
3.1 IntroducCtion . ... 19
3.2 Definition of general hybrid automat6hH A . .................. 19
3.3 Definition of switched systents . ............ ... . ... .. ..... 20

3.3.1 Particular switched systems.......................... 23
3.4 Optimal control problemfaf .......... ... ... ... ... ... ..., 24
3.4.1 Preliminary definitions. .............. ... ... . ... 24
3.4.2 Finite number of switcheS < oco...................... 26
3.4.3 Infinite number of switche¥ =oco .................... 28
3.5 Definition of hybrid automat&/ A ............. ... ... ... ..... 29
3.6 The considered casesi#fA and annexedOP .................. 30
3.6.1 Definition of autonomous hybrid automatdi/ A . ....... 30
3.6.2 Dynamical behaviorofadHA ....................... 33
3.6.3 Optimal control problemfad HA ..................... 34

3.6.4 Definition of constrained hybrid automatGit/ A . . . . ... .. 37



Contents
3.6.5 Dynamical behaviorof@HA ........................ 37
3.6.6 OptimalcontrolfoCHA . .........c i, 38
3.7 CONCIUSIONS . ..ot 39
Finite number of switches: switched systems. . ................... 41
4.1 Introduction .......... .. e AL
4.2 Linear affine switched system and optimal control ............. 42
4.2.1 The linear affine switched system..................... 42
4.2.2 Formulation of the optimal control problem ............ 42
4.2.3 Fundamental assumption........................... 43
4.2.4 Linearaffinemodels.......... ... ... ... oL, 44
425 Casel ... 44
426 CaSB 2 .t 46
4.3 Switching Table Procedure. ......... ... .o 47
4.3.1 Computation of the Switching Tables ................. 50
4.3.2 Lexicographicordering ................ i, 57
4.3.3 Computation of the Table for the initial mode........... 5.7
4.3.4 Structure of the Switching Regions ................... 58
4.4 Implementation of STP and numerical issues ................ 58.
441 Algorithmofthe STP........ ... .. ... . i, 58
4.4.2 Computational complexity ............ ... ... ... ... 60
4.5 Application: a servomechanism with gear-box ................ 6l
4.5.1 Numerical simulations............. ... ... oot 63
4.6 Particularcases ... 66
4.6.1 FixedmodesequenCe ............uuuiieiiinnennnn.. B7.
4.6.2 Arbitrarymodesequence. ............. i, 70
4.6.3 Numerical Examples ............ ... ... ... 73
4.7 A servomechanismwithgear-box ........................... 76
4.7.1 Numerical simulations......................ccoo... 07
4.7.2 Switching table procedure ......... ... .. ... ol 77
4.8 CONCIUSIONS . ..o 78
Finite number of switches: hybrid automaton. .................... 81
5.1 Introduction ........ .. 81
5.2 Theconsideredmodel....... ... ... 82
5.2.1 Case a: autonomous hybrid automatdhA ............. 82
5.2.2 Case b: constrained hybrid automafdliA ............. 83
5.3 Case a: optimal control problem fdtHH A . ..................... 84
5.3.1 State feedback control lawfdiHA . ................... 85
5.3.2 Computation of the tables for controllable switches. ... .. 85
5.3.3 Thehomogeneouscase ..............c.couuiiuennen.. 87.
5.4 Case b: optimal control problem f6YHA ..................... 87
5.4.1 Case b: state feedback control law@adf A ............. 88
5.5 Numerical examples ... 89
5.5.1 Case a: adH A example in the homogeneous case ... .. 90
5.5.2 Case b: applicationandcasestudy ................... 93.
5.6 CONCIUSIONS . ..o 97
5.6. 1 CaSE A ...ttt 97

5.6.2 CaSE b ..ot 98



Contents iii

Infinite number of switches .. ... .. .. ... ... .. .. . 99
6.1 IntroducCtion ... ...... ... .t 99
6.2 The model and the optimal control problem................... Q9
6.2.1 The model: switchedsystem ......................... 99
6.2.2 The optimal control problem: infinite number of switches100
6.3 State feedback controllaw ........... .. ... ... .. i il 101
6.4 CONjECIUNE . ... it 102
6.4.1 Anexample............ i 103
6.5 Aninfinite number of switches ............................ 106
6.5.1 Convergenceofthecost............................ 106
6.5.2 Convergence of the switchingtables ................. 110
6.5.3 Aconvergencecriterion............... ..., 110
6.6 Computational complexity . ............. ... .. 111
6.7 Application:casestudy............cco i 112
6.7.1 Framework on suspension systems and design . ... ... 112 .
6.7.2 Dynamical models of the suspension system ......... 113
6.7.3 Semiactive suspensiondesign ...................... 115
6.7.4 Applicationexample .............. .. .. .. .. 116
6.7.5 Simulations on the second order model .............. 117
6.7.6 Simulations on the fourth order model................ 123
6.8 CONCIUSIONS .. ... 125
Infinite number of switches: optimal control and stability . .......... 127
7.1 Introduction . ... ... i 127
7.2 Theconsideredmodel......... ... . i 128
7.3 Problemformulation.......... ... ... . i 128
7.3.1 Thenotionofstability .............................. 128
7.3.2 Theoptimal controlproblem........................ 129
7.3.3 State feedback controllaw. .............. .. ... . ..., 130
7.3.4 Lexicographic ordering and uniqueness.............. 131
7.4 The optimal control problem with an infinite number of switches132
7.5 Stabilizability of unstable switched systems ................. 134
7.5.1 Intuitivenotions ............. i 134
7.5.2 Theoreticalresults ............. ..o, 135
7.5.3 Theorem on the stabilizability. . ..................... 137
7.6 Numericalexamples .......... i 140
7.6.1 Examplesfromliterature ........... ... ... ... ... .. 140
7.6.2 Non stabilizablecase .............. ... ... ... ... 146
7.6.3 Analyticalexample............... i 148
7.7 CONCIUSIONS ...t e e e 153
Concluding notes, open issues and future research interest. . ... ... 155
8.1 Summary of contributions ........... ... ... ... . i 155
8.2 OPENISSUES ..ttt ettt 156

8.2.1 Estimation of the value d¥ in the table convergence issuel57
8.2.2 Estimation of the value gfin the table convergence issue 157

8.2.3 Analytical estimation of the switching tables .......... 157
8.2.4 Analytical calculation of the residual cost............. 157
8.3 Futureresearchinterest........... ..., 158
8.3.1 Stabilizability and optimal control of hybrid automaton . .158
8.3.2 Optimal quantized control ... ....................... 158

8.3.3 Extensions of the result to classes of non linear vector fidl&8



Contents

8.3.4 Extensions of the result to classes of uncertain switched

SY S BIMS Lot 159

The linear quadratic optimal control . ........................... 161
A.1 LQR feedback control law: the Riccati equation . ............. 161
A.2 LQR feedback control law: steady state solution.............. 162
A.3 Evaluation of the LQ cost in the autonomouscase ........... 163
Computation of the performanceindex.......................... 165
Issues on state space discretization. . ............. ... ... ... 167
C.1 Discretization of. dimensional unitary semisphebg, ........... 167
C.2 Interpolation of the value ofthecost........................ 169
The I-complete approximation. . ............ . ... oo, 171
D.1 Ordered set of discrete abstractions. .. ..................... 171.
D.2 Specification and supervisordesign ....................... 173
D.3 Closedloopmodel ..........c i 174
Software user-guide . . ....... ... 175
E.1 Functionmegions.m. ...ttt 175
E.1.1 |Initial use: no tables are calculated . .................. 176
E.1.2 Iterative use: a set of tables are available ............. 178.

E.2 Functiorplot_tablesm .......... ... ... 178
E.3 Functiorsimulation.m.......... ... .. ... .. .. . .. . i 179
E.4 FunctionndexX.m. . ....... ...t 180
E.5 Functionmegions4d.m. . ........coouiiiiiiiii i, 181
E.6 Functionsimulationd.m......... ... ... ... i 182
Notation, Symbols and Acronyms. .. ..., 185
F.ol  ACIONYMS . ot e e e e 185
Fo2 UNitS ... e 186
F.3 Notation ... 186
F.4 Symbols . ... 187

References. . ... 189



Abstract

A recent research area in the field of Computer Science and Control Technology
deals extensively with the study of optimal control and stability of a new class of sys-
tems, callechybrid systemsThese systems are characterized by the co-existence of
continuous time dynamics, and discrete events dynamics. This new class of system,
obtained by the combination of the two types of dynamics, requires novel method-
ologies and approaches, only partially related to those developed for the original
classes. We consider a particular subclass of hybrid systenisdhe affine hybrid
automata where thecontinuousbehavior is governed binear affine differential
equationsand thediscretebehavior is determined by tliiging of arcs in an oriented
graph. Constraints on the state spageardsandinvariants are also considered.

For this class of systems we aim to solve an infinite time horizon optimal control
problem, that quadratically weights the continuous state and associates a cost to the
occurrence of every switch. The decision variables are the switching instants and the
sequence of operating modes. Wkially assume that the switching sequence has a
finite length. We propose a numerical procedure, namelystigching table proce-

dure, inspired by dynamic programming arguments, that identifies the regions of the
state space where an optimal switch should occur. The main advantages of this proce-
dure are the following: it provides the global minimum of the optimization problem,

it performs calculations off line and it provides a feedback solution. Its main disad-
vantage is the requirement of the discretization of the state space, that turns into long
computational times and memory occupancy. The method is then extended to the
case of annfinite number of switches. We prove that the switching tables converge
to the same one when the number of allowed switches increases. The methodology is
successfully applied to the design of a semiactive suspension system of a quarter-car,
where each linear dynamics corresponds to a given value of the damping coefficient
f. Finally we show how thewitching table procedurean also be used to design

a stabilizing switching law for a particular hybrid automaton, shétched system

In this case we consider switched systems composédithedr time invariant non
Hurwitz dynamics and we apply the procedure to a sysaegmentedvith a stable
dynamics. If the system with unstable modes is globally exponentially stabilizable,
then the method is guaranteed to provide the stabilizing feedback control law that in
addition minimizes the chosen quadratic performance index. Specific examples are
offered throughout the dissertation.

Keywords: control theory, hybrid systems, switched systems, optimal control,
stability and stabilizability.
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1

Introduction

A Hybrid Systenis amacro-systergenerally characterized by the coexistence of two
different kinds of dynamics, namegyent driverdynamics andime drivendynamics

[47]. The global behavior is hence determined by dkbeurrence of eventshat are
particularly suited to model, as an example, logical changes or inputs of a physical
system, interlaced witbontinuous functions of timéhat, in the majority of the cases

of interest, are expressed by continuous/discrete time differential equations.

We may observe that hybrid systems are the mathematical expressions of the
empirical phenomenon that is usually callegbrid processNotably our lives are
surrounded by hybrid processes, e.g., the controlled heating of an oven, the gear
shift in a car [90], a hard drives motor, to cite a few. What is more, we may not stand
indifferent to the fact that several biological processes can be classifigdgd, in
the sense described above. Think, as a trivial example, aytbélinkinghatresets
the humidity of thecornea(discrete event), subject to the continuous dehydration in
contact with the atmosphere (time driven dynamics), or tex#rdiovascularsystem
and so on.

1.1 Motivation and general description

In the last decades hybrid systems have received significant amounts of intellectual
efforts from scientists and researchers in the Computer Science and Control Technol-
ogy fields. The reason for this interest from the scientific and industrial community
may be related to the remarkable modelling power of this new class of systems.
The fee of this advantage is normally paid in terms of complexity of the algorithms
that attempt to govern, synthesize or to analyze these models. Nevertheless the lat-
ter, apart from its challenging aspect, is partially counterbalanced by the increasing
computational velocity of modern calculators and the capacity of data storing.

The great variety of real and theoretical situations brought the researchers to
tailor and solve a series of specific problems [118]. As a result the literature on
hybrid systems appears various and complex, both in the modelling and designing
aspects.

Nowadays one of the most considemclasof hybrid systems is thaybrid
automatonand in particular one specific case, tvatched system

These models have been considered in this thesis, and for this particular class of
hybrid systems we want to solve an optimal control problem with piecewise linear
quadratic performance index, as subsequently described.

As an important extension we observe and formally prove that the solution of
the optimal control problem considered in this researchlss a solution for the
stabilization of a switched system. This will be the main content of Chapter 7.



2 Optimal control of linear affine hybrid automata

The problems of optimal control and stability of switched system are one of the
most studied issues in the field of hybrid systems. With this thesis we would like to
present our contribution by taking into account a model, consistent with the majority
of the current literature, restricted to the linear time invariant particular case.

The work is organized as follows: Chapter 2 contains a brief updated literature
review on the optimal control and stability of hybrid systems, and in particular of
switched systems. We tried therein to analyze the work of the most active schools in
the field of optimal control and the most currently used methodologies in the field of
stability and stabilizability.

Chapter 3 is dedicated to the model description and problem formulation. It is
divided into 2 parts:

1. The modebkwitched systemmnd its annexed optimal control problem. This is the
model description and problem formulation for the synthesis of the control law
that will be derived in Chapters 4, 6 and 7.

2. The modelhybrid automatorand the annexed optimal control problem, whose
solution will be provided in Chapter 5.

Furthermore the first part of Chapter 3 is divided into two parts:

1. The problem description with finite number of switches, that will be tackled
and solved in Chapter 4 for a switched system and Chapter 5 for a hybrid au-
tomaton.

2. The problem description withnfinite number of switches that will be solved in
Chapter 6 for switched systems and applied to the design of optimally stabilizing
switching signals for switched systems in Chapter 7.

The modelhybrid automatonand the subclasswitched systepare particular
hybrid systems where the continuous evolution is governed by first-order vectorial
differential equation of the formi(t) = f; (z(t), u(t),t), wherex < R”" rep-
resents theontinuouspart of the system state, andt) is an externatontinuous
control input.

The subscript(t) is a function that indicates the current active mode at time
t and its value represents the discrete event part of the system state. In the hybrid
automaton framework(t) is apiecewise constaritinction that takes values from a
finite and countable set of indexeslo€ations In other words when it holdgt) = ¢
the continuous part of the hybrid stateevolves according to the current dynamics
fi associated with location

The piecewise constant functie(t) has (under special conditions) a countable
number of discontinuities in time instants namely7 = {7, 7,...,7%,...} that
are calledswitching instantsWhent = 1, a switch occurs and the time driven
evolution continues with dynamicg, associated with the new location. We also
call theswitching sequencéenceforthiz = {ig, 1, ..., i, ...}, the list of values
taken by the functiori(t) in the time intervals defined by the switching instants.

In the considered model the occurrence of a switch may provatata space
resetting thus whenever there occurs a switch the evolution continues froewa
initial state, that may be related to the state reached during the previous time driven
evolution.

The hybrid automata allow also the modelling of some constraints that have a
relevant practical interest.

Constraint 1.The switching sequence is subject to logical constraints. This
means that from the current modélaot all other modes can be reached with a single
switch. This may be described by an oriented graph where to eachlocdédn) is
associated dynamicsand to each arefigg aswitching pathThis is very common
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in many physical applications where the switching path is constrained by construc-
tive or safety specifications.

Constraint 20nce entered in a locatiaiwe cannot leave it before a tindg,;,, (7)
has elapsed. This is a common constraint in many real applicatignsmay be the
time necessary to control an actuator, or it may be the scan time of a PLC that triggers
the switches.

Constraint 3.The value of the current continuous state space may influence the
switching action. In other words, in a hybrid automaton, it is possible to define sub-
sets of the domain of where some switches are allowed or forbidden or restricted
or forced. This is done by the introduction of the notiongofardsandinvariants
Broadly speaking these are continuous subseis'offhere the switching strategy is
conditioned. This notion is useful in the modellings&#fety and specificatiocon-
straints and in general those situations where the crossing of specific thresholds pro-
vokes changes in the dynamichis particular class of problems will be considered
in Chapter 5.

If the Constraint 3is applied we refer explicitly tdwybrid automatonother-
wise we will simply refer to the model asvitched systentn this sense the switched
system is a particular hybrid automaton without state space constraints that may con-
dition the switching behavior. Chapters 4, 6 and 7 are devoted to switched systems,
while in Chapter 5 we consider the more general hybrid automaton.

In this thesis we focus the attention on the hybrid automaton characterized by the
following extra restrictions.

1. We consider these dynamiastonomousmeaning that there is no control input
u(t). The only control action that we can design is the functioh that includes
the design of thewitching instants&ind theswitching sequence

2. The dynamics of the system are Aflear and time invariantsLTl, i.e., ¢ =
A;x. This class also includes the casaffinesystemsg = A;x + f;, that can
be reduced via an appropriate technique, described in Section 4.2.4, to a LTI of
the forma = A,x. The LTI hypothesis significantly reduces the complexity of
the model because many results on the traditional system theory may be used.
Furthermore in many cases of practical relevance the linear model provides a
satisfactory approximation of reality.

3. We assume that the state resetting, nanséye jumpsis linear, i.e., at the oc-
currence of a switch the new value of the state space= Mx—, whereM is
a constant matrix associated to the edge of the automaton, and the superscript
and— denote respectively the value after and before the switch.

For the hybrid automaton described above we want to design the furi¢tion
that minimizes a linear quadratic performance index in infinite time horizon. The
analyzed optimal control problem will be described in detail in Chapter 3.

We associate to each locatiom semi-definite positive matrig; thatweights
the continuous state spaagt) quadratically, and to each edge a positive constant
H thatweightsthe event driven evolution, i.e., a cost is associated to every switch.
More specifically, yet not as rigorously as in Chapter 3, for any given initial point
(o, i0) we would like to design the functioift) in order that a performance index
of the form

[e%) N
Tn(@o,io) = / 2 (O)Quz(t)dt + S H,
0 k=1

is minimized under the given constraints imposed by the hybrid automaton.

!As a trivial example consider a circuit containing a diode where the voltage threshold
z1(t) < 0 denotes the condition where the diode behaves as an open circuit.
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Note that the equation above includes two terms: an integral, modelling the cost
of the time driven evolution, and a sum modelling the cost of the event driven evolu-
tion.

The numbetV is crucial in this research. It represents the total number of avail-
able switches, i.e.N + 1 is the maximumnumber of branches of the piecewise
functioni(t). In Chapters 4 and 5 we propose a solution of the described problem
with finite IV for switched systems and hybrid automata respectively. In this case a
sufficient condition that permits us to obtain a finite cost is that at least one dynam-
ics of the automaton is Hurwitz, i.e., all its eigenvalues are in the negative complex
plane.

In Chapters 6 and 7 we relax this additional constraint and we alldwincrease
indefinitely. This extension is extremely significant, especially from the viewpoint of
stabilizability of switched systems. In fact it is well known that there exist stabilizing
switching signals even for switched systems whose dynamics are unstable. Therefore
the structural assumption of at least one Hurwitz dynamics can be relaxed. Further-
more this possibility is relevant in many applications, like those wherestiady
stateof a set of variables is reached and maintained via an indefinite number of com-
mutations. In some of these casesif) the functioni(t) may become periodical
under given conditions on the vector fields.

The procedure that solves the problems defined in Chapter 3, is the main con-
tribution of this thesis. This is built on the results presented in [49, 9] extended to
the classes of constrained systems described above, and to an infinite number of
switches.

In particular we propose auff line procedure, namely th&witching tables pro-
cedure STP, that allows atate feedbac&ontrol technique based on the construction
of an appropriate set afwitching tablesHere byoff line we mean that the proce-
dure is not developeibal time Once all tables are constructed off line, the real time
implementation is achievable because no further calculations are needed.

Moreover we use the terrstate feedbacko stress the fact that our procedure
generates alosed loopcontrol law, in opposition to most current results on optimal
control of hybrid systems that only providgen loopsolutions, i.e., dependent on
the initial conditions. This is notable, because a closed loop control law has several
advantages over an open loop one, including the fact thatdbisstagainst external
or measurements disturbance. In addition, as remarked above, it does not require any
on line calculations, hence it is faster and implementableahtime systems

A switching table is gartition of the state space into different regions where
a specific mode must bactive If these tables are appropriately used, i.e., if the
switches are performed consistently with the partitions, the evolution of the hybrid
automaton, for any given initial state, ke one that minimizes the performance
index described above.

For each location of the hybrid automaton we provide a specific set of tables,
meaning that whenever the continuous state is evolving in locatiba controller
must use the tables constructed for location

The switching table procedure is developed in Chapter 4 for a finite number of
switches and for a switched system characterized byCiiestraintsl and 2. In
Chapter 5 we extend the procedure by the additioBafstraint3.

The tables are obtained by induction on the numbexK N of remaining
switches. That is to say that, for each made- 1,..., s of the hybrid automa-
ton, we first construct the table when only one switch is avail@iilethen, using the
data stored i€}, we proceed backwards and build the taBjewhen 2 switches are
available. Generalizing, given the taldlg_,, we can construct the tabf¥. This is
repeated untik = N.
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Finally we obtain a battery oV x s tablesC;, k = 1,...,N,i=1,...,sthat
allows us to perform a state feedback control law that minimizes the given perfor-
mance index.

The tables are then used as follows. During an arbitrary evolution, the controller
observes the curremitybrid state(x, i) at each instant > 0, and the number of
remaining switcheg (initially £ = N). With this information the controller checks
the tableC;, in the pointz to know wether a switch should occur and eventually
to what location. If a switctoccursto locationj the controller will now pass to
check the tabl€;_, during the evolution in modg. If a switchdoes not occuthe
evolution continues in locationuntil =(¢) crosses a switching manifold or it reaches
the origin. This is repeated un&l= 0 or x = 0.

As pointed out above the procedure is an inductive methodology based on dy-
namic programming arguments. The main idea is that for every podaitthe state
space and for every locationof the hybrid automaton, we calculate a function
T (z, 1), that represents theptimal residual cosof an evolution starting from point
(x,7) and performing: switches.

Knowing this, whenk + 1 switches are available, the functi@ry, , (-) can be
obtained by minimizing a function that reaches a certain p@int) and henceforth
exploits an already optimal solution, given by the previously calculafge:, 7).

This strategy, universally accepted as th@amic programming principldan-
troduced by Bellman in [3], as several advantages that have been briefly described
before.

To our concern we point out that it allows the computational feasibility of the
procedure. In fact, as will be proved in Chapter 4, it permits us to convert the solution
of oneMIQP (mixed integer quadratic programming) problemMdf+ s variables,

i.e., the switching instants and the possible modes, M¢@roblems of 1 variable.
This is in general a significant aspect.

The mainadvantage®f the proposed procedure may be briefly summarized as

follows:

it is guaranteed to find the optimal solution under the given constraints;
it has an affordable computational complexity of order that grows linearly with
N, the number of available switches, and quadratically witthe number of
possible modes of the hybrid automaton;

e it provides aglobalclosed-loop solution, i.e., the tables may be used to determine
the optimal state feedback law for all initial states.

e it performs calculations off line.

The maindisadvantageof the procedure is that it requires a state space dis-
cretization. This problem is partially avoided for low dimensions of the state space
n = 2,3,4, because under certain conditions we may limit to discretize the uni-
tary semisphere. As a consequence this procedure, although theoretically efficient,
is practically unaffordable for higher than= 4 dimensions. In fact the number of
points of the discretization grows exponentially witland consequently the compu-
tational timeandthe memory occupancy.

1.2 Structure of the work

After the introduction we provide, in Chapter 2, a bibliographic survey. We will try
therein to describe the state of art and the recent results on the topic of optimal control
and stability of hybrid systems.

In Chapter 3 we formally define the considered class of system, i.e., hybrid au-
tomata, and the particular subclasses described previously, i.e., switched system,
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constrained hybrid automata and autonomous hybrid automata. We define also the
dynamical behavior, and we describe in detail all the elements that characterize the
model. In parallel we give the problem formulation, i.e., an optimal control problem
characterized by a linear quadratic performance index, studied for the considered
subclass, that is tackled and solved in the successive chapters.

In Chapter 4 we describe the switching table procedure, and we formally prove,
by means of dynamic programming arguments that it allows to solve the optimal
control problem for a switched system in feedback form. In this chapter we consider
a problem that limits the number of switches to be finite. We also introduce the
notion oflexicographic orderinghat allows the uniqueness of the switching tables
and we show that under particular conditions the switching regiorfsoen@geneous
Hints on the computational complexity are provided for the fundamental algorithm
of the STP presented therein. Lastly, specific numerical and physical examples are
presented.

In Chapter 5 we extend the STP to the hybrid automaton, namely we show that
the STP is still valid whenever two types of constraints are considered:

1. The system may perform autonomous switches (also caieednally forced
in [122]), i.e., not all switches are controllable but some of them may occur
autonomously ifc enters given regions of the state space. We call this automaton
AH A (Autonomous Hybrid Automathn

2. The degree of freedom (DOF) of the controller is restricted according to the
value of the state space. We call this automatdih A (Constrained Hybrid Au-
tomator). In this second case we also provide a very common example in the lit-
erature on hybrid systems, inspired by [25]. The study of this class of system has
been done in collaboration with a group of the University of Magdeburg (headed
by Professor Jorg Raisch). The framework was motivated by the introduction of
safetyspecifications that may be converted into state space constraints. The pro-
cedure that converts safety specifications into constraints on the state space is in
Appendix D, and it is a result taken from Raisehal. [95, 85] and integrated
with the STP.

In Chapter 6 we consider the results obtained in Chapter 4 and we extend to the
case where an infinite number of switches are allowed. We firstly conjecture that the
cost of an evolution,/}, described above, must be a decreasing functiofy gor
every initial point. With similar arguments we assume that the switching tafijes
must converge to the same one, that we €all with obvious notation; hence the
controller may use themmdefinitelyuntil the statec has reached the steady state.

After formally proving these results, a case study is analyzed in detail: it is the
design of asemiactivesuspension, with LTI model, whose damper coefficient may
take values from a finite setWe consider the cases with one DOF, i.e., neglecting
the deformation of the tire, iR2, and with 2 DOF, that considers the deformation of
the tire, that is modelled iR*.

The application of the STP in the fourth dimensional case has been particularly
challenging. The numerical strategy, concerninggbkar discretizatiorand thein-
terpolationof the cost are detailed in Appendices C.1 and C.2.

Chapter 7 is dedicated to stability. Therein we consideorapletely connected
switched system, i.e., every location is connected to all the others by an oriented arc,
and we apply the STP with infinite number of switches. In this context we also prove
thatall tables converge 6., that is independent from the particular location.

2some fluids may vary theiiscositywhen subjected to an appropriate magnetic field,
[48].
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The main idea contained in this chapter is briefly summarized as follows: if the
STP is able to design a talffg, that drives the system to the origin then the optimal
signali(t), is also astabilizingsignal for the switched system. This is remarkable
because it relates the notion of stability with the notion of optimal control. As a
result this is an alternative methodology of designing a stabilizing feedback control
law for a switched system, which is one of the major efforts in the current literature.

Moreover we prove another important result: if the tatile does notcontain
the region of a specific modgof the switched system, then theducedswitched
system, obtained by refining the original system of mgdaust have the same table
obtained for the original system.

This is relevant and we present significant examples, many of them taken from
literature as benchmarks, where we design a stabilizing switching law for systems
composed of only unstable modes.

As a final example we propose a comparison between the table obtained with
the STP and the table obtained analytically by analytical minimization of the cost
function over the parameters of an expected switching surface.

Chapter 8 draws the conclusion of the work and it glances over open perspectives
and developments.

A certain number of Appendices was considered necessary to complete the work.
We will briefly summarize their content in the following.

The continuous references to LQR problems required an appendix to the classical
results in system theory on LQR problems for LTI systems. Theoretical notions are
recalled in Appendix A, and their numerical implementations in Appendix B.

Appendix C contains issues on the state space discretization. In particular we
provide a convenient method to discretize the unitary semisphé&®.ifihis serves
mainly in Chapter 6 where a problemIitt is considered.

Appendix D describes the methodology, developed by Groeta¥.[32] on the
basis of thel—complete approximation, that converts specifications on the output
signals of a hybrid system into constraints on the state space.

In Appendix E we provide a user guide of the software developed to obtain part
of the numerical results presented in Chapters 4, 6, 7. This software constructs the
switching tables and uses them in an on line simulation for a switched system. It is
available in theR? andR* case at the site

http://www.diee.unica.it*dcorona/thesis.html

Finally we refer the reader to Appendix F, where all the acronyms, symboals,
notation and units of measurements are collected.






2

Optimal control and stability of hybrid systems:
literature review

In this chapter we propose a literature review on two major fields in the context of
hybrid systemsamely theoptimal controland thestability of hybrid systems.

Both of these topics are of relevant interest in the control and computer science
community and many theoretical results and algorithms are available.

Clearly the research on the hybrid systems and models is not only restricted to the
mentioned fields, but it also involves other issues, such as reachability, controllability
and observability, to cite few.

Nonetheless we decided to review only the literature concerned with the optimal
control and the stability, from where we derived many suggestions, properties and
ideas that have been crucial in our research.

This survey has synthetic form, and sometimes, for the sake of brevity we could
not analyze in appropriate detail the presented topics. However we hope that the
references therein may be useful.

2.1 The optimal control problem for hybrid systems

The problem of determining optimal control laws fofbrid systembkas been widely
investigated in the last years and many results can be found in the control and com-
puter science literature. The increasing interest in this new clasgtifiesis design
problemds probably due to the reasonable trade off betweemtheelling powenf

these models and ttieasibility of the solutionThe vaste spectra of physical systems
that can be modelled by a hybrid system and the different targets of a control strategy
have led to an extremely various literature.

Therefore we considered useful for the reader to present in this thesis the most
significant result in the problem of designing optimal control laws, in general hybrid
themselves, for hybrid systems. This collection, far from being considered exhaus-
tive, may also orient the reader in the intricate variety of publications on this topic.

This section gives particular attention to results that have been of relevant interest
in the field and we decided to collect and describe separately the work of the authors
that mostly influenced the development of our work.

2.1.1 Antsaklis and Xu

A relevant contribution to the study of the optimal control problem of hybrid system
is certainly due to the extensive work of Xu and Antsaklis. In [120] they approach the
finite time horizon general problem under the condition of pre-assigned finite length
switching sequence. In this framework the control variables aretftehing instants
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o and the continuous control in each brangl). The problem is to minimize a cost
functionalJ that weights the state(t), the continuous contrak(t) with fixed finite
final time and free terminal state, for a given initial point.

In general the authors propose a two stage algorithm obtained by decoupling the
minimization procedure over the two control variables: first a minimization over the
continuous controls performed, then thewitching instantsare tuned to obtain a
global minimization of the objective function.

They suggest therein an approach based on dynamic programming arguments
that limits considerably the explosion of the computational effort, due to the combi-
natoric nature of the problem. Moreover it permits them to impose continuity condi-
tions at the switching instants.

They also study in [121] how the method admits an analytical formulation in the
particular GSLQ (General Switched Linear Quadratic) problem, because the bound-
ary conditions given by the Riccati equation can be efficiently exploited.

This technique led interestingly to a reformulation of the general nonlinear prob-
lem into an equivalent problem where the switching instantparameterizeq.e,
expressed in terms of the derivatives of the cost functional in the surrounding of the
switching instants, as presented in [123] and in [129]. In these works the boundary
conditions at the switching instants are obtained from the solutiontabgpoints
boundary value DEcomposed of the state and costate defined in the Hamiltonian
function, as described in [93].

Once this has been done a direct differentiation of the cost can be performed, as
described in [125]. Note that the methods described are of difficult solution when the
number of switche®V grows, because a constrain¥ddimensional minimization of
a function must be performed. Furthermore the function is, in the general case, given
only numerically. Finally these methods do not provide a feedback solution, hence
the optimal strategy is valid only for the given initial point.

Nonetheless, in [118], the author indicates several classes of theoretical and ap-
plicative relevancy where these ill-conditioned tasks may be avoided or simplified.

The general methods have also been applied to two interesting particular cases:

e Optimal control of switchedutonomousystems [124]¢ = f;)(x, 1), i.e., the
minimization is performed only under the switching instants, with- 0. This
case is relatively close to the one considered in [49] and the general problem con-
sidered in this thesis. The remarkable difference is that a finite time horizon with
nonlinear functions are considered. Conversely the solution is not state feedback,
hence the necessity of an on line computational effort. This framework has been
also explored in presence of state jumps in [127], allowing a more general model
that also takes into account the switching costs as in [50, 28].

e Optimal control of switched systems withternally forcedswitchings [122],
where the unique control variable is the continuous inpuwhile the while the
system is subject the occurrencestéteor time dependent switches. This idea
has been considered in this thesis in Chapter 5, based on the results provided in
[30].

A detailed survey on the optimal open loop control methodology developed by
Xu and Antsaklis can be found in [128], where also comparisons with different ap-
proaches are provided.

Another problem presented in this thesis is somehow related to the work of Xu
and Antsaklis. Th&’ H A problem considered in Chapter 5 and developed in [32] is
in fact similar to the problem presented in [126]. In this work the authors consider
anintegrator switched systeme., a linear affine switched system where all dynam-
ics A; are null, and d&ime optimal control problem. The objective is to design the
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switching scheduling in order to drive the system state at a given destinatioin-in

imal time in presence of constraints on the state space. This is done by a conversion
of the problem into a MILP (Mixed Integer Linear Programming) and solved with the
available tools. We considered instead the problem of driving the system state into a
given destination in minimagnergy i.e, by minimizing an LQR-like cost function.

2.1.2 Rantzer, Hedlund and Lincoln

A different approach than the one presented by Xu and Antsaklis is suggested by
Rantzer et al.In [57] the authors consider a model of switched system and an an-
nexed optimal control problem in general form, i.e., non linear piecewise vector fields
and general cost functional. As considered in Chapter 4 and in [29] the authors ap-
proach the problem of minimizing a cost function defined féinde length yet not

fixed, switching sequence. Moreover they consider the case of a cost associated to the
event driven evolution, by associating a switching cost to each switch, so preventing
the possibility of any Zeno behavior executions, as defined in [66].

As a difference they limit the investigation tdiaite timehorizon, hence they aim
to drive the system to a fixed terminaybrid statewhile they let free the terminal
time. In this work the notion of guard is introduced, although not explicitly defined,
i.e., the system is allowed to perform a switch from a locatido a locationy
whenever the continuous stateenters a regio; ; € R™.

The optimization problem is tackled by the introduction of a set of inequalities of
particular functions/; in the hamiltoniart form. Boundary conditions are imposed
as equality and inequality constraints on this functions. The authors prove that the
minimization problem is lower bounded by this set of functions in the state vari-
ables. Hence it is sufficient to maximize the given functions. This method requires
a state space discretization, and it provides a switching strategy in feedback form.
Nevertheless it encounters major difficulties duditnensionality

As an extension to the described research an algorithm to optimize switching
sequences that has an arbitrary degresutifoptimalitywas presented by Lincoln
and Rantzer in[77] and in [79]. Therein the authors consider a quadratic optimization
problem whose solution suboptimal but with known error bounds. This is achieved
via arelaxed dynamic programmingbtained by relaxing the Bellman principle [14]
to a non strict inequality. The idea is described in [78].

As a difference with the work previously described [57] the authors consider
discrete time systems. In particular in [79] the discrete time switched system is com-
posed of only two vector fields, whose current mode is active according to a given
partition of the state space, hence the control variable is restricted to the continuous
inputwu(t). Briefly the method consists in locating the solution of the optimal con-
trol problem, which isnon convexor switched systems, between twoe-stretched
values. The interval may be restricted, at the cost of a higher computational effort.

This idea is extensively described by Rantzer and Hedlund in [58] where they
useconvex dynamic programmirtig approximate hybrid optimal control laws and
to compute lower and upper bounds of the optimal cost. For determining the optimal
feedback control law these techniques require the discretization of the state space in
order to solve the corresponding HIB equations.

In [76] Lincoln and Bernhardsonn propose a method for efficient pruning of the
search tree in order to avoid combinatoric explosions amongst all the possible paths
of a hybrid execution. In such a way they obtain a numerically viable procedure that
permits them to solve a finite discrete time LQR problem for a switched system.

We refer to the classical definition of hamiltonian functions as, for example, in [69], i.e.,
a function that weights the vector field by the co-state and the cost functional.
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2.1.3 Shaikh and Caines

The work of Shaikh and Caines in the field of optimal control of hybrid systems is
based on the construction of a set of necessary conditions that represent, to an extent,
a generalization of the maximum principle, in analogy with the works of [93, 110].

In [102] the authors propose an algorithm that performs a minimization search
for a finite continuous time cost function and a controlled set of vector fields. They
initially assume that the switching schedule is fixed, hence the minimization is per-
formed under the control variablesand the switching instants.

In [105] the results are formally presented for a finite-time hybrid optimal control
problem and necessapptimalityconditions for a fixed sequence of modes using the
maximum principle are provided.

In [104] these results are extendedhtin-fixedsequences by using a suboptimal
result based on thelammingdistance permutations of an initial given sequence.

In this framework the approach of Shaikh and Caines appears similar to the idea
contained in thenaster-slavg@rocedure described in [29].

Besides, in [103], the authors derive a feedback law (similar to that one consid-
ered in [28]) but for a finite time LQR problem whose solutions are strongly depen-
dent on the initial conditions, thus providing open-loop solutions.

Consistently with most of the literature on the hybrid systems the authors con-
clude in [103] that any feedback control law that minimizes a given performance
index has to be represented as a partition of the state space. In fact they present an
algorithm, namely HMP[Z] based omptimal zonesn time-space, which is an ex-
tension of the HMP[MCS].

These regions are necessary to identify the optimal switching instants and se-
quences, while the continuous control in each mode of the hybrid system can be
determined, in the LQR case, by using the boundary conditions given by the finite
time Riccati equation.

The optimal sequence of modes in the hybrid trajectory is obtained via dynamic
programming arguments, for a finite number of switches. This is to avoid the combi-
natoric explosion of all possible switching sequences. A detailed description of these
algorithms and their possible applications and developments can be read in [101].

2.1.4 Cassandras and Wardi

The work of Cassandras and Wardi took basically two research areas in the vast field
of the optimal control of hybrid systems. The first one, introduced by Cassagidras
al., consists in developing algorithms to the aim of optimally controllimyamufac-

turing system modelled by a hybrid system. The latter, further developed by Wardi
et al,, concerns the optimal control of the commonly defisedtched systems

In [21] the authors consider a manufacturing system modelled via a hybrid sys-
tem. The system is composed of@ntinuousvariablez; = w; in each jobi, related
to the quality of the jobs, and a time variable, subject to discrete events, such as
start-time, end-time, duration thresholds and so on.

In this framework an optimal control technique is hecessary to balance the trade
off between the quality of the product, that increases with duration, and time con-
suming. A quadratic cost that weights both the processing time and the continuous
control input for a system a¥ jobs and two servers is considered.

The control law must be tuned in order to guarantee that the jobs are satisfac-
torily processed in a relatively short term. The suggested approach is the maximum
principle, subtly applied with the aid of tHeezierapproximation of the co-state at
the intermediate condition.
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An extension that concerns the continuous dynamics of the model is studied in
[52], governed by a first order DE of the fortp = g;(z;, u;, t). In the mentioned
work the authors use a hierarchical decomposition approach [89, 20, 94] to break
down the overall optimal control problem into smaller ones. In particular the decom-
position of the global system intdew leve| governed by continuous dynamics, and
a high leve] governed by event driven dynamics, allows the design of a hybrid con-
troller that solves a mixed optimal control problem. In so doing, discretization is not
involved and the main computational complexity arises from a higher-level nonlinear
programming problem. In Chapter 5 we adopted, in some sense, this methodology
for a plant that must respond safetyconstraints (low level) and optimality (high
level).

A more general first-order optimality conditions and several properties of optimal
trajectories, that significantly simplify the task of the explicitly design the control
law, are proved in [23]. Wardit al., in [114] propose an algorithm that designs the
optimal control law by proceeding backward in time, i.e., from the last job to the
first, by means of a similar methodology of the dynamic programming used in the
algorithm developed in this thesis.

In a different context Wardet al. in [41] analyze theautonomouswitched sys-
tem model as defined in [124], which is basically the model considered also in this
thesis. For this class of system they propodgmiée timeoptimal control problem,
where the control variables are theitching instants

The considered approach is based on the parameterization of the cost function
with the switching instant§r, 72, ..., 7 } and perform a descegtadientmethod
to obtain the minimum under th¥ variables. Note that this approach becomes un-
feasible whenV grows. Furthermore it is in general dependent on the initial condi-
tions, hence it does not provide a state feedback control law.

In arecent paper [113] the same problem is tackled with the gidi@meterized
switching surfacesConceptually the authors consider a given family of switching
manifolds inR", parameterized by < n parameters, and express the cost func-
tional in terms of these parameters. The main goal of this idea is to allow an iterative
procedure.

Note that the example described in Section 7.6.3 follows the same idea. In fact
therein we consider aonic switching law inR? parameterized by the slopes,
andms. Then we attempt to express the cost as a functionQfm, and minimize
over them. The argumenta] andmj that minimize the cost must be the optimal
switching surfaces. In fact it will be proved in the following chapter that the optimal
switching surfaces of the considered classaofonomougin the sense of Xu and
Antsaklis) switched linear systems mustdmmic

2.1.5 Bemporad and Morari

The hybrid optimal control problem becomes less complex when the dynamics is
expressed in discrete time or as discrete events. For discrete time linear hybrid sys-
tems, Bemporad and Morari [11] introduce a hybrid modellimified framework
MLD that is focussed on linear systems described by continuous and logic rules.
This framework handles in particular the hybrid systems with both internally
forced switches, i.e., caused by the state reaching a particular boundary, and control-
lable switches (i.e., a switch to another operating mode can be directly imposed). In
addition the authors show homixed-integer quadratic programmin@1QP)[10]
can be efficiently used to determine optimal control sequences.
They also show that when the optimal control action is implemented in a receding
horizon fashion by repeatedly solving MIQP’s on-line, an asymptotically stabilizing
control law is obtained.
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It is relevant to remark that most of the hybrid models, i.e., models that integrate
logics and dynamics, can be described in a unified framework, hence they might be
approached via MIQP algorithms. A notable work that shows the theoreticeV-
alencé of 5 classes of discrete time hybrid systemigcewise affin®WA, linear
complementarity.C, (De Schutter, [38])extended linear complementariBLC,
max-min-plus-scalingdMPS, (De Schutter and Van Den Boom, [39]) is provided
in[12].

Bemporad, in [4], proposes two algorithms for an efficient conversion of a MLD
into a PWA system.

For those cases where on line optimization is not viable, Bempetratl [5, 6]
and Borrelliet al.[15] propose multi-parametric programming as an effective means
for solving in state feedbackorm the finite time hybrid optimal control problem
with performance criteria based dn, oco-, and2-norms, by also showing that the
resulting optimal control law is piecewise affine.

In the discrete time case, the main source of complexity is the combinatorial
number of possible switching sequences. By combining reachability analysis and
quadratic optimization, Bemporadal.[7] propose a technique that rules out switch-
ing sequences that are either not optimal or simply not compatible with the evolution
of the dynamical system.

In many cases the optimization of hybrid processes is achieved by decoupling
the logic optimization from the continuous optimization, as for instance igh
archical approaches (see, among many, [52, 94wy stageoptimization (see, for
example, [120]). This task can be also viewed as a combination of mixed integer
linear programming (MILP) with continuous dynamic simulations, to obtain a po-
tentially optimal switching sequence, as it is proposed in [88].

Another approach that merges the techniques developed on discrete events dy-
namics and continuous time switched systems is cathedter-slave procedure
(MSP) [8, 29].

The proceduralternatesbetween two different procedures, to the aim of op-
timizing hybrid processes. In other words the procedtematesbetween anaster
procedure that finds an optimal switching sequence of modes, slagleprocedure
that finds the optimal switching instants.

e Themasterprocedure is based on mixed-integer quadratic programming (MIQP)
and finds an optimal switching sequence for a given initial state, assuming the
switching instants are known.

e Theslaveprocedure, based on the construction of the switching regions [49] by
means of dynamic programming arguments, solves an infinite time horizon with
finite number of switches for a fixed sequence linear switched system composed
of autonomous dynamics. Here the control variables are the switching instants,
that must be tuned in order to minimize a performance index of piecewise LQR
class.

It can be proved that this algorithm converges with finite number of steps, but itis
not guaranteed to detect the global minimum. A few simple heuristics, that explores
small perturbations on the sequence of the switching indexes, can be added to the
algorithm to improve its performance.

2Equivalencymeans that for the same initial conditions and input sequences the trajecto-
ries of the systems are identiddl.
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2.2 Miscellaneous work

For what concernswitched affine systepthat are a particular class bybrid sys-
temsconsidered in the majority of the following chapters, the problem of optimal
control synthesis has been investigated with accuracy during the last decade.

A significant portion of the current literature on optimal controlsuiitched
systemss focused on the study of necessary conditions for a trajectory to be op-
timal [93, 110, 45]. In particulanecessary optimality conditiodier a trajectory of
aswitched systerare derived using thmaximum principldoy Sussmann [110] and
Piccoli [93], who consider a fixed sequence of finite length, in finite time.

A similar approach is used by Riedinget al. [97], who restrict the attention
to linear quadratic cost functionals but considering both autonomous and controlled
switches.

An important effort is devoted on the computationagitimal/suboptimal solu-
tionsby means of dynamic programming or the maximum principle [19, 18, 52, 57,
97, 123]. Optimal control of discrete-time hybrid systems is studied in [6].

For continuous-time hybrid systems, Branicky and Mitter [19] compare several
algorithms for optimal control, while Branickst al. [18] discuss general conditions
for the existence of optimal control laws for hybrid systems.

For determining the optimal feedback control law some of these techniques
require the discretization of the state space in order to solve the corresponding
Hamilton-Jacobi-Bellman equations, see for instance [58].

Bengea and De Carlo [13] apply the maximum principle to an embedded system
governed by a logic variable and a continuous control. The provided control law is
open loop, nevertheless some necessary and sufficient conditions are introduced for
optimality.

For a special class of discrete-event systems, De Schutter and Van Den Boom
[39] proposed an optimal receding-horizon strategy that can be implemented via lin-
ear programming.

2.3 Stability and stabilizability of hybrid systems

The problem of analysis and control of hybrid systems has attracted the attention of
many researchers. In particular most of the research literature is focused on defining
the conditions [42, 40, 117, 130] sfabilizability of switched systems, and in par-
ticular of linear affineswitched systems, the same class we considered in Chapter
7.

The theoretical effort in this sense is to expressdtractural conditions of a
given switched system that guarantee the existence of a stabilizing switching signal
i(t), a piecewise constant function of infinite branches.

This problem, formulated in [17], is not trivial, and it is well known that the
Hurwitz stability of at least one dynamics of the switched system is a sufficient, yet
not necessargondition for the existence of such signal, provided that an infinite
number of switches are allowed. Many examples can be found in literature and also
in Chapter 7.

Conversely itis possible to design an appropriate switching law that may provoke
instability of the global system even if all its modes are Hurwitz.

Nevertheless there does not exist ygeaeralresult that provides necessary and
sufficient conditions for the global asymptotic stabilizability of a switched system
with unstable dynamics. Analogously, there does not exist yet a general procedure to
compute, when it does exist, an asymptotically stabilizing switching law.



16 Optimal control of linear affine hybrid automata

Necessary and sufficient conditions are given in [42, 115] in the case of two
switched systems when the criterion under consideration igjtiagratic stability
of the switched systems. The main importance of this property is that it requires
for uncertain systems a quadratic Lyapunov function which guarantees asymptotic
stability forall uncertainties under consideration, and is thus a kind of robust stability
with very good property, yet usually needs more restrictive conditions [131]. Iterative
algorithms for constructing such common Lyapunov function can be found in [75].

Another interesting issue in the stabilizability field is the investigation of the con-
vergence rate. In fact it is well known that traditional LT1 systems are exponentially
stable iff their dynamics are Hurwitz.

Sun, in a series of papers [109, 108, 107], provides important results that concern
the convergence rates of a switched linear system subject to any switching signal. In
particular he proved that for this class of system the stabilizability always implies an
exponential stabilizability.

Far from pretending to be exhaustive we would like to present in the following a
short description of the most commonly used methods to effectively design a stabi-
lizing switching signal. We may always refer to switched LTI systems, in fact, apart
from some very restrictive situations, there are only few results for more general
classes.

2.3.1 Methods based on time approach

These methods aim to desigtime basedwitching law. More precisely the switch-

ing signal is time scheduled and it is not presented in feedback form. Among the
first researchers that proposed this method, namelyltved| timeapproach, there

are Hespanha and Morse [60].

The main idea is based on the fact that the porter frequency of the switching
signal isslow-on-the-averagevhen applied to switched systems composedrdy
stable dynamics. In particular, it is proved that exponential stability is achieved when
the number of switches in any finite interval grows linearly with the length of the
interval, and the growth rate is sufficiently small.

On the other hand the switching period of a switched system composed of only
unstable modes must not be greater than a certain value in order to preserve that the
statex is maintained in a desired neighborhood of the origin.

What we found interesting in these methods is the evident parallelism with the
conditions of stability for slowly time varying systems [74]. Furthermore the results
of Hespanha have inspired the introduction, in the methodology presented in this
thesis, of the minimum permanence time in each location of the considered hybrid
automaton, whose presence not only models a physical behaviors, but it also avoids
instability and Zenoness.

The idea has been also reconsidered by Colaneri and Geromel in [26], where
the minimum dwell time is determined by means of a family of quadratic Lyapunov
function.

These methods however do not provide a closed loop control law, but merely
time dependency.

2.3.2 Methods based on geometrical approaches: planar systems

A special attention is devoted to the design of stabilizing switching signalsider
nar switched linear systemsln fact in this case a geometrical approach appears

3A planar system is a system whose vector fields &7n
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dominant in all works. Another advantage of this class of systems is that the stabi-
lizing switching signal, if any, may exhibit periodic behaviors, or a degeneracy into
a sliding mode surface

To cite a few Antsakliset al. in [62, 119] using a geometric approach, were
able to obtain necessary and sufficient conditions for asymptotic stabilizability of
switched systems with an arbitrarily large numbesefond-ordet Tl unstable sys-
tems. Moreover, when the switched system is asymptotically stabilizable, they also
provide an approach to compute a stabilizing law.

Following the same idea Michadt al. prove in [63] necessary and sufficient
conditions for planar systems that guarantee the existence of a common quadratic like
Lyapunov function for the global switched system, and they also provide a synthesis
method of conic switching regions based on the mutual directions of the vector fields.

For planar systems necessary and sufficient conditions for the existence of a sta-
bilizing switching signal are given for nonlinear embeddedvexifiegoroblem, i.e.,

x(t) 2i(t)F(z(t)) + (1 — i(t))G(z(t)), as it can be seen in [16].

2.3.3 Methods based on multiple Lyapunov functions

Many works on the stability analysis of switched systems are based on the use of
multiple Lyapunov functions (MLF’s) [17, 74, 130, 82]. The general idea is to seek a
piecewise multiple Lyapunov function, active in each mode of the switched system,
that behaves as a global Lyapunov function for the global switched system.

Broadly speaking the main target of this methodology is to provide a solution of
the matrix inequalityd,Z; + Z;A; < 0 in order that the functioV (z) = ' Z,;x
is globally decreasing.

It is relevant to remark that in all these cases the proposed approaches only give
sufficient conditions for the asymptotic stabilizability.

In some cases the switched system admit®mmonLyapunov function. It is
the case, for example, gjuadraticallystable systems, studied in detail by Feron in
[42] and by Petterssaoet al.in [40]. The quadratic stability involves the existence of
acommorLyapunov functionV (z) = ' Zz, i.e., independent from the switching
signali(t), such that it hold$’ (x) > —ex'x, wheree is an arbitrarily small positive
number.

The quadratic stability can be checkadriori by simply analyzing structural
properties of the switched system. In fact it is proved in [40], Theorem 4.3, that a
switched system is quadratically stable if there exists a stable convex combination of
its modes. The condition becomes sufficient if only two dynamics are considered.

In the general case the problem of stabilizing a switched system with unstable dy-
namicsA;’s is often translated into the problem of solving a set of quadratic inequal-
ities. This task derives from the general idea of constructing a decreasing common
or multiple Lyapunov function.

This is appealing, but it turns out to be a non convex problem (thus it only pro-
vides sufficient conditions) when the number of subsystems is greater then 2. More-
over many proposed solutions lean lorear matrix inequalitiegLMI) or bilinear
matrix inequalities (BMI) methods, which become computationally problematic as
the number of modes grows [40, 90].

Recently, Ishiiet al.in [64] present an alternative method for solving the search
of a MLF, that is, as remarked above, a key issue in the synthesis of stabilizing a
switched system. Their approach provides a probabilistic algorithm, that converges
with a given probability that exploits a gradient descent method on energy and multi
modal Lyapunov functions, as described also by Teripal. in [75]. The method
presents no theoretical restrictions on the order of the LTI systems but it has expo-
nential complexity, albeit it is guarantee to converge in a finite number of steps.
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2.3.4 Methods that relate a quadratic cost with stabilizability

The idea of solving the Lyapunov matrix inequality extended to switched system has
been considered in the previous section. A natural approach, described by [67], looks
for a solution of an extended Lyapunov equation of the feth&; + Z, A, +Q < 0
where@ > 0.

The intuition behind this approach lies in the fact that this last inequality may be
simpler to satisfy thal, Z; + Z; A; < 0. Furthermore this idea has been studied in
detail in Pettersson’s PhD thesis [90], where appropriate algorithms and extensions
have also been developed. For a short resume of these techniques see also [91].

In a very recent paper, by Colaneri and Geromel [26], this technique has been
related to the minimization of a linear quadratic performance index where the state
valued is quadratically weighted with@ > 0 matrix. Hence the solution of the
multiple Lyapunov equatio;Z,; + Z; A; + Q < 0 must be somehow connected to
the minimization of/ = [ z(¢)'Qx(t)dt. The authors propose a synthesis based
on the solution of the Lyapunov Metzler equation, via a numerical approach based
on LMI.

In [31] and in Chapter 7 we illustrate how the STP developed in this thesis may
be also used for th@esignof a stabilizing control law for a general switched system
by the minimization of a quadratic cost. The idea behind this methodology is related
to the fact that if we achieve in finding a minimuinite costin infinite time horizon,
then, under appropriate conditions, we have also driven the system into the origin,
hence we obtained a stabilization.

Sun, in a paper recently submitted to Automatica, [108], proposes some theoreti-
cal conditions for the existence of a switching sigi{a) that not only exponentially
stabilizes the switched system, but it also provides the minimization of a quadratic
performance index.
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Hybrid systems: models and optimization problems

3.1 Introduction

In this chapter we will describe in detail the models and the optimization problems
considered in this thesis.

We will define formally the general notion of hybrid automateéfl A in Section
3.2, taken from [86] and [2], and then we will define the subclasses considered in
this thesis.

In particular we initially define in Section 3.3 one of thienplestclass ofGH A,
namely the linear affine switched systeémthat switches between many operating
modes, where each mode is governed by a linear affine dynamical law.

We define an annexed optimal control problem OP of the folenewise LQR
Section 3.4.2 both with finite and infinite number of controllable switches.

The solution of the OP with finite number of switches is described in Chapter 4,
while in Chapter 6 and 7 we deal with an infinite number of switches.

We will also define the linear affine hybrid automatd in Section 3.5, which
is a generalization of a switched system characterized by the presence of constraints
on the state space. This aspect influences its dynamical behavior, by the occurrence
of autonomous switchesA(H A), or it restricts the action of an external discrete
controller (C'H A), permitting to model safety or constructive specifications.

We will formally define the annexed optimal control problem in the two cases,
whose solution is addressed in Chapter 5, and it only deals with finite number of
switches.

3.2 Definition of general hybrid automatonGH A

A hybrid automatortonsists of a classic automaton extended with a continuous state
x € R™ that may continuously evolve in time with arbitrary dynamics or have dis-
continuous jumps at the occurrence of a discrete event.

In this section we recall the general definition of the hybrid automaton. We denote
in the following the general form of the hybrid automaton with the acrodymA.
A GHAis a structuregHA = (L, act, inv, £, M) in consistency with the current
literature definitions (see for instance [2] and [86]). Briefly

Definition 3.1 (Hybrid automaton) A hybrid automatorGH A is a tupleGHA =
(L, act,inv, E, M), whose entries have the following meaning:

— L is afinite set oflocationsindexed byi = 1, ..., s.

—act : L — Inclusionsis a function that associates to each locatioadiffer-
ential inclusion
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—inv : L — Invariantsis a function that associates to each locatiban
invariantinv; C R™ such thate € inv;.

—& C L x Guards x L is the set of edges. The edgg is enabled when the
current location is; and the current continuous stateasc g; ;: it may fire reaching
the new locatiory.

— Ajumprelation isM C R" x R" associated to an edgg ;. When the edge
fires,x is reset tax according toM.

|

The state of the&7H A is the pair(x, i) wherexz € R” is the continuous state,
and the index identifies the current discrete location.

From this general definition we will analyze the particular cases studied in this
thesis.

We will only consider linear affine system, i.e., the functiam; coincides with
alinear time invariantaffine differential equation of the form

In the next section we define tissvitched systepwvhose model is considered in
Chapters 4, 6 and 7.
In Section 3.5 we will define the model considered in Chapter 5.

3.3 Definition of switched systemsS

A switched systerlis a particular class of hybrid automatai i A).
In Chapters 4, 6 and 7 we focus the attention on a particular claS¢/A, that
we call switched linear affine systenss The S switches between many operating
modes, where each mode is governed by its own characteristic dynamical law [1].
We provide a formal definition of & that will be used in Chapter 4, 6 and 7.

Definition 3.2 (Switched system)A switched systeris a structureS = (£, act, £, M),
where

— L is a finite set of locations, indexed by 1, ..., s.

—act : L — (R™ x R™) is a function that associates to each locatioa LTI
affine differential equation of the forin= A;x + f;.

—& C L x Listhe set of edges. An edgg; = (7, j) is an edge from location
toj,i # j.

— M : £ — R ™ associates to each edgec £ a constant matrix irR"™*".
When the discrete state switches from locatido j at time, the continuous state
xisresettor(r) = M, jx(r7). |

We denote byS the set of indexes associated to each locationsaadS|.

The S admits a time driven evolution governed by the law described in the activ-
ity and an event driven evolution described by the sequence of locations visited by
the system during the time driven evolution.

The S starts from some initial statécy, ip). The trajectory evolves with the
location remaining constant and the continuous stagvolving according to the
act function at that location. When at time a switch is made to locatiofy the
continuous state is initialized to a new valaér™) = M, ;, «(7~). The new state
is the pair(z(77),41). The continuous state now moves with the new differential
equation.

It is possible to associate to or equivalently to asH A, an oriented graph,
according to the following definition.
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Definition 3.3 (Oriented graph of a.5) Anoriented graplof a S is obtained by as-
sociating to each location € S a node and to each edgg; an oriented arc from
node: to nodej. |

An example is depicted in Figure 3.1.

Fig. 3.1.Oriented graph of & composed of 4 locations and 6 edges.

Before proceeding further it is important to provide the following definitions.

Definition 3.4 (Set of successors @j Theset of successorsuce(i) C S of loca-
tioniinaSisthe setofall € Ssuchthate;; € £. |

This set is composed of the location indexes that can be reached from location
by firing one and only one edge.

Note that the setucc(i) does not includéitself. As an example we can consider
the S whose graph depicted in Figure 3.1. It is clear that

succ(l) = {2,3,4}, succ(2) = {1}, succ(3) = {2}, succ(4) = {3}.

The state of &, and in general of & H A, is completely identified by the con-
tinuous time variablec € R™ and the index of the current discrete location

Definition 3.5 (Hybrid state) Thestateof the S is the couplgx, ) wherei is the
discrete location anct € R" is the continuous state. [ |

Let us observe that the hybrid state is composed bgrdinuous partc and a
discrete parti. Analogously we can define thg/brid evolution

Definition 3.6 (Hybrid evolution) Thehybrid evolutionin a time interval[t;, ¢2] of
the S is the couplgz(¢),i(t)) wherei is the discrete location at timeandz(t) €
R™ is the continuous state at timeV ¢t € [t1,t2]. |

Note that a hybrid evolution is a sequence of hybrid states.

The continuous part of the evolution is governed by the differential equation
corresponding to the current location, given in the discrete part. The discrete part of
the evolution is governed by the set function@) € succ(i) U {i}.

Let us consider a value of in the open interva(t;, t2) and the corresponding
value of the hybrid statéz(7),i(7)). From this point we would like to calculate the
hybrid state at time + dr, i.e., (z(r + dr),i(7 + dr)), wheredr — 0.

We can separately analyze the two cases.

Case 1:7 is a switching instant.
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In this case an event driven evolution occurs. Supposeithat= i andj <
succ(i), i.e., there exists an edge leading from locatidm locationj, and it fires at
time .

The new value of the hybrid state is simply

(T +dr) =M, jx(r), i(t+dr) =j).

In the sequel we will often indicate for brevit(r + d7) = z(v7) andz(7) =
x(77), denoting the right and the left part respectively of the

lima(t).

t—T1

Note that the continuous part of the evolution is reset to the new vellugx (7).

This linear dependency is a restriction of a more general model where the reset func-
tion is independent frore (7).

Nevertheless this framework is able to model several interesting cases: projec-
tion, stretching/contraction of the norm, change of coordinates and, obviously, state
continuity, obtained by usingdZ; ; = I,, (the identity matrix).

Another crucial reason why we referred to this model is that we will present a
procedure (extensively described in Chapters 4,5,6,7) whose logics are based on the
preservation of a linearity and quadratic property of appropriate functions during the
hybrid evolution.

Case 2:7 is not a switching instant.

In this case no event driven evolution occurs. Supposeithat= 7, then, triv-
ially,

i(r+dr) =1,

i.e., the evolution keeps evolving in the same location

The continuous part of the evolution is governed by the linear affine differential
equation associated to locatifie(t) = A;x(t)+ f;, hence the new value(r+dr)
can be obtained numerically or by simple integration.

Note that in a more general framework it is possible to consider modes of the
form &(t) = fi(t, x,u), whereu is a continuous control input.

However the LTI affine autonomous (= 0) case allows the development of
a numerically viable procedure, described in the rest of this thesis, that permits to
design the discrete part of the hybrid evolutigt) in feedback form.

To complete the description of tifemodel used in this thesis we finally describe
an additional constraint, namely, thenimum permanence tinie each location.

Definition 3.7 (Minimum permanence time) Once entered in a locatiohwe can-
not leave it before aninimum permanence timg,i, (¢) > 0 has elapsed. [ |

This is a common constraint in many real applicatiofs;, may be the time
necessary to control an actuator, or it may be the scan time of a PLC that triggers the
switches, or even the delay of a signal propagation in a distributed system or of the
measuring instruments.

If a model admits a minimum permanence time, then undesirable behaviors, such
as Zeno, that may arise when more than one switches in 0 time are permitted, are
avoided.

In Chapters 4 and 6 we consider thi@s in Definition 3.2. Therein we provide a
method, based on dynamic programming arguments that enables one to design a state
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feedback control law of the discrete part of the hybrid evolutieh by minimizing
a performance index defined in the sequel.

In particular in Chapter 4 this law is obtained for a finite numiesf admissible
switches, while in Chapter 6 this hypothesis is relaxed, thus also an infinite number
of switches is admitted.

3.3.1 Particular switched systems

We define in this section two special cases of fhelefined above. One is the
switched system that only admitdiged mode sequence

Definition 3.8 (S fixed mode sequence)e denote by F', S with fixed mode se-
guencethe particular class of such thatv ¢ S it holds

|suce(i)] < 1.
|

The importance of this special subclass$ofvrt the given optimization problem,
is detailed in Section 4.6.1. In fact its simple structure implies that the DOF in every
switch is O.

In other words, given the initial locatiaiit = 0) for this SF', the mode sequence
is univocally determined, because each location admits at most one successor.

This implies that the design oft) is drastically simplified by the fact that the
controller can only choose the switching instant, while the next location is evidently
constrained, in force of the fact thatcc(¢) is a singleton of.

Moreover this case is of historical relevancy, because it originally [49] gave birth
to the switching table procedure (STP) extensively described in this thesis.

Figure 3.2 shows some possiltsié’.

@ @ &
S _pa,_pa Tk
@ @ @ (b) @ (c)

Fig. 3.2.0riented graphs of three possibigF.

The other crucial case is the that admits any arbitrary mode sequence. This
model was originally studied in [9] and it is equivalent t&'avhere the switching
sequence is completely unconstrained, i.e., from every locatibis possible to
reach with one and only one switch every other locajiofithe S. Formally it is the
particularS, namelyS A, defined as follows.

Definition 3.9 (S arbitrary mode sequence) We denote by5 A, S with arbitrary
mode sequencéhe particular class ob such thatV i € S it holds

suce(i) = S\ {i}.
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This particular structure models all physical systems where it is possible (for
safety or constructive point of view) to switch indifferently from one mode to an-
other. Moreover we observe that the oriented graph$flas completely connected.

Figure 3.3 shows some possilfiel’s.

——— A% I3
@\@ @ @W@ | N

Fig. 3.3.0Oriented graphs of three possihfeA’s.

We finally denote by{ A, };cs the particularS A such that the following restric-
tions are given: forall € S

L4 6min(i) = 0.
[ ] .fz = 0

This special class is considered in Chapter 7, where the notion of stability and
stabilizability via optimal control is studied.

3.4 Optimal control problem for S

Before define the problem formulation we give some preliminary definitions.

3.4.1 Preliminary definitions

Definition 3.10 (Annexed weights)Given aS as in Definition 3.2 we associate to
eachi € Samatrix@Q; > 0andtoeache; ;, i # j € £ areal constantd; ; >0
and Hi,i = 0. |

The matrice); represent the quadratic weight of the continuous péf} of
the hybrid evolution, i.e., whenevét) = ¢ the continuous state(t) is weighted by
the quadratic fornx’(¢) Q. x(t).

The numberd?; ; weight the discrete part of the hybrid evolution, i.e., whenever
a switch from locatiori to location; occurs, a costl; ; is associated.

Property 3.1 Consider a hybrid evolutiofz(t),i(t)), ¢ € [0,+o0), the function
i(t) is piecewise constant O

Proof. This is obvious, in fact the functioi{t) represents the values of the location
indexes visited by the automaton during the evolution. |

We now define two sets that are crucial in the development of this research.

Definition 3.11 (Sequence of switching instantsyVe define theequence of switch-
ing instantghe set
T ={m1,7T2y s Thy- -}

with0 < <m <... <7 <... < +c0 the time instants at the occurrence of a
switch. m
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Definition 3.12 (Sequence of indexes\Ve define theequence of indexake set
1= {i07i1,-~-,ik,ik+1 }

with ix11 € succ(ix), & € NU {0}, the list of values assumed bft) when
t € [Thy Tht1). u

Figure 3.4 visualizes immediately the meaning of the definitions above. In this
figureitisZ = {1,4,3,2,3} andT = {ry, 72, 73, T4}

i(t)

RN w

\4

Tz 2 I3 Tyt

Fig. 3.4.Example of the discrete part of evolutioft). The setsT, Definition 3.11, andZ,
Definition 3.12, can be extracted from thcewise constarftinction:(¢).

Definition 3.13 (Cost of the hybrid evolution) Given a hybrid evolutiox(t), i(¢)),
t € [0,+00), the cost of the evolution is given by

FET) = [ @ 0Quyaldt+ X Hi i 3.1

keN
|

Note that the semi positiveness@f and H; ; make the cost functio’(Z, T')
physically significant.

Remark 3.1 (A physical interpretation of the cost) In specific models, for instance
when the variabler represents th@ositionand thevelocity of a point of massn
and Q is diagonal, this functional is proportional to the total amount of kinetic and
elastic energy spent during the motion.

Generally speaking the LQR performance indexes are well suited to model energy
consumptions. Nevertheless we do not consider here any further physical interpreta-
tions but rather we will care of the problem in a more abstract way. |

The objective of this research is to provide a numerically viable procedure that al-
lows the minimization of the functional (3.1), over the design varialles derived
from the switching signal(t).

This is equivalent to say that, given a switched systgnan annexed optimal
control problem OR (S), an initial hybrid statéxz(0),(0)) we design the function
i(t) that minimizes the functional (3.1).
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3.4.2 Finite number of switchesV < oo

We consider initially the minimization problem whéf| = N + 1 < oo. This
problem is considered and solved in Chapter 4

In this case
T 2 {r,...,7n} is afinite sequence of switching times;
T £ {iyp,...,in} is afinite sequence of modes.

The functional (3.1) takes the form

') N
F(L.T) = / 2 ()Qiyr (Dt + S Hiy iy (3.2)

k=1
and the problem is defined as follows.

Definition 3.14 (Optimal control problem for a S) We define th@ptimal control
problem for a switched systeMOPy (S)as

0o N
Ji & min F(Z,7T)% / x' (t)Q;yx(t)dt+ ZHiH,ik
' 0 k=1
s.t. x(t) = Ajpyz(t) + fiw)
i(t):ik fOka§t<7'k+1 k:(),...7
i1 € succ(iy) k=0,...

70 =0, TN41 = +00
Th1 > Tk + Omin (i) E=0,...,
:13(7’,:_) = Mik—lvikm(/rk_) k=1,

where the meaning of all terms has been extensively described in Section 3.1.

In a similar manner we may define @RS A) and OR;(SF), i.e., the optimal
control problem of the particular switched systef4 and SF' defined in Section
3.3.1.

The objective of the research described in Chapter 4 is to solve the abau&PP
for a givensS.

Note that we considered

Tk+4+1 Z T + 5min(ik)a

according to Definition 3.7.

The cost functional consists of two components: a quadratic cost that depends on
the time evolution (the integral) and a cost that depends on the switches (the sum).

In Figure 3.5(a) a graphical meaning of the entries of Problem (3.3) are given for
N = 4L

Note that in the last equation of (3.3), it is implicitly contained the following
remark (see also Figure 3.5(b))

Remark 3.2 Assume that the model of the system does not require a minimum per-
manence time in locatioiy, i.e., for someé = 0, ..., N, dmin(ix) = 0. This allows

IClearly the space of the plot does not coincide with the state space.



Chapter 3- Hybrid systems: models and optimization problems 27

the occurrence of simultaneous switches from locatigns to i;.; (or an immedi-
ate switch ta;, whenever the case= 0 is considered), because the QE5) allows
the solutionr;, = 0, by virtue ofri 1 > 7 + dmin (ix) = 7%. Thus it may be possible
that the optimal solution is to remain in locatiap_; and then switch immediately
at timery, to locationiy . In such case it holds, = 7.1, and consequently

x(le) = w(Tl;rl)

(Figure 3.5(b)). Briefly thé: — th switch has no effect on the continuous time evolu-
tion, but it does on the discrete behavior of the automaton. In fact

w(TI{) = Mlk 1,06 L ( Tk )_
x(TkJrl) 1k,lk+1$( k+ )

and consequently
:13(7’,;,:_1) = Mikvikﬁ»lMik—lyik:E(Tk_)'
Similar considerations should be done for the switching costs.

. . 2 X
.ém.non) Do) B0 1 8,0 8,00 (@)

10 Ty Tiz Ty Ty time

dynamics

5m.n('o) © Bnliy)

(b)

TG—O T, time

dynamics

Fig. 3.5.(a): sketch of a dummy evolution: explanation of the variables introduced in Prob-
lem (3.3); (b): the same evolution with the degeneracy of the second switch and its effect on
the state jump. The same jump mathik has been used for all switches.

We might provide an equivalent form of the Problem 3.3 based on the time inter-
val, rather than on absolute times. By letting

0k = Tk — Th—1 > Omin(ik—1)

be the time interval elapsed between two consecutive switéhes/1,..., N, the
Problem (3.3) can be rewritten as
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N N

Iy = min {Z [23.Q;, (ok+1)@k + Eiy (04 1)@k + iy (0141)] + ZHikl,ik}
k=0 k=1

st Tpy1r = Moy i, A (0k41) 2k + fi (0k41), K=0,...,N =1

xo = x(0)
(3.4)

i(0)
(o) é/ (1) f.dt, (3.5)

where

and
Qi(0) £ [§ A1) Q A(t)dt
aio) 22 i (J A dr) Q A(t)dt
(o) = f [fo (fo )Q(fOAth)dt}f
can be obtained by simple integration and linear algebra, as reported in Appen-
dix B, or even resorting to numerical integration.

The approach of the solution, calleditching tables procedui®TP, is described
in Chapter 4.

Qi

3.4.3 Infinite number of switchesN = oo

We now consider the case where the number of allowed switches can be infinite. In
this caseZ| = co

This problem is analyzed in Chapter 6 arfd 7

Since we are dealing with infinite number of switches, we assume that all switch-
ing costsH; ; are null, i.e., we do not consider the cost of the event driven evolution.

Moreover we did not modelled the state jumps, henégj € S M, ; = I,,.

We can define the optimal control problem of a switched system with infinite
number of switches as follows.

Definition 3.15 (Infinite OP,(S)) Theoptimal control problem of a switched sys-
tem with infinite number of switche®P..(S), is

J* = min {F(I, T)2 /Ooo m’(t)Qi(t):c(t)dt}

7.7

st. &(t) = Aipx(t) + Fiy, ®(0) =z, i(0) =i (3.6)
i(t) =1ix € succ(ip—1) form, <t < Tp41,
Tht1 = Tk + Omin (%k);
k € N. The initial statexy and the initial locationiy are given. [ |

The control variables aré andZ, where7 is the set of switching times arifl
is the sequence of indices associated to the funéfignAll the terms appearing in
this section have been extensively described in Section 3.4.1 and 3.4.2.

2In Chapter 7 we studied the problem in the simpler case®fla
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3.5 Definition of hybrid automata H A

In Definition 3.1 the notion o7 H A is introduced, as it appears in the current liter-
ature [2], in a very general form.

Here we will define théd A as a particular case of the hybrid automaton defined
in Definition 3.1 that is considered in Chapter 5. We indicate with the acraiyin
the particulaiG H A that has been studied in this research.

Definition 3.16 (Hybrid automaton) Thehybrid automatorif A considered in Chap-
ter 5is the tupleH A = (£, act, inv, £, M) whose entries have the following mean-
ing:

— L is afinite set of locations indexed by- 1, ..., s.

—act : L — Inclusionsis a function that associates to each locatioa differ-
ential equation of the form

—inv : L — Invariantsis a function that associates to each locatiban
invariantinv; C R™ such thate € inv;.

—& C L x Guards x L is the set of edges. The edgg is enabled when the
current location isi and the current continuous statease g; ;: it may fire reaching
the new locatiory.

— Alinear jump relation isM C R™ x R™ associated to an edgg ;. When the
edge firesg is reset tox = M; jx, whereM < R"*".

|

The classic definition of7 H A [86] is more general than the one considered
here because: the activity set may be a differential inclusion rather than a linear
differential equation; the jump relation may be arbitrary and not necessarily defined
by a matrix M.

In consistency with thé& we can define:

e thestateof the H A as the paifx, i) wherex € R™ is the continuous state, and
the index: identifies the discrete locatianas in Definition 3.5;
the evolutionof the H A (x(t),i(t)) as in Definition 3.6;
the minimum permanence time in each location, as in Definition 3.7.

We can also denote by
§= “C‘v

and
S={1,2,...,s}

the set of indexes of the locations.

Note that the presence of guards and invariants in the model definition are crucial
in the dynamical behavior of the discrete part of the hybrid state. In Definition 3.4
it was defined the setucc(i) as a function of the current locatian The presence
of guards and invariants leads us to reconsider thewsetas function of both the
continuous and the discrete part of the hybrid state.

Formally

succ:R" x§ — 25, 3.7

We will separately analyze two cases.
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The former is the case where theA may exhibitinternally forcedswitches, i.e.,
there is a subset of edges that, according to the value of the current hybridestate
may fireautonomousR In this casauncontrollableswitches may occur.

We will call this model asutonomous HAAH A.

The latter is the case where all switches are controllable, but the set of possible
successors of a current locatibis dependent on the continuous state space. We will
call this model agonstrained HAC H A.

Before proceeding further in the formal properties and restrictionsifA and
CH A itis important to recall some basic definitions.

Definition 3.17 (Invariant set) Aninvariant setnv;, i € S, is
mv; CR™,

such that ifx € inv; then the hybrid evolutiofiz(t), i(¢)) is allowed within location
i |

Definition 3.18 (Guard set) Aguard sey; ;,4,j € S, is

glyJ - Rn,

such that ifx € g; ; then the edge; ; € £ is enabled and it may fire. [ |

3.6 The considered cases dif A and annexed OP

As described in the introduction of this chapter, the presence of invariant sets and
guards associated to edges influences the behavior éf theand consequently the
problem formulation and its solution should be described consistently.

More precisely the presence of these sets have an effect on the switching schedul-
ing, and thus on the designing of the control policy.

Itis fundamental for the design of the control law, that the systatatisrministic
i.e., the hybrid evolutioriz(t), i(t)) is exactly known for any given initial state.

Once this is guaranteed we may analyze two different interpretations of the
switching constraints. In particular two classesfl have been considered, and
for each of them we applied the STP as described in Chapter 5.

In the course of this research we considered the annexed optimal control problem
to the H A but, in difference with the switched system, we limited the study to the
case where the total number of available controllable switches is limitdd to

Thus, a natural extension is to relax this restriction and consider, also féf the
the problem of infinite number of switches.

In fact the study of OR (C H A), at least in restrictive conditions, is amongst the
work in progress. Our recent results are briefly described in the Conclusions of this
thesis.

3.6.1 Definition of autonomous hybrid automatonA H A

This case considers autonomousd A, meaning that this system is subject to se-
quences of autonomous switches. In other words, not only the time driven evolu-
tion x(t) is uncontrolled (we only studied hybrid systems whose continuous control
u = 0), but also the discrete event evolutidn) is subject to autonomous behaviors
according to subsets (namedasrdg of the state space .

3Some authors [100] call the systems with this behavi@véitching systems
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This class of systems, also denotedsiitching systend.00], perform switches
autonomouslyr so callednternally forced, meaning that some switches may occur
without any external control input, but merely according to the value of the continu-
ous stater.

Note that this is critical in the study of the hybrid systems. In fact there are several
examples in literature, see for instance [17], where the presence of internally driven
switches brings easily to instability.

An AHA is a particularHA = (L, act,inv,E, M) whose set satisfies the
following Definitions 3.19 and 3.20, and whose guards satisfy Assumption 3.1.

Definition 3.19 (Set of controllable edges)or each location € S, theset of con-
trollable edgeg; .. is the subset of all its output edg€ssuch that
Eic={e€&|ge=1inv;}.
|

Definition 3.20 (Set of uncontrollable edges)or each locationi € S, theset of
uncontrollable edges,; , is the subset of all its output edgéssuch that

Eia ={e € & | ge Ninv; = 0} (3.8)
|

We clarify that
E=EUE,. (3.9

Finally we give Assumption 3.1

Assumption 3.1 (Guards and invariants of theAH A) All guards associated to edges
within the set; , are disjoint sets. Formally:

Ve, ée€&qwithe#é, g.Nge=10. (3.10)

Moreover, we assume:

nv; U U ge | =R"™. (3.11)

ee&-,a
|

We call this H A autonomousecause there is no continuous control input and
the autonomous edges are uncontrollable.

Note that the above definitions and assumption on the structure of the edges and
guards of amA H A have several implications.

e Firstly, given an edge; ; = (4, 9:,h) € & o from location: if the continuous
state ist € g; ;, then a switch to locatiop should immediately occur.

In fact, according to equation (3.8}, ¢ inv; and the system cannot remain
in locations. We may call the edge; ; < &; , autonomougor equivalently
uncontrollablg.

e Whenever the continuous state reaches the gyardhusenablingthe edges; ;,
the discrete autonomous behavior of the systemeisrministicbecause no other
switch may occur. In fact, if there exist another output edge(be it controlled
or autonomous), then by Assumption 3.1 it hodds N g; , = 0.

“This terminology was firstly introduced by Xu and Antsaklis in [122].
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e If the continuous state: evolves within a given discrete locatianand there
exists an output edgg ; = (¢,9i,;,9) € & . then the system may either switch
to location;j or may keep evolving within location We assume that the choice
is made by a discrete controller.

Fig. 3.6.Oriented graph of thed H A considered in Example 3.1. The dashed arcs represent
the autonomous edges, while the continuous arcs represent the controllable edges.

Before providing some other useful definitions we provide a specific example,
that shows the practical meaning of the described formalism cfidut.

Example 3.1 Let us consider thel H A whoseoriented graphDefinition 3.3 is re-
ported in Figure 3.6 where dashed arrows have been used to denote autonomous
edges and continuous arrows have been used to denote controllable edges.

The guards and invariant sets are depicted in Figure 3.7 In this particRfar
case, guards and invariants of the automaton are homogeneous. In such a case they
may be easily described [90] as quadratic formseofn particular, we assume that
the guards associated to autonomous switches are

gi12 = {:U S R2| .’IJIGl 2 > 0}, G1 9 = —0206
’ ’ ’ 0.6 —1
1 1.25
g3 ={z e R} &'Gi 32 >0}, Gi3=— [1.25 1 }
and
g23 ={T €R?| 2'Go3x >0}, Gao3 = {0253 065]

whereg; > N g1.3 = 0, thus verifying Assumption 3.1.
Consequently, by Assumption 3.1, the invariant sets may be defined as

invy =R*\ (91,2 U g1,3),
inve = R? \ 92,3, invg = R2,

while the guards associated to controllable switches are

921 = Z"/M)g, 93,1 = g32 = iTL’Ug.
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Fig. 3.7.The guards and invariants of théH A in Example 3.1.

3.6.2 Dynamical behavior of anAH A

Let us assume that the current hybrid state is, at a giventtirag ¢). For this state
there are two possible conditions:

1. x € inv;.
2.z ¢ inv;.

While the system is evolving in locatianthe DOF of the external controller is
limited to by suce.(i) U {i}.

In other words the controller, while € inv;, can choose to switch amongst all
controllable successors of locatioor therein remain.

More precisely we give the following definition:

Definition 3.21 (Set of controllable successorsTheset of controllable successors
of location: succ. (i) is defined as follows:

succe(i) ={j €S : (4,6i,,7) € Eichs
where the sef; . is taken as in Definition 3.19.
|

In case (2) the system must leave locatipin agreement with the definition of
the invariant. Hence an autonomous switch will occur, and the systemsalis
taneouslyinto another location, say, which is univocally determined by the guard

Gig-
Equivalently
Ve eR"\iny, 3j € S

such thate € g; ;, where we indicate by! the "one and only one" exitance condi-
tion.
Now define the set

Definition 3.22 (Set of uncontrollable successorsJhe set of uncontrollable suc-
cessor®f locationi succ, (i) is defined as follows:

SUCCa(i) = {] S S (iagi,jmj) S giva}7
where the sef; , is taken as in Definition 3.20.

Consider for instance the location 2 in Example 3.1. Clearly thewset.(2) =
{1} andsucc.(2) = {3}.

We do not assume that the nhumberanftonomousswitches performed by an
AH A is finite. Thus, according to the shape of the guards, the system may
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e become unstable with no control;
e exhibit Zenoness.

In the sequel we provide sufficient structural conditions on the automaton graph
that avoid these undesirable behaviors. Furthermore, in order to prevent non deter-
minism, we assume thaticc, (i) is a singleton. In the sequel we name this particular
H A with the acronymA H A (Autonomous Hybrid Automaton).

3.6.3 Optimal control problem for AH A

We now define the optimal control problem annexed toAli¢ A. Before giving a
formal definition of the problem it is helpful to introduce some additional notions.

Definition 3.23 (Sequence of autonomous switche§iven a state(x, ig) of an
AH A we define theequence of autonomous switches

O'(:Bo, Z‘0) = {(ioa 90)7 (ilv 01)7 sy (iha ah)}

whereiy, is the index of thé —th location visited from locatiof, and firing only au-
tonomous edges of theH A, while§;, > 0 is the time spent in locatioi}.. Formally
thefy’s are time intervals such that fdr = 0, ..., A it holds:

Tr+1 = Mikyik+l A;, (Or)xk
Vit e [O,Gk) Aik(t)azk S invik
) (3.12)
A (Ok)T) € ge,
Cr = (ik7gek7ik+1) € g’i,a
with 0, = +o0. |

Note that the intervad,. is the time it takes, once entered in locatignto reach
the guard of the autonomous edge leading to locaii@n. Therefored,, = 0 implies
thatxy, ¢ inv;,.

Definition 3.24 (Bounded automata) We say that am H A is boundedf there ex-
ists an intege < +oo such that for all hybrid statege, 4) it holds

lo(x,1)] < h.
|

Note that this property implies that the automaton is not allowed to evolve au-
tonomously for an infinite number of switches, thus avoiding undesired behaviors
such as Zenoness [61] or instability [17].

Property 3.2 (Condition for bounded automata) If theoriented graplofan AH A
does not have cycles composed of only autonomous edges, then it is boundéd.

Proof. The fact that no cycle composed of autonomous edges exists, is a sufficient
(but not necessary) condition to imply that the boundiven in Definition 3.24 is

less or equal to the length of the longest directed path containing only autonomous
edges. ]
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Note that the above property is structural of the oriented graph ol fiiel, and
it is very easy to verify.

As an example, we can immediately assert that the automaton in Figure 3.6 is
bounded because it does not contain any cycle of autonomous (depicted with dashed
arcs) edges.

We will only consider boundedi H A. Considering non boundedH A can be
meaningless, because of the potential instability of the system.

We shall now introduce a piecewise constant time function associated to the se-
quencer (xo, ig).

Definition 3.25 (Indexes of autonomous trajectory)The indexes of autonomous

trajectorycorresponding to a given sequengérg,ip) = {(i0,00), ..., (in,0n)}
is:
k—1 k
po(t) =i, ifte | Y 0, 0 (3.13)
j=0  j=0
|

Example 3.1Suppose that from a giveh H A state(x, ) it has been computed the
following sequence (x, i):

o(x,i) = {(1,2),(3,1.5), (2,2.5), (4, +00)}

o-t A
Pq(t) 0,
4_ e —— W

3
2_
1

v

Fig. 3.8. Function¢, (t) of the autonomous sequeneéx,i) = {(1,2),(3,1.5), (2,2.5),
(4, +00)}.

The associated functiop, (¢) is displayed in Figure 3.8.

The optimal control problem is based on the assumption that the discrete con-
troller has at mosiV (fixed a priori) controllable switches available.

In analogy with the Definition 3.14 we define the optimal control problem asso-
ciated to theA H 4, and we indicate it with the acronyn®P (A H A).

For the explanation of the symbols given in the following definition concerning
the optimal control refer to Section 3.4.1, and for the explanation of the symbols
concerning thed H A refer to Section 3.6.1.

SHere the subscripV is useless because we do not deal with infinite number of switches.
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Definition 3.26 (Optimal control problem for an AH A) We define theptimal con-
trol problem for anAH A OP(AH A) in consistency with Definition 3.14, disregard-
ing the switching costs,

0

s.t. (t) = Ai(t)ﬁc(t) + fi)
O=1<... < < ... <7TN41 = 00
(controlled switching times)
i(0) =idp (initial location)
z(0) =z (initial state)
i € succ(ix—1) (location reached after the — ¢h controlled switch)
x(15) = My i, 2(T;,)
(state reached after thie — th controlled switch)
or = o(x(m),i(7,)) (autonomous sequence)
(e +0) = ¢, (0) for0 € [0, 7541 — 7%)
(autonomous index trajectory)
(3.14)
|

Here functioni(t) is composed ofV + 1 blocks delimited by the instants,’s
where the controlled switches occur.

Each block is @iecewise constant functiosteps internal to the interval, 74.+1)
correspond to autonomous switches. More precisely, within the time integval. 1)
the functioni(t¢) is not constant but piecewise constant. In fact during the time elaps-
ing [7x, Tk+1) an autonomous evolution may occur.

The control variables in this problem are the sequenceoafrolled switching
times7 £ {m,...,7~}, and thesequence of location indicessociated with con-
trollable switche< £ {i(7y),...,i(7n)}.

We want now to characterize some control problems such that the optimal cost is
finite.

Definition 3.27 (Ultimate stability) A location: of a boundedA H A is ultimately
stable ifvx € inv; the associated sequeneéi, x) reaches a final dynamiag (that
may depend om) such thatA;, is strictly Hurwitz. ]

Proposition 3.1 A boundedAH A can be stabilized by a switching control law if
from every locationi not ultimately stable there exists at least a controlled edge
leading to an ultimately stable location. |

Proof. We show that from any initial statexy, i) it is possible to steer the continu-

ous state to the origin. In fact from the initial state we can wait until the last location
i, of the sequence(xy,iy) is reached. Obviously ifd;, is not Hurwitz theniy,

is not ultimately stable, hence by assumption there exists a controllable switch that
leads to an ultimately stable location. |

Note that this proposition is a sufficient (but not necessary) condition for the
existence of a stabilizing control law. In order to make the problem (3.14) solvable
with finite costJ%;, we assume that all considerdd{ A satisfy Proposition 3.1.

Finally, in order to express in a more compact way the following results, we recall
that for a linear time invariant system of dynamidsan integral like

J = / e ' (t)Qz(t)dt (3.15)
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with @ > 0 is a quadratic form
J =2'(1)Q(AT)x(T) (3.16)

that can be computed numerically or analytically as in Appendix B.

3.6.4 Definition of constrained hybrid automatonC H A

We analyze now another particular classibfl as in Definition 3.16, whose edges
areall controllable but their firability depends on the value of the continuous state
spacer.

We suddenly state that, in opposition to tHé7 A, in this case there are no
autonomous sequences of switches, thus the instability issue and the Zenoness are
avoideda priori.

This aspect of théf A simplifies the notation and we may directly describe the
dynamical behavior of thé’ H A without providing any further definition.

The development of th€’H A was motivated by a particular case study, de-
scribed in Chapter 5, where the model of the plant is subject to safety constraints on
the continuous state spé&ce

The verification of these safety constraints can be guarantee if the sequences of
discrete outputs of the plant obey to certain specification.

A procedure, developed Wyaisch et al[85], based on thé—complete approx-
imation, and suited to th& A framework by the work ofsromov et alas in [32],
see Appendix D, allows the conversion of this specifications on the outputs into the
definition of the invariant set.

We describe the dynamical behavior frorhigh-levelpoint of view, meaning by
high-level that we assume that the guards and invariants afftheare given, with
no concerns on how they are generated.

What makes this model a particular case ofthd is the definition of the guards.

In this case we define:

Definition 3.28 (Guards of aC H A) We define thguard of theC'H A g; ;, associ-
ated to the edge; ; = (i,9,,;,7) € £ asg;; = inv;. |

The edgee; ; is thus enabled provided that the current continuous state
mnu;.

3.6.5 Dynamical behavior of aCH A

The behavior is described as follows.
We may initially define the set of successoras a function of the hybrid state

(2, 1)

Definition 3.29 (Set of successorsjVe define theset of successorsf the hybrid
state(x, i)
succ(z,i) ={j € S: & € g;;}.

Let us assume that the current hybrid state is, at a giventjrfwe ¢). For this
state there are two possible conditions:

Wwith safety constraint we mean that the continuous variables of the plant should never
take dangerous values, think, for instance to the pressure in a boiler.

"For this case there is no real need to specifptrollable successors, in fact there is no
autonomous evolution.
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1. x € inv;.
2. x ¢ inv;.

In case (1) the controller can choose to switch to anyone of the locations enabled
by the guards according to the current value of the continuousastatet can decide
to remain in the current locatian since the invariant condition is verified. The DOF
of the controller is, in case (1):

succ(x, 1) U {i}.
In case (2), the system must, by Definition 3.17, leave locatiblence the DOF
of the controller is
suce(x,1).

Remark 3.3 (BlockingC H A) Case (2) offers a potentially blockingH A. This

can be obtained whenever the current locatiofy 8 ¢ inv; andsucc(zx, 1) = 0.
Nevertheless the procedure described in Appendix D provides the invariant sets

that avoid this undesirable behavior. |

Figure 3.9 better shows the significance ofthdependency on the s@icc(x, 7).

Fig. 3.9.Meaning of state dependent successors. The edge between lodaiwh® and vice
versa is enabled whenever € invi N inwvs.

Note that the setucc(x, i) may be a singleton, thus the system may switch, to
an extentautonomouslybecause there is no other choice, but this is only an extreme
case.

3.6.6 Optimal control for CH A

We now define the optimal control problem annexed totf#éA. As for the AH A
we consider here only a finite number of available switches, nafkiely/e will call
this problem with the acronym OPH A).

In consistency with the Definition 3.14 we define the optimal control problem
associated to th€' H A, and we indicate it with the acronyn®P(C H A).

For the explanation of the symbols given in the following definition concerning
the optimal control refer to Section 3.4.1. For the explanation of the symbols con-
cerning theC H A refer to Section 3.6.4.

8Here the subscripV is useless because we do not deal with infinite number of switches.
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Definition 3.30 (Optimal control problem for a C'H A) We define theptimal con-
trol problem for aC'H A, OP(C H A) in consistency with Definition 3.14, disregard-
ing the switching costs,

s.t. a:(t) = Al(t).’I}(t) + fi(t) (317)
i(0) =i (initial location)
z(0) =z (initial state)
i(tT) € succ(z(t),i(t)) U{i(t)}
x(t) € invyy CR™, VE2>0

where7 andZ are defined in Definitions 3.11 and 3.12 with— 75— 1 > min (ik—1)
Vk=1,...,N+ 1, theminimum permanence timimposed in each location. B

Note that this problem formulation is analogous to Problem (3.14), except for
the presence of the invariant set, that restricts the set of actions of the controller in
function of the current continuous state vaitie

3.7 Conclusions

In this chapter the models and the problems studied in this thesis have been formally
defined. More precisely, starting from a general definition of hybrid automata, taken
from [86] and [2], we restricted the attention to the linear affine particular cases.

We formally defined the linear affine switched systénwhich is a system com-
posed of several modes activated by a switching siginalWe described two special
cases of the&, namely the switched system that only admits a fixed mode sequence
SF and the switched system that admits an arbitrary mode seq$etice

We also defined the linear affine hybrid automatdmi, which is a switched
system characterized by the presence of constraints on the state space, that may in-
fluence its dynamical behavior by the occurrence of autonomous switdhédl),
or they can restrict the action of an external discrete contralléf 4).

For this three classes of hybrid automata we described three different optimal
control problems OP) of the form LQR, whose control variable is the switching
signali(t), that is a piecewise constant function withite segments. We point out
that for theS we also defined the OP wheifg) is a piecewise constant function with
infinite segments.
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Finite number of switches: switched systems

4.1 Introduction

The design of control laws fdrybrid systemss a key issue in this research field. The
peculiarities of these systems, merging a discrete event evolution with a continuous
time evolution, may allow some particular behaviors, like chaotic trajectories [36,
25, 72] or the Zeno behavidras defined in [66, 59]. Several examples on Zenoness
can be found in [61, 24]. Moreover some paradoxes, like the stabilizability properties
described by [17], or the non uniqueness otaacutior]65], make the object of this
research particularly appealing.

In the previous chapter the type of systems considered in this thesis has been
described in detail. We deal with hybrid systems composed of subsystems with linear
time invariant and autonomous dynamics.

For this class of systems we consider the problem of finding an optimal switching
strategy, i.e., an optimal control law, in feedback form. In short, we would like to find
a procedure, that takes in input the continuous state space (in the sequel denoted by
the variablex) and the discrete state space (in the sequel indexeidadoyj), and
from this the switching strategy that minimizes a piecewise LQR performance index
is suggested.

The procedure presented in this chapter represents the kernel of this research
study. A formal presentation of the procedure will be given and supported by the
help of specific examples.

However, for sake of clarity the procedure is not described here in its most gen-
eral form. In particular we consider here the following restrictions:

— The system is allowed to switch to an adjacent location without constraints on the
state space. In other words the continuous part of the hybrid @gtai¢ has no
effect on the switching strategy. This extension is considered in the next chapter.
— The total number of allowed switcheshs < +oo. This is to prevent undesirable
behaviors, such as Zeno [66, 59]. Furthermore the procedure is developed time
backward, thus it is based on the fact that there actually exists a "last switch".
The extension t&V = +oc is considered in Chapter 6.

The chapter is structured as follows. Initially the notions given in Chapter 3 are
briefly summarized, focussing on the model and the problem under consideration.
Then some theoretical results are presented. In particular these are fundamental to
understand how the feedback control can law be constructed, why it is optimal, and

1A model of a hybrid system exhibits Zeno behavior when it performs an infinite number
of transitions (equivalently, switches) in a finite time interval.
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what its characteristics are. After a brief examination of the computational complex-
ity, some examples follow.

In the last part of the chapter two special cases of the procedure are described.
One is thefixed mode sequencthat was developed in [49]. The other is the
bitrary mode sequenceéeveloped in [9]. What we find interesting in these cases is
that they represent, to an extent, the extreme cases of the considered model, thus sug-
gesting a simpler perspective. In the fixed mode sequence the sequence of locations
visited during an evolution is pre-assigned, while in the arbitrary mode sequence the
switching strategy has complete degree of freedom amongst all possible dynamics.
The procedure presented here is a generalization of these cases, and some current
research and results are still based on them, at least in an initial approach, thanks to
their structural simplicity.

Finally we provide an example that introduces the case of infinite number of
switches, more suitable for real life applications.

4.2 Linear affine switched system and optimal control

4.2.1 The linear affine switched system

We consider in this chapter the model defined in Section 3.3, nalinelgr affine
switched systent = (L, act, £, M), in the sequelS, where, in consistency with
Definition 3.2.

— L is afinite set of locations, indexed by=1,...,s.

—act : L — (R™ x R™) is a function that associates to each locatiarinear
affine differential equation, i.ex; = A;x + f;.

— & C L x Listhe set of edges. An edge; = (7, j) is an edge from location
i to locationy, i # j.

— M : £ — R™*™ associates to each edgec £ a constant matrix ifR™*".
When the discrete state switches from locatidén location; at timer, the continu-
ous stater is reset tar(71) = M, jx(77).

We denote byS theset of indexeassociated to each location, ane- |S|.

The considered system may be represented loyianted graphas in Definition
3.3.

The state of thes' is the couple(x, i) wherei € S is the discrete location and
x € R™ is the continuous state.

We assume thatminimum permanence tindg,;, (i) > 0, as in Definition 3.7 is
associated to each location

Moreover we recall the notion of the setcc(i) C S, i.e., the set of location
indexes reachable from locatiéy firing only one edge, formally defined in Defi-
nition 3.4.

4.2.2 Formulation of the optimal control problem

The objective is to solve the optimal control problem with an upper bdurah the
number of the available switches, QE5), as in Definition 3.14 for the switched
systemS defined above.

We recall the problem formulation, as given in Definition 3.14:
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e’} N
J;] 2 1%11%1 F(I, T) £ / m/(t)Qi(t)(L‘(t)dt—i— ZHik—hik
0

)

k=1
S.t. &(t) = Ayyx(t) + fi

x(0) = xg (4.2)
i(t) =i, form, <t < Tpa k=0,...,N

ik+1 c Succ(ik) k= 0,....N

70 =0, TN4+1 = +00

Tht1 > Tk + Omin (ix) k=0,...,N
$(T;):Mik717ik$(71;) k‘Zl,...,N

whereQ; are positive semi-definite matrices anglis the initial state of the system.
In this optimization problem there are two types of decision variables, as in Def-
initions 3.11 and 3.12 respectively:

e 7 2 {r,... 7v}is afinite sequence of switching times;
T £ {iy,...,in} is afinite sequence of modes.

Note that the cost (4.1) consists of two components: a quadratic cost that depends
on the time evolution (the integral) and a cost that depends on the switches (the sum),
whereH; ; > 0,1, € S, is the cost for commuting from modeto modey, with
Hi,i =0,VieS.

4.2.3 Fundamental assumption

The solution of problem (4.1) is finite, provided the following fundamental assump-
tion:

Assumption 4.1

(i) there exists at least one locatiére S such thatA; is strictly Hurwitz, f; = 0;
(ii) if the initial location i is imposed, than the numbé¥ of available switches is
such that the location must be reachable from in k£ < N steps.

In other words (i) states that there must exist at least one location in the automaton
such that the corresponding differential equation has stability (in the Hurwitz sense)
properties.

Moreover (ii) requires that this locatiarmust bereachablewithin N switches,
meaning that there exists at least an oriented path in the automaton graph, that brings
from the initial locationiy into 7 within IV steps.

If 7o Is not assigned then (ii) can be relaxed.

In fact even in the worst case, i.&.;j #i € S

the dynamicsA; isn’'t Hurwitz;
there are no arcs entering locatign.e.,V j € S\ {i}, ¢ ¢ succ(j);

we can always choosg = .
In this worst case the problem @PS) admits, for any initial pointx, i), the
unigue trivial solution

whereZ; > 0 is the unique solution of the Lyapunov equation
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AlZi+ Z;A; = -Q;,

as described in Appendix A.3.
This solution chooses immediately the only stable dynamics and never switches
from there.

4.2.4 Linear affine models

Before proceeding further, we observe that the original affine dynamics, modelled in
Section 3.3,
&(t) = Az (t) + fiw), i(t) €S

can be rewritten as a linear dynamics by simply augmenting the state spadg’from

toR"+1:
s)-ly vl e

with Z(0) = 1. Note that thén+1) —th state variablé (¢) is a fictitious variable that
does not influence the cost function, if the new weighting matrices are semi-definite

positive matrices of the form
Q;0
00
foralli € S.

Henceforth, wig, the OR(S) (4.1), is formally equivalent to an QRS’), where
all dynamics ofS’have the form (4.2).

For this reason in the following we will talk only about linear systems idi-
mensional space, meaning that it could also be an affine problem-irl dimen-
sional space. Of course this advantage is significant only from a formal point of
view; whenever the STP, later described, is implemented with affine modes it will be
clearly specified. In fact, while the theoretical procedure is equivalent, some imple-
mentationgrecautionsmust be added, especially when discretizing the state space.

Note also that Assumption 4.1 is sufficient to ensure that the system is stabilizable
on the origin (and hence that the OP we consider is solvable with a finite cost) but it
is not strictly necessary. Consider in fact the following two particular cases.

425 Case 1l

Assume that all dynamicd; have a displacement terf, # 0 but at least one
dynamics, say ;, is Hurwitz. One can make a state-coordinate transformatien
z— Aj‘lfj and penalize — whenever modés active — the deviation from the

target state through the quadratic tefin+ Aj_lfj)’Qi(m + Aj_lfj) =2'Q;z.

Example 4.1 Let us consider a model oftaoost converteiinspired by [112], whose
circuit is represented in Figure 4.1.
The state of the system is
]
r = -
1

This linear affine switched system has two possible modes, according to the position
of the switchs. In particular, when the switch is open the DE of the system is:
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Fig. 4.1.Boost converter.

1 1
- = 0
RC C
x(t) = Arz(t) + f1 = z(t)+ | E |, (4.3)
_1 RBs L
L L
and when the switch is closed
_ X -
S 0
RC 0
x(t) = Agzx(t) + fo = z(t)+ | E (4.4)
g _ZE L
L

This switched system does not apparently satisfy the Assumption 4.1, because
both affine terms are non null.

Nevertheless, being both dynamics Hurwitz, it is possible to reformulate the prob-
lem with a state coordinate shift centered in one of the following equilibrium points:

R

E 0
Rg+ R
T = , o= | E
1 R
E E
R+ R

More specifically we may consider the new variable

—RC 0 0
22 x4+ A fo=x + 0 L E|=z—x.
Rg L

Now the system becomes, by substitution,
E
z2=A1z+ |: R80:|
z = AQZ

and it satisfies the Assumption 4.1, becadseis Hurwitz and the new affine term
of system 2 is null. |
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4.2.6 Case 2

Assume thatd ; is a non Hurwitz diagonalizable matrix acti= diag{ A1, ..., A\, }
where for at least one eigenvalue, sayitis Re(A1) < 0. Then itis always possible
to find a matrix@; > 0 such that

+oo
/ z'Q xdt < +oo.
0

InfactletT : T-'AT = Aj; obviously it holds (see Appendix B)

+o0o +oo
/ ' Q xdt = (T’ AT Q; T~ A(t)dt Tz
0 0
wherex, = z(0) andx = x(t) = A(t)xo. Now, if we choose the:? entries of
matrix Q; such that

E0...0
00...0
(T_l)/QjT_l = - o
00...0
then, even ifA; is non Hurwitz
/+00 ' Qixdt = fLm’ T'Txy <+ (4.5)
0 T TaRe(y) O TS T ‘
Example 4.2 Let
3 4
a-[14)

The matrixA is non Hurwitz becausd = diag{—5,5}. The state space transfor-
mationz = Tz that diagonalizesA is

1 1 2
-5 L)
Note thatT" is an orthonormal matri% Let us show now that there exists a symmetric
semi-definite positive matrix

_ a7 q
Q= [ q Q2]
such that
+oo
/ ' Qzdt
0

is finite. It is sufficient to find a solution of
,_|kO
TQT = [ 0ol
The linear system above becomes

2Orthonormal matrix™: ¥V i,5 = 1,...,n < t;,t; >= 0if i # jand< t;,t; >= 1,
wheret; are the columns dI". For orthonormal matrice® ~" = T".
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q1 +4q + 4q2 = 5k
21 +3¢ —2¢2= 0
dgp — 49+ ¢ = 0
whose solution gives
k{12
Q= 5 {2 4}

which is indeed positive semi-definite. Now, according to equation (4.5), i8irg
T, it holds

+o0 k 5
/ ' Qzdt = —||zo||” < +o0.
; 10
]

There are even other cases in which Assumption 4.1 may be relaxed preserving
a finite value of the cost. The reasons that prompted us to state Assumption 4.1 are
the following:

1. Albeit restrictive it is a structural property, thus easily verified;
2. Most of the particular cases such as Case 2 are in general practically irrelevant.

4.3 Switching Table Procedure

In this section we show how to solve the OP (4.1) or equivalently (3.4), for a given
switched linear systel = (L, act, £, M), as described in Chapter 3, when As-
sumption 4.1 is satisfied.

In particular we show that the optimal control law for the optimization problem
described in the previous section takes the form of a state feedback, i.e., it is only
necessary to look at the current system siaite order to determine if a switch from
locationi_; toiy,or equivalently from linear dynamic4 to A;,, should occur.

Tk—1

Remark 4.1 Before proceeding further we would like to clarify that in the general
optimization Problem(4.1), although the number of allowed switchesNs also
solutions where onlyn < N switches effectively occur. More precisely, the number
N is an upper bound on the number of available switches. In the next chapters it
will be proved that the total cost of the evolution is a decreasing monotone positive
function of the numbeh. |

Let us recall the following definition:

Definition 4.1 (Partition of a set) A partition of a set(? into K subsets(?;, i =
1,..., K, is such that

K
0=J%
=1
and
IQi(NIIZjEE 0

Vi . []
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The procedure described here considers the model described above (i.e., a
switched linear autonomous system) with an annexed optimal control problem with
infinite time horizon and finite number of switches. It constructs, for each location
and for thek — th missing switchk = 1,..., N), a tableC! that partitions the state
spaceR™ into s; regionsR;'s, wheres; = |succ(i)| + 1.

The control law is thus a set @f x s tables, where = |S]|.

Remark 4.2 In the following the symbadl! (switching table) denotes a partition of
R™ viewed from locatiord, whenk switches are still available. |

Wheneveri;, = i the discrete external controller uses tabgeto determine if a
switch should occur: as soon as the continuous stataches a point in the region
R, foracertainj € succ(i)aswitch to modéy.; = j will occur; on the contrary,
no switch will occur while the system’s state belonggtp

Example 4.3 To better illustrate how these tables are used, we propose Figure 4.2.
In this figure it is shown the table, obtained for a particular example (Section 4.5),
to be used when locatiaris active and only 1 switch is still available. Whenever the
continuous state is in the orange area, then it is optimal to remain in location

During the evolution withA; the continuous state may cross the cyan or the
yellow region. In this case the last switch should occur towards locatjoos i
respectively.

One may ask the meaning of the central area in blue (leading to locafion
Clearly this area will be never entered from locatigras the state spaceis a con-
tinuous function. Nevertheless it may be reached directly after the previous switch.
Moreover in this particular example a value &f;, (i) # 0 was considered. Thus
immediately after the switch the controller is "blind" for the tifg,, (). This may
cause the continuous stateevolution to silently cross the cyan area and then, when
omin(2) is elapsedg may be in the blue area, thus forcing the controller to switch to
k. |

Remainin |

Switch tol;

Switch to I

Table C)

|

[

Switch to I, -1 1

Fig. 4.2. Partition of the state spacR? showing how the regiod; (of locationi, when 1
switch is available) serves to locate the switching areas. The regions are colored only in the
limited plot for obvious reasons, but they cover the entire space maintaining the conic shape.

This is a fundamental result because it is well known that a state feedback control
law has many advantages over an open-loop control law, including that the computa-
tion of the control law can be done off line as opposed to being performed on line. On
line computations are burdensome, especially if a disturbance acting on the system
may cause the system state to deviate from its expected value.

To prove this result, we show constructively how the talesan be computed
using a dynamic programming argument.
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We first show how the tabledi (i € S) for the last switch can be determined.
Then, we show by induction how the tabt&scan be computed once the tabigs ,
are known.

For simplicity we also assume that dynamics are linear, because affine dynamics
can be easily reduced to linear dynamics as shown in (4.2).

In particular we show that for a given modec S and for a given switchk =
1,..., N itis possible to construct a tab{g that partitions the state spaB& into
5(i) = |succ(i)| + 1 regionsRy, Ra, . . ., Ry(s)-

Thus for every mode and for each value of a varidbteat we may call "switch
counter" the state space is divided into several areas that suggest the optimal switch-
ing strategy.

Let us recall here another definition.

Definition 4.2 (Homogeneous function [37])A functionf : X C R™ — R is ho-
mogeneousf orderm and we sayn-homogeneous vV x € X \ 0 there exists a
A € R\ 0suchthat

fOm) = A" ().
|

We will often use the concept of homogeneity of a function. In particular let us
observe the following property.

Property 4.1 (1) Given a LTl autonomous systems of the form
T = Ax
the flow functionf (x) = Az is homogeneous of degree 1.

(2) The quadratic cost functions of the form

J(x(0)) = /0 ' (t)Qux(t) = a'(0)Q(7)x(0)
are homogeneous functions of degree 2.

O

Proof. (1) Trivially follows from the linearity of the LTI systems;
(2) Trivially follows from the quadratic form of the cost functions and the linearity
of the system.

Finally let us consider the concept of homogeneous reion R"” of the state
space.

Definition 4.3 (Homogeneous region)A regionR C R™ ishomogeneous, V x <
RandV A € R,itholdshz € R. ]

We will indifferently use the wordhomogeneouregion orconicregion. A parti-
tion of R™ is entirely homogeneous if all its componefs are homogeneous.

Example 4.4 The partition depicted in Figure 4.2 is homogeneous. |

3The tables are numbered in anti-chronological order, i.e.ktheth table indicates that
k switches are missing, or equivalently, tiét— k switches have occurred
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4.3.1 Computation of the Switching Tables

Assume generally that:

e the current state of the system(is, ), wherex indicates the continuous state,
ands indicates the current locatiani.e., the discrete state;
e the number of missing switchesis> 0 out of N.

We provide here a method to calculate the switching tables that serve as feedback
control law for the class of switched system described in Section 4.2.1, and generally
defined in Chapter 3.

To this aim, assume that the switched system evolves according to the following
schedule:

Time intervaly ok |ok—1]- - |00

Indexes I Je]de—1] -] Jo (4.6)

with the following constraints:

Qo0 = +00
Oh = Omin(Jn)
Je =1 4.7)
Jn € succ(jn+1) U {jn}
h=0,....,k—1.
Note that it must bed ;, Hurwitz stable, in agreement with Assumption 4.1.
For sake of clarity we specify that the sequence 4.6 means that the switched
system will evolve in locatiory, = 4 for a time g, then it will switch to location
Jr—1 Where it will remain for a timepx_1 > dmin(jr—1) @and so on. Finally it will
reach the last locatiogy where it will terminate the evolution and it will remain
forever, withpg = +o00.

Remark 4.3 We decided to renumber the subscripts of the time intervals and of the
location indexes. In particular in this paragraph it appeared more convenient to
count them in time backwards. With this idea all definitions, properties and theorems
that follow (given by induction) appear more readable.

Nevertheless, once all things are proved, we will switch back to the previous
(more natural) terminology, i.e., the first location visited is indexedybyhe last by
in, and analogously for the switching instants or intervals.

|

The cost associated to any evolution of the system consists of two parts: the cost
associated to thevent driverevolution, i.e., to the number of switches that will occur
in the future evolution, and the cost of thime drivenevolution. We will consider
the two parts separately.

Denote the partial sequence of switching time-intervals by

{ok, -, 00}
that represents the time driven evolution of the continuous state. More precisely
on 1s the time spent in locatiof), (jx = 7).

Definition 4.4 (Time cost) Theremaining time coststarting from(x,i = ji) and
executings more switches, is:
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To(, jo, 00) = wIQjO(QO)m = iU'QjO(‘FOO)w

Tk<w7jk7 s ajU? Oks- - QO)

4.8
— :c’(gj/k(gk)a: ) ) (a) (4.8)
‘H'E/Ajk (Qk)M;‘k,ij (6IIliII(j))Mjk7jAjk (or)z (b)
+Tk71(zvjk717"'7j07@k717‘~'790) ((’)
with B B
z=Aj,  (6min(Jk—1)) M, ji_, Aj, (0k). (4.9)
|
Remark 4.4 Note that the functiotf“k(:n,jk, .+, J0, Oks - - -, 00) IS 2-homogeneous
over its variabler, in fact it is a quadratic. |

Denote the partial sequence of indexes by

(ks oo} € 25

that represents the evolution of the discrete state. In a similar manner as the time
cost, we define the cost of the event driven evolution.

Definition 4.5 (Event cost) Theremaining event costy, starting from(x, i = j)
and executing: more switches, is (by induction over K):

Eo(jo) =0

. . . ) 4.10
Ey(jks- -5 Jo) = Hjy ji_y + Ex—1(Jk—1,- - -, Jo)- (d) ( )

The total cost of an evolution, that includes both the time-driven and the event-
driven cost is thus the function

Definition 4.6 (Total residual cost) The total residual cost of the evolution sched-
uled in equation(4.6)is defined as

Tk(w7jk7"'aj0agk7"'590) = Tk(xvjkv"' ajOanw"vQO) +Ek(jk7'-',j0)'
|

The previous definitions require some physical interpretation.

Let us take into account the first item (equation (4i8% 0) in Definition 4.4.
This term is the LQR cost due to the time driven evolution without any switch. It
is trivially the area (geometrical interpretation of the integral) below the function
f() = 2'(t)Q=(t), wherex(t) is the solution of the first order LTI differential
equationt = Ax.

By definition this function is nonnegative, becau@e > 0. Moreover, since
x(t) — 0 ast — -+oo with exponential rate, clearly the value of (4.8),= 0,
is finite.

Remark 4.5 Observe that this may not be the case < S, but Assumption 4.1
guarantees that this is true for at least one location in the system. Clearly, if we
denote byS C S the nonempty subset Sfthat verifies the assumption, it holds that

the last dynamicg, of the switched evolution is such thgt € S. |
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_ Letus now comment the second part of equation (4.8),4.e:,0. It is said that
T(-) is a function of:

1. the current discrete state= jy;

2. the current continuous staig

3. the remaining discrete state evolutiff_1, ..., jo};

4. the timep, > 0 that will be spent evolving in the current location, starting from
pointx.

5. the remaining time evolutiofox_1,...,00} from the state point: that is

reached aftep;, and after the minimum permanence time spent in locgtion.

The subscripk indicates that: switches are still available, or equivalently that
N — k switches have already been performed.

Physically this function represents the cost of an evolution that remains for a time
0% in locationj; from pointax, and switches to locatiof),_; when the timep;, has
elapsed, or equivalently, when the continuous state value has reached the point

z=Aj (5min(jk’—1))Mjk»jk—lAjk (or)z.
In particular, the meaning of the terms (a)-(c) can be commented as follows.

(a) This term is the cost of the evolution from pouatin location j; for the finite
time g;. As explained in the Appendix B, it holds

Ok
lejk(Qk:)w:/O z' (1)Q,, x(t)dt,

wherez(t) = edirtx = A;, (t)x.
(b) This term,

' A (o0) M, ;. Q. (Oumin(n—1)) M, jo_, Aj, (0k),

is the cost spentin locatigiz _; during the minimum permanence timgi, (jx—1)-
Note that the term (b) is structurally equal to the term (a). In this case however
the initial point is B
Mjkﬁjk—lAjk (Qk)w7
i.e., the state space reached after a timén location j; and after the resetting
M, ;. _, after the switch fromyy, to ji_1.
(c) This term,

Tk—l(zvjk—la v ajOa Ok—1y---, 90)7

expresses the residual optimal cost when one-switch-less is available, the current
discrete state i$,_; and the current continuous state is the point

z2=Aj_, (6min(r—1)) M, j._, Aj, (or)x

reached after the evolution in locatigp and the switch. Note that this term has
been already calculated in a recursive mode at the previous step.
(d) This term, in Definition 4.5,
H

ksJk—17

is the cost associated to the switch from locatjpmo locationg .

In the two dimensional case it is possible to provide a graphical representation of
terms (a), (b) and (c). This has been done in Figure 4.3.
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AGn (DM, %, () A M; ;X (0)

Fig. 4.3.Sketch of the evolution at the switching instanRfh The figure illustrates the nota-
tion used in equation (4.8). In particular the initial poimtin the current locationi, the jump
occurred after the switch to modeand theblind evolution in locationj for a time dmin (j)
are represented.

Minimization of the residual cost

The function

Tk(majk’v"'7j079k7"'ago) (411)
depends oRk variables:

{Jr—1,---,do} € 2°
and
{Qk?7 ey Ql}

Note thatk of them are integer and they take values in a limited set.

We need to compute the optimal residual cost by a suitable choice of these para-
meters for each couple, i = j;) and for each value of from O to V.

In other words we would like to find the global minimum of equation (4.6) over
its 2k variables. One possibility is to solve "brute force" the operational research
problem

Tl:(ma]k) = min . }Tk($ajka"'7j039k,"'a90) (412)

constrained to

Qo = +00
Oh > Omin(jn)
>
o, =0 (4.13)
Je =1
Jn € succ(jn+1) U{jn}
h=0,....,k—1.
There are several reasons to assume that this task is numerically complex. In fact
Problem (4.12) is difficult to solve because:
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e itis equivalent to a mixed integer quadratic problem. There exist numerical tools
(like CPLEXor [10]) to solve this type of problems. However when the number
of variables, i.e., the number of switches and the number of dynamics, increases
these tools exhibit numerical difficulties;

e itis strongly non convex, i.e., local minima are present [79], thus simple descent
method, such aSimplexor Newtonor other tools are inefficient.

In these cases the heuristic approaches can be considered, provided that we ac-
cept sub-optimal solutions. In fact these approaches @Genetic algorithm Sim-
ulated annealingand so on) are not guaranteed to find or converge to the global
minimum.

It is easy to show that, using simple dynamic programming arguments, the opti-
mal cost, converted into a minimum search of the form (4.12), can be computed by
solving k times a two-parameter optimizations.

For each value of and for each coupléz, : = j;) these two decision variables
are:

ok >0, jr—1 € succ(fi) U {jr},
that represent respectively the permanence time in the current logatiamd the
index of the next location.
Before proving the main theorem of this section let us observe that function
(4.11) can be expressed in terms of the current discrete and continuous state, and
of the control variableg;, andj;_;. In fact

Tk’(mvjkv' .. 7j07gka .. '790) =
F(x, ji, jr—1, 0k) + Te—1(2(x, Ji, Jk—15 Ok )5 Jh—15 - - -5 J0s Ok—15 - - - 5 00)5

(4.14)
where
F(wajkajlg—lvgk) =
— 0.
=T Qe . . (4.15)
+x Ajlc (Qk)Mjk;jk—lek—l(6min(Jk71))Mjk-jk—1Ajk(‘Qk)m
+ij1jk—1’

i.e., terms (a), (b) of equation (4.8) and term (d) of equation (4.10), and
Z(x7jk7jk—1, Qk)
is thereached poingas in equation (4.9).

Theorem 4.1 (Optimal remaining cost) Let us assume thgt, = i, i.e., whenk
switches are missing the current system dynamics is that corresponding to matrix
A, . Let the current state vector be

1. If £ = 0 then the remaining optimal cost starting fraens:
T (2, jo, 00) = To(, jo, 00)- (4.16)

2. Ifke{1,...,N} then:
(i) the remaining optimal cost starting fromis:

T;($7]k) =
i mll’l i F(mujkujk—lan)+Tg71(z(majkajk—lagk)a');
Jr—1 € succ(jr) U {jr}
ok >0

(4.17)



Chapter 4- Finite number of switches: switched systems 55

(ii) the next dynamics reached by the optimal evolution is

j;,1<m7jk) =
arg mlII . F(mvjkvjk—lagk‘) +T;71(z(majkajk—1agk)v');
Jr—1 € SucC>(Jk)U{Jk}
ok >0

(4.18)
wherej;_, (x, jr) = ¢ means that no other switch will occur;
(iii) the optimal evolution switches td;, | attimery_x+1 =t + of(x, ji),

where
QZ(wvjk) =
arg . mll’l i F(:Buj/wjk—lygk)+T]:—1(z($ajk:ajk:—lagk)a');
Jk—1 € Succ>(_716) U {jr}
o= (4.19)
[l

Proof. If k& = 0 the systems is forced to evolve with dynamids, to infinity and
the remaining cost (that is also optimal) is the one given in equation (4.16).

If £ > 0, we have two options. If no future switch occurs then the remaining cost
will be T} (x, ji. ). If at least a future switch will occur, the two decision variables are

e the time before the first switch occurs (parameter> 0);
e the dynamics reached after the switch (paramgter € succ(jx)).

In fact, from equations (4.12) and (4.14), itis

Tp(x,jx) =  min  F(x, jr, je—1, 0k) + Th—1(2(x, Ji, Jr—1, 0k); *)
{jk=1,---,Jo}
{ok,---s01}
in force of the principle of optimality [14, 69], we might limit the choice to the
current control actior(j._1, ox) provided that after the switch, it is followed an
optimal evolution {¥_,) from the reached poini(zx, jx, j;_,, 0}). Hence:

Tl:(m7]k) = . IIllIl . F(mvjkvjk—lagk') +Tl;k—l(z(mvjkvjk—lagk)7')v
Je—1 € SUCC>(Jk)U{Jk}
ok >0

which completes the proof.
|

According to the previous theorem, the optimal remaining cost can be computed
recursively, first computing for all vectons € R™ and all dynamics € S the costs
T (z, 1), then the cost$) (x, i), etc.

The procedure may be simplified when all switching costs are zero, as shown in
the following proposition.

Proposition 4.1 Assume that all switching costs are zero, if&;; = 0foralle; ; €
E. If xisavector such that = Ay, with||y|| = 1 andX € R\ {0}, with the notation
of Definition 4.2 we have thatforall € {0,..., N} and allj, € S
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(@)  Ti(x,dk) = NTi(y, dr), (4.20)
(0) o (x, ji) = 05(Y, k), (4.21)
(¢)  Ji_i(®, k) = J5_1(Ys Jk), (4.22)
(4.23)

O

Proof. (a) To prove this result let us observe that it holds

Tk(wa ) = Tk(wa ')7
in fact E;, = 0V k. Since functioril}(-) is homogeneous of degree 2 (in fact it can
be easily shown that it is quadratic) for all valueskoft immediately follows

Tk($7 ) = Tk(w7 ) = )‘QTk(ya )
(b)-(c) Under the hypothesis the functions

F(wajkajkflv Qk) + kal(z(wajkvjkfh Qk)» ')7
are homogeneous of degree 2. Thus the minimization problem

Ty (z, ji) = , min - F(x, ks r—1.0k) + Tho—1(2(x, jky Jh—1, 0k); ")
Jk—1 € succ(Jk) U {Jk}
or >0
coincides with

Ty (y, k) = min  F(Yydks -1, 0%) + T 1 (2(Y, ks -1, 0k); )
Jr—1 € succ(jr) U {jr}
or >0
by a factor ofA\2.
||

This proposition implies that when all switching costs are zero to determine the
optimal costs it is sufficient to evaluate the functidijg«, ji) only for vectorse on
Dn

Before giving the formal definition of the switching table let us discuss the sig-
nificance of the optimal argument (x,7) > 0. Its value represents the time that
should be spent in the current locatigrstarting from pointe, before performing a
switch. Therefore if its value is 0, the poimtos of immediate switch, else, if it is
grater than 0 the point os not of immediate switch and the evolution continues in
the current location.

Definition 4.7 (Switching table) The switching tableC; is a partition of the state
spaceR™ into |succ(z)| + 1 regionsR; (for j € succ(i) U {i}) defined as follows
e Region
Ry = {w € R" | gf(x,i) = 0,7 (2. i) = j # i}
is the set of points where it is optimal to switchmediatelyfrom locationi to

location ;.
e The complementary region

R =R"\ [ JR;,
j#i
or, equivalently,
Ri = {x € R" | g}(x.i) > 0},
is the region where it is optimal to remain for a tirpg(x, i) > 0. |
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4.3.2 Lexicographic ordering

In the previous paragraph we highlighted the fact that the switching table procedure
requires the solution of a minimization problem.

Let us recall here the problem, taken directly from Theorem 4.1. The system is
evolving in the locatiory, and the current state spacedsfurthermore the number
of missing switches, out oV, is k.

Theorem 4.1 proves that the optimal choice is to minimize the function

T]:(wvjk) = mln . F(wajkajkfhgk) +T]:71(Z(wvjk7jk717Qk)v')
Jr-1 € succ>(J16)U{Jk}
oK > (4.24)

only in the two variableg; andj,_, provided that from the switch on we use
an optimal strategy.
The solution of this problem provides the couple

(Jr_1.01) - (4.25)

We omitted here, for sake of clarity, the dependancéxr;) of the arguments
Ji_, andgj. Itis important to specify that this couple must be univocally determined.
In fact it is possible that there exists several couples of the form (4.25) that minimize
the function above to the same value.

Thus we introduced the following lexicographic ordering:

Definition 4.8 (Lexicographic ordering of optimal solution) Suppose that the prob-
lem (4.24) admita equivalent solutions,

(jth 92)1 ’ (j];kfh QZ)Q 7ty (j]:fla QZ)Q .
These solutions are equivalent in the sense that they all minimize the fu@t8adn

to the same value.
We say

(j;,l,QZ)i < (jltfvaZ)h
forallh=1,...,i—1,i+1,...,q,liff

(Ur-1)i < Uk-1)n-

Following the definition above the optimal solution has one and only one argu-
ment, i.e., the coupl&j;_,, of): that has smallest inde,_.

This is particularly important when considering problems with infinite number
of switches. In fact in these cases the asymptotical behavior of the cost function over
N may generate ambiguity in its minimization search. This criterium ensures that an
optimal table is also unique.

4.3.3 Computation of the Table for the initial mode

To decide the optimal initial modig we may use the knowledge of the c@3f(x, )
(i.e., of the optimal cost to infinity starting from statewith dynamicsjy = ) that
is evaluated during the construction of the tadlge

Definition 4.1. TableCy 11 is a partition of the state spadR™ into s regionsR;
(¢ € S)where each region is defined @B; = {x | (Vj € S)T%(x,1) < Ty (x,j)}.
|
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According to this definition, if the initial state belongs to regi®; we must
chooseiy = 7 to minimize the total cost.

Note that in some applications the initial discrete stgtenay not be assigned.
However, when this extra degree of freedom on the choice of the initial location is
available, this should be done by checking the t&hle ;, and choosing, according
to the color that corresponds to the initial continuous sigte

4.3.4 Structure of the Switching Regions

We now discuss the form that the switching regions may take in the case of zero
switching costs.

Proposition 4.2 Consider the case in whicH; ; = 0 for all 4,5 € S. Then any
regionR; of tableC! and of tableCy 1 is such thaty € R; = (VA € R) Ay €
R;, i.e., the regiorR ; is homogeneous. O

Proof. When all switching costs are zero, we have shown that equations (4.20) and
(4.21) hold. Thus, it follows that in this cagg(x,i) = jk(y,i) and gx(x,i) =
ox(y, i). By Definition 4.7 this implies that all regions of talf¢ are homogenous
fork=1,...,N.

The table used to select the initial mode has the same property. In fact, assume
equation (4.22) holds: taking (as a particular cdse) 0 one can see that by Defini-
tion 4.1 the regions of tabléy ., are homogenous as well. |

4.4 Implementation of STP and numerical issues

4.4.1 Algorithm of the STP

We will provide now the algorithm to construct the switching tables. To simplify the
notation we decided to show it for the particular case when all switching costs are
null. In force of Proposition 4.1 aljy can be taken on th&',, because all functions
are homogeneous.

We also assume that all jump matricks; ; are the identity.

Assume thatV is the number of available switches ane- |S].

The algorithm is divided into several steps.

Algorithm 4.1 (Switching table procedure) The input of this algorithm is the switched
systemS, its annexed optimal control problem OP and the number of available
switches\V.

The output is a set oV x s tables that the controller can use to provide the
feedback control law during the real time evolution.

The list of instructions is depicted in Figure 4.4. |

Remark 4.6 The valuex in the sixth line of part 2 of the Algorithm represents a
sufficiently high value of time. In the practical implementation this is determined by
4 or 5 time constants of the current dynamics. ]

Note that in the course of the algorithm the functiBnis calculated. Neverthe-
less this is useful only for the next step. In fact the tables information is contained in
the variableCy(y, 7).

This is important in practical applications, where the data should be stored on a
PLC whose capacity is usually limited.
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1. Initialization: ¥ = 0 remaining switches
Fori=1:s
Calculate if possibleZ; : A\ Z; + Z;A; = —Q;.
Vy € X,
Cost assignment
. y/Ziy if 1Z,>0
To(y,4) = +oo else
Color assignment
C()(y, ’L) =1
end ¢)
2. Fork=1:N
Fori=1:s
Vy € Xn
Compute the setucc(i);
Remaining cost:
Fort=0:00
Forj € succ(i) U {i}
y(j.t) = A;(5;) Ai(t)y
A=lyG ol L .
T(y,i.j,t) = y' Qi (t)y+y' AL (1)Q, () AL ()y+ N Ter (y (i, 1) /A, 5)
end (j)
end ¢)
Cost assignment

Ti(y, i) = min T(y, 4, j,t)
Js

Color assignment
(7%, ") = argmin Ty, 4, j, 1).
7>

) i if =0
Crly.1) = {]7: it ¢ > 0.
end ¢)
end ()

Fig. 4.4.Algorithm for the implementation of the STP

As an extra advantage we anticipate that it will be proved in the next chapters,
that whenN grows significantly, the tables converge to the same one (see Chapter
6), thus the data to be passed to a real time controller becomes smaller.

Note that the algorithm is conceptually simple, but calculations become burden-
some as the state space dimension increases, since we need to discretize the unitary
semisphere. Nevertheless one of the main advantages is that it provide feedback con-
trol laws.

Moreover because of the state space discretization, the solution provided by the
algorithm is affected by an error. In fact the poif(t, ¢) /A in function

f = )\QTk—l(y(jv t)/)‘aj)

does not in general belong to the discretization. This forces the algorithm to approx-
imate the value of with the stored data in the surroundingsudfj, t). Some ideas
are suggested in Appendix C.2.
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4.4.2 Computational complexity

We discuss here the computational complexity of the STP described above and im-
plemented by the Algorithm 4.1. This results are merely qualitative, and they are
described in an intuitive, informal manner.

It has been said that to implement the procedure a state space discretization is
required. If the state spacel8* and we take: samples along each direction, then
the discretization s has cardinality-". In the case when all switching costs are
null, and there are no constraints in the state space, then the homogeneity of the
functions allow to limite the discretization t&,, of n — 1 dimension, hence the
cardinalityr™ drops tor™ 1.

Proposition 4.3 (Computational complexity of the STP) The computational com-
plexity of the Algorithm 4.1 is of orde?(Ns(s — 1)r"~1N;), where

N is the number of available switches;

s is the cardinality of the sef;

r is the number of samples along each directiofRdf

N; is the number of time samples used in the minimization over time.

Proof. Consider the kernel of Algorithm 4.1 reported in Figure 4.5.

Fork=1: N
Fori=1:s

Vy

Fort =0: 00

=
<
-
<
~
~— o~
1
Q:\
Q!
=
<
+
cd\
hN
=
Qi

0

1

2

3

4

5 y(]' t) =A;
6

7 S Ay + N Teo1 (y (i )/ X, 5)
8

9

1

0 Cost assignment

11 Ti(y, 1) = minT (y, 4, 1)
Js
Fig. 4.5.The kernel of the algorithm for the computation of the switching table.

By counting the nestefbr cycles we repeat minimization searclover time for
N x s x r"~1! times, i.e., for each missing switéh(step (0)), for each location
(step (1)) and for eachh on X, (step (2)) we need to:

(a) Take one possiblg € succ(i) (step (4));
(b) Perform a continuous minimization of a regular functfogsteps (5)-(11));

Let us calli the complexity of the minimization effort.

Now the complexity of steps (3)-(11) ©((s — 1)u). In fact the minimiza-
tion search must be repeated; € succ(i) U {i}, and it should be clear that
[succ(i) U {i}] < s—1.

“The cost functions for this class of systems are linear combinations of exponential func-
tions.
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As a minimum search method over time we implemented the exhaustive Search
over a vector of time steps. Hence if the number of time samplés; ig holds
o< Ny [71].

Finally the order of magnitude of this algorithm is

O(Ns(s —1)r" "' Ny).
]

It is important to observe that the complexity is polynomialNimands. A brute
force method that performs a search over all possible switching sequences has com-
plexity of orders™.

Typical values (example in Section 4.5):

Number of switchegV = 5;

Number of locationg = 6;

State space dimension= 2;
Discretization samples ah; r = 101;
Time step exploratiotv; = 300;

have a computational complexity of the ordéf.

Note that if we solve by brute force an optimal control problem of the form
(4.1) by investigating all admissible switching sequences (theysare1)” in the
worst case) the complexity becom@$Nr"~1sV) or O(Nr"s™) depending on the
presence of switching costs.

4.5 Application: a servomechanism with gear-box
As an example we consider the following servomechanism system. It consists of a

DC-motor, a gear-box with selectable gear ratios, and a mechanical load. The system
setup is depicted in Figure 4.6.

R
: . krl
i o, 7 &
< e

NN NNSNNNNAN\NNN

67

p(J)

Fig. 4.6.Servomechanism model with controllable gear ratio.

The dynamics of the system is described by the relations
V = RI + kb,
IniOn = kI — Brbar — Tr,
Orr = p(j)00,

S|t is one variable minimization and the function is only known by points
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T = p(j)Twr,
S
where

V is the applied armature voltage,

1 is the armature current,

R is the armature resistance,

6., 01, are the angular position of the motor and load shafts, respectively,

Ty is the torque developed by the motor,

kT is the motor constant,

Jyr andJy, are the equivalent moments of inertia of the motor and load, respec-

tively,

e [(3); andgy, are the equivalent viscous frictions coefficients of the motor and load,
respectively,

e p(j)the gearratioj = 1,2, 3.

The above relations can be easily rewritten as the linear differential equation

_ . (k2 . Tk
e+ 0] b+ [0+ 26) (S + 00 ) 2 = o) 2.
We assume that” can be generated by one of the following PD controllers:
V = —ky(h)0r — ka(h)0r, h=1,2,

whereh = 1 corresponds to a smooth control action, whiile= 2 corresponds
to an aggressive one.

By setting
o [t
=1, |
the overall model can be represented as the autonomous switched linear system
xz=A(h,j)z,
thus
= A(h,jz 0 1 x (4.26)
= AT a5 (hyg) aze(h, ) '
where (3) ke Rk (1)
PUIRT 1
h,j)=— : 4.27
a21( ]) JL +P2(])JM ( )
and
2(5) ((k%/R ) (kr/R)ka(h
wnalh ) — PP O/ R) & Or) + )/ B e

I+ p?(j)Im
Equivalently, we write

T = Aiw,
with
i=14+(h—1)+2( - 1),

andh = 1,2, 7 = 1,2,3, and consequently= 1, ..., 6.
We assume that
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(i) the gear shiftis sequential, i.e., only transitidns> 3, 3 < 5 are allowed,;
(i) a gear can be shifted only when the smooth control is active, in order to avoid
power losses.

The automaton showing all the allowed transitions is depicted in Figure 4.7. The
parameters of the system are reported in the table below.

Table 4.1.Model parameters of the servomechanism system considered in Section 4.5.

Symbol Value (IS) Physical meaning

Jnm 1 motor inertia

B 0.2 motor friction coefficient
R 50 resistance of armature
kr 15 motor constant

Jr 50 nominal load inertia

BL 10 load friction coefficient

1,2,3 gearratios

P
k1(1) 3.2 proportional action (smooth)
k1(2) 31.6  proportional action (aggressive)
ka(1) 3.5  derivative action (smooth)

k2(2) 32.1  derivative action (aggressive)

4.5.1 Numerical simulations

We considered the following numerical values:

the maximum number of switchesé = 5;

the statex is a continuous function (i.e)M; ; is the identity matrix for any
i,j € S);

no cost is associated to any switch (i, ; = 0 for anyi,j € S);

the minimum permanence time in every locatioi,jg,, = 0.2 s;

the initial state of the system is

o — —-1.4
7115
the initial discrete location 6.

Moreover, from equations (4.26), (4.27), (4.28) and Table 4.1, we obtain the fol-
lowing set of dynamics!; each one associated to location

0 1 0 1 0 1
A= [—0.019 —0.31} As = [—0.036 —0.57} As = {—0.049 —0.94]

0 1 0 1 0 1
Az = [—0.186 —0.47} Aa= [—0.351 —0.89} As = [—0.482 ~1.38
(4.29)
It can be easily verified that all dynamics are Hurwitz stable, thus the Assumption
4.1 is verified.
We assumed

Note that if the initial location is not given, we may use the procedure illustrated in
Subsection 4.3.3 to evaluate the optimal initial location, given the initial state
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=1 =2 =3

=1 Tl )
=2 ) 0 {9

Fig. 4.7.The hybrid automaton that defines the mode switchings and the set of successors for
each location, i = 1,...,6.

@=Qi=Q:= )]
and

Q2:Q4:Q6:|:g(6)]~

We evaluate offline thé/ x 6 switching tables, each of them containing ugte+
succ(+)| colors.

Provided such tables, the controller is able to estimate the real-time optimal strat-
egy with regard of the described constraints of the system. Knowing the state value
z, the current locatior and thek switches still available, the tabt, will suggest
the optimal decision for the system.

From a numerical point of view, the space discretization wasef101 points

alongXs.
The time minimization was performed over a time horizgp, equal to three
time constant of the slowest mode of matricksi =1,...,6, i.e.,

1
T =3 max —_—
e i=1,...,6 R€(| )\i,j |)
j=1,2

Table 4.2.Color mapping of Figure 4.8.

Location Color

1 blue
3 red
5 green
6 black

The state trajectory that minimizes the performance index is depicted in Fig-
ure 4.8, where the circle indicates the initial state and the squares indicate the values
of the state at the switching instants. The color mapping of this trajectory is reported
in Table 4.5.1. We found out

T+ = {0.20,0.40, 1.47, 4.0, 4.2},

7" = {1,3,5,6,5,3},

and
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Fig. 4.8.The system evolution fér, (0) = —1.4, ., (0) = 1.5, and initial location].

J* =4.75.

The Figure 4.9 shows, among the 30 tables constructed, only the 5 ones used by
the controller during the evolution of the system.

The system initially evolves for the minimum time in locatibrWhen this time
has elapsed, the controller must keep checking the color in€aklésee Figure 4.9)
corresponding to the current state(here the state space is the rotational angle of
the shaft and its angular velocity). According to this color the controller decides to
remain in locationl or to switch to an adjacent location. In this example an immedi-
ate switch to locatior takes place, since the current state is in the cyan area. Now
the controller will wait for the minimum time and then consider ta@g. The same
procedure is repeated until all available switches are performed.

It is relevant to notice how the performance of the system is related to the num-
ber of available switches. Starting from the same initial conditions (see Figure 4.8),
we report the values of the performance indexheni = 0,...,6 switches are
available.

Table 4.3.Values of the performance index upon the number of switches.

Available switches Index Value
0 108.62
20.78
6.69
4.84
4.84
4.75
4.69

OO WN PR

These results show how the index improves with the number of commutations,
but such improvements become negligible after the third switch, when the system
has practically reached the origin.
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-1
-1 0 1 -1 0 1

L ocation Color mapping

Fig. 4.9.Tables used by the controller to optimally steer the system to the origin from the initial
statexo = [—1.4,1.5], initial location io = 1 and performing 5 switches in the automaton
depicted in Figure 4.7.

4.6 Particular cases

In this section we will highlight two particular cases of the general optimal control
problem applied to switched system described in the previous sections. Let us recall
that in this chapter only a finite number of switch¥sare considered. These two
particular cases marked the chronological ordering of the development of the general
procedure. We decided however to postpone their description for sake of generality.

The first case appeared initially in [49] and it presents a method for constructing
the switching regions for a fixed mode sequence. In this frame there is no degree of
freedom in choosing the successor of the current mode, thus the control variables in
the optimal control problem are simply the switching instants. The approach is the
same (itis based on dynamic programming arguments), but the complexity decreases
because at each step of the algorithm only the minimization over the continuous time
variable is required.

The second case is described formally in [9]. It presents an extension of the first
case, but it allows that at each switching the optimal controller can choose amongst
all modes of the system. We might call this methodadsitrary mode sequence
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There is a complete degree of freedom in the choice of the successor dynamics. The
computational complexity of this approach is certainly higher then the previous one
(itis in fact s higher,s is the number of different modes), but definitely lower than
the exhaustive search over all possible fixed sequences of 1&fgth

We will show in this section, by simple considerations, that both systems can
be modelled by an appropriate switched systems and its annexed optimal control
problem as described above. Consequently to avoid any redundancy it will not be
necessary to repeat the procedure of the table construction for these two particular
cases.

In particular the first case represents, in some sense, the simplest way to apply
the STP. It is not by chance, indeed, that the majority of properties, propositions and
theorems given in the general form, are initially studied on this case and then proved
in general.

This is one of the reason why we decided to briefly resume the procedure. More-
over it is helpful for the reader to become more confident with its recursive aspect
and its mechanism. For each case some examples and applications are provided. In
particular for the first case (fixed mode sequence), an example is provided with non
zero switching costs.

4.6.1 Fixed mode sequence
Model and Problem

We consider here the particular switched sysfefhas in Definition 3.8 whose main
characteristic is that the setcc(¢) is a singleton or empty for each locatian
As an examples see the oriented graph of one posSiBlen Figure 4.10.

A, A, An+1

-6~

Fig. 4.10.0riented graph of a switched system that only admits a fixed sequence of modes. In
this case the general optimal control problem is simplified.

In this case the switching sequeriEe= {iy,...,in+1} IS pre-assigned, hence
to simplify the notation we denote the state matrices as

A=A
fork =1,..., N + 1. Moreover the Assumption 4.1 is satisfied.

Remark 4.7 We may assume that Assumption 4.1 is satisfied, wlg, for dynamics
Any1. If this is not the case then there should exist semec N + 1 such that

the assumption holds. But if this happens then the problem can be trivially redefined
of lengthm. On the contrary, if there is no sueh, then the problem of course is not
solvable with finite number of switches.

"It s is the number of different modes ad is the number of switches, an exhaustive
search of the optimal sequence of modes by using the fixed mode sequence has exponential
growth equal tos™.
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To this systemS F' associate an optimal control problem QF), as defined in
Section 3.4.2, reported below.

o N
I £ m}n {F(T) =S /O :c’(t)Qi(t)m(t)dt + ;Hk}

S.t. .’i}(t):Ak:B(t)foer_lgt<Tk, kil,...,N+1,
$(0):CE()
0=1<7m <...<7N41 = +00,
() =M. . Myz(r,) if 71 <7p=...=7 < Thi1,

(4.30)
We consider the following restrictions:

1. Vi € S0mi(i) =0;
2.Ve inE M, =1,,ie., the state space is continuous at the switching instants;
3. Ve in& H, = 0, i.e., all switching costs are null.

Computation of the switching tables

We repeat here the procedure described in general in Section 4.3 for a fixed mode
sequence with the additional simplifications given in the end of the last section.

In this paragraph we will present the procedure for this particular case in a simple
manner. However the reader can refer to the mentioned Section 4.3 or to Algorithm
4.1, where the pseudo code of the region construction is given for the general case.

Note that the procedure is recursive lanwherek, from now on, represents the
number of missing available switches.

The procedure starts in locatiol + 1, where 0 switches are available. From
every pointy on X,,, we calculate

5 (y) £ y' Zn iy,

where Z 1 is the unique solution of the Lyapunov equatioﬁNHZNH +
ZNi1ANs1 = QN1

Consider now the locatiofV, where 1 switch is available. We calculate, for each
y on Eny

AN(Q)y>
)\ )
where the functiof] is calculated in the point reached after a timevolving with
A and starting from poingy. Note that the factoi is a scaling factor, due to the
fact that the functiong},’s are 2-homogeneous, and therefore calculated only,in

Now we minimize. For each poing we look for the value obj(y) > 0 such
thatT; (y, o) is minimized, i.e.,

Ti(y.0) = y'Qn(0)y + N°Tj (

01 (y) = argmin{T'(y, 0)}
and we call

Ty (y) £ Ti(y, 05 (v)).

Now we construct the tablg, by assigning each point (and all pointse = \y,
A € R)to
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e RegionR; if oi(y) > 0;
e RegionR,, if oj(y) =0.

Repeating this assignment for gfk we obtain the switching tablg, .

Suppose now that the same steps are repeatéd-for times and consider now
the locationN — k + 1, wherek switches are available. We calculate, for egabn
E’rba

b

Ti(y,0) = ?/QN(Q)?J + )‘2T’:*1 (AN)\(Q)y>

and find, by a single variable time minimization,

0i(y) = argmin{T}(y, o)}
to obtain

Ti (y) & Ti(y, 0k (y)).

According to the value af; (y) we assign the poinj to R, or R, respectively
and buildCy,.

Numerical examples

Let us now present the results of some numerical simulations. We consider a second
order linear system whose dynamics may only switch between two mattices
and A® and the sequencgis pre-assigned,

7=1{1,2,1,2}.

Thus only three switches are possiblé & 3) and the initial system dynamics
is A; = A, Thus, the sequence of switching is

A, — A — A, - A — A, =AM _“44:14(2)7

where

(1)_ —1 1 (2)_ 1-5
A _{—18—5]’ A _{1—3'

We also assume that dlif ;,’s are equal to the identity matrix. Finally, we tafgg =
Q2 = Q3 = Q = diag{[1, 2]}.

We consider two different cases. We firstly assume that no cost is associated to
switches. Secondly, we associate a constant cost to each switch.
First case

The switching regiongy, k = 1,2, 3, are shown in Figure 4.11 where the fol-
lowing color notation has been used: the lighter (green) region represents the set of
states where the system switches to the next dynamics, while the darker (blue) region
represents the set of states where the system still evolves with the same dynamics.
Note that these regions have only been displayed inside the unit disc because they
are homogeneous.

In the bottom right of Figure 4.11 we have shown the system evolution in the
case ofry = [0.6,0.6]".

The switching times are

T = {r; = 0.01,7, = 0.35, 73 = 0.40}
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C, 1 c, 1

0.5 0.5

0 0
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-1 -1

C, 1 1

Fig. 4.11.The switching region§y, k = 1, 2, 3 in the case of no cost associated to switches,
and the system evolution faf, = [0.6,0.6]".

and the optimal cost i8'(71, 72, 73) = 0.15.
Second case
Now, let us assume that non zero costs are associated to switches. In particular,
let us assume thdf;, = H; = 0.3 andH, = 0.1.
The switching region§y,, k = 1,2, 3, are shown in Figure 4.12 where we used
the same color notation as above, i.e., the lighter (green) region represents the set of
states where the system switches to the next dynamics, and the darker (blue) region
represents the set of states where the system still evolves with the same dynamics.
In this example\ is < 2 and it is sufficient to display the regions within the circle
of radius 2.
In the bottom right of Figure 4.12 we have shown the system evolution in the
case ofry = [1.3,1.4]. In this case, the switching times are

T ={r =0.014,75 = 0.5,73 = +o0}

and the optimal cost i8'(71, 72, 73) = 0.75.
Modification of the regions
To show how the switching regiafy, may change a#f; varies, we have also com-
puted for this example the regiah for different values of; € {0.1,0.5, 2}.

These regions are shown in Figure 4.13, where larger regions correspond to
smaller values offs.

4.6.2 Arbitrary mode sequence

We consider here the particular switched sysfesnas in Definition 3.9 whose main
characteristic is that the setice(i) = S\ {i} for each location. In this case the
automaton has a hyper connected oriented graph, as it can be seen in Figure 4.14.

We annex to the systesi4 an optimal control problem QRS A), as extensively
described in Section 3.4.2, reported below.
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Fig. 4.12.The switching region€y, k = 1,2, 3 in the case of non zero costs associated to
switches, and the system evolutionder= [1.3, 1.4]'.

-2
-2 -1 0 1 2

Fig. 4.13.The switching region§s for different values of the cod¢fs € {0.1,0.5, 2}.
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s.t. x(t) = Ai(t)fﬁ(t)
z(0) = zo (4.31)
i(t):ik fOka§t<Tk+1 kZO,,N
iry1 €S k=0,....N
70 =0, TN41 = +00
Tkt1 = Tk + Omin (i%) k=0,...,N
x(rl) =M, ;=) k=1,...,N
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Fig. 4.14.0riented graph of a switched system that admits all possible sequence of modes.

Computation of the switching tables

We will describe here the procedure, in simplified manner, to construct the switching
tables. In particular we will highlight the differences with the fixed mode sequence
and with the general case. As before, for sake of clarity we will consider the follow-
ing simplifications:

(i) thereis no minimum permanence time in each location;

(ii) all switching costs are null;

(i) the evolution in the state space is a continuous function, dfe., vV k =
1,...,N +1the matrices\l;, = I,,.

As a first step we calculate and store, for each locatiohthe automaton and
for each pointy on X, the function

v y' Zyif A;is stable
TO(yvl)é{+oo else )

where Z; is the unique solution of the Lyapunov equatidnZz; + Z, A; = —Q;,
see also Appendix A.3. By Assumption 4.1, there exists at least oge s, such
thatTy (y, ) is finiteV y.

Now suppose that 1 switch is available. As before, we evaluate

Ai(0)y
A 7.] 9
where) is a normalizing factor of the reached point, that in general will not belong
toX,.

Now minimizeT (y, i, j, o) over the time continuous variabéeand the possible
successors of locationi, finding

Tl*(yal) = mln Tl(yai>j7 AQ)’
JES
>0
i.e., whenever the state spaceyisthe current location i$ and one switch is still
available, then the optimal strategy is to remain in locatifor a time o} (y,4) and

then switch to location; (y, i), where
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[QT(ya Z)vjik(ya 7’)] = arg min{Tl (ya ivj, «Q)}
The tableC} is constructed as follows:

if 05(y,4) =0, (i.e., switch immediately) then assign the color of locatipn
if 0*(y,4) > 0, (i.e., stay in location) then assign the color of locatian

By iteration over the number of switches all the other tables can be constructed.

4.6.3 Numerical Examples

Consider the second order switched linear system with dynamic matrices

1 -10 1 —100 —-0.1 0
Al_[mo 1 ] AQ_[lO 1 ] A3_[ 0 —0.1}

(fi=fa2=fz=0andletQ, = Q: = Q3 = I, N = 3, x5 = [1,1]".
Note that whileA; and A, are unstable matrice#is is strictly Hurwitz, so that
Assumption 4.1 is satisfied.

1

0.5
- N 0
-0.5

-1

1 0 1
-1 0 1
0 1

1

1

05 05 05
oM m

0o U7 o 0o

-05 -05 -05

-1

-1
-1 0

-1

1 0 1
-1 0 1
0 1

=

Fig. 4.15.The set of tables for the numerical example described in Section 4.6.3 Wher8
andS = {1,2,3}.

We first execute the offline part of the procedure, consisting in the construction
of the N x s = 9 tablesCy, for k,i = 1,2,3. Results are reported in Figure 4.15
where the following color notation has been used: Red color (medium gray) is used
to denote regiorR, i.e., the set of states where the system either switchds tié
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the current variable of the control variable{s) # 1, or no switch occur ii(t) = 1;
light blue (light gray) denotes regidR,, and dark blue (dark gray) is used to denote
Rs.

As an example, by looking & we know that, if the initial dynamics id», then
the system may either switch t4; or still evolve with the same dynamic4,: on
the contrary a switch to dynamic$s; may never occur.

15

0.5

-0.5

-1.5

15

0.5
122

-1.5

15

0.5

-0.5

-1.5
-1 0 1

Fig. 4.16.The system evolution far, = [1, 1]’ andi; varying inS for the example described
in Section 4.6.3.

In Figure 4.17 we have reported tablethat shows the partition of the state space
introduced in Subsection 4.3.3. The same color notation has been used. In particular,
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this table enables us to conclude that the global optimum may only be reached when
the initial system dynamics is either; or A,. On the contrary, whenever the initial
system dynamics igl3, we may only reach a suboptimal value of the performance
index.

Now, let us present the results of some numerical simulation. Let us assume
that the initial state iscp = [1,1]’. We compute the optimal mode sequence for
all admissible initial system dynamics, i.e., we assuge 1,2, 3, respectively.

The results of numerical simulations are reported in Figure 4.16 where switches
are highlighted trough a small black square.

Detailed results may be read in Table 4.4 where we have reported the optimal
mode sequence, the optimal timing sequence and the corresponding cost value for
the different initial dynamics. We may observe that the best solution may only be
reached when the initial system dynamic is the second one. In the other cases only
a suboptimal value of the cost may be obtained. Note that these results are in accor-
dance with those of Figure 4.17 beimg € R;.

The correctness of the solution has been validated through an exhaustive inspec-
tion of all admissible mode sequences. More precisely, for each admissible mode
sequence we have computed the optimizing timing sequence and the corresponding
cost value. In such a way we have verified thgt = 0.126 is indeed the global
optimum.

loflirielis]| 7 [ 72 [ s [ V5 |
1][2[1]3[0.000]0.009]0.060]]0.669
2([1]2[3][0.009]0.062[0.116][0.126
3/[2]1[3[0.000[0.009]0.060/[0.669

Table 4.4.Detailed results of the numerical example described in Section 4.6.3 when the initial
state iszo = [1,1]".

4 0 1

Fig. 4.17.TableC4, for the computation of the initial mode of the example described in Section
4.6.3.
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4.7 A servomechanism with gear-box

As a final application example, consider the servomechanism system described in
Section 4.5. The difference with the model in Section 4.5 are the following:

1. It only has 2 selectable gear ratios;
2. The oriented graph associated to the system is hyper connected

In Figure 4.18 we depicted a sketch of the system.

R
i

. . k
brtaf = T
‘ Z Z ASNNNNNNNN

ARNANNNNNANNN NN
p(j) B

Fig. 4.18.Servomechanism model with controllable gear ratio.

For the details and models please refer to Section 4.5 Thus the system may switch
betweens = 4 different LTI modes. In particular

0 1 0 1
A= [—0.019 —0.309] Ar = {—0.186 —0.477}

0 1 0 1
As = [—0.036 —0.572] As= [—0.351 —0.890} ’

whose eigenvalues are all in the stable half plane. Note that the automaton graph,
showing all the allowed transitions is depicted in Fig. 4.19.

Fig. 4.19.Graph of the switched system described in Section 4.7.
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4.7.1 Numerical simulations

To complete the simulation setup consider the following numerical values:

the initial state of the systemis, = [—0.78,0.63]’;
the initial system dynamics id 3.

e the maximum number of switchesié = 6;

e the statec is a continuous function (i.eM; ; = Io Vi,j € {1,...,4});
e no costis associated to switches (i8;,; =0V i,j € {1,...,4});

[ ]

[ )

Finally, we take as weighting matrices

10 30
Q1Q3|:02:| Q2Q4|:06:|)
obviously positive definite. We solve this optimization problem using the procedure
described above.

4.7.2 Switching table procedure

We evaluate offline thé&V x s = 24 switching tables, each of them containing up to
s = 4 colors. A space discretization pf= 51 points along¥; and a local minimum
search over five time constants were considered sufficiently fine.

The state trajectory that minimizes the performance index is depicted in Fig-
ure 4.20, where the circle indicates the initial state and the squares indicate the value
of the state at the switching instants. The optimal mode sequence is

7 ={3,4,1,3,4,1}
and the optimal sequence of switching times is
T ={1.95,4.75,39.85,48.70,51.45, +-00}.

The resulting value of the performance indexigxz,) = 1.263.

We can observe that the system after three switches has practically reached the
origin, thus the complete evolution is no longer visible. The cheapest trajectory is
obtained starting with the most aggressive voltage ledg)(then changing gear to
A,, and finally going to dynamicg#l, in order to drive smoothly the shaft towards
the steady state.

One may argue that the number of switches considered for this problem is not
appropriately chosen in order to obtain a significant reduction of the performance
index. Thus, for the given initial point, and initial modei = 3, we reported in
table 4.5 the values @, 7* and.J*, for different growing values oiV®.

Table 4.5 suggests at least three very interesting ideas. First of all it should be re-
marked that not all the number of available switches is useful to obtain a cost reduc-
tion and a different trajectory. This is evident for the two different valued of 2
and N = 3, whose corresponding optimal switching sequence and switching times
are the same. Secondly it shows that the optimal €bsgiven the initial conditions,
is a non increasing function df . Finally, there exists a value @¥*, depending on
the particular problef that yields to an asymptotic value of the switching cost for
the given initial point. These considerations, formally proved in the following chap-
ter, lead to a fundamental theoretical result, that allowed us to dealMWith oo
number of switches and eventually to completely relax Assumption 4.1. For sake of
completeness we report in Figure 4.21 a diagram of the first and the last column of
Table 4.5.

8Number of switches
®For this problemV* = 3
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1

Fig. 4.20.The system evolution fék, (0) = —0.78, 01,(0) = 0.63, and initial dynamicsA .

N Z° 7" (9) T

0 {3} {Foo} 2.092
1 {3,4} {1.9, +o0} 1.311
2 {3,4,1} {1.95,4.75, 400} 1.263
3 {3,4,1} {1.95,4.75, 00} 1.263
4 {3,4,1,3,4} {1.95,4.75,39.85,48.7, 400} 1.263
5 {3,4,1,3,4,1} {1.95,4.75,39.85,48.7,51.45, 400} 1.263
6 {3,4,1,3,4,1} {1.95,4.75,39.85,48.7,51.45, 400} 1.263

Table 4.5.0ptimal solutions of the problem described in Section 4.7 for increasing values of
the allowed number of switchéé

4.8 Conclusions

We formally presented in this chapter the kernel of this thesis, i.e., to provide a
constructive method for designing a feedback control law for a particular class of
switched system that minimizes a given performance index. We have shown that
there exist a numerically viable procedure, based on the principle of optimality, that
leads to the construction of appropriate switching tables.

The minimization of a given LQR like index, of the model under consideration,
takes the form of a state space patrtition into regions that suggest the optimal switch-
ing strategy. In this chapter we restricted the analysis to switched linear affine sys-
tems.

It has been shown that the procedure can be applied offline, thus providing the
law in feedback form, but as a disadvantage it requires a discretization of the state
space, with evidenturse of dimensionality

One of the main restrictions on the model and problem considered in this chapter
are the finiteness of the of switches and the absence of constraints in the state space.
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2.2

x,= [-0.78,0.63]
i,=3

Optimal cost
e e
o (o]

=
N

12

1 I I I I I
0 1 2 3 4 5 6

Number of switches

Fig. 4.21.Convergence of the optimal cagt with the number of théV available switches
for the given initial conditions.

The following chapters aim to relax these two restrictions, to provide more general
results.






5

Finite number of switches: hybrid automaton

5.1 Introduction

In Chapter 4 we considered switched systems and a particular optimization problem,
with an infinite horizon quadratic cost function and a fixed numieof allowed
switches.

Here we show how to solve the same optimal control problem for a more general
hybrid automatad A. We will show that the STP, described in the previous chapter,
can be extended to the problems featured by constraints on the state space.

In a switched system all switches are assumed tobé&ollable(i.e., they can be
triggered by the controller). In a hybrid automaton there may also axtshomous
switches that are internally forced by the crossing of a given threshold. This type of
autonomous switch has also been considered by [122] in a recent work.

This is formalized in Chapter 3 by the introduction in the basic switched system
with invariants and guards. We considered, under the described set up Bt4he
two different approaches.

In fact, the presence of internal triggers that force the occurrence of switches may
be interpreted in two ways:

(a) a subset of edges may fire autonomously, depending upon a set of constraints
(guardg on the space stafR™, i.e., the discrete controller has no influence on
this event;

(b) a switch must occur as a prioritized event, depending upon a set of constraints
(guardg on the space stai®™, and it is commanded by the discrete controller.

The modelling power of these aspects offdrl can be read in Chapter 3. Here
we will limit ourselves to developing the extension of the STP in both cases. We
might recall however that, in general, the approach (a) is more suitable for those
physical systems with “"constructive" constraints. As a trivial example consider a
circuit containing a diode where the voltage threshold

ll(t) <0

denotes the condition where the diode behaves as an open circuit.

The approach (b) is more suitable to model cases where the continuous evolution
of the system must be restricted to a safe or specification region, i.e., the systems
behave under certain safety and liveness constraints. An application to a physical
system is discussed in Example 5.5.2.

In particular, based on the notion btomplete approximations [95, 43], [83]
and on the supervisory control theory of Ramadge and Wonham [96] we design a
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discrete supervisor that guarantees safety and liveness constraints, expressed in terms
of an invariant set on the state space, that restricts the switching DOF of the optimal
controller. This method was developed 8yomov et al.in a joint work [32] and
described in Appendix D.
Provided that the behavior of thé A is deterministic, i.e., for each state of the
evolution(x(t),i(t)),¥vt € [0,+00), itis always possible to modék(t+dt), i(t+
dt)) with probability 1, the STP is applicable to both interpretations of the problem.
Note however that the trade-off of this important result is a quite high computa-
tional cost (to be performed offline). In fact the whole space discretization is required.
As an advantage, we remark that the investigation of the continuous evolution
of the system can be restricted to the invariant set. This leads to some degree of ap-
proximation, especially in the case where the invariant set is not limited. In this case
some extra information on the physical modelling procedure must be considered.

5.2 The considered model

In this chapter we will deal with the optimal control of the hybrid automatba,
as in Definition 3.16. Briefly a hybrid automaton theA considered here is a tuple
HA = (L,act,inv,E, M), whose entries have the following meaning

e Lis afinite set of locations indexed by=1, ..., s.
act : £ — Inclusionsis a function that associates to each locatiardifferential
equation of the forme = A,z + f;.

e inv: L — Invariantsis a function that associates to each locati@am invariant
inv; C R™ such thate € inv;.

e & C L x Guards x L is the set of edges. The edgg; is enabled when the
current location ig and the current continuous staterisc g; ; C R™: it may
fire reaching the new location

e Alinear jump relation isM C R™ x R™ associated to an edgg ;. When the
edge firesg is reset tax = M; ;x, whereM < R™*",

Additionally aminimum permanence tindg,;, (¢), Definition 3.7, in each loca-
tion can be considered.

As described in the introduction of this chapter, the presendevafiant and
guards Definitions 3.17 and 3.18, associated to edges influences the behavior of the
H A, and consequently the problem formulation and its solution should be described
consistently. More precisely the presence of these sets have an effect on the switching
scheduling, and thus on the designing of the control policy.

It is fundamental for the successful design of the control law by the construc-
tion of switching tables, that the system is deterministic, i.e. hiytarid evolution
(x(t),i(t)) is exactly known for any given initial state.

Once this is guaranteed we may analyze two different interpretations of the
switching constraints. More precisely we will referaotonomous hybrid automaton
AHA, as in Section 3.6.1Gase g and toconstrained hybrid automatofi H A, as
in Section 3.6.4Case .

5.2.1 Case a: autonomous hybrid automatomd H A

This case considers autonomousd A, meaning that this system is subject to se-
guences of autonomous switches. Detailed description of ftiel and its dynamical
behaviors are given in Section 3.6.1.
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In this model, not only the time driven evolutia(t) is uncontrolled (we only
studied hybrid systems whose continuous contret 0), but also the discrete event
evolutioni(t) is subject to autonomous behaviors according to subsets (named as
guard9 of the state space.

Assume that the current hybrid state is, at a given timee, ¢). For this state
there are two possible conditions:

1. © € inv;.
2.z ¢ inv;.

In case (1) it is possible to define a set of controllable successars,(i) € 2°
as in Definition 3.21, each one associated to eacitrollable edgegDefinition 3.19)
exiting the location.

While the system is evolving in locatiarwithin the corresponding invariant, the
DOF of the switcher is defined byuce. (i) U {i}.

For this particular research we assume thathardsassociated to the control-
lable edges coincide with thievariant inv; of locations.

In case (2) the system must leave locatipin agreement with the definition of
the invariant. Hence aautonomous switctvill occur, and the systems falls "spon-
taneously" into another location, let's saywhich is univocally determined by the
guardg; ;, according to the Assumption 3.1.

We also recall here the Definition 3.22 eficc, (i) which denotes the indices
associated to the locations reachable frioiny firing anautonomous edge

Here we assume that the numberfavailablecontrollable switches is finite,
but we do not assume the same for the numbeutbnomouswitches. Thus, ac-
cording to the shape of the autonomous guards, the system may

e become unstable with no control;
e exhibit Zenoness.

In Section 3.6.3 we provided sufficient structural conditions onAligA that
avoid these undesirable behaviors.

5.2.2 Case b: constrained hybrid automatorC H A

This case considers@nstrainedH A, C'H A, meaning that the switching strategy
is influenced by the value of the current continuous siatBetailed description of
the C'H A and its dynamical behaviors are given in Section 3.6.4.

We suddenly state that in this case there are no autonomous sequences of
switches, thus the instability issue and the Zenoness are avaigeidri. In fact
the number of available switchég (all controllable) is limited.

In this model we consider the guards defined as in Definition 3.28, where the
guardg; ; = inv; is enabledff the statec belongs to the invariant of the locatign
destination of a switch.

The invariants are constructed by converting a specifichtiomposed on the
quantized output signals of the system, that guarantees safety and liveness of the
CHA. The procedure is described in detail in Appendix D.

We recall the Definition 3.29 of theet of successarsucc(z,i) = {j € S:

x € g¢;;}. Note the dependency of this set from both components of the hybrid
state, in opposition to switched systeisn Chapter 4, where the dependency was
only on the discrete paft

!Some typical specifications on the dynamical behaviorBt4are for instance theafety
and theliveness
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The dynamical behavior is briefly described as follows. Let us assume that the
current hybrid state is, at a given time(x, 7). For this state there are two possible
conditions:

1. x € inv;.
2. x ¢ inv;.

In case (1) the controller can choose to switch to anyone of the locations enabled,
through the guards, by the current valueor it can decide to remain in the current
locations, since the invariant condition is verified.

In case (2), the system must leave locatipipecause is no longer considerable.
Hence the DOF of the controller isice(x, ©).

It is meaningful to remark that this model is potentially blocking, as outlined in
Remark 3.3. In fact there is the evident possibility thdéaves the invariant and the
set becomesucc(z, i) = 0.

5.3 Case a: optimal control problem forAH A

The optimal control problem foAH A, OP(AH A) is based on the assumption that
the discrete controller has at mast(fixed a priori) controllable switches available.
The formal definition of the problem is given in Section 3.6.3, where all the prop-
erties, the symbols and the assumption that allow the existence of a solution are
extensively described.

Here we shall limit to report the problem formulation, as it appears in Definition
3.26, and we refer the reader to the mentioned Section 3.6.3 for a complete illustra-
tion of the formalism.

Jy & ming 7 {F(Z,T) % /0 w’(t)Qat)w(t)dt}

s.t. x(t) = Ai(t)a:(t) + .fi(t)
OZTQS...STkS...STN+1:+OO
(controlled switching times)
i(0) =i (initial location)
z(0) =xo (initial state)
i(1) € succ.(i(,, )) (location reached after the— th controlled switch)
z(1g) = Mi(r;),i(rk)m(Tk_)
(state reached after tlke— th controlled switch)
or = o(x(m), (1)) (autonomous sequence)
i(Tk + 9) = gﬁak(e) foro e [07T1€+1 - Tk)
(autonomous index trajectory)
(5.1)
Briefly, functioni(t) is composed ofV + 1 blocks delimited by the instantg’s
where the controlled switches occur. Each block is a piecewise constant function:
steps internal to the interval € [y, 7;41) correspond to autonomous switches.
More precisely between the occurrence of two controllable switches the location
does not remain constards in switched systems of Chapter 4, but it mayleze-
wiseconstant, according to the occurrence of autonomous switches.
We named this piecewise constant function of autonomous switches (a5
and an example is depicted in Figure 5.1.
The control variables in this problem are thequence of controlled switching
times7 £ {n,...,7~}, and thesequence of location indicessociated with con-
trollable switche< £ {i(7y),...,i(7n)}.
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oq(t) 1
4 0 _
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Fig. 5.1. Function ¢, (t) of the autonomous sequeneéx, i) = {(1,2),(3,1.5), (2,2.5),
(4,4+00)}.

5.3.1 State feedback control law forAH A

In this section we show that the optimal control law for the optimization problem
above takes the form of state feedbacki.e., it is only necessary to look at the
current system state in order to determine if a controllable switch from locatign
to ixy1, Or equivalently from linear dynamic4;, to A;, . ,, should occur.

In particular, we show that for a given locatierand for a given controllable
switchk € 1,..., N itis possible to construct a tahfg that partitions the invariant
spaceiny; into s; regionsR;’s, wheres; = |succ.(7)| + 1, i.e., we can write

Z'TL’Ui = R7 U U Rj

jEsucee(7)

Wheneveri(r;, + 0) = i we use tableC! to determine if a switch should occur:
as soon as the state reaches a point in the reBipfor a certainj € succ.(i) a
controllable switch will occur and we switch to modle;. ;) = j; finally, no switch
will occur while the system’s state belongsika.

We simply show how the table for the last switch can be computed using the
cost function associated to an autonomous evolution. The tables for the intermediate
switches can also be constructed using the same dynamic programming arguments
given in Chapter 4.3.

5.3.2 Computation of the tables for controllable switches

Consider a statér, i) and leto(x,i) = {(io,60),-- ., (in,0n)} (Whereiz = i) be
the corresponding sequence of autonomous switches. Let us evaluate the following
function:

Jo(x, i, 0) = 0@ x'(1)Qy, (yx(t)dt
Z h—1
_ _ 5.2
= @.Q,, (On)mr + 4Q; (0 — > _ Ok)xs ©-2)
k=0 k=0

wherexzy = @, xy4+1 = M, 4., Ai, (0k)zi, and where) < h < h is an integer
value that depends anthrough the following inequalities:

h—1 h

ZekSQ<Zek (5.3)
k=0 k=0
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The function in (5.2) represents the cost of the evolution of the system, starting from
state(x, ¢) and only subject to autonomous switches, for a time

We will first explain how to build the table of the last controlled switch and then
proceed recursively for the others. Assume that= i, i.e., afterN — 1 controlled
switches the current H A state iz, i). We show how to compute the taldlé. First
of all we must create (x, i) = {(ip,00), .- -, (in,0n)}.

e Consider first the case in which no controlled switch occurs. The remaining cost
starting frome, due to the time-driven evolution and only subject to autonomous
switches is

T (x,4) = Jo(x, i, +00). (5.4)

e If the system evolves without performing controlled switches for a tinaand
then a controlled switch to locatigihoccurs, the remaining cost starting fram
due to the time-driven evolution is

Ti(z, j, 0) = Jo(,i,0) + T} (2, j). (5.5)

where

- j € sucec(iy) is a controllable successor &f. This set depends on
throughh, as in Equation (5.3)
h—1
- & =M, ;A; (0— Z 05 )x; is the destination point aftdr autonomous
k=0
switches.

The minimization of function (5.5) has to be performed oyeand overj €
succe(i) (and note thak depends o). This minimization problem can be written
as

min min min T;(x, j, 0), (5.6)
0<h<h j € succc(i) o€l
wherel;, is the time interval defined by the inequalities in (5.3).

Let us denote by*(x,:) andj*(x, i) the values ob and; that minimize (5.6).

We may now indicate

T (2, 5" (z,1)) = Ti(z, 0" (2, 1), " (, 1)) (6.7

We now show how these data are used to construct the tables for the last control-
lable switch.

In presence of autonomous switching regions the state space available for con-
trollable partitions is only thénv;. Such subspace will be then partitioned ifRg
regions according to the following criterion:

e x € R;if o*(x,i) > 0; this physically means that the optimal strategy is to
remain for a non zero time in locations;

o x € Rjw(s, If 0*(x,i) = 0; this physically means that the optimal strategy is
to immediately switch to locatiop.

Once the table for the last switch is constructed, it is simple to build all the

others following the principle of dynamic programming and solving problem (5.6)
recursively over the total number of allowed controllable switches as in [28].
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5.3.3 The homogeneous case

We present now a particular class 4¥/ A where the structure of the guards and
invariants is homogeneous. Firstly we recall that a gyarid homogeneous if

(Vx € ge, YA ER) Az € g..
Such case is meaningful because it allows one to describe guards of the form
z'(t)Zz(t) > 0,

where z(¢t) is the continuous state of the hybrid system, i.e., guards given by
quadratic forms.
A physical example of this is given by an electric system whose threshold

z1(t)x2(t) > 0

(herex (t) andzo(t) are voltage and current, resp.) denotes the condition where the
system behaves as a power generator.

Moreover, as we show in the following remark, in such conditions the computa-
tional complexity of the offline to compute the switching regions is reduced.

Remark 5.1For each statér, i) of an AH A with homogeneous guards(x, i) is
a homogeneous function with respect to its second variablevies R\ {0},
o(x,i) = o(Ax,i). |

This obvious fact implies that the residual cds{«, i, ¢) given in Section 5.3.2
can be calculated only in the poingson X,,. In fact, knowingJ, (y, i, ¢), clearly
Jo(x,i,0) = N2, (y,i,0), € = \y.

As a consequence a discretization of the all invariantset is no longer re-
quired, because all the necessary information to construct the optimal switching ta-
bles can be calculated alodtg,. Hence this special case reduces the computational
complexity of the construction of tab{%N [28] from O((s; — 1)r™) for the general
AHA,t0O((s; —1)r"~1), where we indicate by; the number of controllable edges
of locationi, r is the discretization sampling along each directiois the state space
dimension.

5.4 Case b: optimal control problem forC H A

The optimal control problem for & HA, OP(CH A) is based on the assumption
that the discrete controller has at m&i(fixed a priori) controllable switches avail-
able. The formal definition of the problem is given in Section 3.6.6, where all the
properties, the symbols and the assumption that allow the existence of a solution are
extensively described.

Here we shall limit to report the problem formulation, as it appears in Definition
3.30, and we refer the reader to the mentioned Section 3.6.6 for a complete illustra-
tion of the formalism.

in F(Z,7) £ min /Oo(a:(t) — Teq) Qi) (x(t) — Teg)dt

s.t. &(t) = Ayyx(t) + fir (5.8)
i(0) =i  (initial Iocatlon)
x(0) =xo (initial state)
i(t) € suce(a(t),i(t)) U {i(t)}

x(t) € invyyy CR", V>0
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and7 £ {ry,...,7n},Withmg < ... <7, < ... < 7n41 = +oo are thecontrolled
switching timeswvith 7, — 75—1 > dmin(i(7—1)) VE =1,..., N + 1, theminimum
permanence timenposed in each location.

We also haver(r;,) = z, the state reached after the- th controlled switch,
andi(t) is a(N + 1)-piecewise constant function, defining the second set of control
variables

A £ {i(Tl)v cee Z‘(7—N)}'

The performance index described here weights the distance fitanget state
x.q. However appealing this is not the formulation diybrid reachability problem
that requires a completely different framework (see for the case the works of [81,
106]). However some authors proposed a method of solving a reachability problem
via a minimization of a HIB equation, thus, to an extent, solving a particular class of
optimal control problem [80].

In fact in order to be sure that the cost is finite we are forced to introduce the
following assumption:

Assumption 5.1 There exist a location in the considered’H A, such that
Leqg = _Ai_l.fi

with A; strictly Hurwitz.

Assumption 5.1 is an extension of Assumption 4.1. If verified, the problem mir-
rors exactly the one described in Chapter 4, with the new set of variables —x.,.

Based on the results given in Chapter 4, we show in the sequel how it is possible
to construct a partition of the state space in order to determine, in state feedback
form, the optimal switching signalt), that steers the system to the target state
minimizing the performance index of equation (5.8).

5.4.1 Case b: state feedback control law fo€ H A

The procedure STP that allows to solve problem (5.8) has been extensively described
in Section 4.3. Hence we will not repeat here all the derivation, but we shall limit to
provide the algorithm.

In fact this case is different in force of the fact that the set of successors of a
given location is dependerntsoon the continuous state spaegas described in the
dynamical behavior of th€'H A on Section 3.6.4.

For sake of clarity we report here the following remark.

Remark 5.2An important caution should be taken when considering the successors
of the current location. In fact, let us consider the edge= (i, g, j). It may be
activated wher: € inv; but two different cases may occur.

1. The continuous state € inv; ()inv;. In this case the discrete controller has
the DOF between keeping the evolution in locatiar switching to locatiory.

2. The continuous state ¢ inv;. The evolution cannot continue in locatiothus
the discrete controller must leave location

This implies that the set of "admissible" successors also depends on the current
continuous state:. |

2Here we assume that the state is continuous thus there are no jumps at the occurrence of
a switch.
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As in problem (5.8), all switching costs are null, and all jump matrigés; are
the identity.

In this affine case we can no longer restrict to the unitary semisphere, but we
have to discretize the whole state space. Hence we define a rectangulBragid
is shown in Figure 5.2.

R=1 A=0.5RA6=0.5A86

o oo oo o0o0 o0 o0 o0
© 0o oo 0o 0o o
© 00 00 00 0 o ©
0o 0o 00 o00 0O O
© 00 00 0 o0 0 o ©
o oo oo oo oo O
© o 000 00 © o o

o
o
o
o
o
o
o
o
o
o

Fig. 5.2. Different shapes of the discretization patterniA. In particular (a) spherical pat-
tern, used when all affine terms and switching costs are null and (b) grid pattern.

Assume thatV is the number of available switches and= |S|, and that all
dynamicsA; of the automaton are Hurwitz.
The algorithm is divided into several steps.

Algorithm 5.1 (Switching table procedure for CH A) The input of this algorithm
is the constrained hybrid automatdnH 4, its target stater., its annexed optimal
control problem OP and the number of available switcidésa tuning parameter
tmax that expresses the duration of the future exploration.

The output is a set aV x s tables that the controller can use to provide the
feedback control law during the real time evolution.

The list of instructions is depicted in Figure 5.3. |

The main advantage of the proposed procedure may be briefly summarized as
follows.

It is guaranteed to find the optimal solution to problem (5.8).
It provides the global optimal solution, i.e., the tables may be used to determine
the optimal state feedback control law for all initial states.

The optimal control law can be computed as follows. For a given locatsord
for a given switcht € {1,..., N}, itis possible to construct a talf that partitions
the invariant setnv, into up tos; = |succ(i)| + 1 regionsR ;'s. Whenevefi;_; = ¢
we use table; to determine if a switch should occur: as soon as the state reaches
a point in the regioriz ; we will switch to modei;, = j provided that the minimum
permanence timé&,,;,, () has elapsed; on the contrary no switch will occur while the
system state belongs ;.

5.5 Numerical examples

We provide in this section two numerical examples, one referred to the case (a), i.e.,
when an autonomous sequence is allowed, the other referred to the case (b), i.e., the
set of successors of a given location is state dependent.
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1. Initialization: ¥ = 0 remaining switches
Redefiner «— x — x,.
Fori=1:s
Calculate if possibleZ; : A\ Z;, + Z;A; = —Q;.
Vy € D
Cost assignment
. yZy if fi=0
Doy, ) :{ +oo else
Color assignment
Co(y, ’L) =1
end ¢)
2. Fork=1: N
For:=1:s
Vy € D
Compute the setucc(y, 7);
Remaining cost:
t=0
Whilet < tmax Ay € inv;
Forj € succ(y, 1)
y — Aj(t)y
y(j,t) = A;(6))y L .,
T(y.i,j:t) =y'Q;()y + ¥y Ai()Q;(0;) Ai(t)y + Ti—1(y(4, 1), §)
end (j)
t«— t+dt.
end ¢)
Cost assignment

Tk(yvl) = mitn T(y7 i?jv t)
Js
Color assignment
(7, t") = argmin T'(y, 4, j, 1).
7>
N Jgrit tr=0
Crly, 1) = { i if > 0.

end ¢)
end ()

Fig. 5.3. Algorithm for the implementation of the STP in presence of state space constraints
as in the modeC H A.

5.5.1 Case a: amMA H A example in the homogeneous case

Let us consider the AHA whose graph is reported in Figure 5.4 where dashed arrows
have been used to denote edges associated to autonomous switches, while continuous
arrows have been used to denote edges associated to controllable switches.

In this particularR? case, guards and invariants of the automaton are homoge-
neous. In such a case they may be easily described [90] as quadratic farmi of
particular, we assume that the guards associated to autonomous switéhes are

g12 ={z € R} &'G122 >0}, Gy 2 = Y
: ’ 0.6 —1

1 1.25

g3 ={z €R’| &'Gy 30 >0}, G13=— [1.25 1 }

*To avoid a heavy notation we denote herg the guard associated to edge;.
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Fig. 5.4.0Oriented graph of thel H A considered in Example 5.5.1. The dashed arcs represent
the autonomous edges, while the continuous arcs represent the controllable edges.

and

g23 = {x € R?| 'Go 32 > 0}, Go3 = [_3 0'5]

05 0

Wheregm Ngi3= 0.
Consequently, by Assumption 3.1 given in Chapter 3, the invariant sets may be
defined as

invy = R2\ (g12Ug1.3),
invy = R?\ ga3, invs = R?,
while the guards associated to controllable switches are

921 = Z"ﬂﬂ]g, 93,1 = g32 = iﬂl)3.

The above set of guards and invariants are shown in Figure 5.5.

9,

-0.5
-1 -1 -1
-1 -05 O 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1

Fig. 5.5.The guards and invariants of the AHA in Example 5.5.1.

This automaton is also homogeneous, thus it allows to perform calculations along
.

Let us assume that the activity functions at the discrete locations are defined by
the following matrices:

~1.85 —1 0 1 ~2.75 —2.84
Al:[ 1 0}7‘42:[—0.74—1.29}"43:[ 10 ]
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All jumps are coincident with the identity relation, i.8\/; ; = I, for all 4, j
with i # j, wherel, denotes the second order identity matrix.

Finally we assume that weighting matrices are coincident with the identity ma-
trix, and thatN = 3 controllable switches are allowed.

To solve the resulting optimal control problem, we first evaluate offliné\thes
controllable switching tables, using the procedure presented in the Subsection 5.3.2.

In this particular casé tables have been constructédi¢r every switch).

A space discretization di01 points along¥’; and a local minimum search within
five time constants have been considered sufficiently fine.

Provided such tables, the controller/supervisor is ready (and fast) to estimate the
optimal strategy in real time mode subject to the constraints of the automaton.

The state trajectory that minimizes the performance index is depicted in Fig-
ure 5.6, where the black squares indicate the controllable switches and the red stars
indicate the autonomous switches.

Finally, we found out the following values of the switching (both controllable
and autonomous) instards of the optimal sequencg and of the optimal cost:

7 =1{0.05, 0.11, 0.11, 0.78, 0.96, 1.505}
I=3=>1-3=>2->3=2—> 3}
J =62.15

In the subsef the arrow=- indicates a controllable switch, and the arrew
indicates an autonomous switch.

The system initially sojourns in locatighthen the supervisor switches to loca-
tion 1. Tables indicate that it is worth waiting until the autonomous threshold with
location 3, in order to go directly to locatiof in zero time. Now it is better to re-
main in location2 until the autonomous boundary is reached before using the third
controllable switch, which takes place during the evolution in locatidfrom now
on the system evolves independently towards zero, performing a finite number of
autonomous switches.

10+
=——  Controlled
= Switches Autonomous
8r Threshold
I2 to I3

6,

Autonomous
al Threshold

Il to I3

-4 -3 -2 -1 0 0.5

Fig. 5.6.System evolution fae(0) = [—3.4, —9.4])’, and initial location3. A square denotes
a controlled switch. A star denotes an autonomous switch.
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5.5.2 Case b: application and case study

As an example of the described procedure, the following problem is considered. This
problem was inspired by [25]. A physical system is composed of two cylindric tanks,
equipped with inflow pipe and subject to leakage (see Figure 5.7).

Uik

5 &

Fig. 5.7.Schematic view of the physical system considered for the Example 5.5.2.

The continuous variables of this system are the levels of the fluid in each tank,
namelyx = [z1, z2]".
The physical dimension of the tanks imposes a minimum and a maximum value
of the fluid level, i.e.,
x € X =10,30] x [0,20].

The levelz; in each tank is governed by the linearized DE, namely

T =—ax1 + fiq,
To = —asx2 + fi2

wherea;, ao are the flow losses of tank 1 and tankf2, = [fi1, fi2] is the flow
input, described next. We assign in this example= 2 andas = 3.

The inflow pipe (Figure 5.7) is capable of a flow rgte= 60, but it may only
assumeyuantized positiongaken from a finite set

Q:{f17"~af5}

where

.flz |:g:|7.f2: |:2:|7f3: |:g 7.f4: |:8:|7.f3:;

The global linearized DE of the system is thus

T = [_2 ; z+ fi,

i =1...5, whereA represents the linearized fluid loss due to static height pressure.
The resulting system can be modelled a8 H A composed of 5 locations, as
depicted in Figure 5.8. The structure of the automaton takes into account the order

in which the different inflow rates can be changed.

Furthermore we consider an extra specification based on Figure 5.10. In par-
ticular the output signal of the system is of three levgls:, Y?, Y, }, denoting
respectively, that the continuous statés in thesaferegion (i.e., the interior part of
X), theconditionally saferegion (i.e., the sides oK), and theunsaferegion (i.e.,
the corners ofX).
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Fig. 5.8. The H A modelling the considered affine system. The double arrows indicate that
both switching directions are allowed.

Fig. 5.9.Specification for the outputs, safe, conditionally safe and unsafe regions.

We impose a specification on the sequences of outputs represented in Figure 5.9.
More precisely this automaton imposes the following requirements:

1. if the state is in the safe region, then the next output symbol can eithgjbe
orY,) (meaning respectively that the state will remain in the safe region or may
enter the conditionally safe region;

2. if the state is in the conditionally safe region, then the next output symbol can
either beY ;" or Y,) (meaning respectively that the state will go back to the safe
region or may remain in the conditionally safe region and potentially the unsafe
region);

3. if the state is in the unsafe region, then the next output symbol can omyrbe
(meaning that the state will go back to the safe region in not more than one step).

Thus, the specification requires that the state can belong tmtiditionallysafe
region for no longer than two time intervals. After that, the system should stay at
least one time interval within theaferegion producing the corresponding output
symbol.

In the low level step, a procedure basedaromplete approximation and super-
visory control theory, described in Appendix D the specification of outputs depicted
in Figure 5.9 is converted into a set of invariants, i.e., constraints on the state space,
which are attached to the swithced system to form@i¢A on which we finally
apply the Algorithm 5.1.

These invariants restrict the behavior of the overall system to guarantee the safety
and liveness conditions. The invariant set of locatibns . , 5 are reported in Figure
5.11.

The high-level step requires the solution of an optimal control problem of the
form (5.8). The weight matrice®; are indicated for each location in Figure 5.8
wherel denotes the identity matrix.

The maximum number of switchesé = 3. The target state is equal to
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15 x; (m) 30 CO

15 x, (m) 3

15 x,(m) 30

15 x; (m) 30

Fig. 5.11.Invariant regions for locationg, ..., 5

95
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15
Tea = 110 |

that satisfies Assumption 5.1 for= 5.

20
_ 15
E
XN
10
5
00 10 20 30
X, (m)
20,
15
E
10
5
(©
0
0 10 x, (m) 20 30

[y P I3 4 Is

Fig. 5.12.Switching tables used by the controller during the simulation described in the ex-
ample. (a) is the table used when 1 switch is available, (b) when 2 switches are available, (c)
when 3 switches are available.

The offline part of this procedure consists in the constructiof ef 3 = 15
tables, one per each location and per number of available switches. A state space
discretization is a grid of25 x 125 points. The minimum search algorithm works on
atime domain of = 5s with time step 0.%. The latter value was chosen to guarantee
an appropriate synchronization between the two levels. The offline calculation effort
for this step of the problem took approximately 2 hours, on a common commercial
laptop with average up to date performances. For sake of brevity we only report
some of these tables (depicted in Figure 5.12), i.e., those tables used by the controller
during the simulation ran for the initial continuous state

- [3

and the initial locatiorl. The trajectory obtained for this particular value of the initial
state is plotted in Figure 5.13. The optimal switching sequence and switching times
are
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T ={1,2,4,5}

and
7T = {0.121,0.221,0.321},

and the optimal cost is
T3 =19.47.

Note that, due to the minimum permanence time within each location, it may
occur that the switching from one discrete location to another, does not necessarily
occur as soon as the state trajectory exits the current region. This is the case of the
last switching point of the trajectory reported in Figure 5.13.

The controller uses the appropriate switching tables to impose the appropriate
switching. The simulation does not require any extra calculations other then observ-
ing the state space and compare its value with the switching table (already calcu-
lated) corresponding to the current location and to the current number of remaining
switches.

State trajectory

Initial point

95 20 x,(m 25

Fig. 5.13.State space trajectory and discrete location sequence.

5.6 Conclusions

In this chapter we analyzed the problem of providing a feedback optimal control law
for a switched system in presence of state space constraints, that can be seen as a
generalization of the class of switched system we have considered in Chapter 4. This
led us to the introduction of a the more general model, i.e.,Hht featured by
constraints on the state space.

In particular we studied two cases.

5.6.1 Casea

A class of H A that we called Autonomous Hybrid Automata whose main aspect is
that not only the continuous time evolutiat(t) is autonomous, but also the dis-
crete event evolutior(t) is autonomous and it follows an evolution governed by
autonomous, internally forced switches.
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This is really a dangerous aspect in the framework{d, because it is well
known that in general an autonomous evolution of discrete events may provoke in-
stability of the system.

We provided sufficient conditions to ensure that this does not occur. Although
may not be restrictive, these conditions are structural omitHed.

In this model there are two types of edges: firstly a controllable edge represents
a mode switch that can be triggered by the controller; secondly an autonomous edge
represents a mode switch that is triggered by the continuous state of the system as it
reaches a given threshold.

We have shown how the special structure of autonomous hybrid automata allows
one to solve an infinite horizon quadratic optimization problem with a numerically
viable procedure; the optimal control law takes the form of a state-feedback.

The application of the STP is not straightforward for this class. In fact, during
the time search subroutine, there exists the possibility of starting an autonomous
sequence.

5.6.2 Caseb

In this case two approaches based respectively on discrete approximation of contin-
uous systems and optimal control of switched systems, were successfully cast and
merged to the framework of H A.

More precisely a the discrete approximation part, i.e., the low level part, converts
some specifications on the output signals of the plant into constraints on the state
space. The approach is described in Appendix D.

In this case the autonomous switches are not admissible, but the set of successors,
that in Chapter 4 was a function of the current discrete state, is now a function of the
hybrid state(x, i).

The oriented graph of the automaton is state dependent, i.e., some arcs may be
"forbidden" according to the value of the state space.

The STP of Chapter 4 can be extended provided that now a dynamic value of the
set of successors must be taken into account.

Both cases, apart from extremely special shapes of the constraints, require the
discretization of the whole state space, or, which is equivalent, the samplifg,of
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Infinite number of switches

6.1 Introduction

In this chapter we focus our attention on the optimal control problem of a switched
system when an infinite number of switches is allowed.

In Chapter 4 we assumed that an upper bound on the maximum nu¥hbér
available switches is imposed. We developed the STP that provides the state feedback
optimal control law for this particular case.

Here, under reasonable assumptions, we show how the proposed procedure can
be extended to the case df = oo. In other words we will provide a constructive
method to design a switching table that can be used indefinitely until the continuous
statex of the switched system has practically reached the origin.

Furthermore, since this switching law is based on the minimization of a piecewise
LQ performance index, it is also optimal.

The caseN = oo contains interesting theoretical developments, such as the
convergence of the switching tables, and relevant practical applications. In fact the
majority of real systems are able to infinitely switch.

As an example the approach has been applied to the servomechanism system
studied in Section 4.5. As a real case study we considered the design of a semi active
suspension system, to which we dedicated part of this chapter.

6.2 The model and the optimal control problem

In this section we recall the model and the optimal control problem defined in Chap-
ter 3 that we consider in this chapter.

6.2.1 The model: switched system

We consider a switched syste¥n= (L, act, £, M), extensively described in Section
3.3, in consistency with Definition 3.2.

We recall that:

— L is a finite set of locations.

— act : L — Diff_Eqis a function that associates to each locatianlinear
affine DE of the formz = act;(x) = A;x + f;.

— & C L x Lis the set of edges. An edge= (i, j) is an arc from location to
VIKENE

— M : £ — R™ " associates to each edgec E a constant matrix ifR™*",
that represents the linear resetting of the state spatdhe switching instants.
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We recall the definition of the set of successors, as in Definition $3.é;(7)
which denotes the set of indices associated to the locations reachable from location
1.

Once entered in a locationa minimum permanence tim&g,, (¢) must elapse
before the controller may decide the best strategy, whose formal Definition is 3.7.

In this chapter, wlg, we will restrict the analysis to the following class:

1. Thehybrid evolution(x(t), i(¢)) is continuous ir, i.e., there are no state jumps;

2. The affine termgf; are all null;

3. The item (i) of Assumption 4.1 is verified, i.e., at least one dynamicS &f
strictly Hurwitz.

6.2.2 The optimal control problem: infinite number of switches

For the class of system defined above we consider the optimal control problem
OP,.(5), as in Definition 3.15, reported below.

s 2y {Fam 2 [T 2 0@t

S.t. :B( ) — Al(t ( ) + .fz(t)7 w(o) = (BO, 7’(0) = i()
i(t) =ir € succ(ig—1)form, <t < 741,
Tk+1 Z Tk + 611’1111(7:14:)3

(6.1)

where all terms, symbols and control variables are described in Section 3.4. Never-
theless we would like to recall that the control variables are

T2 {T1,72,...}

and
T = {iy,ia,...},

where7 is thesequence of switching timasdZ is the sequence of indices as in
Definitions 3.11 and 3.12 respectively. Note that these sets are unlimited.

In fact the subscripto indicates that we relax the restriction considered in the
previous chapters allowing that the number of switches may be infinite.

To solve this problem we initially assume that the number of available switches is
finite and equals tdv, thus we consider a problem QES), as in Definition 3.14and
reported below.

JX/ = 1%117[1 {F(I, T) = /0 Qz(t)w dt}

s.t. x(t) = Ajyx(t), =(0) =x0, i(0) =1g
i(t)—lkaI'Tk<t<Tk+1, k=0,....,N
70 =0, TN41 = +00
Tk+1 Z Tr + 5min(ik)a k= 0 7N
Tp+1 € succ(ik), k=0,...,N

(6.2)

In the sequel we will refer to the solution of the finite problem/§s and to the
solution of the infinite problem ag?_.
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6.3 State feedback control law

We briefly recall the procedure STP that gives the solution of Problem (6.2) in feed-
back form, described in Section 4.3, derived for a finite number of switdhes

The general idea of the STP is to proceed backward from the last skitch,
and obtain, for any given hybrid poifi, j. ), whenk switches remain, a residual
cost of the form

Tk(xmj/w .. 7.j07 Oks-- -, QO) = F(xvjk‘vjk—l? Qk)+ (63)
+ Tk’—l(z7jk—17 v 7j05 Ok—1y---, QO)

where

z=Aj_ (6min(jr-1))Aj, (0k)

expresses the state reached after the evolutiopfeime units in locationj, and a
switch t0j, 1 for dumin (jx—1) time units.
It has been proved that

T];k(mvjk) = jkrflli%ka(m7jk7jk71;Qk) (64)

with jr_1 € succ(ji) andgy > 0, provided that we take

T, Jrs Jr—1, 0k) = F(x, Ji, Jo—1, 0k) + Ti_1(Z, Je—15- -5 J0, Ok—15 - - -+ 00),

in agreement with the well known principle of optimality [3, 14, 69].
In this case, (all switching costs are null and all jumps are the identity matrix)

F(z, j. je-1,08) = 2'Q;, (or)x + &' A),_(0r)Q;,_, Aj, (0r), (6.5)

as it was defined in Definition 4.4 and explained there on.
The strategy associated to the current hybrid statgy), whenk switches are
missing, is thus dependent, as explained in Definition 4.7 on the values

op(x,jx) = arg min Ti(x, jk, jr—1, 0k)
Jk—1,0k

jlj—l(wajk) = arg Amin Tk(w7jk>jkflagk)7
Jk—1:0k

wrt the lexicographic ordering of Paragraph 4.3.2.
By induction ofk up to N we terminate the procedure of table construction.
Things are numerically simplified when all switching costs and affine terms are
null, as it is the case we consider in this chapter. In fact, thanks to the 2-homogeneity
(see Definition 4.2) of terms in equation (6.3), the investigation can be limit&g to

For a detailed definition of all elements of (6.3) see Paragraph 4.3.1.
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6.4 Conjecture

The results given in Paragraph 4.3.1, resumed in the previous section, may naturally
lead to the following question:

What happens ilV keeps increasing?

We may provide the following conjectures:

Conjecture 6.1 (Convergence of the switching tablesYhe tablesCi,, i € S,
constructed with the STP for increasing values\gfconvergeto a final set of tables
that we can calC?_. [ |

This conjecture, formally proved in Section 6.5.2, may be deduced as follows: if
the number of available switches s, whereN is a sufficiently large integer, then
in a given point(x, i) the optimal strategy, i.e., the color of the tablg in «, should
be the same as if we consider the tafie,, in «, obtained with the STP applied to
a problem withV + 1 allowed switches.

Conjecture 6.2 (Convergence of the costI'he optimal cost from poirtc £ 0, 1),
namelyJy (z, ), calculated for increasing values &f, is a decreasing function of
N and itconvergedo a strictly positive lower bound? (x, ). |

The first part of Conjecture 6.2 can be deduced by the following consideration:
augmenting the number of available switches is equivalent, to an extent, to relax the
number of constraints in a minimization problem. The solution of such a problem
(with fewer constraints) can oniynprove permitting us to foresee that the cost is a
decreasing function aV. The second part of the conjecture comes from the fact that
any evolution that starts frone # 0, has necessarily a strictly positive cost. This
conjecture is formally proved in Section 6.5.1

Assume now that the convergence of the tables is observed Whewitches
are allowed. Conjecture 6.1 allows one to use indefinitely only the taliles=
ij during an evolution that admits an infinite number of switches. The cost of this
evolution must bef*..

We may also provide the following conjecture:

Conjecture 6.3 (Cost reduction) For any point(x # 0,:) andforall N € N, the
costs

1. J} (=, 1), i.e., the cost obtained performidg switches,

2. JN.oo(®, 1), i.€., the cost obtained performing switches, and using only tables
Ci,

3. Jgo(ac, i), i.e., the cost obtained performing switches, and using only tables

are related as
Jo(x,1) < Jj{,}oo(:c,i) < Jx(x,i).

We formally prove the extreme parts of the inequality, &, (x, ) < Jx (x, 1),
as stated above. The intermediate property is not proved yet.

This last conjecture states that a reduction of the cost can be obtained albeit
the tables haven't converged yet. In fact using indefinitely the last calculated tables,
namelyCl, it should holdJ} __(z,i) < Jx(x,1).

What we find interesting in this conjecture is that it permits to economize in
terms of computational effort. In fact if we are not able to compute tables until the
convergence is met, we may consider the last calculated ones and assume as optimal
the trade off valug/y;  (z, ), which is worst tha/;_ (z, ¢) but better thaw'y (z, i).
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Let us now consider the following example, through which we would like to
highlight the results claimed by the three conjectures above.

6.4.1 An example

Let us consider a switched system composed of three locatiens, 2, 3 and a set
of edge<t, whose oriented graph is depicted in Figure 6.1(a).
The dynamics associated to each location are:

0 9 3.09 2.78 —3.84 3.22
A = {_1 —0_5} Ay = [_7.22 _3.59] Az = {—6.78 _3.34} . (6.6)

The single trajectories of each dynamics are juxtaposed in Figure 6.1(b) for three
different initial states (a color mapping is given in Figure 6.2). It can be seen that all
dynamics are stable. The dynamids and A3 are obtained fromA; by a rotation
of Z¥ and T respectively.

or
-0.5+

RO
= 05 0 05 1

Fig. 6.1.(a):Oriented graph of the example detailed in Section 6.4.1. (b): Trajectories of the
three dynamics considered in Section 6.4.1. The blue evolution is dyndmitise greenA,
the redA; (Figure 6.2).

For sake of completeness:

Ay = T_lAlT, Az = T_lAQT

where

All jumps are the identity matrix, i.e., the time driven evolutie(¥) is continu-
ous.
A minimum permanence time is required in each location, thus:

Omin(1) = 0.1 Jmin(2) = 0.1 dmin(3) = 0.3

The optimal control problem is in form (6.2), and the matri€gsi = 1,2, 3 are
chosen all equal t@.
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L ocation Color mapping
Iy
P
I3

Fig. 6.2.Color mapping of the locationk, 2, 3 described in Section 6.4.1.

The general setup is very simple.

Now we fix the parametelN = 10 as the maximum number of allowed switches
and we start to perform the STP over the variable 0, ..., 10, to construct;.

It takes approximately 50 minutes with a discretization of 51 point&’en

The STP produces 30 tables, beifig = 10) x (s = 3). These tables are used
according to the current hybrid state, :) and to the number of switches that have
been done, as described in Section 4.3.

Note that the tables depicted in Figure 6.3 converge from approximately the value
of N = 7, thus the Conjecture 6.1 is verified.

Consider now the initial point, = [0, 1]’ and initial locationi = 1. We evaluate
the cost from this given point as a function®t The plot is depicted in Figure 6.4.

Itis clear from Figure 6.4 that the cost isoaver bounded non increasing function
of the number of allowed switches.

Finally we consider 51 initial points, ob’;, parameterized id, i.e.,

(wow» - [Z?ﬁégjf” i = 1) ’

™
Y =j—, 7=0,...,50.
J ]50a J ) 9

From each one of these point we calculate the cost obtained with a performance
of uptoN switches, namely (z(9;),i = 1) andJy  (x(J;),i = 1) as described
in Conjecture 6.3.

The significant result is reported in Figure 6.5 , where we depict the function

_ IR05) — IR (9)
I (95)

that represents theormalized difference(in percentage) of these two values of the
cost.

Note thatfor all values of N andfor all initial points the functionfy (v;) is
positive, meaning thaty (9;) > J3 ., (J;) as claimed by Conjecture 6.3.

Furthermore if we consider the last plot in Figure 6.5, i¥.= 10, the highest
value reached by this index alorg, is not even2 - 10~*, showing that froml0
switches on, we do not obtain significant reductions of the cost value.

When this happens the condition of tables convergence is reached. In other words
for this particular problem all tables, fro = 10 on, are the same, i.e.,

with

fN(ﬁj> %a

i i i
C102611: 12:....

This important result is general. In the next sections it will be formally proved
and it will permit us to define the tabi&_, i.e., the unique tables that must be used,
in each location = 1, 2, 3, when an infinite number of switches are available.

2In the next sections we will see that this is a key comparison between the costs.
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Fig. 6.3.The 30 tables constructed with the STP for the example described in Section 6.4.1.
From left to right locationl, 2, 3 and from top to bottom the tables obtained per increasihg
until N = 10. The color mapping (Figure 6.2) is: blue-green2, red-3.
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0.5¢
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0.2
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0

Fig. 6.4.Asymptotic behavior of the optimal cost as the number of available switches increases
for the example described in Section 6.4.1.

We report in Figure 6.6 the tabl€$, = C._, i = 1,2, 3, i.e., the bottom row of
Figure 6.3.
For completeness we show in Figure 6.7 the plot of an evolution from the point

(o= [f )

The optimal variables and cost are:

T* = {0.15,0.34,0.26,0.25, 0.36, 0.26, 0.25, 0.35,0.28, 0.37, .. .}
7* =1{2,3,1,2,3,1,2,3,1,2,3,...}
Ji, = 0.1896.

6.5 An infinite number of switches

In this section we discuss how, under appropriate assumptions, the above conjectures
are proved, thus allowing us to efficiently extend the STP to the cade-efcc.
Consider an OR(.S) of the form (6.1) where

() there exists € S, such that the linear dynamics; is stable;
(i) forallie S,Q; > 0.

In Chapter 7 we will even relax (i) and extend the procedure to the case where
all dynamics of the switched systems are unstable.

6.5.1 Convergence of the cost

Let us state initially an obvious monotonicity result.

Property 6.1 (Monotonicity of the cost) Let N, N’ € N. If N > N and the
switched system evolves along an optimal trajectory, then for some initial hybrid
state(xo, i),

J;p (wo,io) < JE((IZ(),Z.()) < +o00.
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100 T T — 100 T T —
. N=1 | N=2
50| : 50 : 1
\ \
0 \ 0 ' ' T
100 ! 40 - - -
| N=3 | N=4
50| : 20} : ]
\ \
0 T 0 : : T
10 ‘ 4 : : :
| N=5 | N=6
\ \
S | 2r | 1
0 \ 0 - - —
0.1 | 0.01 : : —
I N=7 | N=8
\ \
0.05} | 0.005} | ]
\ \
0 | 0 — N N |
001 | 2x104 |
' ' N=9 ' ' "1 N=10
\ \
0.005¢} \ 1 \
\ \
0 . . 1 0 . ) \
0 1 2 3 T 4 0 1 2 3 T

Fig. 6.5.Example in Section 6.4.1. Percentage relative difference of the total cost of the evolu-
tion from 51initial pointson X». In particular J5 ., (99) is the cost of the evolution obtained
using indefinitely the same tabl€§;, i = 1,2,3, while J%(¢9) is the cost of the evolution
obtained using all table€, j = N,N —1,..., 1.

1 1 1

_l (a) _1 _1 (C)
-1 0 1 -1 0 1 -1 0 1

Fig. 6.6.(a) TableCi,, (b) TableC?,, (c) TableC3,, for the example described in Section 6.4.1.
The color mapping (Figure 6.2) is: blue-green2, red-3.
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1.27

0.8 X

0.2r

Oi{ma_// g
X

-0.2— ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4

Fig. 6.7. Plot of the hybrid evolution of the automaton described in Section 6.4.1 from the
initial point (zo = [0, 1), 7o = 2) and performing at most 10 switches governed by the tables
obtained from the STP of Section 4.3.

Proof. We first observe that by Assumption (i), there exists a locatjosuch that
Jx (o, i0) is finite for anyN > 1.
To prove the first inequality we observe that the same evolution that generates
Jx (o, i0) is also admissible for (6.2) when a larger valhiéof switches is allowed.
[ |

An immediate consequence of Property 6.1 is the following proposition.

Proposition 6.1 (Convergence of the costfor all initial state (z, i), o # 0,
and foralle’ > 0, 3 N = N(xy, i9) such that for allN > N,

J;{/(:Lba ZO) - ‘];if(wOaiO) <é&.
]

Proof. We first observe that by Assumption (i) (xo, i) is lower bounded by

a strictly positive number. Then, the result trivially follows from the monotonicity
property above and the fact that, is lower bounded, hence it is a Cauchy sequence.
|

In other words the proof of the proposition leans on the fact that the cost is de-
creasing withV (Property 6.1) and on the fact that it is obviously lower bounded by
a strictly positive value.

This can only beff the functionJ3; as an asymptotic behavior withi. Let us
consider the example described in Section 6.4.1. We depicted in Figure 6.4

Jx (o =[0,1],49 = 2)

as a function ofV, number of available switches.
Its asymptotical behavior for the given initial point requires no further comments.
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The reader can also refer to the example described in Section 4.7, and in particu-
lar Figure 4.21, where the property was analyzed in the case of the servomechanism
model described in Section 4.5.

From the proposition above it is clear that the cgaten a particular initial point
(x0,10), cOnverges to some finitd (xg, io).

One may argue that the dependencyN\afz, i) on the initial point might be
such that

lim  N(zg,i0) = +oo.
llzoll—+00

If this was the case the results above would be useless. In fact it would not be
possible to affirm that a unique finite value &f can be found. However by the
homogeneity property of the cost function, it is easy to show that this is not true, and
indeed the Proposition 6.1 can be extended to the normalized values of the costs on
D
We state formally this important result. We omit here, to avoid a cumbersome
notation, the subscript 0 of the initial state, thus),io) = (x,7). We show that,
independently from the initial state, a relative toleran@a the cost can be found.

Proposition 6.2 (Normalized convergence of the costifor any initial state(z, 1),
x # 0, and for alle > 0, 3 N such that for allV > N,

Iy (@, i) — J5(2,14)

< €.
T (2, 1) c

O

Proof. Since all switching costs are null, the optimal residual costs are 2-homogeneous
functions (see Definition 4.2) af.
Thus ifx = \y, then

In(®,1) = Iy (Ay, 1)
and
Ty, i) = N T3 (y, ).
Moreover, by Proposition 6.¢ (y,i) and¥ ¢’ > 0,3 N(y,4) such that

VN > N(y,i),
!

‘]X/'(yal) - J;il(yal) <e.
Hence if we define

i€ES
Yy e
it holds that
Tilwi) = Ty(@i) _ NURwd) —Jywal _ &
Jx (x,1) ANy, 1) © min Jy(yd)

According to the above result, one may use a given relative toleratcep-
proximate two cost values, i.e.,
T (®,7) = T (2, 1)
Iy (@, i)

— Ty i) 2 T ().
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6.5.2 Convergence of the switching tables

Finally we can prove the main result of this chapter. All tables, computed with the
STP described in Section 4.3, converge to the same one (for each location) for in-
creasing values aVv.

We keep omitting the subscript O (o, i), thus(zg, i) = (, 7).

Theorem 6.1 Given a fixed relative tolerance if N is chosen as in Proposition 6.2
then for all N > N + 1 it holds thatCy = C - O
Proof. By definition J; (x, ) = Ty (x,) for all £k > 1, hence from equations (6.4)
and (6.5) it follows that

Jy(x,i) =

= min  {@Qu0)z + 2/ AL (0)Q, Gmin() Aslo)T + J5 1 (2.5) }
j € succ(i) U {i}
>0

wherez = A;(0min(j))Ai(0)z. )

Now, being by assumptio&V — 1 > N, by virtue of Proposition 6.2 we may
approximate

JE:/'—l(z7j) = J;%(Z7])

thus

I (x, i) =

>~ . 7 . Al ) . 57717,71 y Ai Jﬁi , . —
i€ Surglc:(%u {i} {az Qi(o)z +xA;(0)Q;( (1) Ai(o)x + J5 (2 j)}
[

=J

N (:1)-

Therefore, the optimal arguments*, j*) used to comput€?, and ijl are the
same.

The above result allows one to compute with a finite procedure the optimal tables
for a switching law whenV goes to infinity.
In such a case, in fact, it holds that

Ci, = lim Cy =Cj,,.
o0 N—o0 N N+1

Hence, we only need to use the talfés, i € S for all switches.
We recall that under the assumptions (i) and (ii), the system, optimally controlled
with an infinite number of switches, is stable as proved in [50].

6.5.3 A convergence criterion

We have proved in Proposition 6.2 that there exist a finite value of number of switches
N such that the tables converge.
It is not clear yet how this value can be found analytically. We know in fact that
a value of NV exists and it is finite, but we will never be sure, in principle, that the
convergence is reached if we do not consider exhaustively all possible valiyes of
Since this is impossible in a practical implementation, then our approach consists
in constructing tables until a convergence criterion is met.
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In the special case where all the matrices of the switched system are stable and
omin (%) # 0 for somei, a criterion may be obtained by simple considerations on the
slowest decay time of each dynamics.

In fact it is reasonable to observe that the convergence rate [109] of the switched
system (if any) is certainly higher then the slowest mode of the set

{A1,As,..., A}

We can prove a theorem that establishes an upper bound on the value ef
us first give the following definition:

Definition 6.1 (Slowest decay time)Consider a switched systes composed of
only Hurwitz dynamics. Consider the absolute real part of the slowest of slowest
mode of each dynamics,

—min min Re(|\;;]).
v =min min e(| A1)

We define the numb&r £ 5 as theslowest decay timef the given switched
1%

system. [ ]

Observe that this definition is an extension of tinee constanfor classic linear
system. The factor 5 in the definition above is the number of time constants that
should be taken in order to obtain a decaydfom any initial state, lower than 1%.

Theorem 6.2 (Upper bound ofN) Consider a switched systesitomposed of only
Hurwitz dynamics and,,;, (i) # 0 for all i € S. Anupper bound ofV is

- T
N =
’Vémin-‘ ’

wheredin = mig Omin (7)- O
1€

Proof. If we perform N switches it means that the system spends at least the min-
imum permanence time in the visited dynamics. Hence we are sure that from all
initial states we can obtain a decay of the norm of the state space of a faetbr of
least10~2, in the worst case, evolving only in the slowest dynamics. This shows that
with higher values ofV > N thenormalized cosbf the evolution will improve with

the order ofl0—*, which can be considered negligible for practical purposes.ll

Note that this criterion is in many cases too restrictive. In the example described
in Section 6.4.1 it holds

v=4, 6min =0.1 = N > 200,

which is a very high upper bound comparedNo= 10, where we start to observe
convergence experimentally.

6.6 Computational complexity

The computational complexity of this extension is the same of the STP. In fact, from
an implementation point of view, we apply the same method recursively until we
meet a convergence criterion.

The interested reader can refer to Section 4.4.2.
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6.7 Application: case study

In this section we describe a case study, the design of a semiactive suspension system,
that motivated the extensions of the STP described above.

6.7.1 Framework on suspension systems and design

A semiactive suspension [51, 54, 70, 98] consists of a spring and a damper where the
value of thedamper coefficienf® can be controlled and updated.

In some types of suspensions, the active ones, it may also be possible to control
the elastic constant, of the spring. This case is considered here only as a target of
the semiactive one.

A semiactive suspension is a valid trade-off solution because it can be easily
realized at a lower cost than that of a fully active one [35, 56].

Note, however, that a semiactive system clearly lacks other important secondary
advantages of the fully active one, like the ability to resist downward static forces
(due to loads) and to control the altitude of the vehicle.

The optimal control technique known as LQR [87] is probably the simplest way
to design an active law for suspension systems and such an idea has been initially
proposed by Thompson [111]. In such a case the objective is that of minimizing a
given performance index, that consists of a quadratic cost.

The control input is the value(t) of the force generated by the suspension. The
optimal law takes the form of a state feedback law with constant gains, i.e.,

u(t) = —Ka(t).

We can model a semiactive suspension system as a switched system, if we assume
that the damping coefficierfi(t) may take values within a finite set

f:{flvf%"' afs}

where
fi<fo<...<fs.

In the resulting model a different location corresponds to each valye ©he
control input is now the discrete switch: we change the valug sfvitching within
locations, with the objective of minimizing a given performance index, that consists
of a quadratic cost.

The optimal law takes the form of a state feedback law: in fact it has been shown
that the optimal switch can be triggered by looking at the current hybrid Gtatg.

As in [48] we assume a time is required to update the damping coefficient. This
is modelled by the introduction of a minimum permanence BiRg.

Furthermore, within this time it is only possible to pass to adjacent valugs of
i.e.,if f(t) = f; then

f(t + 5min) S {fiflv fia fi+1}~

The results of some numerical simulations show that the proposed semiactive
suspension system always provides a good approximation of a fully active suspen-
sion system, while producing significant improvements wrt purely passive suspen-
sions.

3Damper coefficient is a technical term. A common term in applied scieneisdsus
coefficienti.e., the proportional factor between Force and Velocity in viscous media.
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6.7.2 Dynamical models of the suspension system

We consider a quarter car suspension system and derive two different dynamical
models. The first one is a 2-DOF fourth order dynamical model that takes into ac-
count the dynamics of the tire. The second one is a 1-DOF second order dynamical
model that neglects the effect of the tire.

While the second order model allows one to study the filtering properties of the
suspension in terms of passenger comfort, it does not describe the interaction of the
tire with the suspended mass and the ground, and thus it cannot be used to evaluate
other important features such as road holding.

From an benchmark point of view, however, the reduced order model is extremely
useful, because it is possible to give a geometrical representation of the optimal
switching regions, thus providing a more intuitive explanation of the proposed ap-
proach. This is the main reason that led us to consider both models.

The fourth order dynamical model

Let us now consider the completely active suspension system of a quarter car with
two degrees of freedom schematized in Figure 6.8.a.
We used the following notation:

— M, is the equivalent unsprung mass consisting of the wheel and its moving parts;

— M, is the sprung mass, i.e., the part of the whole body mass and the load mass
pertaining to only one wheel,

— ) is the elastic constant of the tire, whose damping characteristics have been
neglected. Note that this is in line with almost all researchers who have investi-
gated synthesis of active suspensions for motor vehicles as the tire damping is
minimal;

— ) is the elastic constant of the spring;

— x1(t) is the deformation of the suspension wrt the static equilibrium configura-
tion, taken as positive when elongating;

— x4(t) is the vertical absolute velocity of the sprung mass

— x3(t) is the deformation of the tire wrt the static equilibrium configuration, taken
as positive when elongating;

— x4(t) is the vertical absolute velocity of the unsprung ma&s;

— u(t) is the control force produced by the actuator.

Itis readily shown that the state variable mathematical model of the system under
study is given by [35]

&(t) = Ax(t) + Bu(t) (6.7)
where ~
z1(t)
z2(t)
t =
2(t) z3(t)
24(t)
is the state, and the constant matrigeand B have the following structure
0-1 0 17 0
- |00 0 0 - | ar
A=—1o0 0o -1|> B=| %
00 7= 0 -5
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Fig. 6.8.Scheme of the 2-DOF suspension: (a) active suspension; (b) semiactive suspension.
Scheme of the 1-DOF suspension: (c) active suspension; (d) semiactive suspension.

Now, let us consider Figure 6.8.b that represents a conventional semiactive sus-
pension composed of a spring and a damper with adaptive characteristic coefficient
f=1@).

The effect of this suspension is equivalent to that of a control force

us(t) = — [N, £(8) 0 —F(1)] @(t). 6.8)

Note that, asf may vary,us(t) is both a function off(¢) and of z(¢). It is
immediate to verify that the state variable mathematical model of the semiactive
suspension is still given by equation (6.7) whe(e) is replaced by, (t).

Therefore, in such a case the system dynamics is regulated by the following state
equation:

0 1 0 -1
A _f@® 0 £(#)
x(t) = Az(t) = 845 6”5 0 A{ x(t). (6.9)
As f(@) .V f(t)
M., M, M., M,

The second order dynamical model

If the dynamics of the tire is completely neglected, the suspension system of a quarter
car can be schematized as shown in Figures 6.8.c and d. More precisely, Figure
¢ provides the scheme of a completely active suspension system, while Figure d
provides the scheme of a semiactive suspension system, where the physical meaning
of all variables is the same as in the 2-DOF case.
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The state variable mathematical model of the active system is still given by a
linear DE of the form (6.7), where the state is

« =10 |

and the constant matrices and B have the following structure:

~ 01 ~ 0
Aa-loo) e-l3]
The effect of the semiactive suspension is equivalent to that of a control force
us(t) = — [As f(1) ] 2(2). (6.10)

Thus, the system dynamics of a semiactive suspension is regulated by the follow-
ing state equation:

. }u) } x(t). (6.11)

6.7.3 Semiactive suspension design

Now, let us discuss in detail how the proposed methodology can be successfully used
to design a semiactive suspension system.

As already said in Section 6.7.1, we assume that the value of the damping coef-
ficient f may take values within a finite set

f:{f17f27"'7f5}

where

f1<f2<---afs-

We select the value of in F so as to minimize a given performance index,
consisting of a quadratic cost depending on the time evolution.
Moreover, we assume that:

(A1) the state is measurable;

(A2) wheneverf is updated, its value remains the same within a given time interval
Omin, that does not depend on the current valug;of

(A3) if at time ¢t the damping coefficient is updated to

fit)=fieF,

then at time + d,,;, the value off may either remain the same or it may switch
to an "adjacent" value, namely,

{fivfi+1} i=1
f(t+5min)€ {fiflafiafi+1}i:27"' 78_1 (612)
{fic1, fi} i=35

Note that assumption (A2) enables us to take into account the fact that the damp-
ing coefficient f cannot be updated at an arbitrarily high frequency. Clearly, the
amplitude of the time interval,,;, depends on the particular physical damper.

As an example, in the case of a solenoid valve damper [48, 99], under the above
assumption (A2) an admissible valuedjg,, = 0.007 [48].
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If the assumption (A3) is removed, and we assume that the valfienafy arbi-
trarily change from any value to any other one, a lagygr, should be considered,
e.g.,0min = 0.03 [48].

Under the assumptions (A1) to (A3), the considered optimal control problem can
be written as in (6.2).

The matrices4 ;) are uniquely defined given the value paccording to equa-
tions (6.9) or (6.11), depending on the considered dynamical model.

More precisely, to each value gfin F it corresponds a matrid(f(t)) that
specifies the discrete state (location) of the switched system.

Note that we consider a particular case where the minimum permanence time in
the discrete locations is the same for all locations.

Moreover, from the assumption (A3), the oriented graph of the switches system
that shows all the arcs, has the structure bfréh-death proces§47] and is shown
in Figure 6.9.

Fig. 6.9. The oriented graph of the switched system that models the semiactive suspension
described in Section 6.7.3.

In the following we present the results of some numerical simulations carried out
on both the second order and the fourth order dynamical system.

In particular, we first assume that a finite numbeof switches is available, then
we allow the system to perform an infinite number of switches.

6.7.4 Application example

The proposed procedure has been applied to the quarter car suspension shown in
Figure 6.8, with values of the parameters taken from [51], and reported in Table 6.1.

Table 6.1.Model parameters of the suspension system considered in Section 6.7.3.

Symbol Value (IS) Physical meaning
M 288.90 mass of the quarter car
My, 28.58 mass of the wheel
As 14345 elastic coefficient of the spring
At 155900 elastic coefficient of the tire

The damping coefficient* may take values within the finite set
F = {800, 1500, 2300, 3000}

while the minimum permanence time is takgp, = 0.007. The oriented graph of
the switched system is depicted in Figure 6.10.

“In the IS the damper coefficient is measured in Ns/m.
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f,=800 f,=1500 f3=2300 f,=3000

Fig. 6.10.The oriented graph of the switched system that models the semiactive suspension
described in Section 6.7.3 with the corresponding numerical values.

6.7.5 Simulations on the second order model

We first present the results of some numerical simulations carried out on the second
order dynamical model of the suspension system.

A different weighting matrix is associated to each discrete location, or equiva-
lently to each value of . In particular, we assume that

@y =Qu) = [y 0] +os 100 [ 2o T sco

In such a way, by virtue of equation (6.10), we can perform a significant compar-
ison, in terms of performance index, among the proposed semiactive suspension and
an active suspension system, considered as a target.

The purely active suspension can be obtained by solving an LQR problem where

~[10 e 109
Q—[OO],R—O.S 107°.

Note that the numerical values of the weighting matri@and R are the same
asin [51].

Simulation 1: N = 6

We first assume that a finite numb&r = 6 of switches is available. We evaluate
offline the N x s switching tables. A state space discretization-cf 100 points
along X; and a minimum local search over three time constants were considered
sufficiently fine.

We assume that the initial state is

o = |:001:| y io =1.

The state trajectory that minimizes the performance index is depicted in Fig-
ure 6.11, where the circle indicates the initial state and the squares indicate the values
of the state at the switching times. We found out

T+ = {0.096,0.1370,0.222, 0.473, 0.482, 0.646}
7* ={1,2,3,4,3,2,3}
Ji=1.419-1073.

Figure 6.12 shows, among the 24 tables constructed, only the 6 ones used by the
controller during the evolution of the system.

The system initially evolves in location When the minimum permanence time
dmin has elapsed, the controller must keep checking the color in €db{see Fig-
ure 6.12) corresponding to the current statel).
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Fig. 6.11.The results of Simulation 1: the state trajectory.

According to this color the controller decides whether to remain in location
or to switch to the adjacent locatich In this case, no switch occurs until a time
71 = 0.096 has elapsed, when the continuous state reaches the cyan area relative to
location2. Now the controller will wait for the minimum permanence time and then
consider tabl&€Z. The same procedure is repeated until all the available switches are
performed.

Note that, given the structure of the automaton, while the switching tables asso-
ciated to discrete locatiorlsand3 may have up to 3 colors, the tables associated to
locationsl and4 may have at most two different colors.

To better appreciate the performance of the proposed semiactive suspension it is
necessary to look at the time evolution of the sprung mass displacement. This curve
is reported in Figure 6.13.a where we can also visualize the evolution of the fully
active suspension considered as a target, and that of a completely passive suspension
obtained using a value gf = 1918 Ns/m [34].

In Figure 6.13.b we have reported the different values of the damping coefficient
f during the simulation.

In Table 6.7.5 we compare the values of the quadratic performance index ob-
tained using the active suspension (considered as a target), the semiactive suspen-
sion in the case oN = 6 (ip = 1 in all cases), and the passive suspension system
obtained using’ = 1918, chosen as in [34].

The results of Table 6.7.5 enable us to conclude that the proposed semiactive
suspension exhibits an intermediate behavior between the passive suspension and
the considered active one, even if a small number of switches is allowed.

Simulation 2: N = oo

As already discussed in Section 6.5, for a sufficiently large valu® othe tables
relative to the first switches always converge to the same one, only depending on the
discrete locatiorh € L.

As an example, assum¥ = 8 and consider the discrete locatiBn The ta-
bles relative to the first 6 switches, naméf, k = 8,7, ..., 3, are reported in Fig-
ure 6.14.
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1 2 3
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Fig. 6.12.Tables used by the controller to compute the state evolution in Figure 6.11.

Table 6.2.Different values of the performance index in the case of some numerical simulations

carried out on the second order model.

o semiactive V = 6)|semiactive V = o0)|  active passive
[0.100 0.000]'] 1.419-10~° 1.419-107°  [1.278 - 10" °[1.546 - 102
[0.045 0.090]| 3.960-10* 3.959-107"  [3.294-107*[4.189-10~*

[-0.015 0.100)'| 1.493-107° 1.492-107°%  |1.437-107°|1.905-107°
[-0.057 0.080)'| 3.719-107* 3.717-107*  |3.506 - 10"*[4.114- 10~*

We may observe that, as the number of available switches increasdsgoes
from 3 to 8, the tables converge. In particular, in this case the tables relative to the

first two switches, namelgs andC?, are the same.

Now, if we consider a larger value &f, i.e., N = 9 (10), and look at the tables

relative to locatior, we may observe thdt (C3,) tables coincide witlC3 andC3.
Using the notation introduced in Section 6.5, we denote these tabiBs.as

Analogous considerations may be repeated for all the other discrete locations.
Now, let us consider the QF(S) (6.1) with no bound on the maximum number

of available switches.
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Fig. 6.13.The results of Simulation 1: (a) the time evolution of the sprung mass displacement;
(b) the different values of used by the semiactive suspension.

3 c3 3
Cg 7 C6

Fig. 6.14.The first 6 switching tables for locatidghand N = 8. Color mapping is in Figure
6.15.
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L ocation Color mapping
1
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|4

Fig. 6.15.Color mapping of the locations, 2, 3, 4 of the semiactive suspension system design
described in Section 6.7.3.

By virtue of the above convergence properties, this problem can be solved by
using only the table€?_, for i € S, as described in Section 6.5.

We report these tables in Figure 6.16.
| (b)
0 1
| \
_1 O

1 0 1 1

1

Fig. 6.16.Convergence tablegl ,...,CL (a), (b), (c), (d), respectively, for the semiactive
suspension design with an infinite number of switches. Color mapping is in Figure 6.15.

Assume that the initial state is still equalitg = [0.1 0)" andig = 1.

The state trajectory that minimizes the performance index is reported in Fig-
ure 6.17 where the circle indicates the initial state and the squares indicate the values
of the state at the switching times.

It can be easily observed that this trajectory is practically coincident with that in
Figure 6.11.

This clearly occurs because after the first 6 switches, the system has practically
reached the origin. As a consequence, the optimal value of the performance/index
is practically the same, as it can be read in Table 6.7.5.
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Fig. 6.17.The results of Simulation 2: the state trajectory.

In Figure 6.18.a we have reported the sprung mass displacement of the semiactive
suspension together with that of the fully active suspension considered as a target,
and that of a completely passive suspension [34].

In Figure 6.18.b we can see the different values of the damping coeffifient
during the numerical simulation.

Note that the periodicity of the switching sequence is a consequence of the partic-
ular example (second order system, rotating dynamics), but it is not a general result.

0.1 J

X, [m] active

0.05- B
semiactive

or \gé/
\ passive (@

0 0.2 0.4 0.6 0.8 1 1.2

f [Ns/m]
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23001

15001

800

®) |

0 0.4 0.8 12
t[s]

Fig. 6.18.The results of Simulation 2: (a) the time evolution of the sprung mass displacement;
(b) the different values of used by the semiactive suspension.
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6.7.6 Simulations on the fourth order model

Now, let us present the results of some numerical simulations carried out on the
fourth order dynamical model of the suspension system.

As in the previous case, a different weighting matrix is associated to each discrete
location, or equivalently to each value 6fIn particular, we assume that

10 00 As
B oo 00 o | f)
Qz(t) - Q(f(t)) “ 100100 +0.8-10 o 0 . [)‘sa f(t)’ 0, _f(t)]
00 00 —f®)

In such a way, by virtue of equation (6.8), we can perform a significant compari-
son, in terms of performance index, among the proposed semiactive suspension and
an active suspension system, considered as a target, and obtained by solving an LQR
problem whereQ = diag{1, 0, 10, 0} andR = 0.8 - 10~ [51].

We consider straightforward the most realistic cas&/of oo.

As already explained above, we first compute Mex s switching tables for a
"sufficiently" large value ofV until we observe that there existsa< N such that
foralli e S,

Cr=Ciy = =Cx.

In this case we tookV = 6 and we observed that the convergence occurs for
k = 5. Thus, we can reasonably assume

Clo=Ci=1,...,4.

These switching tables are not reported here because a significant graphical rep-
resentation is not possible.

The STP applied for thi¢ — th dimensional case was an interesting challenging
problem from an implementation point of view. See the Appendices C.1 and C.2 for
a brief description of the algorithm that allowed the numerical construction of the
tables inR*.

The three angleg§, ¢, 9 that describ&’, in spherical coordinates (Appendix C.1)
are appropriately sampled.

A trade-off value was found itV = 15, and it produces, with the criteria de-
scribed in Appendix C.1, 8581 points.

Note that with a constant discretizatiaNy = 15 would have produced 27000
points, without providing a denser information.

Moreover the criteria in Appendix C.2 was important in order to allow us to take
such a small value a¥,.

Running in MATLAB environment on a pentium W50 MHz the computational
time per switch is about 60 hours. Note however that these burdensome calculations
are performed offline.

Assume that the initial state is

In Figures 6.19.a and b we have reported the sprung mass and the unsprung
mass displacement of the semiactive suspension together with that of the fully active
suspension considered as a target, and that of a completely passive suspension [34].
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In particular, by looking at plot (a) that shows the most significant variable, we
can conclude that the semiactive system guarantees better performance than the pas-
sive one.

In fact, in such a case, the behavior of the semiactive suspension system in terms
of the sprung mass displacement, is quite similar to that obtained using the purely
active system. Finally, in Figure 6.19.c we can see the different values of the damping
coefficientf during the numerical simulation.
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0 0.5 [s] 1 1.5
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Fig. 6.19.The results of the simulation carried out on the fourth order model: (a) the time
evolution of the sprung mass displacement ¢ x3); (b) the unsprung mass displacement
x3; (c) the different values of used by the semiactive suspension.

A comparison among the semiactive, the active and the passive suspension in
terms of performance index is given in Table 6.3, for a small group of significant
initial points.

We may conclude, as in the 1-DOF case, that the proposed semiactive suspension
provides an intermediate performance between that of the passive suspension and
that of the purely active one.
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Table 6.3.The results of the numerical simulations carried out on the fourth order model.

To semiactive active passive
xo = [0.100 0 0.010 0] 1.775 - 107 3[1.591 - 10 %[1.829 - 10~ °
xo = [—0.050 0.300 —0.005 0.010]'[2.423 - 107*|2.374 - 107*|2.976 - 10~*
xo = [0.050 0.300 0.005 0.010] 1.011-107%|8.200 - 107*|1.052 - 1073
xo = [0.010 —0.300 0.010 0.100] |1.678-107*|1.164-10"*|2.175- 10"
xo = [0 0.400 0.010 0.300)' 3.513-107%(3.109 - 10~ *|4.312-10*
xo = [~0.080 —0.100 0.012 0.400]'|1.144 - 1073|8.903 - 10~ *{1.151 - 1073

6.8 Conclusions

In this chapter the problem of infinite number of switches has been examined. We
proved a convergence behavior of the switching tables under particular assumptions.

In particular we formally shown that the cost function, is a decreasing function of
the number of switches, and that there exists a sufficiently great nusiadepen-
dent from the initial point, such that if the systems performs more ffiawitches
the relative improvements on the cost are irrelevant.

Such result permitted us to demonstrate that the tables must converge, and more-
over we provide a constructive way to design them.

Once these tables are constructed the controller is allowiedlgdinitelyuse the
last calculated tabléjv, for an infinite number of switches.

This result, in junction with the STP was applied to a literature and industrial
case study, i.e., the design of a particular semiactive suspension.

The possibility of performing an infinite number of switches and to design the
optimal control law with a finite procedure, allowed the authors to explore possible
relations with other important issues concerning the switched systems, in particular
the stabilizability issue. This will be done in Chapter 7.






7

Infinite number of switches: optimal control and
stability

7.1 Introduction

We have dealt in the previous chapters with the problem of designing a feedback con-
trol law for a class of switched system and a class of hybrid automaton. To this aim
we have developed a recursive procedure, called STP, that under particular assump-
tions, provides a partition of the state space into time invariant switching regions.

The procedure was initially developed under the constraint that the number of al-
lowed switchesV is finite. Then we observed a convergence behavior of the switch-
ing tables with an increasing number of allowed switches, leading us to deal also
with an infinite number of switches.

In the last chapter we proved this important aspect of the STP formally. This al-
lows the construction of the feedback control law for hybrid automata that optimally
drives the system to the origin performing an infinite number of switches.

In both casesk finite andV infinite) we introduced the fundamental Assump-
tion 4.1 thatbasically guarantees the existence of a switching sequence, finite or
infinite, whose corresponding cost is finite.

In this chapter we use the STP to obtain a stabilizing switching sequence, that is
also optimal.

Note that some switched systems composed of only unstable modes can be sta-
bilized by appropriate switching surfaces (as a reference see for instance [17, 90]
among many others) of conic shape. It is reasonable to assume that the quadratic
LQR cost of thes@asymptotically stablsolutions is finite.

These simple considerations suggest,ffo= oo, to relax the Assumption 4.1
and see if we can find a finite cost solution for a switched system composed of only
unstable modes.

In [50] it is proved that if a switched system can be optimally controlled with a
finite cost, then the closed loop systenagymptotically stable

In such a framework the STP becomes a numerically viable approach to design-
ing a stabilizing control law, which is indeed a significant issue in the context of the
autonomous switched systems.

Moreover we prove that if the switched systeneiponentially stabilizablghen
the STP can always find an optimal control law with a finite cost that makes the
closed loop system at least asymptotically stable.

The method of using the STP to provide a stabilizing switching sequence is based
on the consideration outlined below.

Once all tableg’ _ (defined in Section 6.5.2) are constructed, it may happen that
the regiorR ; associated to a given dynamitsever appears.
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In this case, the optimal evolution for the given switched system is equivalent to
the same switched system where the locaji¢tinat never appears) is removed.

This in particular, may allow us to compute an optimal control law for an unstable
system introducing a dummy stable dynami¢sprovided that the corresponding
region does not appear in the tabi&s.

The result is significant. In fact, although there is a rich literature on stability
analysisof hybrid systems, there are very few results on dlesignof stabilizing
laws and they usually apply to restricted classes of systems or give only sufficient
conditions.

7.2 The considered model

In this chapter we will derive the sufficient conditions for the existence of a stabi-
lizing switching law for the class of switched systeid described in Section 3.3.1,
Definition 3.9.

Briefly this is a particular case & where all locations are featured by an au-
tonomous linear dynamics, the set of edgesasiplete This signifies that the ori-
ented graph of the system is completely connected and that thegét) = S\ {i}

Moreover we sev i« # j € S, M, ; = I, (the state is continuous at the
switch), andv i € S, dmin(¢) = 0 (N0 Minimum permanence time required in each
location). We recall that the evolution is given by

2(t) = f(a,t) 2 Aypa(t), i€S={l,...,s}, (7.2)

wherez(t) € R",i(t) € S is the current mode and represents a control varigble,
is a finite set of integers, each one associated with a matyig R™*",
Moreovery i € S, the dynamicsA; are non Hurwitz. We show how it is possible
to design stabilizing laws for theseA, by extending the optimal control technique
developed for stable switched systems.
For brevity of notation we refer to this particular class of switched systems as

{Ai}i€S~

7.3 Problem formulation

The general problem of this chapter is to design a stabilizing law for a switched
system of the form (7.1). Before proceeding further it appears useful to recall some
basic definitions that will occur in the following. For more details we address to [68].
7.3.1 The notion of stability
Consider thenon autonomous system

x(t) = f(x,t) (7.2)

wheref : D x [0,00) — R™ is piecewise continuous inand locally Lipschitz inc
onD x [0,00), andD C R™ is a domain that contains the origin= 0.

Definition 7.1 (Equilibrium point) Theorigin is anequilibrium pointfor (7.2) if
f(0,t)=0, Vvt>O0. (7.3)
|
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Definition 7.2 (Stability of the equilibrium point) The equilibrium pointc = 0 of
(7.2)is

e stableif, for all £ > 0, there exist$ = (e, tp) > 0 such that
le(to)]| <6 = |x@)] <e, Vt>1to>0; (7.4)

unstabldf it is not stable;
asymptotically stabl€AS) if it is stable and there exists a positive constast
d(to) such thate(t) — 0 ast — oo, for all ||z(to)|| < J;

e exponentially stabl€ES) if there exist positive constartsk’, and A such that

lz ()]l < Kllz(to)]| e "),V [lz(to)]| < 6. (7.5)

If asymptotic (or exponential) stability holds for any initial state, the equilibrium
point is said to beylobally asymptotically (or exponentially) stable. |

Note that exponential stability implies asymptotic stability, which in turn implies
stability.

Definition 7.3 (Global stabilizability) The switched systef4; };cs is said to be
globally stabilizabléf there exists a switching control lawz, t) such that the con-
trolled system is globally stable. Analogous definitions hold for global asymptotic
(or exponential) stabilizability. |

Note that if at least one dynamic4; is Hurwitz, then the systeriA;};cs is
obviously globally exponentially stabilizable.

We show ho to compute a conic switching lag, ¢), when it does exist, such
that the controlled systefiA4, };cs is globally asymptotically stable. In particular,
we provide a procedure that guarantees to determine a globally asymptotically stable
switching law whenever the system is globally exponentially stabilizable.

7.3.2 The optimal control problem

The proposed stabilizing procedure is based on the solution of an optimal control
problem of the form, in consistency with Definition 3.15 and the restriction listed in
Section 7.2.

J: 2 min F(Z,7) 2 / x' (t) Qi (t)dt
0

st @(t) = Aypa(t), z(0) = zo, i(0) =io (7.6)

i(t) =i € succ(ix—1) for mx <t < 711,

k € N. We will denote this optimal control problem annexed to the switched sys-
tem S A with the simplified notation OR), omitting the subscripto and the class
restrictionS A, that will be assumed valid in the rest of the chapter.

For further explanation on the model and on the problem refer to Sections 3.3
and 3.4.

As in Chapter 6 we will build the result on infinite number of switches by con-
sidering the extension of a finite number of switches in the form:
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Tilwo.io) £ pin FE.T) 2 [ 2/(0Qualde
’ 0
st (1) = Agpa(t), 2(0) =m0, i(0) = o (7.7)
i(t) =i € succ(ig—1)form, <t <7py1,k=0,...,N
70 =0, TN41 = +00

We denote byi*(t), t € [0,+00), i*(t) = i} for 7 <t < 7, the switching
trajectory solving (7.7), and*, 7 the corresponding optimal sequences.

7.3.3 State feedback control law

We recall the STP presented in Section 4.3 and analyzed in the particular case of
Section 4.6.2.

The optimal control law for the optimization problem (7.7) takes the form of a
state feedback, i.e., it is only necessary to look at the current systenxstateder
to determine if a switch from linear dynamie;, | to A;, , should occur.

More precisely, for a given modee S whenk switches are still available, it is
possible to construct a tabl¥ that partitions the state spaé into s regionsR ;'s,
i=1,....,s=1S|

Wheneveri(t) = i andk switches are remaining, we use tabjeto determine
if a switch should occur: as soon as the state reaches a point in the 7egitom a
certainj € S\ {i} we will switch to modej; on the contrary, no switch will occur
while the system’s state belongsiy.

The procedure that shows how to construct the talilefor all i € S and
allk =1,..., N for the switched systerfiA; };cs is described in detail in Section
4.6.2, orin [29].

The procedure is based on the principle of optimality and it construct recursively
a partition of the hybrid spader,i), x € R (in this caser € X, is sufficient)
and: € S, for each value ok remaining switches.

This partition is based on the information already known when 1 switches
are missing. Proceeding backwards in a recursive procedure all partifjazn be
constructed.

The key function of the procedure is thesidual costas in Definition 4.4, that
we report here. Note that in absence of switching costs it HBlds = T5(-), from
Definition 4.6.

Assume that: switches are missing and the current hybrid statgis), where
y € Y.

The residual cost is:

Ti(y,i,5,0) = y'Q;(0)y + Ti_1(2,5) (7.8)

wherep > 0 andj € S are the current control variables, € R™ is z = A;(o)y,
i.e., the point reached after a permanence in mddea timep.

The two members of the sum that defifesy, ¢, 7, 0) have the following phys-
ical meaning: the first one is the cost of the evolution with the current dynasics
for atimep, the second one is the optimal residual cost from paiatinfinity and its
value has been determined at the previous step of the algorithm,avhéswitches
remain.

Its meaning can be easily understood once the function

Ty (y, i) = ,-meifé T (y, 1, j, 0), (7.9)
>0
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optimal residual cost, is definkd
To complete the procedure the functidi(y, ) is defined as follows:

. 'Ziy if A; is stable
T3y & { Y201 A sttt (7.10)

Hence, define@*(x,4) andj*(x,4) as in equations (4.19) and (4.18) respec-
tively, we obtainy y € X, the tableC}, in agreement with the Definition 4.7.

When all dynamics of A; };cs are unstable the equation (7.10) is badly posed.
In fact in such a case if we apply brute force the STP the last residual cost will be
equal to infinite and consequently all the other functigif-) = +oc.

In the sequel we will explain and formally prove that this inconsistency can be
avoided by the introduction ifiA;};cs of adummydynamicsA,; (Hurwitz) that
servenlyto give a finite value to the functiofi (y, ).

In other words we consider @ugmentedystem, defined in the sequéH; }, s,
that obeys to Assumption 4.1, but such that the t&hlé, i = 1, ..., s does not in-
cludethe regionR . ;.

Informally the new dynamics can be seen dauach padfor the STP. Once the
tables have converged, it can be removed, because the sygtgm s has reached
its orbital equilibrium

7.3.4 Lexicographic ordering and uniqueness

In general the coupléj*(y,i), 0*(y,4)), arguments that minimizes (7.9), may be
not unique.

Hence a statg may be assigned to different regioRs, for j € S'.

To remove this source of nondeterminism we will refer to the lexicographic or-
dering of the couple$;*(y, i), 0*(y,%)) as in Definition 4.8. This ensures that an
optimal table is also unique.

There is, however, another issue related to this problem that must be addressed

Consider the case in which the optimal arguments of (7.9) from ppintloca-
tioni areo*(y,i) = 0 andj*(y,i) = j.

This signifies that an immediate switch towardss required.

It may be the case that the system, once entered in locgtioequires an im-
mediate switch to another location, gaycausing the presence of 2 switches in zero
time.

This behavior is undesirable, because it leads to a potential risk of a Zenoness
when the number of available switches goes to infinite.

To avoid this it is sufficient to reset

j* =argmin Ty_1(z, ", J, 0)-

This choice signifies that the next locationiofust coincide with the optimal
switching strategy obtained froyif at the previous iteration problem.
In fact whenT} (z, 4, j, o) is minimized withg = 0 it clearly holds

'In generall};_, (z, j) is calculated only o, andz ¢ X,,. However, without switch-
ing costs, in force of Property 4.1 it trivially holds

* . * z .
Tkz—l(z7]) = >\2TI<;—1 (Xv]) ’
whereX = ||z||.

2Later on it will be proved that for this class of systems it even hélds= CZ, for all
1,7 € S, thus we will refer only to tabl€.
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T (y,i) = Ti_1(y, j)-
When this extra precaution is taken, we can ensure that a spacing condition
Th+1 — Tk > 0

is always verified during an optimal evolution.

We observe that thisimple ideais significant only if the functio,,;, (i) = 0,
Vi € S.Moreover itis applicable only to arbitrary mode switched systSmsIn
the general case, i.e., when

7y, 1) € suce(i),

it is not possible to reset* = h £ argmin Ty_i(x,j*, j, 0). unless alsch €
succ(i).
For this reason theimple ideavas not introduced in Section 6.3.

7.4 The optimal control problem with an infinite number of
switches

We will recall some results obtained in Chapter 6 that hold for the STP when the
Assumption 4.1 is satisfied and when the number of switches is allowed to grow to
infinity.

Here we shall only give the statements; proofs and explanations are in the men-
tioned Chapter 6.

Moreover in this particular case we will use the notatigiifz, 7) to indicate the
residual cost} (z, ¢). Initially, when the number of switches was fixed a priori the
notationJ}; (z, ¢) indicated the total cost ariff} (x, ) the intermediate residual cost.
Now, where the number of switches is a varying parameter, this distinction becomes
senseless.

Property 7.1 (Monotonicity of the cost) Let N, N’ € N. If N > N and the
switched system evolves along an optimal trajectory, then for some initial hybrid
state(xo, ig),

J;p(ﬂl‘o,l‘o) < J;;/(mo,io) < +o0.

Proposition 7.1 (Convergence of the costfor some initial statdx, ig), o # O,
and ) )
Ve > 0, HNZN(wo,io)

such thatv N > N,
J;{,(wo,io) — J;i,(wo,’io) < €.

Proposition 7.2 (Normalized convergence of the costffor any continuous initial
statexq, g # 0, andV ¢ > 0, 3 N such that for allN > N,

Jy(®0,7) — J " (20, 7)
J;/(.’B(),L)

foralli,j € S. |

g,
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Theorem 7.1 Given a fixed relative tolerancg if IV is chosen as in Proposition 7.2
then for all N > N + 1 it holds that

[ R— 11
CN:CZV+1'
]

The above result allows one to compute with a finite procedure the optimal tables
for a switching law whenV goes to infinity. In such a case, in fact, it holds that for
allie S, _ _ _

Ci = A;iinooC}V =Cri1-

We are now ready to formally prove a useful result for the switched system con-
sidered in this chapter.

Theorem 7.2 Given a fixed relative tolerance if N is chosen as in Proposition 7.2
then for alli, j € S it holds that

i — J
CN-H = CN+1'

Proof. It follows from the fact that, by Proposition 7.2,

‘];7-‘-1 (.’130,’1:) = ‘];7/'4-1 (m()vj)

forall i,5 € S, and from the uniqueness of the optimal tables as discussed in Sec-
tion 7.3.4. |

This result also allows one to conclude that foriall S
Co = lim Ck,
= NEe N
i.e., all tables converge to the same one.

Remark 7.1 Note that this result does not hold for the general switched system, but
merely for the class considered here, i.e., completely connected anudrathum
permanence timeset to 0. If one of this condition are violated then the tables will
converge differently from one location to another. |

This resultis in fact very intuitive. In fact in the completely connected automaton
every location has the same point of view of the rest of the systems.

Thus if from the hybrid statér, ) it is better to switch to locatiop, where there
will occur a non trivial evolution, this must be true for all locatiohs= 1, ..., s,

h # i, j and in locationj the optimal strategy is to remain jin

This is in force of the uniqueness of the optimal solution defined in Section 7.3.4.

Hence the optimal strategy in a poifat, ) is independent from the current loca-
tion i.

To construct the tablé,. the value ofV is needed. We do not provide so far any
analytical way to computéV, therefore our approach consists in constructing tables
until a convergence criterion is met.

TableC., can be used to compute the optimal feedback control law that solves
an optimal control problem of the form (7.7) wifki = cc.

More precisely, when an infinite number of switches is available, we only need
to keep track of the tablé,..

If the current continuous state gsand the current location is on the basis of
the knowledge of the color @i, in x, we decide if it is better to still evolve with the
current dynamics; or switch to a different dynamics, that is univocally determined
by the color of the table in.
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Remark 7.1Note that the tabl€, is Zeno-fregi.e., it guarantees that no Zeno in-
stability may occur when it is used to compute the optimal feedback control law.
This property is guaranteed by the procedure used for their construction as discussed
in Section 7.3.4. |

7.5 Stabilizability of unstable switched systems

In this section we deal with the problem of stabilizing a switched sytdin};cs
whose linear dynamic4; are not stable.

In particular, we show that a solution to this problem — when it does exist — can
be obtained by solving an optimal control problem of the form (7.7) Witk- co.

More precisely, we show how this problem can be solved by applying the switch-
ing table procedure todummyproblem that satisfies the assumption that at least one
dynamicsA; is Hurwitz.

When the original switched system is stabilizable, we select among all stabilizing
laws a switching law that minimizes a given quadratic performance index.

7.5.1 Intuitive notions

It should be clear that we propose a method that is able to find a stabilizing switching
law from a given initial state of conic shapaly if the switched systems admits at
least a stabilizing solution from a given initial state.

Definition 7.4 (Order of convergence)Consider a functiory (¢) such that

lim f(¢t) =0,

t—o0o

we define the order of convergenicéhe value such that
75lim thf(t) =1 < 0.

Proposition 7.3 The STP gives a stabilizing solutiomly if the system admits an
AS solution such that ,
lz(®)]” — 0

with orderk > 1. O

Proof. In fact the STP is based on the finiteness of an infinite time horizon integral
that weights the square norm of vecterweighted by matrice€);. If the square
norm converge to zero with ordér < 1 the integral is no longer finite, hence the
STP is not applicable. |

To better illustrate this statement we provide some intuitive examples.

Example 7.1 The function

o]l

f@) = llz@®)]] = Nm)
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goes to 0 ag — +oo with orderk = 1.

If the norm of the vector fiela:(¢) of a switched system has this convergence
property, it is asymptotically stable but our procedure will fall, i.e., it will not find a
conic switching law that stabilizes the system.

In fact its fundamental mechanism is the minimization of the integral of ahorm
whose sum is expected to be finite (in the Lebesgue sense), but

oo

o0 o0 1
mg/mﬁn@m:mm/ M@Wﬁzmﬂ%m/)——ﬁ:+m

Example 7.2 The function

56 = o) = 122

goes to 0 a$ — +oo with orderk = 1. In this case the STP will work because

/\@@Wﬁ<+m
0

Example 7.3 The function

£(t) = llz@®)] = Jzole™"*

goes to 0 ag — +oo with orderk = +o0. Fortiori in this case the STP will work
because

/\@@Wﬁ<+m
0

On the contrary, if our procedure works, it does not guarantee straightforward the
orderk. Thus we can only ensure an asymptotic stability.

In [109] it is proved that for some classes of switched system the order of con-
vergence of the vector field is exponential.

7.5.2 Theoretical results

We present the following preliminary result that is essential for the rest of the deriva-
tion.

Still we deal with a switched system of the fof,; };cs.

For simplicity of notation let us indicate with OF) the optimal control problem
of the form (7.7), associated {4, };cs.

Consider also a sé&t C S and the corresponding switched syster }
system is trivially obtained fromA; };cs by refiningthe oriented graph.

Figure 7.1 shows graphically this operation.

The corresponding OB} is the same optimal control problem that associates to
each locatiorh, h € S, the same matri®);, as in OP§).

icg- This

*Here wlg we considere@; ) = I...
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ORNEROL

Fig. 7.1. Refining operation of a switched system. (a) Switched sy$tén};cs, S =
{1,2,3}.(b) Switched systef;}, s, S = {1,2} C S, refined from (a).

Proposition 7.4 Let us consider an O of the form (7.7) withV' = oc. If the
tableC., solution of OPE), is a partition ofR;, j € S C S, thenC, solution of
OP(S) coincides withC.., i.e.,

Coo = Coo.

O

Proof. The validity of the statement follows from the definition of the talg and
the possibility of using it to derive an optimal feedback control law for &P(

If the regionR;, corresponding to a certain modg, does not appear i, it
means that it is never convenient to switch to matje or to evolve withA,, ifitis
the initial mode.

Hence, for any initial state, an optimal solution of G(s also an optimal so-
lution for OP(S), and in force of the uniqueness of the switching tables it can only
be }

Coo =Coo.

regardless of the current continuous state and the current dynamics. |

The above result enables us to use the switching table procedure to compute a
stabilizing switching law, if it does exist, for switched systems whose dynamics are
unstable.

In particular, the proposed approach is based on the constructioraafiamented
systemand anaugmented ORhat are defined as follows.

Definition 7.5 (Augmented system)Consider a switched systef; };cs. We de-

fine theaugmented systemswitched system of the same clégs },_ 5, such that
o [S|=|S]+1;
e {A;},.5is composed of the same dynamicq &s}cs;
o A, € {Ai},c5isHurwitz.
[ |

The augmented systefm; },_ s coincides with the systefiA; };cs, but it con-
tains an extra dynamicgy s that is Hurwitz.

As an example consider the switched system whose oriented graph is depicted in
Figure 7.1. If the dynamics associated to locatiois Hurwitz, then the system in
Figure 7.1.(a) is an augmented system of Figure 7.1.(b).
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Definition 7.6 (Augmented OP) Let us consider an OB) with N = co. Assume
that all possible moded;, i € S, are not stable and the corresponding weighting
matricesQ;, i € S, are strictly positive definite.

Let{A;}, s be an augmented system{od; };cs as in Definition 7.5.

We defineaugmented ORY) of OP(S)an optimal control problem of the form
(7.7) WithN = 00, andQ,41 = ¢Q, ¢ € Rt andQ > 0. [}

In other terms, for ali = 1,...,s all Q; coincide for both systems. The new
Qs is a strictly positive matrix multiplied by a factgr whose role will be clear in
the sequel.

Now, let us prove the following proposition.

Proposition 7.5 Consider an ORf) with N = co. Let J% (xo, i9) be the optimal
cost value solution of OB) when the initial state i$x, i).
Now Ietf;‘o(mo, i0, q) be the optimal cost value of the augmented &Pés in
Definition 7.6, for the same initial state.
The optimal coslf;"o(azo, i0, q) is a strictly increasing function of for all values
of ¢ such that the Hurwitz dynamic$,_, ; appears in the optimal evolution of Q)
[l

Proof. We prove this by contradiction. Consider two different augmented problems,
OP1(S) and OF?)(S) that differ for their value of;.

In particular, letq(") and ¢(® be the values of the coefficiegtassociated to
OP1)(S) and OF?)(S) respectively, and lef") > ¢,

Assume that

T (20,0, q) = T2 (o, 0, ¢'P),
respectively the costs of the evolutiofs(t),4(t))") and (x(t),i(t))? are the
same.

We will show how this assumption brings to a contradiction. In fact, if we use
the solution of OF)(S) and compute the cost of the evolutien(t), i(t))() for a
generic initial state using the weights of BRS) we obtain a value that is smaller
thanj:o (Il?(), 10, q(l))

For the absurd assumption this value is also smaller thafe,, ig, ¢®), and
this is a contradiction, because by definiticfgc(wo,io,q(z)), obtained solving
OP2)(8), is the minimum value. [ |

If a switched systen{ A;}.cs composed of exclusively unstable dynamics is
stabilizable, then a stabilizing switching law can always be computed using the STP.

We do this by annexing to the switched systéa, },cs an OP§) and by con-
sidering the solution of an augmented GR(

The main feature of the computed switching law is that it stabilizes the system
and at the same time it minimizes the annexed quadratic performance index.

This is very appealing, because this method provides a criterium to design a sta-
bilizing switching law (which is itself a major goal in system theory) and furthermore
the feedback stabilizing law minimizes an index.

7.5.3 Theorem on the stabilizability

Let us now state and prove the main theorem of this chapter.

Theorem 7.3 (Stabilizability of unstable switched system)Given a switched sys-
tem{A,};cs, let us consider an optimal control problem of the form (7.7) with
N = oo and weighting matrice§); > 0,7 € S. Then, let us define an augmented
{As},.5 and an augmented 08}, as in Definitions 7.5 and 7.6.
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(i) The switched systef,; };cs is globally exponentially stabilizable= 3 G €
R* such that the tabl€.., computed by solving OB}, does not contain the
color associated taA.

(i) The switched systeA, },cs is asymptotically stabilizable= 3 G € R*
such that the tabl€.., computed by solving OB}, does not contain the color
associated toA.

O

Proof. We denoteJ, (xo, ip) the optimal cost of the optimal control problem for the
system{ A; };es when the initial state i§x, i¢), and.J* (zo, 0, ¢) the correspond-
ing optimal cost of the augmented systém; },_s.

The costJ* (xo, i0, q) is obviously finite for all finite values of becaused is
stable.

Moreover, it is upper limited by the value df, (zo, io), i.€.,Vq € RT,

J% (0,00, q) < T2 (0, o).
Finally, j;o(aco, i0, q) is a quadratic function aty, i.e., if g = Ay then
j:o(Ay07 iO? q) = AZj;o (y07 iOa Q)

(i) Assume that the switched systed; } s, is globally exponentially stabiliz-
able.

This implies that/*_ (g, i9) < +oo, for all zy € R™ and for alliy € S.

In fact, any control law that is exponentially stable implies that along any trajec-
tory it holds

/ T2 (0)Quye(t)dt = / Sy (OQuwy(®) ()]t
0 0

<K [ (o) < K el [ e e < o,
0 0
where we have writtem(t) = y(¢) ||z (t)| with |ly(¢)|| =1,

K= min y'Qy,
ies
y e En

andc, A € RT. )

By Proposition 7.5 we know thak’ (xo, io, ¢) is an increasing function af for
all values ofg such thatd ., appears in the optimal evolution.

Therefore, we may conclude that{if\; } < s is globally exponentially stabilizable
then3 ¢(M) (x0,i0) € R such that

T (0,70, ¢ (0, 40)) = J% (0, d0)-

Moreover, if the equality holds for a certain valuegof ¢! (x¢, ig), then it also
holds for allg > ¢ (z, o).

In fact, the above equality implies that the optimal control law of the augmented
OP(S) requires no evolution with the stable modg., ;.

If this is the case when its weighting matrix@; = ¢(*Q, thenfortiori when
its weighting matrix isQ,1 = ¢@Q with ¢ > ¢ (x0, io).
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Now, the result holds if we let

~ 1 . 1 .
G= max ¢V (xg,ip) = max ¢P(yo,i0),
ig €S ig €S
zo € R™ Yo € Xy,

where the second equality follows from the fact ttigg;(mo,io,q) is a quadratic
function of .

If we define the augmented QP(with Q.1 = ¢Q, then for all values of
xo € R™ and alliy € S, it holds that

J% (0,00, 4) = J2 (0, d0),

i.e., the controlled system never switches to dynamicgs, neither evolves with
A,y ifitis the initial mode.

This obviously implies that the tablg,,, computed applying the switching table
procedure to the augmented GPWwith Q. = ¢Q, does not contain the color
associated to the stable modg ,; = A.

(i) Assume that3 g such that the switching table,,, computed applying the
switching table procedure to the QP( does not contain the color associated to the
stable moded,; = A.

By Proposition 7.4 this implies that the control law that results using @blés
also optimal for the ORY).

Therefore, being .

J:o ("BOa i07 (j) < +-o00,
and J% (xo0,40) = J% (o, i0,q) for all zy € R™ and alliy € S, it follows that
J;O(wo,i()) < +o0.

It is not difficult to show, with the same argument we used in [50], that the finite
value of the optimal cost for all initial states and dynamics implies that the switched
system{ A, },cs is globally asymptotically stabilizable. |

The above theorem provides an efficient way to deal with the problem of deter-
mining an asymptotic stabilizing switching law for a switched sysfetn};cs with
linear unstable modes, that can be summarized in the following steps.

1. associate to the switched system an &Rfith N = oo;

2. define an augmented systdm; },_ s and OPS§) choosing; very large positive
real number;

3. construct the tablé,, solving OPE):

4. If this table does not contain the color associated to the stable Mgde, by
Theorem 7.3(ii), we conclude that the original switched sysein} ;< s is glob-
ally asymptotically stabilizable. In such a case, we compute the stabilizing feed-
back control law that minimizes the chosen quadratic performance index using
tableC..

Note, finally, that the procedure may also find control laws that locally stabilizes
a system, as shown in the examples described in Sections 7.6.1 and 7.6.2.

We do not provide an a priori rule to establish if the switched system is stabiliz-
able and in such a case, an analytical way to compute an appropriate valui@ of
this case the solution of the problemlafowingif the system is stabilizable remains
open.

Nevertheless in all numerical examples taken from the literature, we found out
that if the system is stabilizable it was sufficient to use a large valy€lof® +102°)
to compute stabilizing laws.
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7.6 Numerical examples

In this section we will provide some numerical specific examples and in particular
we will use the theoretical results to provide stabilizing switching laws of switched
systems that minimize a performance index.

Three examples are taken from the literature, and known to be stabilizable. In
particular one is inspired by the famous exampleéBadnicky [17], another one is
inspired by the example described Bgttersson et alin [40] and stabilized with
LMI approaches. The third one is taken from a workQuflaneri et al.who studied
stabilizability via optimal issues for a switched system of the same class considered
here. All examples are composed of strictly unstable dynamics.

We then show what happens to the STP when the system is evidentyotaily
stabilizable The region associated to the stable dynamics, albeit an extremely high
associated weights in the GF)( it does not disappear.

Finally we provide an example that can be even soledlytically, providing
the possibility of comparing the results obtained with the STP.

7.6.1 Examples from literature
Example 1: from Branicky

As a first example of the described approach we choose a variant of a very well-
known switched system [17]A; };cs, with s = 3 and

1-10 39.97 —77.50 —37.97 —77.50
A= [100 1] Az = [32.50 37.97] As = [ 32.50 39.97} '

Note that dynamicsl, and A3 are obtained from dynamic4, by an axis rota-
tion of 2% and 4" degrees respectively.

All dynamics A;’s are unstable.

To determine a stabilizing switching law we first associate to the switched system
{A;}ies an optimal control problem of the form (7.7) wifkfi = oo.

In particular, we tak&); = I,,i=1,2,3.

We define an augmented OP with the stable dynamics

A=A

and weighting matrix
Q. =10°Q,
whereQ = I,.

We construct the tablé... More precisely, we apply the procedure to construct
the table<’; for finite values ofV and we find out that, for a sufficiently large value
of NV, namelyN = 15, the tables converge to the same one. The @hlés reported
in Figure 7.2.

We can immediately observe that the color associated to the stable dyndamics
never appears. This means that, regardless of the initial state, the optimal trajectory
of the augmented OP is obtained by infinitely switching among unstable dynamics
A;i=1,2,3.

This allows one to conclude that the switched systedn};c 1,23} is globally
asymptotically stabilizable. Moreover, the talilg can be used to compute the stabi-
lizing feedback control law that minimizes the chosen quadratic performance index.
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Fig. 7.2.The optimal trajectory of the switched systéd; };c 1 »,3; of Example 7.6.1.

An example of an optimal trajectory is reported in Figure 7.2 when the initial

state is
_[~om07]
m() - 0707 ) Z() - .

The stabilizing and optimal sequences are

Ir = {1 3 2 1 3 2 1 ..
T* = 1072 {0.483.843.78 3.423.723.48 3.18 ...}
J% = 0.0208.

Note that the system, because of the homogeneous regions, presents a periodic
behavior.

Example 2: from Pettersson et al.

This example is taken from [40], where it was stabilized via a LMI approach. The
same examples was also analyzed in [64], where the switching rule is obtained via a
probabilistic gradient based algorithm.

The system dynamics are:

010 15 2
A= [0 0]"42: [—2 —0.5]'

The annexed optimal control problem associates to each dynamics the weight
identity matrices, and allowd = oo switches. Henc€, = Q5 = I».
As in the other examples we consider an augmented OP, given by the couple

Az =—Ay Q3 =10°Q;. (7.11)
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The STP converges, in this case, aftér= 16 switches, and the table,, does
not contain the color of the dummy dynamics, hence it is the stabilizing one of the
original system, only composed of unstable dynamics.

The table, juxtaposed with an exemplificative trajectory, is depicted in Figure 7.3.

-0.5¢

Fig. 7.3.TableC., for the switched system taken from [40] and described in Example 7.6.1.
The obtained table stabilizes the system and it minimizes an LQR like performance index.

An example of an optimal trajectory is reported in Figure 7.3 when the initial

state is
_[-om07] .,
To=1 oqo7|> 0=+

The stabilizing and optimal sequences, according to the given index, are

7= { 1 2 1 2 1 2 1 ..}
7* = { 0.090.770.61 0.77 0.61 0.77 0.61 ...}
Jx = 0.76.

We take advantage of this example to highlight the fact that there might exists
other stabilizing laws, but their performance is lower in terms of the considered in-
dex.

For sake of completeness we provided another switching law, reported in Figure
7.4. We may easily observe that this law, however stabilizing, is not optimal in the
sense of minimizing the given performance index.

The trajectory starting from the same initial point is completely different and it
is described by the following schedule:

7 =4{ 1 2 1 2 1 2 1 ..}
7 = { 0.080.860.27 0.86 0.27 0.86 0.27 ...}
Joo = 1.26.

and obviously its cosf, > JZ%,.
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X2 1r

0.5¢

Fig. 7.4.Stabilizing, however non optimal, switching table for the switched system taken from
[40] and described in Example 7.6.1.

Example 3: from Colaneri et al.

This example is taken from a recent work@dlaneri and GeromdR6], to appear at
the triennial IFAC (International Federation of Automatic Control) conference 2005.
In this paper the authors consider the issue of providing a stabilizing switching se-
quence. Their approach is based on Lyapunov like methods.

We recall now the result provided by Colaneri and Geromel that interestingly
suits our research. The reader is referred to [26] for proofs and details.

Given a switched system of the forfd; },¢s, i.€., a switched system composed
of autonomous dynamics and whose oriented graph is completely connected, the goal
is to search for a set of matricés; that satisfies the Lyapunov-Metzler equation,
namely

AZ;i+ Z; A+ 7.Z; <0, (7.12)
j=1
fori =1,...,s, wheres = |S| andr;; are the entries of a matrix of Metzler cldss

The solution of equation (7.12) provides the switching sidfa(t)) in feedback
form as

i(z(t)) = arg min . ' (t)Z;z(t). (7.13)

1=1,...,

“The class of Metzler matrices [26] is constituted by all matriéeés € R***, with

elementsr;; such thatr; ; > 0, i # jandy m; =0, V j.

i=1
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Furthermore if the equation (7.12) becomes

A;Zi+ZiAi+Z7rj,iZj +Q <0, (714)
j=1
with Q > 0, then
/ ' (t)Qz(t)dt < min x(Z;xo, (7.15)
0 i=1,...,s

.....

Z;'s solve (7.14), is the optimal one, i.e., it minimizes the integral in equation (7.15).
Thus we applied both procedure to the example presented in the paper.
A switched system is composed of 2 dynamics, hamely

0 1 01
Al_ |:2 9:|7 A2_ |:22:|7
bothunstableand an annexed OP with weight matri@@s = Q> = Q = I.
Colaneri and Geromel solve 7.14 and obtain the following matrices:
7. _ 6.7196 1.6293 z. 6.0825 2.1293
L7 11,6203 1.0222 |0 ©2 7 |2.1293 2.2206 |’

and using equation (7.13) we can obtain the switching region depicted in Figure
7.5(a).

Now we apply to the given setup the STP, described in this chapter. To this pur-
pose we define the augmented problem

Az =—Ay Q3 =10°Q,

and we keep constructing switching tables until the convergence is met. For this
example we established a convergence dfter 15 switches. The last tabl€;; =
Cwo, Is depicted in Figure 7.5(b).

Observe that the tables obtained with the two different methods are the same.
We choose to give different colors to remark that they are obtained with different
approaches.

To conclude we simulated these switching tables starting from two different ini-
tial points.

The first one isey = [—0.7,0]" and initial dynamicg, = 2. We obtained the
following values:

e Optimal switching sequenc&:= {2,1,2,1,...};

e Optimal switching times7 = {0.37,0.01,0.02,0.01,...};
e Optimal cost/*(xg,ip) = 0.561.

The trajectory is depicted ired in Figure 7.5(b), or in Figure 7.6, where it has been
zoomed.

The second one igy = [0,0.7]" and initial dynamics, = 1. We obtained the
following values:

e Optimal switching sequenc&:= {1,2,1,2,1,...};
e Optimal switching times7 = {0.42,0.62,0.01,0.02,0.01, ...};
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-1 -0.5 0 0.5 1

Fig. 7.5.Example studied in [26] reported in Section 7.6.1: (a) Switching table obtained with
the approach described yolaneri and Geromg(b) Switching table obtained with the STP
described in this chapter and optimal trajectories. Note that these switching manifolds admit
sliding motions.

0.1

0.05

-0.05

-0.15

-0.05 0 0.05 0.1 0.15

Fig. 7.6.Zoomed picture of Figure 7.5(b) representing two optimal trajectories of the system
described in Section 7.6.1. Observe the sliding motion around a switching surface, a frequent
behavior of switched systems.
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e Optimal cost/*(zg,ip) = 0.0394.

The trajectory is depicted iarangein Figure 7.5(b), or in Figure 7.6, where it has
been zoomed.

7.6.2 Non stabilizable case

We shall present another example to illustrate the behavior of our procedure when
the switched system is not globally stabilizable.

This example was inspired by [64].

We consider a systed, },cs, with s = 2 and

01 00
A= [00]’ Ay = {10}
Clearly this system is not stabilizable in the | and Il quadrant, where both vector
fields diverge in independent directiond s flow is parallel to ther; direction and
As’s to thexs one).

A more convincing argument can be found by looking at the picture in Figure 7.7
of these two vector fields.

A
2 AX Ay
Aq g > A1
Aq A1
«— «—
Ay Ay

Fig. 7.7.Vector fields of the dynamics considered in the example in Section 7.6.2. Note that in
the first and third quadrant there is no possibility to obtain a switching strategy that stabilizes
the switched system.

In the Il and IV quadrant, where the direction of the flow is opposite, we expect
the presence of an optimal switching sequence, that stabilizes the system.
To maintain the high symmetry of the system we consider

Qi = I27

1 = 1,2, and we define an augmented optimal control problem with the stable dy-
namics
Az =—-1I, Q3 =107Q.
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The converging switching table of the augmented prokfemis achieved after
N = 10 switches.

Its construction required a finer discretization’sf (150 points, versus 50 of the
examples in Section 7.6.1) and it is reported in Figure 7.8.

Note that wherne;zo > 0 the minimum cost is obtained by performing the evo-
lution exclusively with the stable dynamies;, despite the extremely high value of
the weighting matribxQs.

Fig. 7.8.Non globally stabilizable example. Note that, however extremely expensive, the con-
troller cannot find a stabilizing sequence of only dynamdcsand A- in the odd quadrants,

thus the color of the augmented dynamits cannot disappear frorf... Note also the stabi-
lizing sliding motion along the switching attractive manifolgd = —x.

On the contrary, when;zo < 0, there exists a stabilizing switching law that
collapses into a sliding mode along the surfage= —x; .

This intuitive result can also be obtained analytically by providing the expression
of the cost as a function of the angle variableXn

Moreover it is possible to identify analytically the equivalent dynamics =
—0.5I5 along the sliding surface.

Let us consider now the initial point

o _[-oT0r]
0= | oro7| 0T

The trajectory is plotted in Figure 7.8, and it has the typical chattering shape of
the sliding mode.
The corresponding cost (sampling st&p= 0.1) is

J:O(IL’Q, io) = 1.0025.

Obviously, when the sampling step of the simulation program goes to zero, the
evolution follows the equivalent dynamic4,. with equivalent weighting matrix
Q. = I, whose quadratic cost is trivially equal to 1.
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7.6.3 Analytical example

In this section we describe a particular switched system whose stabilizing control law
that minimizes the correspondin@P can be computed analytically. Furthermore
we will apply the procedure described in this chapter to show the equivalency of the
approaches.

Consider the switched system featured by the unstable dynamics

01 00
a=[oo] 4= [ 03]
It is trivially the same of Section 7.6.2, except for the fact tHathas opposite
sign.
However this is sufficient to guarantee the existence of a stabilizing control law.
This can be seen from the vector fields of these dynamics that are parallel to the
coordinate axis as depicted in Figure 7.11a.

Our purpose, with this very simple example, is to obtain the switching law ana-
Iytically, and then show that it coincides with the one obtained with the STP.

Analytical construction of the optimal switching region

To develop the conic switching surfaces analytically it is necessary to choose a gen-
eral initial state and a general switching surface.
We can choose
o = |:_1:| y io = 2.
o

Note that this point igieneralbecause one DOF can be omitted in force of the
2-homogeneity of the cost.
We parameterize the switching surfaces by their sloapesn, € (—oo, +00),

ie.,
(1) Tog = M1
(2) zo2 = moxy,

and such that we usd; (A4;) if z’Gx > 0 (< 0), where

_ mi+mo

G = |:_7Tn211T77212 1
2

defines the conic regions depicted in Figure 7.9. Note that according to this set up it
ismy > 0 andms < 0.

We first calculate the sequence of switching states, namgly = 0,1,2,3, .. ..
To avoid confusion we recall that the vectors arbatd, while the components of the
vectors aren't. Let us initially give:(¢) as a function of the state transition matrices
and a generic initial state;,:

(7.16)
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Fig. 7.9.Parameterization of the switching surfaces for the example of Section 7.6.3.

with o < —my. Evolving with dynamicsA, we will hit the first surface (of slope
mo) after a timedy = —mso — «. This can be obtained using equation (7.16.b) as

follows:
wo-[2][:]

and imposing that(¢) belong to the switching surface of slope,, hencex(t) =
-1, —ma]".
We obtain the first switching point

From this point we now switch into dynamigs,; . With analogous calculations, i.e.,
using equation (7.16.a) with initial poiat;, the next switching point is

s [
Lo = — .
my | —M
The time spent with dynamic4 is the time necessary to cross ttumebetween
the two manifolds parameterized by, andm;. For a well known property of the
linear systems irR?, this time isindependenfrom the particular initial state. Its
value isdy = 12— M
mamq
Now from pointxs the system switches again inth, and in analogy with the
previous calculations we obtain the point
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" _mg | —1 _mzm
3= — &1
my | —M2 mi

after atimedy = m; — mo.
Now from pointx3 the system switches again inth; and in analogy with the
previous calculations we obtain the point

2
o (M2 L] me
4 my —ma my 2
after atimedy.

It goes now straightforward that the sequences of switching points are governed
geometrically. In particular:

-1 -1 -1
_ _ —_ m2 — ma — ma2
wO - |: o ’ wl - —my b w2 - my —my ’ w3 my w17 w4 my wQa

k
oy Topgl = (%f) T1, Tokyo = (%f) T2, -,
(7.17)
withk =1,...,00.
Simple considerations on the switching sequences and on the geometrical behav-
ior of the given dynamics lead to assert the following remark.

Remark 7.2 The conditions of stability for this particular system are the following:
o f
1. mamq > 0;

2. 2 o -1;

mi
the system is unstable. In factin case (1), i.e., the switching surfaces are both in |
and Il guadrants or Il and IV quadrants, the system has no possibility to perform
any stabilizing rotation. In case (2) the switching sequend@ ih7)diverges;
if 72 _

—1the systemis atits limit cycle [46, 53]. In fact the switching sequence
mi

in (7.17)becomes stationary;

o if-1<™ <0the system is ES;
mi

The conic switching surfaces, whose corresponding stabilizing switching se-
quence minimizes the performance index

+oo
1= [ @ 0Quat

can be calculated analytically for the simple c63e= Q2> = I, = Q.

To this aim we need to express the cdsas a function of the initial point and
the parameters of the switching surfaees and m,. This is appealing, because,
the trajectory is composed of 2 kinds of homothetic branches, the vertical and the
horizontal ones.

Since the initial points of the vertical (horizontal) branches have the form
k

k
Topi1 = (@) Ty (Topio = (ﬂ) x5) we expect to formulate/ as a com-

miy miy

bination of geometrical series indexed by
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Moreover, as stated above, the time spent in the vertical (horizontal) branch is

mo — M .
#), regardlessof the particular value of.
xast

oy =mqy —ma (0g =

Hence the cost expression is:

+oo +o0
J(e,2,m1,ma) = (Qy(80)@o + > _ahy 1 Q1 (6r)Tak—1 + >_ahy,Qs(6v)Tar,
k=1 k=1
(7.18)
where 2 is the index of the initial dynamics.
We may calculate analytically
— 6 -/ —
Q00 = [ A Aiat
0
— 6H — —
Q:(0m) = A, (t)As(t)dt, (7.19)

0

oy
Q,(0v) = /O Al () A (t)dt.

and substitute the values, given in equation (7.17). Now all terms in (7.18) can
be expressed as a function(ef, m1, m2). The global expression becomes long and
complicated, but conceptually simple. In fact, once we havelthe 2, m,, m2) all

is left to do is to find its global minimum, in the two variables andms, in the
stability range provided in Remark 7.2.

The minimization task, via partial derivative, is not analytically feasible, because
in the cost expression there appears polynomial terms of order 6, but it can be done
numerically.

A smartshortcut can be achieved considering that it must hojah, = —1, for
sake ofsymmetry

In fact there is no significant reason to believe that the system prefer to sojourn
longer in one specific dynamics, because they are both weighted with the same matrix
Q.

Thus it can ben; = m > 1 andms = —% and this is a significant simplifica-
tion, because we pass from a two variables problem into a single variable problem.

Now we would like to recalculate the function

“+oo
T = J(@o,ig,m) = J(,2,m) = / 2 ()Quya(t)dt.  (7.20)
0
Using the sum expression of the cost we obtain thaan be written as

+oo
J(e,2,m) = 2(Q;, (60) o + Zm%@lk (0)xy, (7.21)

k=1
where

e x; are the switching states of equation (7.17) that can be seen also in Figure 7.9;
° 5022 %;—-a > 0;

e =0y =90y =m+ % > 0 is the time spent dynamic4, or A,, fromx; on.
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We can also recalculate the switching statgs

-1 -1 1| 1 1 1
To=| | T1= | L |»T2= 752 | _ y 3 = —52%1, Ty = — 5,32,

m

L) w2k+1 = (_#) Ty, w2k:+2 = (_ﬁ) T2, ...,

(7.22)
withk =1,...,00.
Hence equation (7.21) can be rewritten as
— — — +Oo
J(,2,m) = 2yQ;, (o) + (#1Q;, (D)1 + 25 Q;, (6)m2)Y m™**.  (7.23)
k=0
Now, being
_ o + LI 5 & _ §4 & 9
Qio (50) = “23 2 ) Qil (6) = 2 2 3 ) Qi2 (6) = 23 2
-3 % FOo+% ~5 0
after some quite long calculations we obtain
oY 1 1 (m?+1)3
2,m) = —— 2 — . 7.24
J(a,2,m) 3(3+a)+<m+3m3+3m3(m2—1) (7.24)
Finally, solving
o1 g
om

and consideringcceptableonly the stabilizing solutions: > 1, in force of Remark
7.2, we find a unique solution

1
m* = 3.146,

that represent the slope of the switching surface in the | and IIl quadrants, and
in the Il and IV quadrants respectively. Note that, as expected, the valug o
independent frona, i.e., from the initial point.

We depict in Figure 7.10 the equation (7.24) plotted in function of the design
parametefn in the surrounding of its minimum value. The function cost reaches the
minimum whenm = m*.

Numerical construction of the optimal switching region via STP

The same result can be obtained by applying the STP. To do this we consider the
augmented problem, provided that its weight in the performance index expression is
high. In particular

[ -1 100 o

Convergence is met itV = 12 switches. In Figure 7.11(b) the switching region
is depicted, with two trajectories for different initial points. It goes straightforward
that the optimal sequences, are, for the initial point
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Fig. 7.10.Plot of function(7.24)in the surrounding of its global minimum.
AX
Aq
Az
A
A
< (b)

Fig. 7.11.Example studied in Section 7.6.3: (a) Vector field of dynamigsand A, , (b)
Optimal switching surfaces and two trajectories.

_[-o0q07] .,
To=1 _gqo7| 0T >

T*={2121212 ..}
T ={0606606666..}

The cost of the trajectory obtained with the STFJJéS TP) = 1.6099, while the
exact value, from equation (7.24), with = m* = 3.146, « = —1, normalized on
Yo is JX, = 1.6095

7.7 Conclusions

Based on the results of the optimal control of switched systems with a infinite num-
ber of admissible switches and at least one Hurwitz dynamics, we showed that this
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approach can also be efficiently applied when all LTI dynamics are not stable. This
is done by solving an appropriate optimal control law, called the augmented OP,
that contains a Hurwitz dynamics. In particular, we show that if the switched system
with unstable modes is globally exponentially stabilizable, then an optimal feedback
control law can be computed, that guarantees the closed-loop system to be globally
asymptotically stable.



8

Concluding notes, open issues and future research
interest

In this chapter we will summarize the contributions of this thesis, illustrate the open
issues and propose some directions for future research.

8.1 Summary of contributions

The research contributions of this thesis are set out in Chapters 3, 4, 5, 6 and 7. We
will subsequently summarize their contents.

In Chapter 3 the considered model is defined. We dealt with a subclass of the
recent dynamic models known hgbrid systemsa mathematical formalization that
integratesevent driverdynamics withtime drivendynamics. The subclass of inter-
est is thehybrid automataa model composed of a set of locations (nodes), each
associated with a mode governed by a linear affine differential equation, and a set
of edges (arcs), whose firing is the occurrence of a discrete event that provokes the
mode switching. In this chapter we formally defined the hybrid automatatdts
composed of the continuous state= R™ and the discrete staighe current active
mode, itspropertiesand itsdynamical behaviorln parallel we defined an annexed
optimal control problem, that is formulated as the minimization of a performance
index based on the quadratic cost of the continuous stated the sum of a cost as-
sociated to the event driven dynamics. The control variable is the piecewise function
i(t), namely the sequence of locations and switching instants. In a hybrid automaton
the degree of freedom of the functiét) may be limited by the continuous state
x(t). Besides we described in detail a subclass of the hybrid automata, commonly
denoted aswitched systentharacterized by a functioift) independent from the
continuous state.

In Chapter 4 we developed a procedure, $tdtching table procedur8TP, that
solves the optimal control problem defined in Chapter 3, for a switched system and
for a finite number of switches. The procedure, based on dynamic programming
arguments, consists in the construction of a set of tables that partition the state space
into several regions which suggest the optimal switching strategy in feedback form.
We proved that the thus obtained tables guarantee to find the global optimum of the
given performance index. Moreover the dynamic programming principle bounds the
computational complexity of the table construction, that is linear in the number of
switches and quadratic in the number of modes of the switched system. The main
drawback of the STP resides in the necessity of discretizingvtiade state space,
so practically limiting the application to low dimensional examples. Despite this, we
showed that under particular conditions, specifically when all switching costs and
affine terms are null, the regions are homogeneous, thus permitting to discretize only
along the unitary semisphere.
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In Chapter 5 we applied the STP to hybrid automata and to the case of finite
number of switches. Namely we demonstrated that the procedure is still applicable
even in the case when the design functigt) is allowed to take values from a set
constrained by the current continuous valuef the hybrid evolution. In particu-
lar we analyzed in detail two special cases, defined in Chapter 3. The former is the
autonomous hybrid automat&H A, where there may occimternally forced[122]
spontaneous switchings, according to the current valugor this model, charac-
terized by uncontrollable edges, we prove the conditions under which the STP may
be applicable and the optimal solution is finite. The latter isciwestrained hybrid
automataC H A, where the choice of the controller may be restricted in order to
respond tcsafetyspecifications on the output signal. This problem is solviedar-
chically, namely dow levelprocedure deals with the specifications, ardgh level
procedure, STP, with the optimal control within the remaining degree of freedom left
by the low level. In both cases a whole state space discretization is required, unless
for the peculiar case where guards and invariants of the hybrid automaton, defined in
Chapter 3, are homogeneous.

In Chapter 6 we considered the same model and problem studied in Chapter 4,
i.e., switched systems, but we relaxed the condition that the number of switches is
upper bounded by a finite valu€. In other words we applied the STP for increasing
values of N, pointing toinfinite. Then we observed and formally proved that there
alwaysexists asufficiently largevalue N, independent from the particular initial state
and initial mode, that marks the convergence of the switching tables. So the tables
obtained for greater values thahare the same. This is a significant result because it
allows one to usenlythe table’s, = CZ, indefinitely fort € [0, co). Furthermore
the method has been successfully applied to the design of a semiactive suspension
system of a quarter car model, and it appeared that its performances are consistently
intermediate between a purely active and a purely passive one.

Lastly, in Chapter 7 we investigated the possibility of using the STP, for a
switched system, restricted to the casecompletely connectedutomaton, with
infinite number of switches, as a design tool of a stabilizing switching signal. We
demonstrated that this is possible provided that the switched systgliobislly ex-
ponentially stabilizable. In fact this is a sufficient condition to guarantee that the
performance index, an integral of the quadratic norm of the st@te is finite. From
this viewpoint the STP appears an alternative synthesis method of a feedback stabi-
lizing control law for a switched system. Another significadded valugroposed
in Chapter 7 is the extension of the STP to the cases where all modes of the switched
system are non Hurwitz. This is obtained by the addition of a slow and expensive
Hurwitz dynamics in the original switched system, that serves lasireching pad
for the STP, whose presence may disappear from taplfe If this happens theé,,
is the stabilizing switching table for the unstable given system. Specific examples
from literature have been considered for comparison.

The software that implements the STP is described in Appendix E and it may be
downloaded from the web site

http://www.diee.unica.ittdcorona/thesis.html

8.2 Open issues

In this paragraph we will briefly describe some issues that still remained open in the
development of the STP.

LIf the switched system is completely connected we proveddhat= CZ, for all modes
i, 7 of the system. Hence simpB, = Co.
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8.2.1 Estimation of the value ofINV in the table convergence issue

In Chapter 6 and 7 we showed how the STP can be extended to the case where the
value of N, the number of available switches, becorirémite. We proved formally

that there exists a threshold value 8fsuch that all tables constructed for greater
values ofN are the same. This is a relevant theoretical result, but the practical imple-
mentation may require an estimation or an upper bourid.df Chapter 6, Theorem

6.2, we provided a method, yet not sufficiently general. We argue that this value of
N may be obtained by knowing the convergence rate of the stdiat so far, to our
knowledge, there are no general results for switched sydtems

8.2.2 Estimation of the value ofg in the table convergence issue

A similar problem arises in Chapter 7. The stabilizing switching signal for a switched
system composed of only unstable dynamics is subject to the existenceuéff-a
cientlylarge value of a parameteithat weights the stable augmented dynamics, see
Theorem 7.3. This problem is similar to the one described in the previous Section
8.2.1. In fact if we know that the system is stabilizable themvightfind an appro-
priateq such that the color of the stable dynamics disappears ftgmConversely,

if the color does not disappear it may be due to an erroneous choige.ef, too
small, or to the effective non stabilizability of the system. We might conclude that the
existence ofy is a criterion that guarantees stabilizabiléypriori. Hence a method

that gives an upper bound grwould be a relevant result. In fact, to our knowledge,
apart from special cases, i.e., quadratically stable systems [42], the available meth-
ods to assert stabilizability, based on the existence of multiple Lyapunov functions,
are often burdensome.

8.2.3 Analytical estimation of the switching tables

Another open issue is the analytical calculation of the optimal switching tables. This
is possible only in the extremely special casé\of= 1 switch, because it descends
straightforward from the solution of the Lyapunov equation, defined in A.3. We are
quite sure that there must be some methods, based on LMI applied to multiple Lya-
punov functions, that should solve this problem. A hint can be found in [26], however
the setup is not exactly coincident with ours. Furthermore we are interested in calcu-
lating all tables, while a Lyapunov based method at most gives the table of conver-
gence. Succeeding in this task is very significant, since it means that the procedure
may be easily applied to higher dimensional problems.

8.2.4 Analytical calculation of the residual cost

From Chapter 4 on, while applying the STP, a recursive procedure, at siep
always encountered the problem of estimating the optimal residual cost, obtained
numerically at stez — 1, from a pointz and given modé. It would be extremely
useful to have aanalyticalexpression of the residual cost whenever more than one
switch is still available. This would not only reduce the computational time of the
procedure, but it may also gain in precision, because of a reduction of the error prop-
agation. Note that this step has been partially done by considering an approximation,
via linear spline interpolation, of the value of the cost in a point with the surround-
ing values in the discretization points. This is described in Appendix C.2. Finally we

2For example, Sun, in [109], calculates the stabilizing convergence rate for the class of
switched triangular systems
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have the feeling that this issue and the one deployed in the previous Subsection 8.2.3
must be somehow related.

8.3 Future research interest

Here we will briefly describe how the STP can be further extended, and in addition
some of my personal research interest are listed.

8.3.1 Stabilizability and optimal control of hybrid automaton

A natural extension fills gap contained in this thesis. In fact we considered opti-

mal control withfinite number of switches for switched systems in Chapter 4 and

for hybrid automata in Chapter 5. Then we considéardithite number of switches

for switched systems in Chapter 6. Consistently, the extension to the infinite number
of switches for hybrid automata is missing. This extension is still in progress and
some preliminary results have been submitted at the IEEE International Symposium
on Intelligent Control 2005 [33]. The possibility of performing an infinite number

of switches in presence of constraints on the state space may cause the activation
of undesirable behaviors suchl@sckingor ZenonessHence, before extending the

STP to this case we considered important to set ahead a procedure that guarantees
thelivenessof the hybrid automaton. Briefly it consists in the design of a stabilizing
switching table, for an unstable hybrid automaton, #adidsobstacles, i.e., for-
bidden regions of the state space. Here, rather than performing the calculations in
continuous time, we passed to discrete time systems, which has been a necessary
condition for the synchronization of the two approaches. However original and inter-
esting the results are not, in our opinion, complete. In fact a structural criterion that
permits us to conclude the existence of a stabilizing switching table is still missing.

8.3.2 Optimal quantized control

Another interesting extension is offered by the fact that we always considered au-
tonomous dynamics. This may be considered too restrictive in many applications,
hence we would be interested in building the feedback optimal control law for a non
autonomous switched system, namgly= A;,x + B;u, whereu € R™ is a
continuous control input. In these cases two controllers may be active: the switch-
ing signali(t) and the continuous actiom(t). As it is, the problem appears com-
plex, hence we recently started to consider restrictive cases. In particular, as a first
step, we abandoned trsvitched systerand considered guantized see, among
many others, [73, 92], discrete time single input optimal control problem of the form
z(k + 1) = Ax(k) + Bu,(k), whereu; € {uq,us,...,us} is a finite set of
quantized inputs. The optimal control problem is a classical discrete LQR, with the
additional constraint that is quantized and bounded. Note that this problem is, to
an extent, a particular affine system, hence the STP should be applicable straightfor-
wardly. The numerical results, although very close to those obtained by Beatrelli

al. [55] via model predictive control methods, present strong numerical disturbances.

8.3.3 Extensions of the result to classes of non linear vector fields

The STP was explicitly designed for linear switched systems. However there are sev-
eral interesting non linear problems that may be considered. In this case the proce-
dure would not work properly, but there might be some classes of non linear switched
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systems in which the procedure may still be applicable. Another theoretical develop-
ment may be to approximate a non linear vector fields with a linear switched systems
and then exploit the STP to design a suboptimal control law for the original non lin-
ear problem.

8.3.4 Extensions of the result to classes of uncertain switched systems

Currently we are also interested in developing algorithms to synthesize control laws
for switched or more generally hybrid systems in presence of uncertainties. This
might appear both in the model parameters, often affected by measurement distur-
bances or time variational as well as in the non deterministic occurrence of a discrete
event. We believe that results in this field would be relevant to physical applications.






A

The linear quadratic optimal control

We will recall here the fundamental theoretical results ofitiear quadratic optimal
control. These results are taken from [44].

A.1 LQR feedback control law: the Riccati equation

Given an LTI system of the form
z(t) = Az + Bu

and a quadratic performance index

T
IO = [ @(1Qe(r) + /() Ru(r) . (A1)
t
Q, R symmetric and semi definite positive, we seek for a suitghia matrix K,
such that index/(¢) is minimized whenever
u(t) = —Kx(t).

By defining
A.2 A- BK,

(closed loop system) we have
x(1) = A (T — t)x(1),

and substituting in (A.1) we obtain

T
J(t) = ac’(t)/ (A’C(T -)(Q+ K'RK)A.(T — t)) drx(t) = x' () Z(t, T)x(t),
Jit
(A.2)
Z(t,T) symmetric.
By definition of integral
J=—a'(1)La(r)|,= = —'(t) Lx(t)
with L = Q + K'RK, and from direct derivation of (A.2) we have

J=a&'()Z(t, T)x(t) + ' (1) Z(t, T)a(t) + ='(t) Z (t, T)x(t)
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and beinge(t) = A.x(t) we obtain
J=a'(t) (A’CZ(L T)+ Z(t,T)A. + Z(t, T)) (t).

Hence )
ALZt,T)+ Z(t,T)A.+ Z(t,T) = —L. (A.3)

It can be proved thaf (¢) is minimized provided that
K =R 'BZ(t,T).
This particular gain, substituted in (A.3) yields (after trivial passages) to
AZ(t,T)+ Z(t, T)A+ Z(t,T) — Z(t,T)BR'BZ(t,T) = -Q (A.4)

known as the&Riccatiequation.
The Riccati equation, integrated with terminal conditié(il’, ') = 0, gives the
state feedback optimal control lam(t) = — K (t)x(t) fort < T.

A.2 LQR feedback control law: steady state solution

Consider the infinite time horizon, i.e.

J(t) = lim (@' (1)Qz(7) + v/ (1)Ru(r)) dr = lim x'(t)Z (¢, T)x(t).

T—o0 J; T—o0

(A.5)
If the value of.J(¢) is limited thenZ (¢, T') will converge to a constant matrix, and
eventuallyZ (¢, T) — O.
In this case the equation (A.3) becomes

A.Z+ZA, =L, (A.6)

that yields to thelgebraic Riccati equationPARE,

A'Z+ZA-ZBR'B'Z=-Q (A7)
whenevelK = R"'BZ.
If the control action is chosen(t) = —K(t) then the function (A.5) is mini-
mized.

Let us report here for completeness two sufficient conditions for the uniqueness
of the solution, relevant in most of the applications.

Theorem A.1 If the system is asymptotically stable (AS), then the MRE) has a
unique positive definite solution that minimiZésb). ]

Theorem A.2 If the systent A, B) is controllable, and the coupleA, C), with C
any orthogonal decomposition @, i.e., C'C = Q, then the AREA.7) has a
unique positive definite solution that minimiZ&sb). |



Chapter - Appendices 163

A.3 Evaluation of the LQ cost in the autonomous case

Let us now show a crucial result in the theoretical and implementative aspects of the
STP.

Theorem A.3 (Value of the finite time horizon cost for autonomous systemiGiven
a LTI system of the forma = Ax and a matrixQ > 0 then the cost of a trajectory

T
J@%:A‘x%ﬂQxh)m- (A.8)

is equal to
J@:xwwz—lguwzmT—@m@,

whenever the Lyapunov equatigfiZ + Z A = —@Q admits a unique solution.
O
Proof. By the Lyapunov equatiod’Z + ZA = —Q,
T
J(t) = —/ 2 (1)(A'Z + ZA)x(T) dr

t
and beinge(7) = Ax(7),

T

ﬂﬂ:—/:ﬂﬂzaﬂ+aﬂﬂzﬂﬂdr
t

Evidently the last equation can be expressed as

Tax' (1 Zx(r T
J(t) = —/t dz'(r)Z=(r) dr = —x' (1) Zz(7)| =x'(t)Zx(t)—x'(T)Zz(T),

dr ¢
(A.9)
hence
J@zwﬁﬂZ—EU¥ﬂZMT—Uw@,
because:(T) = A(T — t)x(t). [ |

Note that the cost is quadraticfunction of the initial state and of the measure
of the time interval.
Moreover we can state the following corollary.

Corollary A.1 (Value of the infinite time horizon cost for autonomous system).
Given a LTI system of the forta = Ax, with A strictly Hurwitz, and a matrix
Q > 0 then theinfinite time horizon cosbf a trajectory

J(t) = lim ! ' (1)Qx(7) dr (A.10)

T—oo J
is equal to
J(t)=x'(t)Z=(t),

whereZ > 0 is the unique solution of the Lyapunov equatidf?Z + ZA = —Q.
O
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Proof. From Theorem A.1 the Lyapunov equation, the special case of equation (A.6)
whenR = B = 0, admits a unique positive definite solution. Furthermore from
Theorem A.3 we have

J(t) = lim ! ' (1)Qx () dr = Tlgn ' (t)Zx(t)—x'(T)Zx(T) = ' (t) Zx(t).

T—o0 t

In fact, beingA strictly Hurwitz,

lim «(T) = 0.

T—o0

Remarks:

e the Lyapunov equation (A.9) is the special case of equation (A.6) wBere
R =0;

e if A is Hurwitz the infinite time horizon cost is a quadratic function of the initial
state and of the unique solutidh > 0 of the Lyapunov equation;
if A is non Hurwitz, then thanfinite time horizorcost is infinite.
if A is non Hurwitz, then thdinite time horizoncost is finite, and it can be
calculated from Theorem A.3, provided that the Lyapunov equation has a unique
solution (but not necessarily positive definite)

e in all cases the cost is a quadratic function of the initial state and, in the finite
time horizon cases it is a function of the measure of the time interval.

Lif all the real parts of the eigenvalues Afhave the same sign then the Lyapunov equation
admits a unique solution.
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Computation of the performance index

The piecewise LQR problems presented in this thesis required to calculate the fol-
lowing integral:

6
/ ' () Qx(t)dt
0

subjecttar = Ax + f. It can be shown that for any initial staig = «(0), it holds

where

)
/0 2 ()Qa(t)dt = T, Q(8)w0 + &(8)a0 + a(0)

)

QW)= [ A'(t)Q A(t)dt,

0

¢(6) = 21" 06 (/Of A’(T)m) Q A(t)dt,

a(d) =1 [/05 (/Ot A’(T)dT) Q (/Ot;l(t)dT) dt] f

In general cases it is not easy to provide analytical expressior@ iy, ¢(6),
anda(¢), thus numerical integration is needed. On the contrary, under appropriate
assumptions o and f, these analytical expressions can be easily determined. As
an example, let us consider the following two cases.

e AssumeA is strictly Hurwitz andf = 0. In such a case

Q) =2 - A'(6)ZA(),
¢(0) =0,
a(d) =0,

where Z is the unique solution of the Lyapunov equatidnZ + ZA = —Q.
The same computation is valid when the eigenvalue4 afe all unstable.

e Assume thatA is diagonalizable. In such a cas¢, = T~'AT, whereA =
diag{\1,..., A, } and);, j =1,...,n are the eigenvalues of. We obtain:

_pr [/05 < OtA(T)dT> (T QT < OtA(T)dT> dt
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and it is straightforward to symbolically compute the integrals exploiting the simple
form of the exponential diagonal matrix.



C

Issues on state space discretization

C.1 Discretization of n dimensional unitary semisphereX’,,

The main computational effort in the construction of the switching tables is the dis-
cretization of the state space. There are several ways to discretize the state space and
it is important to identify the best one case by case.

An unappropriate discretization of the state space can provoke explosions in the
computational time and in terms of needed resources. Note that the most intuitive
one (i.e., the cartesian grid) is not always the better idea. In some cases a polar
discretization (evidently when the homogeneous property holds) is more suitable.

We provide in the following the first step to construct the relation between polar
and cartesian system IR™. Then polar coordinates are composed of 1 radgiys
andn — 1 angless, ..., 6,. Given a pointc = [z, zo, ..., x,)’, such relation is

Xy = pp SIN(G,)
Tn—1 = Pn-1 Sin(enfl)

To = P2 Sln(92)
xT1 = p2 00192)

wherep,, = ||z||, pi = piy1 c0g0;) fori =n —1,...,2. To describeR™, variables
must range inp, € [0,4+00), 62 € [0,27), andbs, ..., 6, € [-5,5]. To
describeX’,, we choosep, = 1,6, € [0,2m) 63, ..., 0,1 € [-5, %), and
0, € [0,%].

Note that a uniform discretization for each angle brings to areas with high density
of points (think of the grid on the earth surface at the poles), as it can be seen in
Figure C.1. This aspect is useless: there is no need at all to increase the density
around a point. IR? one may suggest to take the vertexes of a regular polyhedron,
such as hexahedron, octahedron, dodecahedron, icosahedron, but these ones at most
contain 20 points. Moreover there is no further method for higher dimensions. Thus
we provide an approximation, namedamstant arc length

An approximately equal spaced grid can be obtained with a reduced number of
points using the following criterion, that provides constant arc length.

As an example, assume= 4. Let us calld, = &, 85 = ¢ andf, = .

1. Define nominal values of discretizatioViy, N,,, N¢; sinced € [0,27), ¢ €

[-5,5)and{ € [0, 7] we chooseNy = 2N, = 4N, proportional to the
respective range of each variable;
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A

x3

Fig. C.1.Uniform discretization of’s. Observe that the density of point is not uniform when
approaching the North pole.

2. discretize¢ uniformly, i.e.,§; = zﬁ 1=0,---,Ng,

3. denoted by roun@) a function that approximates to the closest integer, for every
& defineN,, = round N,cog(;)) and discretizep uniformly, i.e.,p; = — % +
jﬂ%’jzo’“' ’Nw_li

4. for every¢; andp; define Ny = round Nycos&;)cosp,)) and discretize)
uniformly, i.e.,9;, = k]%—’; k=0,---,Ny—1,

With such criteria we obtain a grid ¢f = NeNeNo

A geometrical representation can be givelﬁ%%n In this case theenithanglep
is divided intoV,, uniform samples. For each value pfwe obtain adisc (parallel
to the equator), whose radius is evidenlly= sin(y). We divide the equator disc
(R = 1) into Ny sectors and then all the others are divided in such a way that the arc
length is constant and equal to the biggest. The number of points on each disc will
then decrease as the latitude increases.

In Figure C.2 we reported, as an example, the aerial view of the discretization
along each parallel disc in a case where the zenith interval is divided in 3 sectors (0,

& 5 respectively).

o=m/3

R=0.866 R=0.5

Fig. C.2. Discretization of the parallel discs of'; according to the criteria of constant arc
length.



Chapter - Appendices 169

C.2 Interpolation of the value of the cost

The algorithm of the tables construction is based on the calculation of a function
Ty, k is the number of available switches, in each point of a space discretization
grid D. This value is obtained by the sum of the cost with the current dynamics and
the residual optimal cost}_, in a pointx that in general does not belong to the
discretization set. Unfortunately onlfj;_, (x;) is available, thus we approximate
T}, (z) with the values of the points @ aroundz.

The simplest approach is the nearest neighbor policyife., (x) ~ T, (x;),
wherez; is the nearest (in the Euclidean sense) point.téve describe here another
approach, that was successfully used in the STP of the fourth dimensional case. It
should be remarked that both approaches are valid only if the funcfjpngx) are
continuous.

To contain the level of discretization and to guarantee an acceptable accuracy on
Ty _, (x), an interpolation criteria is required. When a paintsn’t in the grid, we
consider the residual optimal cost valugs ; in H points of the grid arounet,
namelyz,, ..., xzy. For example, we report a picture of the discretizafivon X,
(Figure C.3) andV; (Figure C.4).

JAGS)

Fig. C.4. Neighborhood of the point on X5. Note that the number of points of the closest
neighborhood is at most equal to 4.
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Let us observe that in general, }ty,, the number of pointé/ aroundz is equal
to 2"~ 1. If a cartesian grid is used, this number is equalto

In this framework let us defing; = ||z — ;|| ", i = 1... H. An estimation
of the value off}*_,(x) can be obtained by the average of the valueg;of, (z;),
i=1,..., H, weighted with the reciprocal distance from the given paint

H
> diTy (i)
=1

Ty () = =

i=1

From a geometrical point of view, this is equivalent to substitute the function
with the hyperplane (named apling that passes in all the points:;, Ty, —1(x;)),
1 =1,..., H. This approximation was considered better than the nearest neighbor
policy. In fact it can be proved [27] that the error on the estimation of the fun@tjon
in a one dimensional discretization, is proportionalt, whereA is the parameter
of the grid. As a disadvantage, this interpolation introduces more calculations. Note
that in the one dimensional manifold (like dry) this is a "linear interpolation”, as
it can be seen in Figure C.5.

Nearest
Neighbor

T(x)
Linear
Interpolation

T(x)

v

Fig. C.5. Linear interpolation and nearest neighbor method for the estimation of the value of
the residual cost" in a point that does not belong to the discretization. This one dimensional
case also holds iiR? if the sampling along®s is sufficient.
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The I-complete approximation

We provide here the approach, developedRiaysch et althat converts the specifica-
tionst on the dynamical behavior of the outputs signals of a hybrid auton¥dtdn
into constraints on the state space.

These constraints can be considered invariantsjne;, C R™ where the state
spacer must remain when evolving in locatian

Some constraints on the admissible state trajectory can be expressed via a discrete
automaton that is based on a partition of the state space R™. To each element
of this partition we associate an output sighal A discrete automatof Py is used
to restrict the set of the admissible sequences of output signals.

In the following we callsafety constrainthe constraints that originate from the
structure of thed A, and the constraints on the output sequences given by the discrete
automatonS Py-. An example of this specification will be given in Section 5.5.2.

The low-level step consists in the definition of the invariant sets that guaran-
tee that the discrete output sequences obey an imposed specification modelled by
a discrete event automatdiPy-. The resulting hybrid automaton does not posses
blocking states, i.e. it guarantees the liveness of the overall system. The resulting
system is considered as an input for the top-level optimization procedure.

The hybrid plant model is converted to a purely discrete one via the I-complete
approximation approach [95, 83]. Subsequently, Ramadge and Wonham’s supervi-
sory control theory [96] is implemented to synthesize a least restrictive supervisor.
If the hybrid plant is interpreted as a hybrid automaton, attaching the supervisor is
equivalent to adding invariants to this automaton.

D.1 Ordered set of discrete abstractions

Let us now restrict our attention to the class of switched affine systems that evolve in
discrete time and generate discrete-valued outputs. The sampling interval is denoted
by At. Furthermore we assume that all processes in our overall system are synchro-
nized (i.e. they operate on a common time scale). The model of the plant is then
described by the set of time-invariant difference equations

m(tk+1) = f’t/)(tk) (w(tk))a
(D.1)

Ya(ter1) = qy(@(te+1))

!Some typical specifications on the dynamical behaviorBt4are for instance theafety
and theliveness
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wherek € Ny is the time indexty € T = {kAt}ren, s ¢ € X CR™, {fyo(x) =
Az +b; - D € U} is a family of affine state transition maps frak into R”
that is parameterized by some finite index®et {)(V),... (@}, ¢ : T — ¥is
a switching signal which can be interpreted as a discrete control input.

ya € Y, is a discrete-valued measurement signal. The set of output syrippls,
is assumed to be finit&; = {yfil), ce yfﬂ}, andg, : X — Y is the output map.
Without loss of generality, the latter is supposed to be surjeatimto). The output
map partitions the state space into a set of disjoint subsétsc X, i = 1,..., 1,
ie.

B
Uvr®=x,
=1

YONYW =0 Vi£j.

To implement supervisory control theory, the hybrid plant model is approximated
by a purely discrete one. This is done using the methddaafmplete approximation
[95, 83], which is described in the following paragraphs.

Denote the behavior of the hybrid plant model®y, ¢, i.€. Bpiant € (¥ x Yy)T
is the set of all pairs of (discrete valued) input/output sigmals (v, y,) that (D.1)
admits. In general, a time-invariant system with behayias calledl-complete if
w € B olwliy 1) € Bl Yt € T, whereo is the backward shift operator and
wl[4,¢,] denotes the restriction of the signato the domairjto, ¢;] [116]. Hence, for
[-complete systems we can decide whether a signal belongs to the system behavior by
looking at intervals of length Clearly, an-complete system can be represented by a
difference equation in its external variables with laghe hybrid plant model (D.1)
is, except for trivial cases, nétcomplete. For such systems, the notiorswbngest
I-complete approximatiohas been introduced in [83]: a time-invariant dynamical
system with behavioB; is called strongestcomplete approximation fd8,;q if

(Z) Bl 2 Bplam‘,a
(#3) Bjisl-complete,
(#43) B; C B, for any otherl-complete; O Bpiant,

i.e. if it is the “smallest”l-complete behavior containingy;q.:. Obviously,3; 2

Bi+1 Vi € N, hence the proposed approximation procedure may generate an ordered
set of abstractions. Clearlyy € B; < w41 € Bplantljto,t]- FOr wliey 1) =

(o, ... 0y Ly this is equivalent to

fyan ( - fytn (fw(im (qy_l(yt(ii()))) n (qgl(yffl))))

~~~(q;1(yff"”)) Nay (U5) == X (wljg,0) # 0-

(D.2)

Note that for a given string|p, .+, X (w|y,.+,]) represents the set of possible
values for the continuous state varialtét;) and that (D.2) does not depend on
¥, For switched affine systems evolving on discrete timéD.2) can be checked
exactly For switched affine system evolving on continuous time and special classes
of nonlinear systems¥ (w|(;, ;) can be safely over approximated, hence (D.2) can
be checked “conservatively” (e.g. [43, 84]). This will still lead tolacomplete ap-
proximation but, in general, not a strongésomplete approximation.

As both input and output signal evolve on finite sétendYy, 5; can be realized
by a (nondeterministic) finite automaton. In [95, 83], a particularly intuitive realiza-
tion is suggested, where the approximation state variable stores information on past
values ofi) andy,. More precisely, the automaton state set can be defined as
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-1

Xa = U X,
j=0
where
Xa, =Yy
and
Xaj = {(dJ(i“), . ,1/;(1'1‘71),1/5;0)7 3 "yc(lij))}
such that

) e w s (pl), ) g0 ) € Bily, ).

As the states:fij ) of the approximation realization are strings of input and output

symbols, we can associaaéd]) with a set of continuous stateX(:cff)), in com-
pletely the same way as in (D.2).

Note that the transition functiah: X, x & — 2%« follows immediately fromB,
and that we can associ@tgj) as the unique output for each discrete s&éﬂé € Xg.
The resulting (non deterministic) Moore-automatbdh = (X4, ¥, Yy, 6, u, Xa,)
with state setX,, input set?, output setYy, transition functiony, output function
u, and initial state sek,, is then a realization oB;. Note that the state aof/; is
instantly deducible from observed variables.

To recover the framework of supervisory control theory [96] as closely as pos-
sible, we finally convertM; into an equivalent automaton without outputs, =
(X4, ¥ x Yg,0, Xq,), where? represents the set of controllable events &jpdhe
set of uncontrollable events.

D.2 Specification and supervisor design

Safety requirements can often be formalized as a set of acceptable pairs of in-
put/output signals. In many applications we have independent specification behav-
iors for both inputs and output&y C ¥T, By, C Y, which are assumed to

be my andmy-complete. They can hence be realized by finite autorfda =

(511/7 v, (Sg/, Sg;o) andSPy = (Sy, Yy, (Sy, Syo).

+
Yd Yg Yd
Ya

Y4
Fig. D.1. Specification for the outputs

The overall specification is then easily obtained by forming the shuffle product
of SPy andSPy (e.g. [22]),

SP = (S, YUYy, dsp, So)
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whereS = Sy X Sy, Sog = Swo X Syq. SP realizes the concurrent behavior®Py
andSPy.

Given an approximating automatéh and a specification automatét, super-
visory control theory checks, whether there exists a nonblocking supervisor and, if
the answer is affirmative, provides a least restrictive supend&aP via "trimming"
of the product of7; andS P. Hence the state set of the supervisog p, is a subset
of X x S.

The functioning of the resulting supervisor is very simple. At timé "receives"

a measurement symbol which triggers a state transition. In its nev\mét%;eit en-
ablesa subsé’f(méﬁp) C ¥ and waits for the next feedback from the plant. As shown
in [83], the supervisor will enforce the specifications not only for the approximation,
but also for the underlying hybrid plant model (D.1).

In the following, we will be interested in the special caseqafsi-staticspec-
ifications. To explain this notion, let,,, : Xsup — X denote the projection of
Xsup € X x S onto its first component. ., is injective, the specification au-
tomaton is called quasi-static with respect to the approximation autorggton

Proposition D.1. S is quasi-static with respect t@, if

I > maz(mg, my). (D.3)

D.3 Closed loop model

We now interprete the hybrid plant model (D.1) as a hybrid automaton with locations
M, (@ and attach the supervisdtU P. For the case of quasi-static spec-

ifications, each supervisor st@ﬁgpp(mgﬁfp) corresponds exactly to a Staféfi) _

papp(mgﬂp) of the approximating automaton, which, in turn, can be associated with
asetX (z))) = X (papp(xlidy)).

Attaching the supervisor to the hybrid plant automaton therefore boils down to
adding invariants to each location

Z?’MJ(’!/)(J)) = U X(papp(mgigp))v

i, Papp (20p) € Xy,

W) € p(wgi))

wheref(d,_1 = Xg4,_,. Union of all invariants forms the refined, safe state space that
contains only safe points, i.e. points for which exists at least one sequence of control
symbols such that the resulted behavior satisfies the specification.

The resulting hybrid automaton is guaranteed to obey the specification but retains
degrees of freedom, which can be used in a separate optimal control layer.
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Software user-guide

This brief appendix aims to present some of the software packages, implemented
during this doctoral period at the University of Cagliari. This software was used to
obtain part of the results described in this thesis.

The software is implemented in MATLAB, version 6.0, Release 12. It can be
downloaded from

http://www.diee.unica.ittdcorona/thesis.html

With the packag&TP2_corona.zigou can:

1. Construct theswitching tablegor aR? hybrid automata, modelled in this thesis,
that provide the feedback switching law of the considered optimal control and
stability problem (Chapters 3,4,7) — Functi@gions.m

. Visualize graphically these tables — Functjaot_tables.m

3. Obtain the number of switched (Chapters 6,7) where the convergence is

achieved. The convergence criterion has not been automatized, hence this de-
cision is up to the user, by direct visualization of the tables.

4. Simulate the use of the switching tables, in both case¥ fihite andinfinite —

Functionsimulation.m

5. In addition an efficient general function that calculates the LQR cost from a

given initial point and for a given time interval is proposed — Funcimaex.m

N

Additionally with the packag&TP4_corona.zigou can implement the STP in
R%. We decided to provide separate files because of the more complex data structure
in R* compared tdR?. The STP4 software guide is in Section E.5.

E.1 Functionregions.m

This software is for two dimensional use, i.e., the state space R?. This implies
that matricesA, Q andJump are matrices of clask?.
The function receives in input the following data:

. Thehybrid automatgdynamics, jumps, edges and minimum permanence time);

. Theoptimal control problenfweight matrices and number of available switches);

. The discretization data (Time and space discretization);

. Eventually, to be used when you need to keep increaSitgmeet convergence,
the previously calculated table.

A WN P

Before proceeding further with the help of the software we provide the notion of
MATLAB matrix array.
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A matrix array is an array whose elements are matrices. A set of matrices

A1, As, Az can be collected in a unique data structure

For

>> A= {Al, AQ, Ag}

Each element is recalled with the typing of the required index within bragkets
example, the command

>> A{l}

shows matrix elements 4. In general also matrices of matrices can be repre-

sented. For example

E.l

Att

>> M ={M;1, MMy, M5}
whereM,; ;, i, j = 1,2 are matrices. The command
>> M{2,2}

shows matrixM 5 5.

.1 Initial use: no tables are calculated

he MATLAB prompt type:
>> Table = regions(A, Q, G, Jump,d_min, Ny, Tpr, Nty N)

where

INPUT

1.

A is amatrix array1 x s, s is the number of locations, that contains all dynamics
of the automaton. Note that the software, in this preliminary versiors not
have internal checken the stability of each element, hence make sure that at
least one matrix of the arrag is stable.

. @ is amatrix array 1 x s, that contains all weights in the LQR cost. Note that

all Q must benon negativelefinite.

. G is a matrixs x s of edges. If there exists an arc from locatioto location;

then set the elemeidt(i, j) = j, else setG(4,j) = 0. Note that in this context
there are no self-loops, hence 6&t, i) = 0.

. Jump is amatrix array s x s of switching jump matriceSump{i, j}. In case

of continuous state setump{i, j} = eye(2).

. d_min is a row vector that contains the minimum permanence times in each

location. Note that each element of this vector must be positive or null.

. Ny is the number okquallyspaced points on the unitary semisphere. Typical

values are 51, 71, 101, 151. You might prefer odd values in order to represent
the point on ther, axis. Point 1 corresponds {o, 0]', point X2t corresponds
to [0, 1], point Ny to [—1,0]’.

. T maximum time exploration, in theory infinite. Note that an appropriate value

should be 4 or 5 times the slowest time constants of the stable mafttices
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8. N; number of points in the time exploration. Note that this number should be

coordinated withry; in order to obtain a fine enough time siép= % Unless
A’s have high frequencies modes, values betw#er 10-2,10~ are accept-
able.

9. N number of allowed switches.

Remark E.1 (Stabilization usage)If you are aiming to use the software to design
a table thatstabilizesa switched system where all dynamics are unstable, make sure
the following:

1. Insertin the matrix arrayA a stable dynamicd {s+1}, typically, a good choice

is to take one of the unstable dynamics (with all positive real parts eigenvalues)
with opposite sign. Rotating stable dynamics are observed to behave better.

. Insert in the matrix array@ an extremely expensive positive definite matrix.

Good examplésare

>> Q{s+ 1} = 1el0 *x eye(2).

. The matrixG' must be complete, i.e., all its terms out of diagonal are non null. If

a switched system (augmented) of three locations is considered then

023
G=|103
120

4. All Jump matrices are the identity.

OUTPUT

The calculations may be long, hence a sequence of dots are visualized to confirm
that the software is effectively running. Eacarriage returnin the line of dots in-
dicates that a new locatiaris being processed, hence the tailes in progress of
construction.

In the end the lines of dots will bEV +1) x s, wheres is the number of locations.
The data, residual cost and color from each point of the unitary semisphere and

for each dynamics, is collected in a matrix arfByble. The data structure requires
further explanations.

Table{k},k =1,..., N+1, contains the information relative to- 1 remaining
switches. For exampl&able{3} contains the residual cost and the color from
each point of the semisphere, when 2 switches are left. HEntk{N + 1} is
the last calculated one, fé¥ available switches. The command

>> Table

lists this matrix array.

Each element of'able, Table{k}, is a matrix ofs rows and2N,y columns. In
other words each row i.e., the current dynamics, is a vector2i¥y elements.
This should be seen as a list&8f couples (a couple per point of the discretiza-
tion) where thedddelement is the residual cost, and the egksments an integer
j=1,...,sthatindicates the switching strategy.

IMATLAB exponential number notation.
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Example E.1 Assume thaiVy = 101, N = 10 ands = 4. Then the element
>> Table{k}(i,2h — 1)

contains the residual cost whén— 1 switches are left, from locatiohand from
pointindexedh = 1,..., Ny on the semisphere, and

>> Table{k}(i,2h)

contains the location index where it is optimal to switch. |

Remark E.2 Itis a good habit, when the functiorgion.m has terminated, to save
the data by running the MATLAB command

>> save < file_name > Table, A,Q, G, Jump,d_min, Ny, Tar, N¢, N

that stores the input and the calculated data in a file cakedile_name >. To
load this file type the MATLAB command

>> load < file_name >

from the belonging directory.

E.1.2 lterative use: a set of tables are available

Use this modality when you want to keep calculating tables for increasing values of
N. More specifically: the program has constructed alreddyables,Tab. Probably
you want to calculatd/ = N + N, without losing the previous effort.

Hence, at the MATLAB prompt type:

>> Table = regions(A, Q, G, Jump,d_min, Ny, Trr, Ny, M, Tab)

where:

INPUT

All elementsmustbe the same as in the previous section, except the last two.

1. M: new number of allowed switches, greater then the previous one.
2. Tab is the set of tables previously calculated.

OUTPUT

See previous section.

E.2 Function plot_tables.m

This function prepares the data to plot the switching tabléR?in
We assume that the program region has been executed and a set of tables has
been calculated. At the MATLAB prompt type
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>> [X,Y,T]| = plot_table(Table);

The data stored iX, Y, T' contains the information for the input of the MATLAB
built-in functionpcolor.

If you want to visualize the tablg. , (k — 1 switches are left from locatiof)
then type

>> peolor([X{k};00;00],[Y{k};00;00], [T{k,i};22;11])

if the automaton has 2 locations,

>> peolor([X{k};00;00;00],[Y{k};00;00;00],[T4{k,i};33;22;11])
if the automaton has 3 locations,

>> peolor([X{k};00;...;00],[Y{k};00;...;00],[T{k,i};ss;...;11])
if the automaton has locations.

Remark E.3 (Color mapping) The color associated to locationis the color of
tableTable{1}(i,:) and you may visualize it with command

>> peolor([X{1};00;...;00],[Y{1};00;...;00],[T{1,i};ss;...;11]).

This command produces a disk with the color associated to th&h location.
[ |

E.3 Function simulation.m

From a given initial hybrid statéz, ) it is possible to use the tables, calculated by
functionregions.m to calculate the optimal switching intervals, the optimal switch-
ing sequence, the optimal cost and the optimal trajectory.

At the MATLAB prompt type

>> [T,1,J, X]| = simulation(A, Q, Jump, d_min, Tar, N¢, @, 1, Table, op, th);

where all input variables have been defined in Section E.1.1, except for

1. Table is the output of programegions.m
2. op, a parameter so defined:
e op = 0, finite number of switches, uses all tables;
e op = 1, infinite number of switches, uses only the last calculated tables.

3. this aterminating criterion on the norm of the continuous statesually values
th = 1073,10~* are acceptable.

OUTPUT

The subroutinsimulation.moutputs the following data:

1. T is an array of the permanence time in each location;
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2. I is an array of the visited locations during the evolutid(¥) is the index of
the location whert switches are available, whilE(k) is the time interval spent
in locationI (k).

3. Jis the total cost of the evolution;

4. X is a sequence of pointsthat describes the evolution.
To sketch the plot of the evolution type the command

>> plot(X(1,:), X(2,:))

Example E.2 In Section 4.5.1 we implemented the switched system model of a ser-
vomechanism with gear box. We firstly run the functiegions.m with the given
numerical values, hence we simulated an evolution from the therein given initial
point. The functiorsimulation.m exited the following numerical values:

1. T = [0.20,0.20, 1.07,2.53, 0.20],
2. 1=11,3,5,6,5,3],
3. J = 4.75.

Note that the arrayl’, the switching intervals, has been converted ifAtothat
expresses the switching instants in an absolute time scale.
In addition vectorX has been used to sketch the evolution depicted in Figure
4.8.
[ |

E.4 Functionindex.m

This function serves to calculate the integral

J:/O ' (t)Qx(t)dt, (E.1)

subject to(t) = Ax(t) andz(0) = xo.

Albeit not directly involved in the STP its usage is crucial for the described func-
tions. Moreover it is quite general, hence we decided to describe it better.

In this paragrapti, Q are generdlsquare matrices.

To calculate the value of the integral (E.1), we preliminary need to solve the
Lyapunov matrix equation. To this aim, at the MATLAB prompt, type

>> [Z, flag] = lyap_mod(A’, Q)

that solves the Lyapunov matrix equatidtZ + ZA = —Q and returns dlag
whose value is

e —1if Z does not exists or it is not unique;
e (if Z exists and the matrid is Hurwitz;
e 1if Z exists and the matrid is non Hurwitz.

The flag variable is needed because when it assumes the v@aluéds possible
to solve the integrahnalytically, so gaining in precision and computational time. In
fact, as described in Appendix B, it holds

2Except forQ > 0.
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J= /Qa:’(t)Qw(t)dt = a)(Z — A'(0)ZA(p))xo.
0

In caseflag = —1 then the Lyapunov equation has non unique or non existing
solution, hence the cost must be calculatednerically To this purpose we found
satisfactory the implementation otanstant step trapezoidal methfy].

Now type

>> J =index(A,Q,xo, Z, flag, o, dt)

wheredt is an appropriately chosen time interval, useful if the integral is calcu-
lated numerically.

Note that the call to functiolyap_mod.mmay be done inside the functiaon-
dex.m but in this case the computational timeinflex.mwould increase. This is
undesirable, because this function is calleddyions.mat leastVs? Ny N, times.

Similarly the execution of

>> J =index(A,Q,xo, Z, flag)

calculates

J = /Ooca:’(t)Q:c(t)dt, (E.2)

subject taz(t) = Ax(t) andx(0) = xo. In this case the computation is simplified.
In fact it holds:

1. if flag = 0thenJ = z{Zx;
2. if flag = —1,1 then, immediately) = +Inf.

E.5 Functionregions4.m

Download the fileSTP4_corona.zifrom

http://www.diee.unica.ittdcorona/thesis.html

The functionmainis calledregions4.m It implements the STP in the fourth
dimensional case. Hence all dynamics and weight matrices are ofRf&ds For
this case we neglected the state jumps.

At the MATLAB prompt type

>> [Table, X] = regionsd(A, Q, G,d_min, N¢, N, Ny, N)

where the input data, Q, G, d_min, N have already been described in Section
E.1.1.

The input variablesVe, N, Ny represent the discretization of the unitary semi-
sphere irR*. To have a better interpretation of these values see also C.1.

An appropriate choice of these values should\Mae = 2N, = 4V, as it has
been motivated in Appendix C.1. In the example implemented in Section 6.7.6 we
choseN; = 15. This choice leads to a discretization&#81 points, sparse irty,
that was considered acceptable.
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OUTPUT

The calculations are long, hence a sequence of dots are visualized to confirm that the
software is effectively running.

The data, residual cost and switching strategy, from each point of the unitary
semisphere and for each dynamics, is collected in a matrix @laéde, whose struc-
ture requires further explanations.

Itis a matrix arrayT"able{k}, k =1,..,N + 1.

e Table{k}, k=1,..., N+1, contains the information relative o- 1 remaining
switches. For exampl&able{3} contains the residual cost and the color from
each point of the semisphere, when 2 switches are left. HEntk{N + 1} is
the last calculated one, fé¥ available switches. The command

>> Table

lists this matrix array.

e The elemenfable{k + 1}(i, h, 1) is the residual cost from point indexed hy
(semisphere, se&) and from location.

e The elementable{k + 1}(i, h,2) is the color mapping of point indexed liy
(semisphere, se¥) and from location.

e The data structurX is a matrix whose rows represent the polar angles of the
unitary semisphere iR*. HenceX (h,:) is a point inR* in polar coordinates
ando = 1.

Remark E.4 Itis a good habit, when the functisagion4.mhas terminated, to save
the data by running the MATLAB command

>> save < file_name > Table, X, A, Q,G,d_min, N¢, N

that stores the input and the calculated data in a file cakledile_name >. To
load this file type the MATLAB command

>> load < file_name >

from the belonging directory. |

E.6 Function simulation4.m
From a given initial hybrid statéx, ) it is possible to use the tables, calculated
by functionregions4.m to calculate the optimal switching intervals, the optimal
switching sequence, the optimal cost and the optimal trajectory.

At the MATLAB prompt type

>> [T,1,J, X1] = simulationd(x, i, d_min, A, Q, Table, X, Ncsi, dt, op, th)

where all input variables have been defined in Section E.1.1 and E.5, except for

[N

. Table, X are the output of programegions4.m

2. dt represents the time step of the simulation, usually= 10~3,10~* are effi-
ciently fine;

3. op, a parameter so defined:
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e op = 0, finite number of switches, uses all tables;

e op = 1, infinite number of switches, uses only the last calculated tables.
4. this aterminating criterion on the norm of the continuous statgsually values

th = 103,10~ are acceptable.

OUTPUT

The subroutinsimulation4.moutputs the following data:

1. T is an array of the permanence time in each location;

2. I is an array of the visited locations during the evolutid(¥) is the index of
the location whert switches are available, whilE(k) is the time interval spent
in locationI (k).

3. Jis the total cost of the evolution;

4. X1is asequence of pointsthat describes the evolution.

In this case the trajectory of the evolution has no geometrical interpretation. How-
ever it is possible to sketch each row of mathi®, i.e., X1(4,:), ¢ = 1,2, 3,4 that
represents the time evolutian(¢), with time stepdt.






F

Notation, Symbols and Acronyms

Unless differently specified, notation, symbols an acronyms used in this thesis have
the meaning detailed in the following tables.

F.1 Acronyms

Acronym Significance
AHA  Autonomous Hybrid Automaton
ARE  Algebraic Riccati Equation
AS Asymptotically Stable
CHA Constrained Hybrid Automaton
DE Differential Equation
DOF  Degree Of Freedom
e.g. Latinexempli gratia
ES Exponentially Stable
GHA General Hybrid Automaton
HA  Hybrid Automaton
HJB  Hamilton Jacobi Bellman
HS  Hybrid System(s)
i.e. Latinid est
IS International System of measurements
LMI  Linear Matrix Inequality
LQ Linear Quadratic
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
oC Optimal Cost
OP Optimal Control Problem
oS Operating System
PLC  Programmable Logical Controller
RF Radio Frequency
S Switched System
SA Switched System of Arbitrary mode sequence
SF Switched System of Fixed mode sequence
STP  Switching Table Procedure
wig without loss of generality
wrt with regard to
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F.2 Units

Optimal control of linear affine hybrid automata

All measurements, when omitted, are intended to be in the International System.
Angles are in radiants, angular velocity in radiants per second.

F.3 Notation
Symbol Significance
I Norm
|- Absolute value if is a scalar, Norry, if - is a vector
[ Cardinality of a set
[] Approximation to higher integer
Re(a) Real partolz € C
Im(a) Imaginary partotr € C
J Matrix transpaosition
* Optimal result or argument
T Vectors arébold in small letter
Xy (1) i-th element of vecto
x; Particular vectore
A Matrices arébold in capital letter
a;j,a(i,j)  i-th row, j-th column of matrixA
diag{a} Diagonal matrix whose main diagonal is the ordered vegtor
N, A Scalars
S Sets are in mathematical calligraphic
(with the exception of numerical sets suchNaer R™)
{...} Environment where sets are defined or listed (if countable)
[z1,22,...,2,] Row vector
£ Definition via equation
= Equivalence for sets or elements of sets
=] Approximated equality
o Proportional
> Greater or equal, for matrices semi-definite positive
< Smaller, for elements of a set, in a lexicographic ordering sense
v Logical OR
A Logical AND
! Singleton, uniqueness
iff If and only if &
5 Such that
< wvi,vy > Scalar, dot, internal, inner product betwagnandv, of appropriate dimension
| Closes environments (theorems, definitions, algorithms and so on)
O Separates statements from proofs
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F.4 Symbols
Symbol  Significance
t Continuous time
to Initial time
T Time instant
0 Time, as a variable
6 Time interval
n State space dimension
x(t) State space evolution R"
x(t),x Time derivative inR™ of vectorzx
x Values of the state spacelii*
xy, (1) Values of the state spaceRRt at timery,
x(tT)  limy_ .+ x(t)
x(r7)  limg_, - x(t)
y,yo  State space such thigg|| = 1
(z,1) Hybrid state, featured by a continuous term and a discrete term (indicating a location)
(x(t),4(t)) Hybrid evolution, featured by a continuous evolution
and a discrete evolution (indicating a sequence of location)
u(t) Continuous control input
i(t) Discrete control input
f Affine term ofz = Az + f
A Linear dynamics
B Control matrix in state space representation of linear systemsAx + Bu
Q Weight matrix fore, usually@Q > 0
R Weight matrix foru, usuallyR > 0
K Proportional term for feedback optimal control of a LQR problem
J Performance index
H Switching cost
M State reset matrix
A(t)  Exponential matrixA(t) = eA!
Q(t)  Value of the integralf, ='(0)Qz(0)do
F(t)  Value of the integralf, A(o)fdo
I, Identity matrix inR™
C Switching table: union of partitions of the state space
C; Switching table of location andk switchesto be performed
Ci, Switching table of location and missingso switches
Coo Common switching table foso switches
R Partition of the state space with the color of the dynamigs
D Set of discretization points of the state space
L Set of locations
S Set of location indexes
& Set of edges
T Set of ordered switching instants
z Set of switching indexes
0] Order of magnitude (especially used in computational complexity)
X Unitary semisphere iR", Y"1 27 = 1 andz,, > 0
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