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Abstract

A recent research area in the field of Computer Science and Control Technology
deals extensively with the study of optimal control and stability of a new class of sys-
tems, calledhybrid systems. These systems are characterized by the co-existence of
continuous time dynamics, and discrete events dynamics. This new class of system,
obtained by the combination of the two types of dynamics, requires novel method-
ologies and approaches, only partially related to those developed for the original
classes. We consider a particular subclass of hybrid systems, thelinear affine hybrid
automata, where thecontinuousbehavior is governed bylinear affine differential
equations, and thediscretebehavior is determined by thefiring of arcs in an oriented
graph. Constraints on the state space,guardsand invariants, are also considered.
For this class of systems we aim to solve an infinite time horizon optimal control
problem, that quadratically weights the continuous state and associates a cost to the
occurrence of every switch. The decision variables are the switching instants and the
sequence of operating modes. Weinitially assume that the switching sequence has a
finite length. We propose a numerical procedure, namely theswitching table proce-
dure, inspired by dynamic programming arguments, that identifies the regions of the
state space where an optimal switch should occur. The main advantages of this proce-
dure are the following: it provides the global minimum of the optimization problem,
it performs calculations off line and it provides a feedback solution. Its main disad-
vantage is the requirement of the discretization of the state space, that turns into long
computational times and memory occupancy. The method is then extended to the
case of aninfinite number of switches. We prove that the switching tables converge
to the same one when the number of allowed switches increases. The methodology is
successfully applied to the design of a semiactive suspension system of a quarter-car,
where each linear dynamics corresponds to a given value of the damping coefficient
f . Finally we show how theswitching table procedurecan also be used to design
a stabilizing switching law for a particular hybrid automaton, theswitched system.
In this case we consider switched systems composed oflinear time invariant non
Hurwitz dynamics and we apply the procedure to a systemaugmentedwith a stable
dynamics. If the system with unstable modes is globally exponentially stabilizable,
then the method is guaranteed to provide the stabilizing feedback control law that in
addition minimizes the chosen quadratic performance index. Specific examples are
offered throughout the dissertation.

Keywords: control theory, hybrid systems, switched systems, optimal control,
stability and stabilizability.
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Introduction

A Hybrid Systemis amacro-systemgenerally characterized by the coexistence of two
different kinds of dynamics, namelyevent drivendynamics andtime drivendynamics
[47]. The global behavior is hence determined by theoccurrence of events, that are
particularly suited to model, as an example, logical changes or inputs of a physical
system, interlaced withcontinuous functions of time, that, in the majority of the cases
of interest, are expressed by continuous/discrete time differential equations.

We may observe that hybrid systems are the mathematical expressions of the
empirical phenomenon that is usually calledhybrid process. Notably our lives are
surrounded by hybrid processes, e.g., the controlled heating of an oven, the gear
shift in a car [90], a hard drives motor, to cite a few. What is more, we may not stand
indifferent to the fact that several biological processes can be classified ashybrid, in
the sense described above. Think, as a trivial example, of theeye blinkingthatresets
the humidity of thecornea(discrete event), subject to the continuous dehydration in
contact with the atmosphere (time driven dynamics), or to thecardiovascularsystem
and so on.

1.1 Motivation and general description

In the last decades hybrid systems have received significant amounts of intellectual
efforts from scientists and researchers in the Computer Science and Control Technol-
ogy fields. The reason for this interest from the scientific and industrial community
may be related to the remarkable modelling power of this new class of systems.
The fee of this advantage is normally paid in terms of complexity of the algorithms
that attempt to govern, synthesize or to analyze these models. Nevertheless the lat-
ter, apart from its challenging aspect, is partially counterbalanced by the increasing
computational velocity of modern calculators and the capacity of data storing.

The great variety of real and theoretical situations brought the researchers to
tailor and solve a series of specific problems [118]. As a result the literature on
hybrid systems appears various and complex, both in the modelling and designing
aspects.

Nowadays one of the most consideredsubclassof hybrid systems is thehybrid
automaton, and in particular one specific case, theswitched system.

These models have been considered in this thesis, and for this particular class of
hybrid systems we want to solve an optimal control problem with piecewise linear
quadratic performance index, as subsequently described.

As an important extension we observe and formally prove that the solution of
the optimal control problem considered in this research isalso a solution for the
stabilization of a switched system. This will be the main content of Chapter 7.
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The problems of optimal control and stability of switched system are one of the
most studied issues in the field of hybrid systems. With this thesis we would like to
present our contribution by taking into account a model, consistent with the majority
of the current literature, restricted to the linear time invariant particular case.

The work is organized as follows: Chapter 2 contains a brief updated literature
review on the optimal control and stability of hybrid systems, and in particular of
switched systems. We tried therein to analyze the work of the most active schools in
the field of optimal control and the most currently used methodologies in the field of
stability and stabilizability.

Chapter 3 is dedicated to the model description and problem formulation. It is
divided into 2 parts:

1. The modelswitched systemand its annexed optimal control problem. This is the
model description and problem formulation for the synthesis of the control law
that will be derived in Chapters 4, 6 and 7.

2. The modelhybrid automatonand the annexed optimal control problem, whose
solution will be provided in Chapter 5.

Furthermore the first part of Chapter 3 is divided into two parts:

1. The problem description with afinite number of switches, that will be tackled
and solved in Chapter 4 for a switched system and Chapter 5 for a hybrid au-
tomaton.

2. The problem description withinfinite number of switches that will be solved in
Chapter 6 for switched systems and applied to the design of optimally stabilizing
switching signals for switched systems in Chapter 7.

The modelhybrid automaton, and the subclassswitched system, are particular
hybrid systems where the continuous evolution is governed by first-order vectorial
differential equation of the forṁx(t) = fi(t)(x(t),u(t), t), wherex ∈ Rn rep-
resents thecontinuouspart of the system state, andu(t) is an externalcontinuous
control input.

The subscripti(t) is a function that indicates the current active mode at time
t and its value represents the discrete event part of the system state. In the hybrid
automaton frameworki(t) is apiecewise constantfunction that takes values from a
finite and countable set of indexes oflocations. In other words when it holdsi(t) = i
the continuous part of the hybrid statex evolves according to the current dynamics
fi associated with locationi.

The piecewise constant functioni(t) has (under special conditions) a countable
number of discontinuities in time instantsτ , namelyT ≡ {τ1, τ2, . . . , τk, . . .} that
are calledswitching instants. When t = τk a switch occurs and the time driven
evolution continues with dynamicsfik

associated with the new location. We also
call theswitching sequence, henceforthI ≡ {i0, i1, . . . , ik, . . .}, the list of values
taken by the functioni(t) in the time intervals defined by the switching instants.

In the considered model the occurrence of a switch may provoke astate space
resetting, thus whenever there occurs a switch the evolution continues from anew
initial state, that may be related to the state reached during the previous time driven
evolution.

The hybrid automata allow also the modelling of some constraints that have a
relevant practical interest.

Constraint 1.The switching sequence is subject to logical constraints. This
means that from the current modei not all other modes can be reached with a single
switch. This may be described by an oriented graph where to each node (location) is
associated adynamics, and to each arc (edge) aswitching path. This is very common
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in many physical applications where the switching path is constrained by construc-
tive or safety specifications.

Constraint 2.Once entered in a locationi we cannot leave it before a timeδmin(i)
has elapsed. This is a common constraint in many real applications:δmin may be the
time necessary to control an actuator, or it may be the scan time of a PLC that triggers
the switches.

Constraint 3.The value of the current continuous state space may influence the
switching action. In other words, in a hybrid automaton, it is possible to define sub-
sets of the domain ofx where some switches are allowed or forbidden or restricted
or forced. This is done by the introduction of the notion ofguardsand invariants.
Broadly speaking these are continuous subsets ofRn where the switching strategy is
conditioned. This notion is useful in the modelling ofsafety and specificationcon-
straints and in general those situations where the crossing of specific thresholds pro-
vokes changes in the dynamics1. This particular class of problems will be considered
in Chapter 5.

If the Constraint 3is applied we refer explicitly tohybrid automaton, other-
wise we will simply refer to the model asswitched system. In this sense the switched
system is a particular hybrid automaton without state space constraints that may con-
dition the switching behavior. Chapters 4, 6 and 7 are devoted to switched systems,
while in Chapter 5 we consider the more general hybrid automaton.

In this thesis we focus the attention on the hybrid automaton characterized by the
following extra restrictions.

1. We consider these dynamicsautonomous, meaning that there is no control input
u(t). The only control action that we can design is the functioni(t), that includes
the design of theswitching instantsand theswitching sequence.

2. The dynamics of the system are alllinear and time invariants, LTI, i.e., ẋ =
Aix. This class also includes the case ofaffinesystems,̇x = Aix+f i, that can
be reduced via an appropriate technique, described in Section 4.2.4, to a LTI of
the formẋ = Ãix. The LTI hypothesis significantly reduces the complexity of
the model because many results on the traditional system theory may be used.
Furthermore in many cases of practical relevance the linear model provides a
satisfactory approximation of reality.

3. We assume that the state resetting, namelystate jumps, is linear, i.e., at the oc-
currence of a switch the new value of the state spacex+ = Mx−, whereM is
a constant matrix associated to the edge of the automaton, and the superscript+
and− denote respectively the value after and before the switch.

For the hybrid automaton described above we want to design the functioni(t)
that minimizes a linear quadratic performance index in infinite time horizon. The
analyzed optimal control problem will be described in detail in Chapter 3.

We associate to each locationi a semi-definite positive matrixQi that weights
the continuous state spacex(t) quadratically, and to each edge a positive constant
H thatweightsthe event driven evolution, i.e., a cost is associated to every switch.
More specifically, yet not as rigorously as in Chapter 3, for any given initial point
(x0, i0) we would like to design the functioni(t) in order that a performance index
of the form

JN (x0, i0) =
∫ ∞

0

x′(t)Qi(t)x(t)dt +
N∑

k=1

Hk

is minimized under the given constraints imposed by the hybrid automaton.

1As a trivial example consider a circuit containing a diode where the voltage threshold
x1(t) < 0 denotes the condition where the diode behaves as an open circuit.
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Note that the equation above includes two terms: an integral, modelling the cost
of the time driven evolution, and a sum modelling the cost of the event driven evolu-
tion.

The numberN is crucial in this research. It represents the total number of avail-
able switches, i.e.,N + 1 is the maximumnumber of branches of the piecewise
function i(t). In Chapters 4 and 5 we propose a solution of the described problem
with finite N for switched systems and hybrid automata respectively. In this case a
sufficient condition that permits us to obtain a finite cost is that at least one dynam-
ics of the automaton is Hurwitz, i.e., all its eigenvalues are in the negative complex
plane.

In Chapters 6 and 7 we relax this additional constraint and we allowN to increase
indefinitely. This extension is extremely significant, especially from the viewpoint of
stabilizability of switched systems. In fact it is well known that there exist stabilizing
switching signals even for switched systems whose dynamics are unstable. Therefore
the structural assumption of at least one Hurwitz dynamics can be relaxed. Further-
more this possibility is relevant in many applications, like those where thesteady
stateof a set of variables is reached and maintained via an indefinite number of com-
mutations. In some of these cases (inR2) the functioni(t) may become periodical
under given conditions on the vector fields.

The procedure that solves the problems defined in Chapter 3, is the main con-
tribution of this thesis. This is built on the results presented in [49, 9] extended to
the classes of constrained systems described above, and to an infinite number of
switches.

In particular we propose anoff line procedure, namely theswitching tables pro-
cedure, STP, that allows astate feedbackcontrol technique based on the construction
of an appropriate set ofswitching tables. Here byoff line we mean that the proce-
dure is not developedreal time. Once all tables are constructed off line, the real time
implementation is achievable because no further calculations are needed.

Moreover we use the termstate feedbackto stress the fact that our procedure
generates aclosed loopcontrol law, in opposition to most current results on optimal
control of hybrid systems that only provideopen loopsolutions, i.e., dependent on
the initial conditions. This is notable, because a closed loop control law has several
advantages over an open loop one, including the fact that it isrobustagainst external
or measurements disturbance. In addition, as remarked above, it does not require any
on line calculations, hence it is faster and implementable onreal time systems.

A switching table is apartition of the state space into different regions where
a specific mode must beactive. If these tables are appropriately used, i.e., if the
switches are performed consistently with the partitions, the evolution of the hybrid
automaton, for any given initial state, isthe one that minimizes the performance
index described above.

For each locationi of the hybrid automaton we provide a specific set of tables,
meaning that whenever the continuous state is evolving in locationi the controller
must use the tables constructed for locationi.

The switching table procedure is developed in Chapter 4 for a finite number of
switches and for a switched system characterized by theConstraints1 and 2. In
Chapter 5 we extend the procedure by the addition ofConstraint3.

The tables are obtained by induction on the numberk ≤ N of remaining
switches. That is to say that, for each modei = 1, . . . , s of the hybrid automa-
ton, we first construct the table when only one switch is available,Ci

1, then, using the
data stored inCi

1, we proceed backwards and build the tableCi
2, when 2 switches are

available. Generalizing, given the tableCi
k−1, we can construct the tableCi

k. This is
repeated untilk = N .
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Finally we obtain a battery ofN × s tablesCi
k, k = 1, . . . , N , i = 1, . . . , s that

allows us to perform a state feedback control law that minimizes the given perfor-
mance index.

The tables are then used as follows. During an arbitrary evolution, the controller
observes the currenthybrid state(x, i) at each instantt > 0, and the number of
remaining switchesk (initially k = N ). With this information the controller checks
the tableCi

k in the pointx to know wether a switch should occur and eventually
to what location. If a switchoccurs to locationj the controller will now pass to
check the tableCj

k−1 during the evolution in modej. If a switchdoes not occurthe
evolution continues in locationi until x(t) crosses a switching manifold or it reaches
the origin. This is repeated untilk = 0 or x = 0.

As pointed out above the procedure is an inductive methodology based on dy-
namic programming arguments. The main idea is that for every pointx of the state
space and for every locationi of the hybrid automaton, we calculate a function
T ∗k (x, i), that represents theoptimal residual costof an evolution starting from point
(x, i) and performingk switches.

Knowing this, whenk + 1 switches are available, the functionT ∗k+1(·) can be
obtained by minimizing a function that reaches a certain point(x, i) and henceforth
exploits an already optimal solution, given by the previously calculatedT ∗k (x, i).

This strategy, universally accepted as thedynamic programming principle, in-
troduced by Bellman in [3], as several advantages that have been briefly described
before.

To our concern we point out that it allows the computational feasibility of the
procedure. In fact, as will be proved in Chapter 4, it permits us to convert the solution
of oneMIQP (mixed integer quadratic programming) problem ofN + s variables,
i.e., the switching instants and the possible modes, intoNs problems of 1 variable.
This is in general a significant aspect.

The mainadvantagesof the proposed procedure may be briefly summarized as
follows:

• it is guaranteed to find the optimal solution under the given constraints;
• it has an affordable computational complexity of order that grows linearly with

N , the number of available switches, and quadratically withs, the number of
possible modes of the hybrid automaton;

• it provides aglobalclosed-loop solution, i.e., the tables may be used to determine
the optimal state feedback law for all initial states.

• it performs calculations off line.

The maindisadvantageof the procedure is that it requires a state space dis-
cretization. This problem is partially avoided for low dimensions of the state space
n = 2, 3, 4, because under certain conditions we may limit to discretize the uni-
tary semisphere. As a consequence this procedure, although theoretically efficient,
is practically unaffordable for higher thann = 4 dimensions. In fact the number of
points of the discretization grows exponentially withn and consequently the compu-
tational timeand the memory occupancy.

1.2 Structure of the work

After the introduction we provide, in Chapter 2, a bibliographic survey. We will try
therein to describe the state of art and the recent results on the topic of optimal control
and stability of hybrid systems.

In Chapter 3 we formally define the considered class of system, i.e., hybrid au-
tomata, and the particular subclasses described previously, i.e., switched system,
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constrained hybrid automata and autonomous hybrid automata. We define also the
dynamical behavior, and we describe in detail all the elements that characterize the
model. In parallel we give the problem formulation, i.e., an optimal control problem
characterized by a linear quadratic performance index, studied for the considered
subclass, that is tackled and solved in the successive chapters.

In Chapter 4 we describe the switching table procedure, and we formally prove,
by means of dynamic programming arguments that it allows to solve the optimal
control problem for a switched system in feedback form. In this chapter we consider
a problem that limits the number of switches to be finite. We also introduce the
notion of lexicographic orderingthat allows the uniqueness of the switching tables
and we show that under particular conditions the switching regions arehomogeneous.
Hints on the computational complexity are provided for the fundamental algorithm
of the STP presented therein. Lastly, specific numerical and physical examples are
presented.

In Chapter 5 we extend the STP to the hybrid automaton, namely we show that
the STP is still valid whenever two types of constraints are considered:

1. The system may perform autonomous switches (also calledinternally forced
in [122]), i.e., not all switches are controllable but some of them may occur
autonomously ifx enters given regions of the state space. We call this automaton
AHA (Autonomous Hybrid Automaton).

2. The degree of freedom (DOF) of the controller is restricted according to the
value of the state space. We call this automatonCHA (Constrained Hybrid Au-
tomaton). In this second case we also provide a very common example in the lit-
erature on hybrid systems, inspired by [25]. The study of this class of system has
been done in collaboration with a group of the University of Magdeburg (headed
by Professor Jörg Raisch). The framework was motivated by the introduction of
safetyspecifications that may be converted into state space constraints. The pro-
cedure that converts safety specifications into constraints on the state space is in
Appendix D, and it is a result taken from Raischet al. [95, 85] and integrated
with the STP.

In Chapter 6 we consider the results obtained in Chapter 4 and we extend to the
case where an infinite number of switches are allowed. We firstly conjecture that the
cost of an evolution,J∗N described above, must be a decreasing function ofN for
every initial point. With similar arguments we assume that the switching tablesCi

N

must converge to the same one, that we callCi
∞, with obvious notation; hence the

controller may use themindefinitelyuntil the statex has reached the steady state.
After formally proving these results, a case study is analyzed in detail: it is the

design of asemiactivesuspension, with LTI model, whose damper coefficient may
take values from a finite set2. We consider the cases with one DOF, i.e., neglecting
the deformation of the tire, inR2, and with 2 DOF, that considers the deformation of
the tire, that is modelled inR4.

The application of the STP in the fourth dimensional case has been particularly
challenging. The numerical strategy, concerning thepolar discretizationand thein-
terpolationof the cost are detailed in Appendices C.1 and C.2.

Chapter 7 is dedicated to stability. Therein we consider acompletely connected
switched system, i.e., every location is connected to all the others by an oriented arc,
and we apply the STP with infinite number of switches. In this context we also prove
thatall tables converge toC∞, that is independent from the particular location.

2Some fluids may vary theirviscositywhen subjected to an appropriate magnetic field,
[48].
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The main idea contained in this chapter is briefly summarized as follows: if the
STP is able to design a tableC∞ that drives the system to the origin then the optimal
signal i(t), is also astabilizingsignal for the switched system. This is remarkable
because it relates the notion of stability with the notion of optimal control. As a
result this is an alternative methodology of designing a stabilizing feedback control
law for a switched system, which is one of the major efforts in the current literature.

Moreover we prove another important result: if the tableC∞ does notcontain
the region of a specific modej of the switched system, then thereducedswitched
system, obtained by refining the original system of modej, must have the same table
obtained for the original system.

This is relevant and we present significant examples, many of them taken from
literature as benchmarks, where we design a stabilizing switching law for systems
composed of only unstable modes.

As a final example we propose a comparison between the table obtained with
the STP and the table obtained analytically by analytical minimization of the cost
function over the parameters of an expected switching surface.

Chapter 8 draws the conclusion of the work and it glances over open perspectives
and developments.

A certain number of Appendices was considered necessary to complete the work.
We will briefly summarize their content in the following.

The continuous references to LQR problems required an appendix to the classical
results in system theory on LQR problems for LTI systems. Theoretical notions are
recalled in Appendix A, and their numerical implementations in Appendix B.

Appendix C contains issues on the state space discretization. In particular we
provide a convenient method to discretize the unitary semisphere inRn. This serves
mainly in Chapter 6 where a problem inR4 is considered.

Appendix D describes the methodology, developed by Gromovet al. [32] on the
basis of thel−complete approximation, that converts specifications on the output
signals of a hybrid system into constraints on the state space.

In Appendix E we provide a user guide of the software developed to obtain part
of the numerical results presented in Chapters 4, 6, 7. This software constructs the
switching tables and uses them in an on line simulation for a switched system. It is
available in theR2 andR4 case at the site

http://www.diee.unica.it/∼dcorona/thesis.html.
Finally we refer the reader to Appendix F, where all the acronyms, symbols,

notation and units of measurements are collected.
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Optimal control and stability of hybrid systems:
literature review

In this chapter we propose a literature review on two major fields in the context of
hybrid systems, namely theoptimal controland thestabilityof hybrid systems.

Both of these topics are of relevant interest in the control and computer science
community and many theoretical results and algorithms are available.

Clearly the research on the hybrid systems and models is not only restricted to the
mentioned fields, but it also involves other issues, such as reachability, controllability
and observability, to cite few.

Nonetheless we decided to review only the literature concerned with the optimal
control and the stability, from where we derived many suggestions, properties and
ideas that have been crucial in our research.

This survey has synthetic form, and sometimes, for the sake of brevity we could
not analyze in appropriate detail the presented topics. However we hope that the
references therein may be useful.

2.1 The optimal control problem for hybrid systems

The problem of determining optimal control laws forhybrid systemshas been widely
investigated in the last years and many results can be found in the control and com-
puter science literature. The increasing interest in this new class ofsynthesis design
problemsis probably due to the reasonable trade off between themodelling powerof
these models and thefeasibility of the solution. The vaste spectra of physical systems
that can be modelled by a hybrid system and the different targets of a control strategy
have led to an extremely various literature.

Therefore we considered useful for the reader to present in this thesis the most
significant result in the problem of designing optimal control laws, in general hybrid
themselves, for hybrid systems. This collection, far from being considered exhaus-
tive, may also orient the reader in the intricate variety of publications on this topic.

This section gives particular attention to results that have been of relevant interest
in the field and we decided to collect and describe separately the work of the authors
that mostly influenced the development of our work.

2.1.1 Antsaklis and Xu

A relevant contribution to the study of the optimal control problem of hybrid system
is certainly due to the extensive work of Xu and Antsaklis. In [120] they approach the
finite time horizon general problem under the condition of pre-assigned finite length
switching sequence. In this framework the control variables are theswitching instants
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σ and the continuous control in each branchu(t). The problem is to minimize a cost
functionalJ that weights the statex(t), the continuous controlu(t) with fixed finite
final time and free terminal state, for a given initial point.

In general the authors propose a two stage algorithm obtained by decoupling the
minimization procedure over the two control variables: first a minimization over the
continuous controlis performed, then theswitching instantsare tuned to obtain a
global minimization of the objective function.

They suggest therein an approach based on dynamic programming arguments
that limits considerably the explosion of the computational effort, due to the combi-
natoric nature of the problem. Moreover it permits them to impose continuity condi-
tions at the switching instants.

They also study in [121] how the method admits an analytical formulation in the
particular GSLQ (General Switched Linear Quadratic) problem, because the bound-
ary conditions given by the Riccati equation can be efficiently exploited.

This technique led interestingly to a reformulation of the general nonlinear prob-
lem into an equivalent problem where the switching instants areparameterized, i.e,
expressed in terms of the derivatives of the cost functional in the surrounding of the
switching instants, as presented in [123] and in [129]. In these works the boundary
conditions at the switching instants are obtained from the solution of atwo points
boundary value DE, composed of the state and costate defined in the Hamiltonian
function, as described in [93].

Once this has been done a direct differentiation of the cost can be performed, as
described in [125]. Note that the methods described are of difficult solution when the
number of switchesN grows, because a constrainedN dimensional minimization of
a function must be performed. Furthermore the function is, in the general case, given
only numerically. Finally these methods do not provide a feedback solution, hence
the optimal strategy is valid only for the given initial point.

Nonetheless, in [118], the author indicates several classes of theoretical and ap-
plicative relevancy where these ill-conditioned tasks may be avoided or simplified.

The general methods have also been applied to two interesting particular cases:

• Optimal control of switchedautonomoussystems [124],̇x = fi(t)(x, t), i.e., the
minimization is performed only under the switching instants, withu = 0. This
case is relatively close to the one considered in [49] and the general problem con-
sidered in this thesis. The remarkable difference is that a finite time horizon with
nonlinear functions are considered. Conversely the solution is not state feedback,
hence the necessity of an on line computational effort. This framework has been
also explored in presence of state jumps in [127], allowing a more general model
that also takes into account the switching costs as in [50, 28].

• Optimal control of switched systems withinternally forcedswitchings [122],
where the unique control variable is the continuous inputu, while the while the
system is subject the occurrence ofstateor time dependent switches. This idea
has been considered in this thesis in Chapter 5, based on the results provided in
[30].

A detailed survey on the optimal open loop control methodology developed by
Xu and Antsaklis can be found in [128], where also comparisons with different ap-
proaches are provided.

Another problem presented in this thesis is somehow related to the work of Xu
and Antsaklis. TheCHA problem considered in Chapter 5 and developed in [32] is
in fact similar to the problem presented in [126]. In this work the authors consider
an integrator switched system, i.e., a linear affine switched system where all dynam-
ics Ai are null, and atime optimal control problem. The objective is to design the
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switching scheduling in order to drive the system state at a given destination inmin-
imal time, in presence of constraints on the state space. This is done by a conversion
of the problem into a MILP (Mixed Integer Linear Programming) and solved with the
available tools. We considered instead the problem of driving the system state into a
given destination in minimalenergy, i.e, by minimizing an LQR-like cost function.

2.1.2 Rantzer, Hedlund and Lincoln

A different approach than the one presented by Xu and Antsaklis is suggested by
Rantzer et al.. In [57] the authors consider a model of switched system and an an-
nexed optimal control problem in general form, i.e., non linear piecewise vector fields
and general cost functional. As considered in Chapter 4 and in [29] the authors ap-
proach the problem of minimizing a cost function defined for afinite length, yet not
fixed, switching sequence. Moreover they consider the case of a cost associated to the
event driven evolution, by associating a switching cost to each switch, so preventing
the possibility of any Zeno behavior executions, as defined in [66].

As a difference they limit the investigation to afinite timehorizon, hence they aim
to drive the system to a fixed terminalhybrid statewhile they let free the terminal
time. In this work the notion of guard is introduced, although not explicitly defined,
i.e., the system is allowed to perform a switch from a locationi to a locationj
whenever the continuous statex enters a regionSi,j ⊆ Rn.

The optimization problem is tackled by the introduction of a set of inequalities of
particular functionsVi in thehamiltonian1 form. Boundary conditions are imposed
as equality and inequality constraints on this functions. The authors prove that the
minimization problem is lower bounded by this set of functions in the state vari-
ables. Hence it is sufficient to maximize the given functions. This method requires
a state space discretization, and it provides a switching strategy in feedback form.
Nevertheless it encounters major difficulties due todimensionality.

As an extension to the described research an algorithm to optimize switching
sequences that has an arbitrary degree ofsuboptimalitywas presented by Lincoln
and Rantzer in [77] and in [79]. Therein the authors consider a quadratic optimization
problem whose solution issuboptimal, but with known error bounds. This is achieved
via arelaxed dynamic programming, obtained by relaxing the Bellman principle [14]
to a non strict inequality. The idea is described in [78].

As a difference with the work previously described [57] the authors consider
discrete time systems. In particular in [79] the discrete time switched system is com-
posed of only two vector fields, whose current mode is active according to a given
partition of the state space, hence the control variable is restricted to the continuous
input u(tk). Briefly the method consists in locating the solution of the optimal con-
trol problem, which isnon convexfor switched systems, between twoα−stretched
values. The interval may be restricted, at the cost of a higher computational effort.

This idea is extensively described by Rantzer and Hedlund in [58] where they
useconvex dynamic programmingto approximate hybrid optimal control laws and
to compute lower and upper bounds of the optimal cost. For determining the optimal
feedback control law these techniques require the discretization of the state space in
order to solve the corresponding HJB equations.

In [76] Lincoln and Bernhardsonn propose a method for efficient pruning of the
search tree in order to avoid combinatoric explosions amongst all the possible paths
of a hybrid execution. In such a way they obtain a numerically viable procedure that
permits them to solve a finite discrete time LQR problem for a switched system.

1We refer to the classical definition of hamiltonian functions as, for example, in [69], i.e.,
a function that weights the vector field by the co-state and the cost functional.
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2.1.3 Shaikh and Caines

The work of Shaikh and Caines in the field of optimal control of hybrid systems is
based on the construction of a set of necessary conditions that represent, to an extent,
a generalization of the maximum principle, in analogy with the works of [93, 110].

In [102] the authors propose an algorithm that performs a minimization search
for a finite continuous time cost function and a controlled set of vector fields. They
initially assume that the switching schedule is fixed, hence the minimization is per-
formed under the control variablesu and the switching instants.

In [105] the results are formally presented for a finite-time hybrid optimal control
problem and necessaryoptimalityconditions for a fixed sequence of modes using the
maximum principle are provided.

In [104] these results are extended tonon-fixedsequences by using a suboptimal
result based on theHammingdistance permutations of an initial given sequence.
In this framework the approach of Shaikh and Caines appears similar to the idea
contained in themaster-slaveprocedure described in [29].

Besides, in [103], the authors derive a feedback law (similar to that one consid-
ered in [28]) but for a finite time LQR problem whose solutions are strongly depen-
dent on the initial conditions, thus providing open-loop solutions.

Consistently with most of the literature on the hybrid systems the authors con-
clude in [103] that any feedback control law that minimizes a given performance
index has to be represented as a partition of the state space. In fact they present an
algorithm, namely HMP[Z] based onoptimal zonesin time-space, which is an ex-
tension of the HMP[MCS].

These regions are necessary to identify the optimal switching instants and se-
quences, while the continuous control in each mode of the hybrid system can be
determined, in the LQR case, by using the boundary conditions given by the finite
time Riccati equation.

The optimal sequence of modes in the hybrid trajectory is obtained via dynamic
programming arguments, for a finite number of switches. This is to avoid the combi-
natoric explosion of all possible switching sequences. A detailed description of these
algorithms and their possible applications and developments can be read in [101].

2.1.4 Cassandras and Wardi

The work of Cassandras and Wardi took basically two research areas in the vast field
of the optimal control of hybrid systems. The first one, introduced by Cassandraset
al., consists in developing algorithms to the aim of optimally controlling amanufac-
turing system modelled by a hybrid system. The latter, further developed by Wardi
et al., concerns the optimal control of the commonly definedswitched systems.

In [21] the authors consider a manufacturing system modelled via a hybrid sys-
tem. The system is composed of acontinuousvariableżi = ui in each jobi, related
to the quality of the jobs, and a time variable, subject to discrete events, such as
start-time, end-time, duration thresholds and so on.

In this framework an optimal control technique is necessary to balance the trade
off between the quality of the product, that increases with duration, and time con-
suming. A quadratic cost that weights both the processing time and the continuous
control input for a system ofN jobs and two servers is considered.

The control law must be tuned in order to guarantee that the jobs are satisfac-
torily processed in a relatively short term. The suggested approach is the maximum
principle, subtly applied with the aid of theBezierapproximation of the co-state at
the intermediate condition.
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An extension that concerns the continuous dynamics of the model is studied in
[52], governed by a first order DE of the forṁzi = gi(zi, ui, t). In the mentioned
work the authors use a hierarchical decomposition approach [89, 20, 94] to break
down the overall optimal control problem into smaller ones. In particular the decom-
position of the global system into alow level, governed by continuous dynamics, and
a high level, governed by event driven dynamics, allows the design of a hybrid con-
troller that solves a mixed optimal control problem. In so doing, discretization is not
involved and the main computational complexity arises from a higher-level nonlinear
programming problem. In Chapter 5 we adopted, in some sense, this methodology
for a plant that must respond tosafetyconstraints (low level) and optimality (high
level).

A more general first-order optimality conditions and several properties of optimal
trajectories, that significantly simplify the task of the explicitly design the control
law, are proved in [23]. Wardiet al., in [114] propose an algorithm that designs the
optimal control law by proceeding backward in time, i.e., from the last job to the
first, by means of a similar methodology of the dynamic programming used in the
algorithm developed in this thesis.

In a different context Wardiet al. in [41] analyze theautonomousswitched sys-
tem model as defined in [124], which is basically the model considered also in this
thesis. For this class of system they propose afinite timeoptimal control problem,
where the control variables are theswitching instants.

The considered approach is based on the parameterization of the cost function
with the switching instants{τ1, τ2, . . . , τN} and perform a descentgradientmethod
to obtain the minimum under theN variables. Note that this approach becomes un-
feasible whenN grows. Furthermore it is in general dependent on the initial condi-
tions, hence it does not provide a state feedback control law.

In a recent paper [113] the same problem is tackled with the aid ofparameterized
switching surfaces. Conceptually the authors consider a given family of switching
manifolds inRn, parameterized byk < n parameters, and express the cost func-
tional in terms of these parameters. The main goal of this idea is to allow an iterative
procedure.

Note that the example described in Section 7.6.3 follows the same idea. In fact
therein we consider aconic switching law inR2 parameterized by the slopesm1

andm2. Then we attempt to express the cost as a function ofm1,m2 and minimize
over them. The argumentsm∗

1 andm∗
2 that minimize the cost must be the optimal

switching surfaces. In fact it will be proved in the following chapter that the optimal
switching surfaces of the considered class ofautonomous(in the sense of Xu and
Antsaklis) switched linear systems must beconic.

2.1.5 Bemporad and Morari

The hybrid optimal control problem becomes less complex when the dynamics is
expressed in discrete time or as discrete events. For discrete time linear hybrid sys-
tems, Bemporad and Morari [11] introduce a hybrid modellingunified framework
MLD that is focussed on linear systems described by continuous and logic rules.

This framework handles in particular the hybrid systems with both internally
forced switches, i.e., caused by the state reaching a particular boundary, and control-
lable switches (i.e., a switch to another operating mode can be directly imposed). In
addition the authors show howmixed-integer quadratic programming(MIQP)[10]
can be efficiently used to determine optimal control sequences.

They also show that when the optimal control action is implemented in a receding
horizon fashion by repeatedly solving MIQP’s on-line, an asymptotically stabilizing
control law is obtained.
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It is relevant to remark that most of the hybrid models, i.e., models that integrate
logics and dynamics, can be described in a unified framework, hence they might be
approached via MIQP algorithms. A notable work that shows the theoreticalequiv-
alence2 of 5 classes of discrete time hybrid systems,piecewise affinePWA, linear
complementarityLC, (De Schutter, [38]),extended linear complementarityELC,
max-min-plus-scalingMMPS, (De Schutter and Van Den Boom, [39]) is provided
in [12].

Bemporad, in [4], proposes two algorithms for an efficient conversion of a MLD
into a PWA system.

For those cases where on line optimization is not viable, Bemporadet al. [5, 6]
and Borrelliet al. [15] propose multi-parametric programming as an effective means
for solving in state feedbackform the finite time hybrid optimal control problem
with performance criteria based on1-, ∞-, and2-norms, by also showing that the
resulting optimal control law is piecewise affine.

In the discrete time case, the main source of complexity is the combinatorial
number of possible switching sequences. By combining reachability analysis and
quadratic optimization, Bemporadet al.[7] propose a technique that rules out switch-
ing sequences that are either not optimal or simply not compatible with the evolution
of the dynamical system.

In many cases the optimization of hybrid processes is achieved by decoupling
the logic optimization from the continuous optimization, as for instance withhier-
archical approaches (see, among many, [52, 94]) ortwo stageoptimization (see, for
example, [120]). This task can be also viewed as a combination of mixed integer
linear programming (MILP) with continuous dynamic simulations, to obtain a po-
tentially optimal switching sequence, as it is proposed in [88].

Another approach that merges the techniques developed on discrete events dy-
namics and continuous time switched systems is calledmaster-slave procedure
(MSP) [8, 29].

The procedurealternatesbetween two different procedures, to the aim of op-
timizing hybrid processes. In other words the procedureiteratesbetween amaster
procedure that finds an optimal switching sequence of modes, and aslaveprocedure
that finds the optimal switching instants.

• Themasterprocedure is based on mixed-integer quadratic programming (MIQP)
and finds an optimal switching sequence for a given initial state, assuming the
switching instants are known.

• Theslaveprocedure, based on the construction of the switching regions [49] by
means of dynamic programming arguments, solves an infinite time horizon with
finite number of switches for a fixed sequence linear switched system composed
of autonomous dynamics. Here the control variables are the switching instants,
that must be tuned in order to minimize a performance index of piecewise LQR
class.

It can be proved that this algorithm converges with finite number of steps, but it is
not guaranteed to detect the global minimum. A few simple heuristics, that explores
small perturbations on the sequence of the switching indexes, can be added to the
algorithm to improve its performance.

2Equivalencymeans that for the same initial conditions and input sequences the trajecto-
ries of the systems are identical[4].
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2.2 Miscellaneous work

For what concernsswitched affine systems, that are a particular class ofhybrid sys-
temsconsidered in the majority of the following chapters, the problem of optimal
control synthesis has been investigated with accuracy during the last decade.

A significant portion of the current literature on optimal control ofswitched
systemsis focused on the study of necessary conditions for a trajectory to be op-
timal [93, 110, 45]. In particularnecessary optimality conditionsfor a trajectory of
a switched systemare derived using themaximum principleby Sussmann [110] and
Piccoli [93], who consider a fixed sequence of finite length, in finite time.

A similar approach is used by Riedingeret al. [97], who restrict the attention
to linear quadratic cost functionals but considering both autonomous and controlled
switches.

An important effort is devoted on the computation ofoptimal/suboptimal solu-
tionsby means of dynamic programming or the maximum principle [19, 18, 52, 57,
97, 123]. Optimal control of discrete-time hybrid systems is studied in [6].

For continuous-time hybrid systems, Branicky and Mitter [19] compare several
algorithms for optimal control, while Branickyet al. [18] discuss general conditions
for the existence of optimal control laws for hybrid systems.

For determining the optimal feedback control law some of these techniques
require the discretization of the state space in order to solve the corresponding
Hamilton-Jacobi-Bellman equations, see for instance [58].

Bengea and De Carlo [13] apply the maximum principle to an embedded system
governed by a logic variable and a continuous control. The provided control law is
open loop, nevertheless some necessary and sufficient conditions are introduced for
optimality.

For a special class of discrete-event systems, De Schutter and Van Den Boom
[39] proposed an optimal receding-horizon strategy that can be implemented via lin-
ear programming.

2.3 Stability and stabilizability of hybrid systems

The problem of analysis and control of hybrid systems has attracted the attention of
many researchers. In particular most of the research literature is focused on defining
the conditions [42, 40, 117, 130] ofstabilizabilityof switched systems, and in par-
ticular of linear affineswitched systems, the same class we considered in Chapter
7.

The theoretical effort in this sense is to express thestructural conditions of a
given switched system that guarantee the existence of a stabilizing switching signal
i(t), a piecewise constant function of infinite branches.

This problem, formulated in [17], is not trivial, and it is well known that the
Hurwitz stability of at least one dynamics of the switched system is a sufficient, yet
not necessarycondition for the existence of such signal, provided that an infinite
number of switches are allowed. Many examples can be found in literature and also
in Chapter 7.

Conversely it is possible to design an appropriate switching law that may provoke
instabilityof the global system even if all its modes are Hurwitz.

Nevertheless there does not exist yet ageneralresult that provides necessary and
sufficient conditions for the global asymptotic stabilizability of a switched system
with unstable dynamics. Analogously, there does not exist yet a general procedure to
compute, when it does exist, an asymptotically stabilizing switching law.
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Necessary and sufficient conditions are given in [42, 115] in the case of two
switched systems when the criterion under consideration is thequadraticstability
of the switched systems. The main importance of this property is that it requires
for uncertain systems a quadratic Lyapunov function which guarantees asymptotic
stability forall uncertainties under consideration, and is thus a kind of robust stability
with very good property, yet usually needs more restrictive conditions [131]. Iterative
algorithms for constructing such common Lyapunov function can be found in [75].

Another interesting issue in the stabilizability field is the investigation of the con-
vergence rate. In fact it is well known that traditional LTI systems are exponentially
stable iff their dynamics are Hurwitz.

Sun, in a series of papers [109, 108, 107], provides important results that concern
the convergence rates of a switched linear system subject to any switching signal. In
particular he proved that for this class of system the stabilizability always implies an
exponential stabilizability.

Far from pretending to be exhaustive we would like to present in the following a
short description of the most commonly used methods to effectively design a stabi-
lizing switching signal. We may always refer to switched LTI systems, in fact, apart
from some very restrictive situations, there are only few results for more general
classes.

2.3.1 Methods based on time approach

These methods aim to design atime basedswitching law. More precisely the switch-
ing signal is time scheduled and it is not presented in feedback form. Among the
first researchers that proposed this method, namely thedwell timeapproach, there
are Hespanha and Morse [60].

The main idea is based on the fact that the porter frequency of the switching
signal isslow-on-the-average, when applied to switched systems composed ofonly
stable dynamics. In particular, it is proved that exponential stability is achieved when
the number of switches in any finite interval grows linearly with the length of the
interval, and the growth rate is sufficiently small.

On the other hand the switching period of a switched system composed of only
unstable modes must not be greater than a certain value in order to preserve that the
statex is maintained in a desired neighborhood of the origin.

What we found interesting in these methods is the evident parallelism with the
conditions of stability for slowly time varying systems [74]. Furthermore the results
of Hespanha have inspired the introduction, in the methodology presented in this
thesis, of the minimum permanence time in each location of the considered hybrid
automaton, whose presence not only models a physical behaviors, but it also avoids
instability and Zenoness.

The idea has been also reconsidered by Colaneri and Geromel in [26], where
the minimum dwell time is determined by means of a family of quadratic Lyapunov
function.

These methods however do not provide a closed loop control law, but merely
time dependency.

2.3.2 Methods based on geometrical approaches: planar systems

A special attention is devoted to the design of stabilizing switching signals forpla-
nar switched linear systems3. In fact in this case a geometrical approach appears

3A planar system is a system whose vector fields is inR2.
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dominant in all works. Another advantage of this class of systems is that the stabi-
lizing switching signal, if any, may exhibit periodic behaviors, or a degeneracy into
a sliding mode surface

To cite a few Antsakliset al. in [62, 119] using a geometric approach, were
able to obtain necessary and sufficient conditions for asymptotic stabilizability of
switched systems with an arbitrarily large number ofsecond-orderLTI unstable sys-
tems. Moreover, when the switched system is asymptotically stabilizable, they also
provide an approach to compute a stabilizing law.

Following the same idea Michelet al. prove in [63] necessary and sufficient
conditions for planar systems that guarantee the existence of a common quadratic like
Lyapunov function for the global switched system, and they also provide a synthesis
method of conic switching regions based on the mutual directions of the vector fields.

For planar systems necessary and sufficient conditions for the existence of a sta-
bilizing switching signal are given for nonlinear embeddedconvexifiedproblem, i.e.,
ẋ(t) , i(t)F (x(t)) + (1− i(t))G(x(t)), as it can be seen in [16].

2.3.3 Methods based on multiple Lyapunov functions

Many works on the stability analysis of switched systems are based on the use of
multiple Lyapunov functions (MLF’s) [17, 74, 130, 82]. The general idea is to seek a
piecewise multiple Lyapunov function, active in each mode of the switched system,
that behaves as a global Lyapunov function for the global switched system.

Broadly speaking the main target of this methodology is to provide a solution of
the matrix inequalityA′

iZi + ZiAi < 0 in order that the functionV (x) = x′Zix
is globally decreasing.

It is relevant to remark that in all these cases the proposed approaches only give
sufficient conditions for the asymptotic stabilizability.

In some cases the switched system admits acommonLyapunov function. It is
the case, for example, ofquadraticallystable systems, studied in detail by Feron in
[42] and by Petterssonet al. in [40]. The quadratic stability involves the existence of
a commonLyapunov functionV (x) = x′Zx, i.e., independent from the switching
signali(t), such that it holdṡV (x) ≥ −εx′x, whereε is an arbitrarily small positive
number.

The quadratic stability can be checkeda priori by simply analyzing structural
properties of the switched system. In fact it is proved in [40], Theorem 4.3, that a
switched system is quadratically stable if there exists a stable convex combination of
its modes. The condition becomes sufficient if only two dynamics are considered.

In the general case the problem of stabilizing a switched system with unstable dy-
namicsAi’s is often translated into the problem of solving a set of quadratic inequal-
ities. This task derives from the general idea of constructing a decreasing common
or multiple Lyapunov function.

This is appealing, but it turns out to be a non convex problem (thus it only pro-
vides sufficient conditions) when the number of subsystems is greater then 2. More-
over many proposed solutions lean onlinear matrix inequalities(LMI) or bilinear
matrix inequalities (BMI) methods, which become computationally problematic as
the number of modes grows [40, 90].

Recently, Ishiiet al. in [64] present an alternative method for solving the search
of a MLF, that is, as remarked above, a key issue in the synthesis of stabilizing a
switched system. Their approach provides a probabilistic algorithm, that converges
with a given probability that exploits a gradient descent method on energy and multi
modal Lyapunov functions, as described also by Tempoet al. in [75]. The method
presents no theoretical restrictions on the order of the LTI systems but it has expo-
nential complexity, albeit it is guarantee to converge in a finite number of steps.
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2.3.4 Methods that relate a quadratic cost with stabilizability

The idea of solving the Lyapunov matrix inequality extended to switched system has
been considered in the previous section. A natural approach, described by [67], looks
for a solution of an extended Lyapunov equation of the formA′

iZi +ZiAi +Q < 0
whereQ ≥ 0.

The intuition behind this approach lies in the fact that this last inequality may be
simpler to satisfy thanA′

iZi +ZiAi < 0. Furthermore this idea has been studied in
detail in Pettersson’s PhD thesis [90], where appropriate algorithms and extensions
have also been developed. For a short resume of these techniques see also [91].

In a very recent paper, by Colaneri and Geromel [26], this technique has been
related to the minimization of a linear quadratic performance index where the state
valued is quadratically weighted with aQ ≥ 0 matrix. Hence the solution of the
multiple Lyapunov equationA′

iZi +ZiAi +Q < 0 must be somehow connected to
the minimization ofJ =

∫∞
0

x(t)′Qx(t)dt. The authors propose a synthesis based
on the solution of the Lyapunov Metzler equation, via a numerical approach based
on LMI.

In [31] and in Chapter 7 we illustrate how the STP developed in this thesis may
be also used for thedesignof a stabilizing control law for a general switched system
by the minimization of a quadratic cost. The idea behind this methodology is related
to the fact that if we achieve in finding a minimumfinite costin infinite time horizon,
then, under appropriate conditions, we have also driven the system into the origin,
hence we obtained a stabilization.

Sun, in a paper recently submitted to Automatica, [108], proposes some theoreti-
cal conditions for the existence of a switching signali(t) that not only exponentially
stabilizes the switched system, but it also provides the minimization of a quadratic
performance index.
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Hybrid systems: models and optimization problems

3.1 Introduction

In this chapter we will describe in detail the models and the optimization problems
considered in this thesis.

We will define formally the general notion of hybrid automatonGHA in Section
3.2, taken from [86] and [2], and then we will define the subclasses considered in
this thesis.

In particular we initially define in Section 3.3 one of thesimplestclass ofGHA,
namely the linear affine switched systemS, that switches between many operating
modes, where each mode is governed by a linear affine dynamical law.

We define an annexed optimal control problem OP of the formpiecewise LQRin
Section 3.4.2 both with finite and infinite number of controllable switches.

The solution of the OP with finite number of switches is described in Chapter 4,
while in Chapter 6 and 7 we deal with an infinite number of switches.

We will also define the linear affine hybrid automatonHA in Section 3.5, which
is a generalization of a switched system characterized by the presence of constraints
on the state space. This aspect influences its dynamical behavior, by the occurrence
of autonomous switches (AHA), or it restricts the action of an external discrete
controller (CHA), permitting to model safety or constructive specifications.

We will formally define the annexed optimal control problem in the two cases,
whose solution is addressed in Chapter 5, and it only deals with finite number of
switches.

3.2 Definition of general hybrid automatonGHA

A hybrid automatonconsists of a classic automaton extended with a continuous state
x ∈ Rn that may continuously evolve in time with arbitrary dynamics or have dis-
continuous jumps at the occurrence of a discrete event.

In this section we recall the general definition of the hybrid automaton. We denote
in the following the general form of the hybrid automaton with the acronymGHA.
A GHA is a structureGHA = (L, act, inv, E ,M) in consistency with the current
literature definitions (see for instance [2] and [86]). Briefly

Definition 3.1 (Hybrid automaton) A hybrid automatonGHA is a tupleGHA =
(L, act, inv, E ,M), whose entries have the following meaning:

—L is a finite set oflocationsindexed byi = 1, . . . , s.
— act : L → Inclusionsis a function that associates to each locationi a differ-

ential inclusion.
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— inv : L → Invariantsis a function that associates to each locationi an
invariantinvi ⊆ Rn such thatx ∈ invi.

— E ⊂ L × Guards × L is the set of edges. The edgeei,j is enabled when the
current location isi and the current continuous state isx ∈ gi,j : it may fire reaching
the new locationj.

— A jump relation isM ⊂ Rn × Rn associated to an edgeei,j . When the edge
fires,x is reset tox̃ according toM.

¥

The state of theGHA is the pair(x, i) wherex ∈ Rn is the continuous state,
and the indexi identifies the current discrete location.

From this general definition we will analyze the particular cases studied in this
thesis.

We will only consider linear affine system, i.e., the functionacti coincides with
a linear time invariantaffine differential equation of the form

ẋ = Aix + f i.

In the next section we define theswitched system, whose model is considered in
Chapters 4, 6 and 7.

In Section 3.5 we will define the model considered in Chapter 5.

3.3 Definition of switched systemsS

A switched systemis a particular class of hybrid automaton (GHA).
In Chapters 4, 6 and 7 we focus the attention on a particular class ofGHA, that

we call switched linear affine systemsS. TheS switches between many operating
modes, where each mode is governed by its own characteristic dynamical law [1].

We provide a formal definition of aS that will be used in Chapter 4, 6 and 7.

Definition 3.2 (Switched system)Aswitched systemis a structureS = (L, act, E ,M),
where

—L is a finite set of locations, indexed byi = 1, . . . , s.
— act : L → (Rn × Rn) is a function that associates to each locationi a LTI

affine differential equation of the forṁx = Aix + f i.
—E ⊂ L×L is the set of edges. An edgeei,j = (i, j) is an edge from locationi

to j, i 6= j.
—M : E → Rn×n associates to each edgee ∈ E a constant matrix inRn×n.

When the discrete state switches from locationi to j at timeτ , the continuous state
x is reset tox(τ+) = M i,jx(τ−). ¥

We denote byS the set of indexes associated to each location, ands = |S|.
TheS admits a time driven evolution governed by the law described in the activ-

ity and an event driven evolution described by the sequence of locations visited by
the system during the time driven evolution.

The S starts from some initial state(x0, i0). The trajectory evolves with the
location remaining constant and the continuous statex evolving according to the
act function at that location. When at timeτ a switch is made to locationi1 the
continuous state is initialized to a new valuex(τ+) = M i0,i1x(τ−). The new state
is the pair(x(τ+), i1). The continuous state now moves with the new differential
equation.

It is possible to associate to aS, or equivalently to aGHA, an oriented graph,
according to the following definition.
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Definition 3.3 (Oriented graph of aS) Anoriented graphof aS is obtained by as-
sociating to each locationi ∈ S a node and to each edgeei,j an oriented arc from
nodei to nodej. ¥

An example is depicted in Figure 3.1.
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Fig. 3.1.Oriented graph of aS composed of 4 locations and 6 edges.

Before proceeding further it is important to provide the following definitions.

Definition 3.4 (Set of successors ofi) Theset of successorssucc(i) ⊂ S of loca-
tion i in a S is the set of allj ∈ S such that∃ ei,j ∈ E . ¥

This set is composed of the location indexes that can be reached from locationi
by firing one and only one edge.

Note that the setsucc(i) does not includei itself. As an example we can consider
theS whose graph depicted in Figure 3.1. It is clear that

succ(1) ≡ {2, 3, 4}, succ(2) ≡ {1}, succ(3) ≡ {2}, succ(4) ≡ {3}.

The state of aS, and in general of aGHA, is completely identified by the con-
tinuous time variablex ∈ Rn and the index of the current discrete locationi.

Definition 3.5 (Hybrid state) Thestateof theS is the couple(x, i) wherei is the
discrete location andx ∈ Rn is the continuous state. ¥

Let us observe that the hybrid state is composed by acontinuous partx and a
discrete parti. Analogously we can define thehybrid evolution.

Definition 3.6 (Hybrid evolution) Thehybrid evolutionin a time interval[t1, t2] of
theS is the couple(x(t), i(t)) wherei is the discrete location at timet andx(t) ∈
Rn is the continuous state at timet, ∀ t ∈ [t1, t2]. ¥

Note that a hybrid evolution is a sequence of hybrid states.
The continuous part of the evolution is governed by the differential equation

corresponding to the current location, given in the discrete part. The discrete part of
the evolution is governed by the set functionali(t) ∈ succ(i) ∪ {i}.

Let us consider a value ofτ in the open interval(t1, t2) and the corresponding
value of the hybrid state(x(τ), i(τ)). From this point we would like to calculate the
hybrid state at timeτ + dτ , i.e.,(x(τ + dτ), i(τ + dτ)), wheredτ → 0.

We can separately analyze the two cases.
Case 1:τ is a switching instant.
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In this case an event driven evolution occurs. Suppose thati(τ) = i andj ∈
succ(i), i.e., there exists an edge leading from locationi to locationj, and it fires at
time τ .

The new value of the hybrid state is simply

x(τ + dτ) = M i,jx(τ), i(τ + dτ) = j).

In the sequel we will often indicate for brevityx(τ + dτ) = x(τ+) andx(τ) =
x(τ−), denoting the right and the left part respectively of the

lim
t→τ

x(t).

Note that the continuous part of the evolution is reset to the new valueM i,jx(τ).
This linear dependency is a restriction of a more general model where the reset func-
tion is independent fromx(τ−).

Nevertheless this framework is able to model several interesting cases: projec-
tion, stretching/contraction of the norm, change of coordinates and, obviously, state
continuity, obtained by usingM i,j = In (the identity matrix).

Another crucial reason why we referred to this model is that we will present a
procedure (extensively described in Chapters 4,5,6,7) whose logics are based on the
preservation of a linearity and quadratic property of appropriate functions during the
hybrid evolution.

Case 2:τ is not a switching instant.
In this case no event driven evolution occurs. Suppose thati(τ) = i, then, triv-

ially,

i(τ + dτ) = i,

i.e., the evolution keeps evolving in the same locationi.
The continuous part of the evolution is governed by the linear affine differential

equation associated to locationi, ẋ(t) = Aix(t)+f i, hence the new valuex(τ+dτ)
can be obtained numerically or by simple integration.

Note that in a more general framework it is possible to consider modes of the
form ẋ(t) = fi(t,x,u), whereu is a continuous control input.

However the LTI affine autonomous (u = 0) case allows the development of
a numerically viable procedure, described in the rest of this thesis, that permits to
design the discrete part of the hybrid evolutioni(t) in feedback form.

To complete the description of theS model used in this thesis we finally describe
an additional constraint, namely, theminimum permanence timein each location.

Definition 3.7 (Minimum permanence time) Once entered in a locationi we can-
not leave it before aminimum permanence timeδmin(i) ≥ 0 has elapsed. ¥

This is a common constraint in many real applications:δmin may be the time
necessary to control an actuator, or it may be the scan time of a PLC that triggers the
switches, or even the delay of a signal propagation in a distributed system or of the
measuring instruments.

If a model admits a minimum permanence time, then undesirable behaviors, such
as Zeno, that may arise when more than one switches in 0 time are permitted, are
avoided.

In Chapters 4 and 6 we consider theS as in Definition 3.2. Therein we provide a
method, based on dynamic programming arguments that enables one to design a state
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feedback control law of the discrete part of the hybrid evolutioni(t), by minimizing
a performance index defined in the sequel.

In particular in Chapter 4 this law is obtained for a finite numberN of admissible
switches, while in Chapter 6 this hypothesis is relaxed, thus also an infinite number
of switches is admitted.

3.3.1 Particular switched systems

We define in this section two special cases of theS defined above. One is the
switched system that only admits afixed mode sequence.

Definition 3.8 (S fixed mode sequence)We denote bySF , S with fixed mode se-
quence, the particular class ofS such that∀ i S it holds

|succ(i)| ≤ 1.

¥

The importance of this special subclass ofS, wrt the given optimization problem,
is detailed in Section 4.6.1. In fact its simple structure implies that the DOF in every
switch is 0.

In other words, given the initial locationi(t = 0) for thisSF , the mode sequence
is univocally determined, because each location admits at most one successor.

This implies that the design ofi(t) is drastically simplified by the fact that the
controller can only choose the switching instant, while the next location is evidently
constrained, in force of the fact thatsucc(i) is a singleton or∅.

Moreover this case is of historical relevancy, because it originally [49] gave birth
to the switching table procedure (STP) extensively described in this thesis.

Figure 3.2 shows some possibleSF .
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Fig. 3.2.Oriented graphs of three possibleSF .

The other crucial case is theS that admits any arbitrary mode sequence. This
model was originally studied in [9] and it is equivalent to aS where the switching
sequence is completely unconstrained, i.e., from every locationi it is possible to
reach with one and only one switch every other locationj of theS. Formally it is the
particularS, namelySA, defined as follows.

Definition 3.9 (S arbitrary mode sequence) We denote bySA, S with arbitrary
mode sequence, the particular class ofS such that∀ i ∈ S it holds

succ(i) ≡ S \ {i}.
¥
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This particular structure models all physical systems where it is possible (for
safety or constructive point of view) to switch indifferently from one mode to an-
other. Moreover we observe that the oriented graph of aSA is completely connected.

Figure 3.3 shows some possibleSA’s.
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Fig. 3.3.Oriented graphs of three possibleSA’s.

We finally denote by{Ai}i∈S the particularSA such that the following restric-
tions are given: for alli ∈ S
• δmin(i) = 0;
• f i = 0.

This special class is considered in Chapter 7, where the notion of stability and
stabilizability via optimal control is studied.

3.4 Optimal control problem for S

Before define the problem formulation we give some preliminary definitions.

3.4.1 Preliminary definitions

Definition 3.10 (Annexed weights)Given aS as in Definition 3.2 we associate to
eachi ∈ S a matrixQi ≥ 0 and to eachei,j , i 6= j ∈ E a real constantHi,j ≥ 0
andHi,i = 0. ¥

The matricesQi represent the quadratic weight of the continuous partx(t) of
the hybrid evolution, i.e., wheneveri(t) = i the continuous statex(t) is weighted by
the quadratic formx′(t)Qix(t).

The numbersHi,j weight the discrete part of the hybrid evolution, i.e., whenever
a switch from locationi to locationj occurs, a costHi,j is associated.

Property 3.1 Consider a hybrid evolution(x(t), i(t)), t ∈ [0, +∞), the function
i(t) is piecewise constant. ¤
Proof. This is obvious, in fact the functioni(t) represents the values of the location
indexes visited by the automaton during the evolution. ¥

We now define two sets that are crucial in the development of this research.

Definition 3.11 (Sequence of switching instants)We define thesequence of switch-
ing instantsthe set

T ≡ {τ1, τ2, . . . , τk, . . .}
with 0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τk ≤ . . . ≤ +∞ the time instants at the occurrence of a
switch. ¥
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Definition 3.12 (Sequence of indexes)We define thesequence of indexesthe set

I ≡ {i0, i1, . . . , ik, ik+1 . . .}

with ik+1 ∈ succ(ik), k ∈ N ∪ {0}, the list of values assumed byi(t) when
t ∈ [τk, τk+1). ¥

Figure 3.4 visualizes immediately the meaning of the definitions above. In this
figure it isI ≡ {1, 4, 3, 2, 3} andT ≡ {τ1, τ2, τ3, τ4}.
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Fig. 3.4.Example of the discrete part of evolutioni(t). The setsT , Definition 3.11, andI,
Definition 3.12, can be extracted from thepiecewise constantfunctioni(t).

Definition 3.13 (Cost of the hybrid evolution) Given a hybrid evolution(x(t), i(t)),
t ∈ [0, +∞), the cost of the evolution is given by

F (I, T ) =
∫ ∞

0

x′(t)Qi(t)x(t)dt +
∑

k∈N
Hik−1,ik

. (3.1)

¥

Note that the semi positiveness ofQi andHi,j make the cost functionF (I, T )
physically significant.

Remark 3.1 (A physical interpretation of the cost) In specific models, for instance
when the variablex represents thepositionand thevelocity of a point of massm
andQ is diagonal, this functional is proportional to the total amount of kinetic and
elastic energy spent during the motion.

Generally speaking the LQR performance indexes are well suited to model energy
consumptions. Nevertheless we do not consider here any further physical interpreta-
tions but rather we will care of the problem in a more abstract way. ¥

The objective of this research is to provide a numerically viable procedure that al-
lows the minimization of the functional (3.1), over the design variablesI, T derived
from the switching signali(t).

This is equivalent to say that, given a switched systemS, an annexed optimal
control problem OPN (S), an initial hybrid state(x(0), i(0)) we design the function
i(t) that minimizes the functional (3.1).
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3.4.2 Finite number of switchesN < ∞

We consider initially the minimization problem when|I| = N + 1 < ∞. This
problem is considered and solved in Chapter 4

In this case

• T , {τ1, . . . , τN} is afinitesequence of switching times;
• I , {i0, . . . , iN} is afinitesequence of modes.

The functional (3.1) takes the form

F (I, T ) =
∫ ∞

0

x′(t)Qi(t)x(t)dt +
N∑

k=1

Hik−1,ik
. (3.2)

and the problem is defined as follows.

Definition 3.14 (Optimal control problem for a S) We define theoptimal control
problem for a switched systemS OPN (S)as

J∗N , min
I,T



F (I, T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt+
N∑

k=1

Hik−1,ik





s.t. ẋ(t) = Ai(t)x(t) + f i(t)

x(0) = x0

i(t) = ik for τk ≤ t < τk+1 k = 0, . . . , N
ik+1 ∈ succ(ik) k = 0, . . . , N
τ0 = 0, τN+1 = +∞
τk+1 ≥ τk + δmin(ik) k = 0, . . . , N
x(τ+

k ) = M ik−1,ik
x(τ−k ) k = 1, . . . , N

(3.3)

where the meaning of all terms has been extensively described in Section 3.4.1.¥

In a similar manner we may define OPN (SA) and OPN (SF ), i.e., the optimal
control problem of the particular switched systemsSA andSF defined in Section
3.3.1.

The objective of the research described in Chapter 4 is to solve the above OPN (S)
for a givenS.

Note that we considered

τk+1 ≥ τk + δmin(ik),

according to Definition 3.7.
The cost functional consists of two components: a quadratic cost that depends on

the time evolution (the integral) and a cost that depends on the switches (the sum).
In Figure 3.5(a) a graphical meaning of the entries of Problem (3.3) are given for

N = 41.
Note that in the last equation of (3.3), it is implicitly contained the following

remark (see also Figure 3.5(b))

Remark 3.2 Assume that the model of the system does not require a minimum per-
manence time in locationik, i.e., for somek = 0, . . . , N , δmin(ik) = 0. This allows

1Clearly the space of the plot does not coincide with the state space.
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the occurrence of simultaneous switches from locationsik−1 to ik+1 (or an immedi-
ate switch toi1, whenever the casek = 0 is considered), because the OPN (S) allows
the solutionτk = 0, by virtue ofτk+1 ≥ τk + δmin(ik) = τk. Thus it may be possible
that the optimal solution is to remain in locationik−1 and then switch immediately
at timeτk to locationik+1. In such case it holdsτk = τk+1, and consequently

x(τ+
k ) = x(τ−k+1)

(Figure 3.5(b)). Briefly thek − th switch has no effect on the continuous time evolu-
tion, but it does on the discrete behavior of the automaton. In fact

x(τ+
k ) = M ik−1,ik

x(τ−k )
x(τ+

k+1) = M ik,ik+1x(τ−k+1)

and consequently
x(τ+

k+1) = M ik,ik+1M ik−1,ik
x(τ−k ).

Similar considerations should be done for the switching costs.
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Fig. 3.5. (a): sketch of a dummy evolution: explanation of the variables introduced in Prob-
lem (3.3); (b): the same evolution with the degeneracy of the second switch and its effect on
the state jump. The same jump matrixM has been used for all switches.

We might provide an equivalent form of the Problem 3.3 based on the time inter-
val, rather than on absolute times. By letting

%k , τk − τk−1 ≥ δmin(ik−1)

be the time interval elapsed between two consecutive switches,k = 1, . . . , N , the
Problem (3.3) can be rewritten as
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J∗N , min
I,T

{
N∑

k=0

[
x′kQ̄ik

(%k+1)xk + c̄ik
(%k+1)xk + ᾱik

(%k+1)
]
+

N∑

k=1

Hik−1,ik

}

s.t. xk+1 = M ik,ik+1Āik
(%k+1)xk + f̄ ik

(%k+1), k = 0, . . . , N − 1
x0 = x(0)

(3.4)
where

Āi(%) , eAi%,

f̄ i(%) ,
∫ %

0

Āi(t)f idt,
(3.5)

and

Q̄i(%) ,
∫ %

0
Ā
′(t) Q Ā(t)dt

c̄i(%) , 2f ′
∫ %

0

(∫ t

0
Ā
′(τ)dτ

)
Q Ā(t)dt

ᾱi(%) , f ′
[∫ %

0

(∫ t

0
Ā
′(τ)dτ

)
Q

(∫ t

0
Ā(t)dτ

)
dt

]
f

can be obtained by simple integration and linear algebra, as reported in Appen-
dix B, or even resorting to numerical integration.

The approach of the solution, calledswitching tables procedureSTP, is described
in Chapter 4.

3.4.3 Infinite number of switchesN = ∞

We now consider the case where the number of allowed switches can be infinite. In
this case|I| = ∞.

This problem is analyzed in Chapter 6 and 72.
Since we are dealing with infinite number of switches, we assume that all switch-

ing costsHi,j are null, i.e., we do not consider the cost of the event driven evolution.
Moreover we did not modelled the state jumps, hence∀ i, j ∈ S M i,j = In.
We can define the optimal control problem of a switched system with infinite

number of switches as follows.

Definition 3.15 (Infinite OP∞(S)) Theoptimal control problem of a switched sys-
tem with infinite number of switches, OP∞(S), is

J∗∞ , min
I,T

{
F (I, T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt

}

s.t. ẋ(t) = Ai(t)x(t) + f i(t), x(0) = x0, i(0) = i0
i(t) = ik ∈ succ(ik−1) for τk ≤ t < τk+1,
τk+1 ≥ τk + δmin(ik),

(3.6)

k ∈ N. The initial statex0 and the initial locationi0 are given. ¥

The control variables areT andI, whereT is the set of switching times andI
is the sequence of indices associated to the functioni(t). All the terms appearing in
this section have been extensively described in Section 3.4.1 and 3.4.2.

2In Chapter 7 we studied the problem in the simpler case of aSA.
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3.5 Definition of hybrid automata HA

In Definition 3.1 the notion ofGHA is introduced, as it appears in the current liter-
ature [2], in a very general form.

Here we will define theHA as a particular case of the hybrid automaton defined
in Definition 3.1 that is considered in Chapter 5. We indicate with the acronymHA
the particularGHA that has been studied in this research.

Definition 3.16 (Hybrid automaton) Thehybrid automatonHA considered in Chap-
ter 5 is the tupleHA = (L, act, inv, E ,M) whose entries have the following mean-
ing:

—L is a finite set of locations indexed byi = 1, . . . , s.
— act : L → Inclusionsis a function that associates to each locationi a differ-

ential equation of the form

ẋ = Aix + f i.

— inv : L → Invariantsis a function that associates to each locationi an
invariant invi ⊆ Rn such thatx ∈ invi.

— E ⊂ L × Guards × L is the set of edges. The edgeei,j is enabled when the
current location isi and the current continuous state isx ∈ gi,j : it may fire reaching
the new locationj.

— A linear jump relation isM⊂ Rn ×Rn associated to an edgeei,j . When the
edge fires,x is reset tox̃ = M i,jx, whereM ∈ Rn×n.

¥

The classic definition ofGHA [86] is more general than the one considered
here because: the activity set may be a differential inclusion rather than a linear
differential equation; the jump relation may be arbitrary and not necessarily defined
by a matrixM .

In consistency with theS we can define:

• thestateof theHA as the pair(x, i) wherex ∈ Rn is the continuous state, and
the indexi identifies the discrete locationi, as in Definition 3.5;

• theevolutionof theHA (x(t), i(t)) as in Definition 3.6;
• the minimum permanence time in each location, as in Definition 3.7.

We can also denote by
s = |L|,

and
S ≡ {1, 2, . . . , s}

the set of indexes of the locations.
Note that the presence of guards and invariants in the model definition are crucial

in the dynamical behavior of the discrete part of the hybrid state. In Definition 3.4
it was defined the setsucc(i) as a function of the current locationi. The presence
of guards and invariants leads us to reconsider the setsucc as function of both the
continuous and the discrete part of the hybrid state.

Formally
succ : Rn × S → 2S . (3.7)

We will separately analyze two cases.
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The former is the case where theHA may exhibitinternally forcedswitches, i.e.,
there is a subset of edges that, according to the value of the current hybrid state(x, i)
may fireautonomously3. In this caseuncontrollableswitches may occur.

We will call this model asautonomous HA, AHA.
The latter is the case where all switches are controllable, but the set of possible

successors of a current locationi is dependent on the continuous state space. We will
call this model asconstrained HA, CHA.

Before proceeding further in the formal properties and restrictions ofAHA and
CHA it is important to recall some basic definitions.

Definition 3.17 (Invariant set) An invariant setinvi, i ∈ S, is

invi ⊆ Rn,

such that ifx ∈ invi then the hybrid evolution(x(t), i(t)) is allowed within location
i. ¥

Definition 3.18 (Guard set) A guard setgi,j , i, j ∈ S, is

gi,j ⊆ Rn,

such that ifx ∈ gi,j then the edgeei,j ∈ E is enabled and it may fire. ¥

3.6 The considered cases ofHA and annexed OP

As described in the introduction of this chapter, the presence of invariant sets and
guards associated to edges influences the behavior of theHA, and consequently the
problem formulation and its solution should be described consistently.

More precisely the presence of these sets have an effect on the switching schedul-
ing, and thus on the designing of the control policy.

It is fundamental for the design of the control law, that the system isdeterministic,
i.e., the hybrid evolution(x(t), i(t)) is exactly known for any given initial state.

Once this is guaranteed we may analyze two different interpretations of the
switching constraints. In particular two classes ofHA have been considered, and
for each of them we applied the STP as described in Chapter 5.

In the course of this research we considered the annexed optimal control problem
to theHA but, in difference with the switched system, we limited the study to the
case where the total number of available controllable switches is limited toN .

Thus, a natural extension is to relax this restriction and consider, also for theHA
the problem of infinite number of switches.

In fact the study of OP∞(CHA), at least in restrictive conditions, is amongst the
work in progress. Our recent results are briefly described in the Conclusions of this
thesis.

3.6.1 Definition of autonomous hybrid automatonAHA

This case considers anautonomousHA, meaning that this system is subject to se-
quences of autonomous switches. In other words, not only the time driven evolu-
tion x(t) is uncontrolled (we only studied hybrid systems whose continuous control
u = 0), but also the discrete event evolutioni(t) is subject to autonomous behaviors
according to subsets (named asguards) of the state space .

3Some authors [100] call the systems with this behavior asswitching systems.
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This class of systems, also denoted byswitching systems[100], perform switches
autonomouslyor so calledinternally forced4, meaning that some switches may occur
without any external control input, but merely according to the value of the continu-
ous statex.

Note that this is critical in the study of the hybrid systems. In fact there are several
examples in literature, see for instance [17], where the presence of internally driven
switches brings easily to instability.

An AHA is a particularHA = (L, act, inv, E ,M) whose setE satisfies the
following Definitions 3.19 and 3.20, and whose guards satisfy Assumption 3.1.

Definition 3.19 (Set of controllable edges)For each locationi ∈ S, theset of con-
trollable edgesEi,c is the subset of all its output edgesEi such that

Ei,c = {e ∈ Ei | ge = invi}.
¥

Definition 3.20 (Set of uncontrollable edges)For each locationi ∈ S, theset of
uncontrollable edgesEi,a is the subset of all its output edgesEi such that

Ei,a = {e ∈ Ei | ge ∩ invi = ∅} (3.8)

¥

We clarify that
Ei = Ei,c ∪ Ei,a. (3.9)

Finally we give Assumption 3.1

Assumption 3.1 (Guards and invariants of theAHA) All guards associated to edges
within the setEi,a are disjoint sets. Formally:

∀ e, ê ∈ Ei,a with e 6= ê, ge ∩ gê = ∅. (3.10)

Moreover, we assume:

invi ∪

 ⋃

e∈Ei,a

ge


 = Rn. (3.11)

¥

We call thisHA autonomousbecause there is no continuous control input and
the autonomous edges are uncontrollable.

Note that the above definitions and assumption on the structure of the edges and
guards of anAHA have several implications.

• Firstly, given an edgeei,j = (i, gi,j , h) ∈ Ei,a from locationi if the continuous
state isx ∈ gi,j , then a switch to locationj should immediately occur.
In fact, according to equation (3.8),x 6∈ invi and the system cannot remain
in location i. We may call the edgeei,j ∈ Ei,a autonomous(or equivalently
uncontrollable).

• Whenever the continuous state reaches the guardgi,j , thusenablingthe edgeei,j ,
the discrete autonomous behavior of the system isdeterministic, because no other
switch may occur. In fact, if there exist another output edgeei,k (be it controlled
or autonomous), then by Assumption 3.1 it holdsgi,j ∩ gi,k ≡ ∅.
4This terminology was firstly introduced by Xu and Antsaklis in [122].
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• If the continuous statex evolves within a given discrete locationi and there
exists an output edgeei,j = (i, gi,j , q) ∈ Ei,c then the system may either switch
to locationj or may keep evolving within locationi. We assume that the choice
is made by a discrete controller.
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Fig. 3.6.Oriented graph of theAHA considered in Example 3.1. The dashed arcs represent
the autonomous edges, while the continuous arcs represent the controllable edges.

Before providing some other useful definitions we provide a specific example,
that shows the practical meaning of the described formalism of anAHA.

Example 3.1 Let us consider theAHA whoseoriented graph, Definition 3.3 is re-
ported in Figure 3.6 where dashed arrows have been used to denote autonomous
edges and continuous arrows have been used to denote controllable edges.

The guards and invariant sets are depicted in Figure 3.7 In this particularR2

case, guards and invariants of the automaton are homogeneous. In such a case they
may be easily described [90] as quadratic forms ofx. In particular, we assume that
the guards associated to autonomous switches are

g1,2 = {x ∈ R2| x′G1,2x ≥ 0}, G1,2 =
[−0.2 0.6

0.6 −1

]

g1,3 = {x ∈ R2| x′G1,3x ≥ 0}, G1,3 = −
[

1 1.25
1.25 1

]

and

g2,3 = {x ∈ R2| x′G2,3x ≥ 0}, G2,3 =
[−3 0.5

0.5 0

]

whereg1,2 ∩ g1,3 = ∅, thus verifying Assumption 3.1.
Consequently, by Assumption 3.1, the invariant sets may be defined as

inv1 = R2 \ (g1,2 ∪ g1,3),
inv2 = R2 \ g2,3, inv3 = R2,

while the guards associated to controllable switches are

g2,1 = inv2, g3,1 = g3,2 = inv3.



Chapter 3- Hybrid systems: models and optimization problems 33

−1  −0.5 0   0.5 1   
−1  

−0.5

0   

0.5 

1   

g
1,3

 
g

1,2
 

Inv
1
 

Inv
1
 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
g

2,3
 

Inv
2
 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Inv
3

Fig. 3.7.The guards and invariants of theAHA in Example 3.1.

3.6.2 Dynamical behavior of anAHA

Let us assume that the current hybrid state is, at a given timet, (x, i). For this state
there are two possible conditions:

1. x ∈ invi.
2. x /∈ invi.

While the system is evolving in locationi, the DOF of the external controller is
limited to bysuccc(i) ∪ {i}.

In other words the controller, whilex ∈ invi, can choose to switch amongst all
controllable successors of locationi or therein remain.

More precisely we give the following definition:

Definition 3.21 (Set of controllable successors)Theset of controllable successors
of locationi succc(i) is defined as follows:

succc(i) ≡ {j ∈ S : (i, gi,j , j) ∈ Ei,c},
where the setEi,c is taken as in Definition 3.19.

¥

In case (2) the system must leave locationi, in agreement with the definition of
the invariant. Hence an autonomous switch will occur, and the systems fallsspon-
taneouslyinto another location, sayj, which is univocally determined by the guard
gi,j .

Equivalently

∀ x ∈ Rn \ invi, ∃! j ∈ S
such thatx ∈ gi,j , where we indicate by∃! the "one and only one" exitance condi-
tion.

Now define the set

Definition 3.22 (Set of uncontrollable successors)The set of uncontrollable suc-
cessorsof locationi succa(i) is defined as follows:

succa(i) ≡ {j ∈ S : (i, gi,j , j) ∈ Ei,a},
where the setEi,a is taken as in Definition 3.20.

¥

Consider for instance the location 2 in Example 3.1. Clearly the setsuccc(2) ≡
{1} andsuccc(2) ≡ {3}.

We do not assume that the number ofautonomousswitches performed by an
AHA is finite. Thus, according to the shape of the guards, the system may
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• become unstable with no control;
• exhibit Zenoness.

In the sequel we provide sufficient structural conditions on the automaton graph
that avoid these undesirable behaviors. Furthermore, in order to prevent non deter-
minism, we assume thatsucca(i) is a singleton. In the sequel we name this particular
HA with the acronymAHA (Autonomous Hybrid Automaton).

3.6.3 Optimal control problem for AHA

We now define the optimal control problem annexed to theAHA. Before giving a
formal definition of the problem it is helpful to introduce some additional notions.

Definition 3.23 (Sequence of autonomous switches)Given a state(x0, i0) of an
AHA we define thesequence of autonomous switches

σ(x0, i0) = {(i0, θ0), (i1, θ1), ..., (ih, θh)}

whereik is the index of thek−th location visited from locationi0 and firing only au-
tonomous edges of theAHA, whileθk ≥ 0 is the time spent in locationik. Formally
theθk ’s are time intervals such that fork = 0, . . . , h it holds:

xk+1 = M ik,ik+1Āik
(θk)xk

∀ t ∈ [0, θk) Āik
(t)xk ∈ invik

Āik
(θk)xk ∈ gek

ek = (ik, gek
, ik+1) ∈ Ei,a

(3.12)

with θh = +∞. ¥

Note that the intervalθk is the time it takes, once entered in locationik, to reach
the guard of the autonomous edge leading to locationik+1. Thereforeθk = 0 implies
thatxk /∈ invik

.

Definition 3.24 (Bounded automata)We say that anAHA is boundedif there ex-
ists an integer̂h < +∞ such that for all hybrid states(x, i) it holds

|σ(x, i)| ≤ ĥ.

¥

Note that this property implies that the automaton is not allowed to evolve au-
tonomously for an infinite number of switches, thus avoiding undesired behaviors
such as Zenoness [61] or instability [17].

Property 3.2 (Condition for bounded automata) If theoriented graphof anAHA
does not have cycles composed of only autonomous edges, then it is bounded.¤

Proof. The fact that no cycle composed of autonomous edges exists, is a sufficient
(but not necessary) condition to imply that the boundĥ given in Definition 3.24 is
less or equal to the length of the longest directed path containing only autonomous
edges. ¥
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Note that the above property is structural of the oriented graph of theAHA, and
it is very easy to verify.

As an example, we can immediately assert that the automaton in Figure 3.6 is
bounded because it does not contain any cycle of autonomous (depicted with dashed
arcs) edges.

We will only consider boundedAHA. Considering non boundedAHA can be
meaningless, because of the potential instability of the system.

We shall now introduce a piecewise constant time function associated to the se-
quenceσ(x0, i0).

Definition 3.25 (Indexes of autonomous trajectory)The indexes of autonomous
trajectorycorresponding to a given sequenceσ(x0, i0) = {(i0, θ0), . . . , (ih, θh)}
is:

ϕσ(t) = ik, if t ∈



k−1∑

j=0

θj ,

k∑

j=0

θj


 (3.13)

¥

Example 3.1.Suppose that from a givenAHA state(x, i) it has been computed the
following sequenceσ(x, i):

σ(x, i) = {(1, 2), (3, 1.5), (2, 2.5), (4, +∞)}
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Fig. 3.8. Functionϕσ(t) of the autonomous sequenceσ(x, i) = {(1, 2), (3, 1.5), (2, 2.5),
(4, +∞)}.

The associated functionϕσ(t) is displayed in Figure 3.8.

The optimal control problem is based on the assumption that the discrete con-
troller has at mostN (fixed a priori) controllable switches available.

In analogy with the Definition 3.14 we define the optimal control problem asso-
ciated to theAHA, and we indicate it with the acronym5 OP(AHA).

For the explanation of the symbols given in the following definition concerning
the optimal control refer to Section 3.4.1, and for the explanation of the symbols
concerning theAHA refer to Section 3.6.1.

5Here the subscriptN is useless because we do not deal with infinite number of switches.
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Definition 3.26 (Optimal control problem for an AHA) We define theoptimal con-
trol problem for anAHA OP(AHA) in consistency with Definition 3.14, disregard-
ing the switching costs,

J∗N , minI,T

{
F (I, T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt

}

s.t. ẋ(t) = Ai(t)x(t) + f i(t)

0 = τ0 ≤ . . . ≤ τk ≤ . . . ≤ τN+1 = +∞
(controlled switching times)

i(0) = i0 (initial location)
x(0) = x0 (initial state)
ik ∈ succc(ik−1) (location reached after thek − th controlled switch)
x(τk) = M ik,ik−1x(τ−k )

(state reached after thek − th controlled switch)
σk = σ(x(τk), i(τk)) (autonomous sequence)
i(τk + θ) = ϕσk

(θ) for θ ∈ [0, τk+1 − τk)
(autonomous index trajectory)

(3.14)
¥

Here functioni(t) is composed ofN + 1 blocks delimited by the instantsτk ’s
where the controlled switches occur.

Each block is apiecewise constant function: steps internal to the interval[τk, τk+1)
correspond to autonomous switches. More precisely, within the time interval[τk, τk+1)
the functioni(t) is not constant but piecewise constant. In fact during the time elaps-
ing [τk, τk+1) an autonomous evolution may occur.

The control variables in this problem are the sequence ofcontrolled switching
timesT , {τ1, . . . , τN}, and thesequence of location indicesassociated with con-
trollable switchesI , {i(τ1), . . . , i(τN )}.

We want now to characterize some control problems such that the optimal cost is
finite.

Definition 3.27 (Ultimate stability) A locationi of a boundedAHA is ultimately
stable if∀x ∈ invi the associated sequenceσ(i, x) reaches a final dynamicsih (that
may depend onx) such thatAih

is strictly Hurwitz. ¥

Proposition 3.1 A boundedAHA can be stabilized by a switching control law if
from every locationi not ultimately stable there exists at least a controlled edge
leading to an ultimately stable location. ¤

Proof. We show that from any initial state(x0, i0) it is possible to steer the continu-
ous state to the origin. In fact from the initial state we can wait until the last location
ih of the sequenceσ(x0, i0) is reached. Obviously ifAih

is not Hurwitz thenih
is not ultimately stable, hence by assumption there exists a controllable switch that
leads to an ultimately stable location. ¥

Note that this proposition is a sufficient (but not necessary) condition for the
existence of a stabilizing control law. In order to make the problem (3.14) solvable
with finite costJ∗N , we assume that all consideredAHA satisfy Proposition 3.1.

Finally, in order to express in a more compact way the following results, we recall
that for a linear time invariant system of dynamicsA an integral like

J =
∫ τ+∆τ

τ

x′(t)Qx(t)dt (3.15)
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with Q ≥ 0 is a quadratic form

J = x′(τ)Q̄(∆τ)x(τ) (3.16)

that can be computed numerically or analytically as in Appendix B.

3.6.4 Definition of constrained hybrid automatonCHA

We analyze now another particular class ofHA as in Definition 3.16, whose edges
areall controllable but their firability depends on the value of the continuous state
spacex.

We suddenly state that, in opposition to theAHA, in this case there are no
autonomous sequences of switches, thus the instability issue and the Zenoness are
avoideda priori.

This aspect of theHA simplifies the notation and we may directly describe the
dynamical behavior of theCHA without providing any further definition.

The development of theCHA was motivated by a particular case study, de-
scribed in Chapter 5, where the model of the plant is subject to safety constraints on
the continuous state space6.

The verification of these safety constraints can be guarantee if the sequences of
discrete outputs of the plant obey to certain specification.

A procedure, developed byRaisch et al.[85], based on thel−complete approx-
imation, and suited to theHA framework by the work ofGromov et al.as in [32],
see Appendix D, allows the conversion of this specifications on the outputs into the
definition of the invariant set.

We describe the dynamical behavior from ahigh-levelpoint of view, meaning by
high-level that we assume that the guards and invariants of theHA are given, with
no concerns on how they are generated.

What makes this model a particular case of theHA is the definition of the guards.
In this case we define:

Definition 3.28 (Guards of aCHA) We define theguard of theCHA gi,j , associ-
ated to the edgeei,j = (i, gi,j , j) ∈ E asgi,j ≡ invj . ¥

The edgeei,j is thus enabled provided that the current continuous statex ∈
invj .

3.6.5 Dynamical behavior of aCHA

The behavior is described as follows.
We may initially define the set of successors7, as a function of the hybrid state

(x, i)

Definition 3.29 (Set of successors)We define theset of successorsof the hybrid
state(x, i)

succ(x, i) ≡ {j ∈ S : x ∈ gi,j}.
¥

Let us assume that the current hybrid state is, at a given timet, (x, i). For this
state there are two possible conditions:

6With safety constraint we mean that the continuous variables of the plant should never
take dangerous values, think, for instance to the pressure in a boiler.

7For this case there is no real need to specifycontrollablesuccessors, in fact there is no
autonomous evolution.
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1. x ∈ invi.
2. x /∈ invi.

In case (1) the controller can choose to switch to anyone of the locations enabled
by the guards according to the current value of the continuous statex, or it can decide
to remain in the current locationi, since the invariant condition is verified. The DOF
of the controller is, in case (1):

succ(x, i) ∪ {i}.
In case (2), the system must, by Definition 3.17, leave locationi. Hence the DOF

of the controller is

succ(x, i).

Remark 3.3 (BlockingCHA) Case (2) offers a potentially blockingCHA. This
can be obtained whenever the current location isi, x /∈ invi andsucc(x, i) ≡ ∅.

Nevertheless the procedure described in Appendix D provides the invariant sets
that avoid this undesirable behavior. ¥

Figure 3.9 better shows the significance of thex-dependency on the setsucc(x, i).

 
l1 l2 

inv1 

inv2 

Enabled 

Fig. 3.9.Meaning of state dependent successors. The edge between locations1 and2 and vice
versa is enabled wheneverx ∈ inv1 ∩ inv2.

Note that the setsucc(x, i) may be a singleton, thus the system may switch, to
an extent,autonomously, because there is no other choice, but this is only an extreme
case.

3.6.6 Optimal control for CHA

We now define the optimal control problem annexed to theCHA. As for theAHA
we consider here only a finite number of available switches, namelyN . We will call
this problem with the acronym OP(CHA).

In consistency with the Definition 3.14 we define the optimal control problem
associated to theCHA, and we indicate it with the acronym8 OP(CHA).

For the explanation of the symbols given in the following definition concerning
the optimal control refer to Section 3.4.1. For the explanation of the symbols con-
cerning theCHA refer to Section 3.6.4.

8Here the subscriptN is useless because we do not deal with infinite number of switches.
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Definition 3.30 (Optimal control problem for a CHA) We define theoptimal con-
trol problem for aCHA, OP(CHA) in consistency with Definition 3.14, disregard-
ing the switching costs,

J∗N , min
I,T

F (I, T ) , min
I,T

∫ ∞

0

x′(t)Qi(t)x(t)dt

s.t. ẋ(t) = Ai(t)x(t) + f i(t)

i(0) = i0 (initial location)
x(0) = x0 (initial state)
i(t+) ∈ succ(x(t), i(t)) ∪ {i(t)}
x(t) ∈ invi(t) ⊂ Rn, ∀ t ≥ 0

(3.17)

whereT andI are defined in Definitions 3.11 and 3.12 withτk−τk−1 ≥ δmin(ik−1)
∀ k = 1, . . . , N + 1, theminimum permanence timeimposed in each location. ¥

Note that this problem formulation is analogous to Problem (3.14), except for
the presence of the invariant set, that restricts the set of actions of the controller in
function of the current continuous state valuex.

3.7 Conclusions

In this chapter the models and the problems studied in this thesis have been formally
defined. More precisely, starting from a general definition of hybrid automata, taken
from [86] and [2], we restricted the attention to the linear affine particular cases.

We formally defined the linear affine switched systemS, which is a system com-
posed of several modes activated by a switching signali(t). We described two special
cases of theS, namely the switched system that only admits a fixed mode sequence
SF and the switched system that admits an arbitrary mode sequenceSA.

We also defined the linear affine hybrid automatonHA, which is a switched
system characterized by the presence of constraints on the state space, that may in-
fluence its dynamical behavior by the occurrence of autonomous switches (AHA),
or they can restrict the action of an external discrete controller (CHA).

For this three classes of hybrid automata we described three different optimal
control problems OP(·) of the form LQR, whose control variable is the switching
signali(t), that is a piecewise constant function withfinite segments. We point out
that for theS we also defined the OP wherei(t) is a piecewise constant function with
infinitesegments.





4

Finite number of switches: switched systems

4.1 Introduction

The design of control laws forhybrid systemsis a key issue in this research field. The
peculiarities of these systems, merging a discrete event evolution with a continuous
time evolution, may allow some particular behaviors, like chaotic trajectories [36,
25, 72] or the Zeno behaviors1 as defined in [66, 59]. Several examples on Zenoness
can be found in [61, 24]. Moreover some paradoxes, like the stabilizability properties
described by [17], or the non uniqueness of anexecution[65], make the object of this
research particularly appealing.

In the previous chapter the type of systems considered in this thesis has been
described in detail. We deal with hybrid systems composed of subsystems with linear
time invariant and autonomous dynamics.

For this class of systems we consider the problem of finding an optimal switching
strategy, i.e., an optimal control law, in feedback form. In short, we would like to find
a procedure, that takes in input the continuous state space (in the sequel denoted by
the variablex) and the discrete state space (in the sequel indexed byi or j), and
from this the switching strategy that minimizes a piecewise LQR performance index
is suggested.

The procedure presented in this chapter represents the kernel of this research
study. A formal presentation of the procedure will be given and supported by the
help of specific examples.

However, for sake of clarity the procedure is not described here in its most gen-
eral form. In particular we consider here the following restrictions:

– The system is allowed to switch to an adjacent location without constraints on the
state space. In other words the continuous part of the hybrid state(x, i) has no
effect on the switching strategy. This extension is considered in the next chapter.

– The total number of allowed switches isN < +∞. This is to prevent undesirable
behaviors, such as Zeno [66, 59]. Furthermore the procedure is developed time
backward, thus it is based on the fact that there actually exists a "last switch".
The extension toN = +∞ is considered in Chapter 6.

The chapter is structured as follows. Initially the notions given in Chapter 3 are
briefly summarized, focussing on the model and the problem under consideration.
Then some theoretical results are presented. In particular these are fundamental to
understand how the feedback control can law be constructed, why it is optimal, and

1A model of a hybrid system exhibits Zeno behavior when it performs an infinite number
of transitions (equivalently, switches) in a finite time interval.
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what its characteristics are. After a brief examination of the computational complex-
ity, some examples follow.

In the last part of the chapter two special cases of the procedure are described.
One is thefixed mode sequence, that was developed in [49]. The other is thear-
bitrary mode sequence, developed in [9]. What we find interesting in these cases is
that they represent, to an extent, the extreme cases of the considered model, thus sug-
gesting a simpler perspective. In the fixed mode sequence the sequence of locations
visited during an evolution is pre-assigned, while in the arbitrary mode sequence the
switching strategy has complete degree of freedom amongst all possible dynamics.
The procedure presented here is a generalization of these cases, and some current
research and results are still based on them, at least in an initial approach, thanks to
their structural simplicity.

Finally we provide an example that introduces the case of infinite number of
switches, more suitable for real life applications.

4.2 Linear affine switched system and optimal control

4.2.1 The linear affine switched system

We consider in this chapter the model defined in Section 3.3, namelylinear affine
switched system, S = (L, act, E ,M), in the sequelS, where, in consistency with
Definition 3.2.

— L is a finite set of locations, indexed byi = 1, . . . , s.
— act : L → (Rn × Rn) is a function that associates to each locationi a linear

affine differential equation, i.e.,̇x = Aix + f i.
— E ⊂ L × L is the set of edges. An edgeei,j = (i, j) is an edge from location

i to locationj, i 6= j.
— M : E → Rn×n associates to each edgee ∈ E a constant matrix inRn×n.

When the discrete state switches from locationi to locationj at timeτ , the continu-
ous statex is reset tox(τ+) = M i,jx(τ−).

We denote byS theset of indexesassociated to each location, ands = |S|.
The considered system may be represented by anoriented graph, as in Definition

3.3.
The state of theS is the couple(x, i) wherei ∈ S is the discrete location and

x ∈ Rn is the continuous state.
We assume that aminimum permanence timeδmin(i) ≥ 0, as in Definition 3.7 is

associated to each locationi.
Moreover we recall the notion of the setsucc(i) ⊂ S, i.e., the set of location

indexes reachable from locationi by firing only one edge, formally defined in Defi-
nition 3.4.

4.2.2 Formulation of the optimal control problem

The objective is to solve the optimal control problem with an upper boundN on the
number of the available switches, OPN (S), as in Definition 3.14 for the switched
systemS defined above.

We recall the problem formulation, as given in Definition 3.14:
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J∗N , min
I,T



F (I, T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt+
N∑

k=1

Hik−1,ik





s.t. ẋ(t) = Ai(t)x(t) + f i(t)

x(0) = x0

i(t) = ik for τk ≤ t < τk+1 k = 0, . . . , N
ik+1 ∈ succ(ik) k = 0, . . . , N
τ0 = 0, τN+1 = +∞
τk+1 ≥ τk + δmin(ik) k = 0, . . . , N
x(τ+

k ) = M ik−1,ik
x(τ−k ) k = 1, . . . , N

(4.1)

whereQi are positive semi-definite matrices andx0 is the initial state of the system.
In this optimization problem there are two types of decision variables, as in Def-

initions 3.11 and 3.12 respectively:

• T , {τ1, . . . , τN} is a finite sequence of switching times;
• I , {i0, . . . , iN} is a finite sequence of modes.

Note that the cost (4.1) consists of two components: a quadratic cost that depends
on the time evolution (the integral) and a cost that depends on the switches (the sum),
whereHi,j ≥ 0, i, j ∈ S, is the cost for commuting from modei to modej, with
Hi,i = 0, ∀i ∈ S.

4.2.3 Fundamental assumption

The solution of problem (4.1) is finite, provided the following fundamental assump-
tion:

Assumption 4.1

(i) there exists at least one locationi ∈ S such thatAi is strictly Hurwitz,f i = 0;
(ii) if the initial location i0 is imposed, than the numberN of available switches is

such that the locationi must be reachable fromi0 in k ≤ N steps.

¥
In other words (i) states that there must exist at least one location in the automaton

such that the corresponding differential equation has stability (in the Hurwitz sense)
properties.

Moreover (ii) requires that this locationi must bereachablewithin N switches,
meaning that there exists at least an oriented path in the automaton graph, that brings
from the initial locationi0 into i within N steps.

If i0 is not assigned then (ii) can be relaxed.
In fact even in the worst case, i.e.,∀ j 6= i ∈ S

• the dynamicsAj isn’t Hurwitz;
• there are no arcs entering locationi, i.e.,∀ j ∈ S \ {i}, i /∈ succ(j);

we can always choosei0 = i.
In this worst case the problem OPN (S) admits, for any initial point(x0, i0), the

unique trivial solution

i(t) = i0 = i, J∗N (x0, i) = x′0Zix0,

whereZi > 0 is the unique solution of the Lyapunov equation
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A′
iZi + ZiAi = −Qi,

as described in Appendix A.3.
This solution chooses immediately the only stable dynamics and never switches

from there.

4.2.4 Linear affine models

Before proceeding further, we observe that the original affine dynamics, modelled in
Section 3.3,

ẋ(t) = Ai(t)x(t) + f i(t), i(t) ∈ S
can be rewritten as a linear dynamics by simply augmenting the state space fromRn

toRn+1:
d

dt

[
x(t)
x̃(t)

]
=

[
Ai(t) f i(t)

0′ 0

] [
x(t)
x̃(t)

]
(4.2)

with x̃(0) = 1. Note that the(n+1)−th state variablẽx(t) is a fictitious variable that
does not influence the cost function, if the new weighting matrices are semi-definite
positive matrices of the form [

Qi 0
0′ 0

]

for all i ∈ S.
Henceforth, wlg, the OPN (S) (4.1), is formally equivalent to an OPN (S′), where

all dynamics ofS′have the form (4.2).
For this reason in the following we will talk only about linear systems inn di-

mensional space, meaning that it could also be an affine problem inn − 1 dimen-
sional space. Of course this advantage is significant only from a formal point of
view; whenever the STP, later described, is implemented with affine modes it will be
clearly specified. In fact, while the theoretical procedure is equivalent, some imple-
mentationsprecautionsmust be added, especially when discretizing the state space.

Note also that Assumption 4.1 is sufficient to ensure that the system is stabilizable
on the origin (and hence that the OP we consider is solvable with a finite cost) but it
is not strictly necessary. Consider in fact the following two particular cases.

4.2.5 Case 1

Assume that all dynamicsAi have a displacement termf i 6= 0 but at least one
dynamics, sayAj , is Hurwitz. One can make a state-coordinate transformationx →
z − A−1

j f j and penalize — whenever modei is active — the deviation from the
target state through the quadratic term(x + A−1

j f j)′Qi(x + A−1
j f j) = z′Qiz.

Example 4.1 Let us consider a model of aboost converter, inspired by [112], whose
circuit is represented in Figure 4.1.

The state of the system is

x =
[

u
i

]
.

This linear affine switched system has two possible modes, according to the position
of the switchs. In particular, when the switch is open the DE of the system is:
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Fig. 4.1.Boost converter.

ẋ(t) = A1x(t) + f1 =




− 1
RC

1
C

− 1
L

−RE

L




x(t) +




0

E

L


 , (4.3)

and when the switch is closed

ẋ(t) = A2x(t) + f2 =




− 1
RC

0

0 −RE

L




x(t) +




0

E

L


 . (4.4)

This switched system does not apparently satisfy the Assumption 4.1, because
both affine terms are non null.

Nevertheless, being both dynamics Hurwitz, it is possible to reformulate the prob-
lem with a state coordinate shift centered in one of the following equilibrium points:

x1 =




R

RE + R
E

1
RE + R

E




, x2 =




0

E

RE


 .

More specifically we may consider the new variable

z , x + A−1
2 f2 = x +



−RC 0

0 − L

RE







0

E

L


 = x− x2.

Now the system becomes, by substitution,




ż = A1z +
[

E
REC

0

]

ż = A2z

and it satisfies the Assumption 4.1, becauseA2 is Hurwitz and the new affine term
of system 2 is null. ¥
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4.2.6 Case 2

Assume thatAj is a non Hurwitz diagonalizable matrix andΛ = diag{λ1, . . . , λn}
where for at least one eigenvalue, sayλ1, it is Re(λ1) < 0. Then it is always possible
to find a matrixQj ≥ 0 such that

∫ +∞

0

x′Qjxdt < +∞.

In fact letT : T−1ΛT = Aj ; obviously it holds (see Appendix B)

∫ +∞

0

x′Qjxdt = x′0T
′
∫ +∞

0

Λ̄(t)(T−1)′QjT
−1Λ̄(t)dt Tx0

wherex0 = x(0) andx = x(t) = Ā(t)x0. Now, if we choose then2 entries of
matrixQj such that

(T−1)′QjT
−1 =




k 0 . . . 0
0 0 . . . 0
...

...
. ..

...
0 0 . . . 0


 ,

then, even ifAj is non Hurwitz

∫ +∞

0

x′Qjxdt = − k

2Re(λ1)
x′0T

′Tx0 < +∞. (4.5)

Example 4.2 Let

A =
[

3 4
4 −3

]
.

The matrixA is non Hurwitz becauseΛ = diag{−5, 5}. The state space transfor-
mationz = Tx that diagonalizesA is

T =
1√
5

[
1 2
−2 1

]
.

Note thatT is an orthonormal matrix2. Let us show now that there exists a symmetric
semi-definite positive matrix

Q =
[

q1 q
q q2

]

such that ∫ +∞

0

x′Qxdt

is finite. It is sufficient to find a solution of

TQT ′ =
[

k 0
0 0

]
.

The linear system above becomes

2Orthonormal matrixT : ∀ i, j = 1, . . . , n < ti, tj >= 0 if i 6= j and< ti, ti >= 1,
wheretj are the columns ofT . For orthonormal matricesT−1 = T ′.
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q1 + 4q + 4q2 = 5k
2q1 + 3q − 2q2 = 0
4q1 − 4q + q2 = 0

whose solution gives

Q =
k

5

[
1 2
2 4

]

which is indeed positive semi-definite. Now, according to equation (4.5), beingT ′ =
T−1, it holds

∫ +∞

0

x′Qxdt =
k

10
‖x0‖2 < +∞.

¥

There are even other cases in which Assumption 4.1 may be relaxed preserving
a finite value of the cost. The reasons that prompted us to state Assumption 4.1 are
the following:

1. Albeit restrictive it is a structural property, thus easily verified;
2. Most of the particular cases such as Case 2 are in general practically irrelevant.

4.3 Switching Table Procedure

In this section we show how to solve the OP (4.1) or equivalently (3.4), for a given
switched linear systemH = (L, act, E ,M), as described in Chapter 3, when As-
sumption 4.1 is satisfied.

In particular we show that the optimal control law for the optimization problem
described in the previous section takes the form of a state feedback, i.e., it is only
necessary to look at the current system statex in order to determine if a switch from
locationik−1 to ik,or equivalently from linear dynamicsAik−1 to Aik

, should occur.

Remark 4.1 Before proceeding further we would like to clarify that in the general
optimization Problem(4.1), although the number of allowed switches isN , also
solutions where onlym < N switches effectively occur. More precisely, the number
N is an upper bound on the number of available switches. In the next chapters it
will be proved that the total cost of the evolution is a decreasing monotone positive
function of the numberN . ¥

Let us recall the following definition:

Definition 4.1 (Partition of a set) A partition of a setΩ into K subsetsΩi, i =
1, . . . , K, is such that

Ω =
K⋃

i=1

Ωi

and
Ωi

⋂
Ωj ≡ ∅

∀ i 6= j. ¥
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The procedure described here considers the model described above (i.e., a
switched linear autonomous system) with an annexed optimal control problem with
infinite time horizon and finite number of switches. It constructs, for each locationi
and for thek − th missing switch (k = 1, . . . , N ), a tableCi

k that partitions the state
spaceRn into si regionsRj ’s, wheresi = |succ(i)|+ 1.

The control law is thus a set ofN × s tables, wheres = |S|.
Remark 4.2 In the following the symbolCi

k (switching table) denotes a partition of
Rn viewed from locationi, whenk switches are still available. ¥

Wheneverik = i the discrete external controller uses tableCi
k to determine if a

switch should occur: as soon as the continuous statex reaches a point in the region
Rj for a certainj ∈ succ(i) a switch to modeik+1 = j will occur; on the contrary,
no switch will occur while the system’s state belongs toRi.

Example 4.3 To better illustrate how these tables are used, we propose Figure 4.2.
In this figure it is shown the table, obtained for a particular example (Section 4.5),
to be used when locationi is active and only 1 switch is still available. Whenever the
continuous statex is in the orange area, then it is optimal to remain in locationi.

During the evolution withAi the continuous state may cross the cyan or the
yellow region. In this case the last switch should occur towards locationsj or h
respectively.

One may ask the meaning of the central area in blue (leading to locationk).
Clearly this area will be never entered from locationi, as the state spacex is a con-
tinuous function. Nevertheless it may be reached directly after the previous switch.
Moreover in this particular example a value ofδmin(i) 6= 0 was considered. Thus
immediately after the switch the controller is "blind" for the timeδmin(i). This may
cause the continuous statex evolution to silently cross the cyan area and then, when
δmin(i) is elapsed,x may be in the blue area, thus forcing the controller to switch to
k. ¥

 

Table C1
i 

Remain in li

Switch to lj

Switch to lk 

Switch to lh 

Fig. 4.2. Partition of the state spaceR2 showing how the regionCi
1 (of location i, when 1

switch is available) serves to locate the switching areas. The regions are colored only in the
limited plot for obvious reasons, but they cover the entire space maintaining the conic shape.

This is a fundamental result because it is well known that a state feedback control
law has many advantages over an open-loop control law, including that the computa-
tion of the control law can be done off line as opposed to being performed on line. On
line computations are burdensome, especially if a disturbance acting on the system
may cause the system state to deviate from its expected value.

To prove this result, we show constructively how the tablesCi
k can be computed

using a dynamic programming argument.
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We first show how the tablesCi
1 (i ∈ S) for the last switch can be determined.

Then, we show by induction how the tablesCi
k can be computed once the tablesCi

k−1

are known.
For simplicity we also assume that dynamics are linear, because affine dynamics

can be easily reduced to linear dynamics as shown in (4.2).
In particular we show that for a given modei ∈ S and for a given switch3 k =

1, . . . , N it is possible to construct a tableCi
k that partitions the state spaceRn into

s(i) = |succ(i)|+ 1 regionsR1,R2, . . . ,Rs(i).
Thus for every mode and for each value of a variablek that we may call "switch

counter" the state space is divided into several areas that suggest the optimal switch-
ing strategy.

Let us recall here another definition.

Definition 4.2 (Homogeneous function [37])A functionf : X ⊆ Rn → R is ho-
mogeneousof orderm and we saym-homogeneousif ∀ x ∈ X \ 0 there exists a
λ ∈ R \ 0 such that

f(λx) = λmf(x).

¥

We will often use the concept of homogeneity of a function. In particular let us
observe the following property.

Property 4.1 (1) Given a LTI autonomous systems of the form

ẋ = Ax

the flow functionf(x) = Ax is homogeneous of degree 1.
(2) The quadratic cost functions of the form

J(x(0)) =
∫ τ

0

x′(t)Qx(t) = x′(0)Q̄(τ)x(0)

are homogeneous functions of degree 2.
¤

Proof. (1) Trivially follows from the linearity of the LTI systems;
(2) Trivially follows from the quadratic form of the cost functions and the linearity

of the system.

¥

Finally let us consider the concept of homogeneous regionR ⊆ Rn of the state
space.

Definition 4.3 (Homogeneous region)A regionR ⊆ Rn is homogeneousif, ∀ x ∈
R and∀ λ ∈ R, it holdsλx ∈ R. ¥

We will indifferently use the wordhomogeneousregion orconicregion. A parti-
tion ofRn is entirely homogeneous if all its componentsRi are homogeneous.

Example 4.4 The partition depicted in Figure 4.2 is homogeneous. ¥

3The tables are numbered in anti-chronological order, i.e., thek − th table indicates that
k switches are missing, or equivalently, thatN − k switches have occurred
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4.3.1 Computation of the Switching Tables

Assume generally that:

• the current state of the system is(x, i), wherex indicates the continuous state,
andi indicates the current locationi, i.e., the discrete state;

• the number of missing switches isk ≥ 0 out ofN .

We provide here a method to calculate the switching tables that serve as feedback
control law for the class of switched system described in Section 4.2.1, and generally
defined in Chapter 3.

To this aim, assume that the switched system evolves according to the following
schedule:

Time intervals %k %k−1 . . . %0

Indexes jk jk−1 . . . j0
(4.6)

with the following constraints:

%0 = +∞
%h ≥ δmin(jh)
jk = i
jh ∈ succ(jh+1) ∪ {jh}
h = 0, . . . , k − 1.

(4.7)

Note that it must beAj0 Hurwitz stable, in agreement with Assumption 4.1.
For sake of clarity we specify that the sequence 4.6 means that the switched

system will evolve in locationjk = i for a time%k, then it will switch to location
jk−1 where it will remain for a time%k−1 ≥ δmin(jk−1) and so on. Finally it will
reach the last locationj0 where it will terminate the evolution and it will remain
forever, with%0 = +∞.

Remark 4.3 We decided to renumber the subscripts of the time intervals and of the
location indexes. In particular in this paragraph it appeared more convenient to
count them in time backwards. With this idea all definitions, properties and theorems
that follow (given by induction) appear more readable.

Nevertheless, once all things are proved, we will switch back to the previous
(more natural) terminology, i.e., the first location visited is indexed byi0, the last by
iN , and analogously for the switching instants or intervals.

¥

The cost associated to any evolution of the system consists of two parts: the cost
associated to theevent drivenevolution, i.e., to the number of switches that will occur
in the future evolution, and the cost of thetime drivenevolution. We will consider
the two parts separately.

Denote the partial sequence of switching time-intervals by

{%k, . . . , %0}
that represents the time driven evolution of the continuous state. More precisely

%h is the time spent in locationjh (jk = i).

Definition 4.4 (Time cost) Theremaining time cost, starting from(x, i = jk) and
executingk more switches, is:
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T̃0(x, j0, %0) = x′Q̄j0(%0)x = x′Q̄j0(+∞)x

T̃k(x, jk, . . . , j0, %k, . . . , %0)
= x′Q̄jk

(%k)x (a)
+x′Ā′

jk
(%k)M ′

jk,jQ̄j(δmin(j))M jk,jĀjk
(%k)x (b)

+T̃k−1(z, jk−1, . . . , j0, %k−1, . . . , %0) (c)

(4.8)

with
z = Ājk−1(δmin(jk−1))M jk,jk−1Ājk

(%k)x. (4.9)

¥

Remark 4.4 Note that the functioñTk(x, jk, . . . , j0, %k, . . . , %0) is 2-homogeneous
over its variablex, in fact it is a quadratic. ¥

Denote the partial sequence of indexes by

{jk, . . . , j0} ∈ 2S

that represents the evolution of the discrete state. In a similar manner as the time
cost, we define the cost of the event driven evolution.

Definition 4.5 (Event cost) Theremaining event costEk, starting from(x, i = jk)
and executingk more switches, is (by induction over k):

E0(j0) = 0

Ek(jk, . . . , j0) = Hjk,jk−1 + Ek−1(jk−1, . . . , j0). (d) (4.10)

¥

The total cost of an evolution, that includes both the time-driven and the event-
driven cost is thus the function

Definition 4.6 (Total residual cost) The total residual cost of the evolution sched-
uled in equation(4.6) is defined as

Tk(x, jk, . . . , j0, %k, . . . , %0) = T̃k(x, jk, . . . , j0, %k, . . . , %0) + Ek(jk, . . . , j0).

¥

The previous definitions require some physical interpretation.
Let us take into account the first item (equation (4.8),k = 0) in Definition 4.4.

This term is the LQR cost due to the time driven evolution without any switch. It
is trivially the area (geometrical interpretation of the integral) below the function
f(t) = x′(t)Qx(t), wherex(t) is the solution of the first order LTI differential
equationẋ = Ax.

By definition this function is nonnegative, becauseQ ≥ 0. Moreover, since
x(t) → 0 as t → +∞ with exponential rate, clearly the value of (4.8),k = 0,
is finite.

Remark 4.5 Observe that this may not be the case∀ i ∈ S, but Assumption 4.1
guarantees that this is true for at least one location in the system. Clearly, if we
denote byS̄ ⊆ S the nonempty subset ofS that verifies the assumption, it holds that
the last dynamicsj0 of the switched evolution is such thatj0 ∈ S̄. ¥
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Let us now comment the second part of equation (4.8), i.e.,k > 0. It is said that
T̃ (·) is a function of:

1. the current discrete statei = jk;
2. the current continuous statex;
3. the remaining discrete state evolution{jk−1, . . . , j0};
4. the time%k ≥ 0 that will be spent evolving in the current location, starting from

pointx.
5. the remaining time evolution{%k−1, . . . , %0} from the state pointz that is

reached after%k and after the minimum permanence time spent in locationjk−1.

The subscriptk indicates thatk switches are still available, or equivalently that
N − k switches have already been performed.

Physically this function represents the cost of an evolution that remains for a time
%k in locationjk from pointx, and switches to locationjk−1 when the time%k has
elapsed, or equivalently, when the continuous state value has reached the point

z = Ājk−1(δmin(jk−1))M jk,jk−1Ājk
(%k)x.

In particular, the meaning of the terms (a)-(c) can be commented as follows.

(a) This term is the cost of the evolution from pointx in locationjk for the finite
time%k. As explained in the Appendix B, it holds

x′Q̄jk
(%k)x =

∫ %k

0

x′(t)Qjk
x(t)dt,

wherex(t) = eAjk
tx = Ājk

(t)x.
(b) This term,

x′Ā′
jk

(%k)M ′
jk,jk−1

Q̄jk−1
(δmin(jk−1))M jk,jk−1Ājk

(%k)x,

is the cost spent in locationjk−1 during the minimum permanence timeδmin(jk−1).
Note that the term (b) is structurally equal to the term (a). In this case however
the initial point is

M jk,jk−1Ājk
(%k)x,

i.e., the state space reached after a time%k in locationjk and after the resetting
M jk,jk−1 after the switch fromjk to jk−1.

(c) This term,
T̃k−1(z, jk−1, . . . , j0, %k−1, . . . , %0),

expresses the residual optimal cost when one-switch-less is available, the current
discrete state isjk−1 and the current continuous state is the point

z = Ājk−1(δmin(jk−1))M jk,jk−1Ājk
(%k)x

reached after the evolution in locationjk and the switch. Note that this term has
been already calculated in a recursive mode at the previous step.

(d) This term, in Definition 4.5,
Hjk,jk−1 ,

is the cost associated to the switch from locationjk to locationjk−1.

In the two dimensional case it is possible to provide a graphical representation of
terms (a), (b) and (c). This has been done in Figure 4.3.
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λ
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Fig. 4.3.Sketch of the evolution at the switching instant inR2. The figure illustrates the nota-
tion used in equation (4.8). In particular the initial pointx in the current locationi, the jump
occurred after the switch to modej and theblind evolution in locationj for a timeδmin(j)
are represented.

Minimization of the residual cost

The function

Tk(x, jk, . . . , j0, %k, . . . , %0) (4.11)

depends on2k variables:

{jk−1, . . . , j0} ∈ 2S

and
{%k, . . . , %1}

Note thatk of them are integer and they take values in a limited set.
We need to compute the optimal residual cost by a suitable choice of these para-

meters for each couple(x, i = jk) and for each value ofk from 0 toN .
In other words we would like to find the global minimum of equation (4.6) over

its 2k variables. One possibility is to solve "brute force" the operational research
problem

T ∗k (x, jk) = min
{jk−1, . . . , j0}
{%k, . . . , %1}

Tk(x, jk, . . . , j0, %k, . . . , %0) (4.12)

constrained to

%0 = +∞
%h ≥ δmin(jh)
%k ≥ 0
jk = i
jh ∈ succ(jh+1) ∪ {jh}
h = 0, . . . , k − 1.

(4.13)

There are several reasons to assume that this task is numerically complex. In fact
Problem (4.12) is difficult to solve because:
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• it is equivalent to a mixed integer quadratic problem. There exist numerical tools
(like CPLEXor [10]) to solve this type of problems. However when the number
of variables, i.e., the number of switches and the number of dynamics, increases
these tools exhibit numerical difficulties;

• it is strongly non convex, i.e., local minima are present [79], thus simple descent
method, such asSimplexor Newtonor other tools are inefficient.

In these cases the heuristic approaches can be considered, provided that we ac-
cept sub-optimal solutions. In fact these approaches (i.e.,Genetic algorithm, Sim-
ulated annealing, and so on) are not guaranteed to find or converge to the global
minimum.

It is easy to show that, using simple dynamic programming arguments, the opti-
mal cost, converted into a minimum search of the form (4.12), can be computed by
solvingk times a two-parameter optimizations.

For each value ofk and for each couple(x, i = jk) these two decision variables
are:

%k ≥ 0, jk−1 ∈ succ(jk) ∪ {jk},
that represent respectively the permanence time in the current locationjk and the
index of the next location.

Before proving the main theorem of this section let us observe that function
(4.11) can be expressed in terms of the current discrete and continuous state, and
of the control variables%k andjk−1. In fact

Tk(x, jk, . . . , j0, %k, . . . , %0) =
F (x, jk, jk−1, %k) + Tk−1(z(x, jk, jk−1, %k), jk−1, . . . , j0, %k−1, . . . , %0),

(4.14)
where

F (x, jk, jk−1, %k) =
= x′Q̄jk

(%k)x
+x′Ā′

jk
(%k)M ′

jk,jk−1
Q̄jk−1

(δmin(jk−1))M jk,jk−1Ājk
(%k)x

+Hjk,jk−1 ,

(4.15)

i.e., terms (a), (b) of equation (4.8) and term (d) of equation (4.10), and

z(x, jk, jk−1, %k)

is thereached pointas in equation (4.9).

Theorem 4.1 (Optimal remaining cost) Let us assume thatjk = i, i.e., whenk
switches are missing the current system dynamics is that corresponding to matrix
Ajk

. Let the current state vector bex.

1. If k = 0 then the remaining optimal cost starting fromx is:

T ∗0 (x, j0, %0) = T̃0(x, j0, %0). (4.16)

2. If k ∈ {1, . . . , N} then:
(i) the remaining optimal cost starting fromx is:

T ∗k (x, jk) =

min
jk−1 ∈ succ(jk) ∪ {jk}

%k ≥ 0

F (x, jk, jk−1, %k) + T ∗k−1(z(x, jk, jk−1, %k), ·);

(4.17)
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(ii) the next dynamics reached by the optimal evolution is

j∗k−1(x, jk) =

arg min
jk−1 ∈ succ(jk) ∪ {jk}

%k ≥ 0

F (x, jk, jk−1, %k) + T ∗k−1(z(x, jk, jk−1, %k), ·);

(4.18)
wherej∗k−1(x, jk) = i means that no other switch will occur;

(iii) the optimal evolution switches toAjk−1 at timeτN−k+1 = t + %∗k(x, jk),
where

%∗k(x, jk) =

arg min
jk−1 ∈ succ(jk) ∪ {jk}

%k ≥ 0

F (x, jk, jk−1, %k) + T ∗k−1(z(x, jk, jk−1, %k), ·);

(4.19)

¤

Proof. If k = 0 the systems is forced to evolve with dynamicsAjk
to infinity and

the remaining cost (that is also optimal) is the one given in equation (4.16).
If k > 0, we have two options. If no future switch occurs then the remaining cost

will be T ∗k (x, jk). If at least a future switch will occur, the two decision variables are

• the time before the first switch occurs (parameter%k ≥ 0);
• the dynamics reached after the switch (parameterjk−1 ∈ succ(jk)).

In fact, from equations (4.12) and (4.14), it is

T ∗k (x, jk) = min
{jk−1, . . . , j0}
{%k, . . . , %1}

F (x, jk, jk−1, %k) + Tk−1(z(x, jk, jk−1, %k), ·)

in force of the principle of optimality [14, 69], we might limit the choice to the
current control action(jk−1, %k) provided that after the switch, it is followed an
optimal evolution (T ∗k−1) from the reached pointz(x, jk, j∗k−1, %

∗
k). Hence:

T ∗k (x, jk) = min
jk−1 ∈ succ(jk) ∪ {jk}

%k ≥ 0

F (x, jk, jk−1, %k) + T ∗k−1(z(x, jk, jk−1, %k), ·),

which completes the proof.

¥

According to the previous theorem, the optimal remaining cost can be computed
recursively, first computing for all vectorsx ∈ Rn and all dynamicsi ∈ S the costs
T ∗0 (x, i), then the costsT ∗k (x, i), etc.

The procedure may be simplified when all switching costs are zero, as shown in
the following proposition.

Proposition 4.1 Assume that all switching costs are zero, i.e.,Hi,j = 0 for all ei,j ∈
E . If x is a vector such thatx = λy, with‖y‖ = 1 andλ ∈ R\{0}, with the notation
of Definition 4.2 we have that for allk ∈ {0, . . . , N} and all jk ∈ S
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(a) T ∗k (x, jk) = λ2T ∗k (y, jk), (4.20)

(b) %∗k(x, jk) = %∗k(y, jk), (4.21)

(c) j∗k−1(x, jk) = j∗k−1(y, jk), (4.22)

(4.23)

¤
Proof. (a) To prove this result let us observe that it holds

Tk(x, ·) = T̃k(x, ·),
in fact Ek = 0 ∀ k. Since functionT̃k(·) is homogeneous of degree 2 (in fact it can
be easily shown that it is quadratic) for all values ofk, it immediately follows

Tk(x, ·) = T̃k(x, ·) = λ2T̃k(y, ·).
(b)-(c) Under the hypothesis the functions

F (x, jk, jk−1, %k) + T̃k−1(z(x, jk, jk−1, %k), ·),
are homogeneous of degree 2. Thus the minimization problem

T̃ ∗k (x, jk) = min
jk−1 ∈ succ(jk) ∪ {jk}

%k ≥ 0

F (x, jk, jk−1, %k) + T̃k−1(z(x, jk, jk−1, %k), ·)

coincides with

T̃ ∗k (y, jk) = min
jk−1 ∈ succ(jk) ∪ {jk}

%k ≥ 0

F (y, jk, jk−1, %k) + T̃k−1(z(y, jk, jk−1, %k), ·),

by a factor ofλ2.

¥
This proposition implies that when all switching costs are zero to determine the

optimal costs it is sufficient to evaluate the functionsT ∗k (x, jk) only for vectorsx on
Σn.

Before giving the formal definition of the switching table let us discuss the sig-
nificance of the optimal argument%∗k(x, i) ≥ 0. Its value represents the time that
should be spent in the current locationi, starting from pointx, before performing a
switch. Therefore if its value is 0, the pointx os of immediate switch, else, if it is
grater than 0 the pointx os not of immediate switch and the evolution continues in
the current locationi.

Definition 4.7 (Switching table) Theswitching tableCi
k is a partition of the state

spaceRn into |succ(i)|+ 1 regionsRj (for j ∈ succ(i) ∪ {i}) defined as follows

• Region
Rj ≡ {x ∈ Rn | %∗k(x, i) = 0, j∗k(x, i) = j 6= i}

is the set of points where it is optimal to switchimmediatelyfrom locationi to
locationj.

• The complementary region

Ri ≡ Rn \
⋃

j 6=i

Rj ,

or, equivalently,
Ri ≡ {x ∈ Rn | %∗k(x, i) > 0},

is the region where it is optimal to remain for a time%∗k(x, i) > 0. ¥
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4.3.2 Lexicographic ordering

In the previous paragraph we highlighted the fact that the switching table procedure
requires the solution of a minimization problem.

Let us recall here the problem, taken directly from Theorem 4.1. The system is
evolving in the locationjk and the current state space isx; furthermore the number
of missing switches, out ofN , is k.

Theorem 4.1 proves that the optimal choice is to minimize the function

T ∗k (x, jk) = min
jk−1 ∈ succ(jk) ∪ {jk}

%k ≥ 0

F (x, jk, jk−1, %k) + T ∗k−1(z(x, jk, jk−1, %k), ·)

(4.24)
only in the two variables%k andjk−1, provided that from the switch on we use

an optimal strategy.
The solution of this problem provides the couple

(
j∗k−1, %

∗
k

)
. (4.25)

We omitted here, for sake of clarity, the dependance on(x, jk) of the arguments
j∗k−1 and%∗k. It is important to specify that this couple must be univocally determined.
In fact it is possible that there exists several couples of the form (4.25) that minimize
the function above to the same value.

Thus we introduced the following lexicographic ordering:

Definition 4.8 (Lexicographic ordering of optimal solution) Suppose that the prob-
lem(4.24), admitα equivalent solutions,

(
j∗k−1, %

∗
k

)
1
,
(
j∗k−1, %

∗
k

)
2
, . . . ,

(
j∗k−1, %

∗
k

)
α

.

These solutions are equivalent in the sense that they all minimize the function(4.24)
to the same value.

We say (
j∗k−1, %

∗
k

)
i
≺ (

j∗k−1, %
∗
k

)
h

for all h = 1, . . . , i− 1, i + 1, . . . , α, iff

(j∗k−1)i < (j∗k−1)h.

Following the definition above the optimal solution has one and only one argu-
ment, i.e., the couple(j∗k−1, %

∗
k)i that has smallest indexjk−1.

This is particularly important when considering problems with infinite number
of switches. In fact in these cases the asymptotical behavior of the cost function over
N may generate ambiguity in its minimization search. This criterium ensures that an
optimal table is also unique.

4.3.3 Computation of the Table for the initial mode

To decide the optimal initial modei0 we may use the knowledge of the costT ∗N (x, i)
(i.e., of the optimal cost to infinity starting from statex with dynamicsjN = i) that
is evaluated during the construction of the tableCi

N .

Definition 4.1. TableCN+1 is a partition of the state spaceRn into s regionsRi

(i ∈ S) where each region is defined as:Ri = {x | (∀j ∈ S)T ∗N (x, i) ≤ T ∗N (x, j)}.
¥
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According to this definition, if the initial state belongs to regionRi we must
choosei0 = i to minimize the total cost.

Note that in some applications the initial discrete statei0 may not be assigned.
However, when this extra degree of freedom on the choice of the initial location is
available, this should be done by checking the tableCN+1, and choosingi0 according
to the color that corresponds to the initial continuous statex0.

4.3.4 Structure of the Switching Regions

We now discuss the form that the switching regions may take in the case of zero
switching costs.

Proposition 4.2 Consider the case in whichHi,j = 0 for all i, j ∈ S. Then any
regionRj of tableCi

k and of tableCN+1 is such thaty ∈ Rj =⇒ (∀λ ∈ R) λy ∈
Rj , i.e., the regionRj is homogeneous. ¤

Proof. When all switching costs are zero, we have shown that equations (4.20) and
(4.21) hold. Thus, it follows that in this casejk(x, i) = jk(y, i) and%k(x, i) =
%k(y, i). By Definition 4.7 this implies that all regions of tableCi

k are homogenous
for k = 1, . . . , N .

The table used to select the initial mode has the same property. In fact, assume
equation (4.22) holds: taking (as a particular case)k = 0 one can see that by Defini-
tion 4.1 the regions of tableCN+1 are homogenous as well. ¥

4.4 Implementation of STP and numerical issues

4.4.1 Algorithm of the STP

We will provide now the algorithm to construct the switching tables. To simplify the
notation we decided to show it for the particular case when all switching costs are
null. In force of Proposition 4.1 ally can be taken on theΣn, because all functions
are homogeneous.

We also assume that all jump matricesM i,j are the identity.
Assume thatN is the number of available switches ands = |S|.
The algorithm is divided into several steps.

Algorithm 4.1 (Switching table procedure) The input of this algorithm is the switched
systemS, its annexed optimal control problem OP and the number of available
switchesN .

The output is a set ofN × s tables that the controller can use to provide the
feedback control law during the real time evolution.

The list of instructions is depicted in Figure 4.4. ¥

Remark 4.6 The value∞ in the sixth line of part 2 of the Algorithm represents a
sufficiently high value of time. In the practical implementation this is determined by
4 or 5 time constants of the current dynamics. ¥

Note that in the course of the algorithm the functionTk is calculated. Neverthe-
less this is useful only for the next step. In fact the tables information is contained in
the variableCk(y, i).

This is important in practical applications, where the data should be stored on a
PLC whose capacity is usually limited.
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1. Initialization:k = 0 remaining switches
For i = 1 : s

Calculate if possibleZi : A′
iZi + ZiAi = −Qi.

∀ y ∈ Σn

Cost assignment

T0(y, i) =

�
y′Ziy if ∃ Zi > 0
+∞ else.

Color assignment
C0(y, i) = i

end (i)
2. Fork = 1 : N

For i = 1 : s
∀ y ∈ Σn

Compute the setsucc(i);
Remaining cost:

For t = 0 : ∞
For j ∈ succ(i) ∪ {i}
y(j, t) = Āj(δj)Ā

′
i(t)y

λ = ‖y(j, t)‖
T (y, i, j, t) = y′Q̄i(t)y+y′Ā′

i(t)Q̄j(δj)Ā
′
i(t)y+λ2Tk−1(y(j, t)/λ, j)

end (j)
end (t)

Cost assignment

Tk(y, i) = min
j,t

T (y, i, j, t)

Color assignment

(j∗, t∗) = arg min
j,t

T (y, i, j, t).

Ck(y, i) =

�
j∗ if t∗ = 0
i if t∗ > 0.

end (i)
end (k)

Fig. 4.4.Algorithm for the implementation of the STP

As an extra advantage we anticipate that it will be proved in the next chapters,
that whenN grows significantly, the tables converge to the same one (see Chapter
6), thus the data to be passed to a real time controller becomes smaller.

Note that the algorithm is conceptually simple, but calculations become burden-
some as the state space dimension increases, since we need to discretize the unitary
semisphere. Nevertheless one of the main advantages is that it provide feedback con-
trol laws.

Moreover because of the state space discretization, the solution provided by the
algorithm is affected by an error. In fact the pointy(j, t)/λ in function

f = λ2Tk−1(y(j, t)/λ, j)

does not in general belong to the discretization. This forces the algorithm to approx-
imate the value off with the stored data in the surroundings ofy(j, t). Some ideas
are suggested in Appendix C.2.
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4.4.2 Computational complexity

We discuss here the computational complexity of the STP described above and im-
plemented by the Algorithm 4.1. This results are merely qualitative, and they are
described in an intuitive, informal manner.

It has been said that to implement the procedure a state space discretization is
required. If the state space isRn and we taker samples along each direction, then
the discretization setD has cardinalityrn. In the case when all switching costs are
null, and there are no constraints in the state space, then the homogeneity of the
functions allow to limite the discretization toΣn of n − 1 dimension, hence the
cardinalityrn drops torn−1.

Proposition 4.3 (Computational complexity of the STP)The computational com-
plexity of the Algorithm 4.1 is of orderO(Ns(s− 1)rn−1Nt), where

• N is the number of available switches;
• s is the cardinality of the setS;
• r is the number of samples along each direction ofRn;
• Nt is the number of time samples used in the minimization over time.

¤

Proof. Consider the kernel of Algorithm 4.1 reported in Figure 4.5.

0 Fork = 1 : N
1 Fori = 1 : s
2 ∀ y
3 Fort = 0 : ∞
4 Forj ∈ succ(i) ∪ {i}
5 y(j, t) = Aj(δj)Ā

′
i(t)y

6 λ = ‖y(j, t)‖
7 T (y, i, j, t) = y′Q̄i(t)y + y′Ā′

i(t)Q̄j(δj)Ā
′
i(t)y + λ2Tk−1(y(j, t)/λ, j)

8 end (j)
9 end (t)
10 Cost assignment

11 Tk(y, i) = min
j,t

T (y, i, j, t)

Fig. 4.5.The kernel of the algorithm for the computation of the switching table.

By counting the nestedfor cycles we repeat aminimization searchover time for
N × s × rn−1 times, i.e., for each missing switchk (step (0)), for each locationi
(step (1)) and for eachy onΣn (step (2)) we need to:

(a) Take one possiblej ∈ succ(i) (step (4));
(b) Perform a continuous minimization of a regular function4 (steps (5)-(11));

Let us callµ the complexity of the minimization effort.
Now the complexity of steps (3)-(11) isO((s − 1)µ). In fact the minimiza-

tion search must be repeated∀ j ∈ succ(i) ∪ {i}, and it should be clear that
|succ(i) ∪ {i}| ≤ s− 1.

4The cost functions for this class of systems are linear combinations of exponential func-
tions.
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As a minimum search method over time we implemented the exhaustive search5

over a vector of time steps. Hence if the number of time samples isNt it holds
µ ∝ Nt [71].

Finally the order of magnitude of this algorithm is

O(Ns(s− 1)rn−1Nt).

¥

It is important to observe that the complexity is polynomial inN ands. A brute
force method that performs a search over all possible switching sequences has com-
plexity of ordersN .

Typical values (example in Section 4.5):

• Number of switchesN = 5;
• Number of locationss = 6;
• State space dimensionn = 2;
• Discretization samples onΣ2 r = 101;
• Time step explorationNt = 300;

have a computational complexity of the order106.
Note that if we solve by brute force an optimal control problem of the form

(4.1) by investigating all admissible switching sequences (they are(s − 1)N in the
worst case) the complexity becomesO(Nrn−1sN ) or O(NrnsN ) depending on the
presence of switching costs.

4.5 Application: a servomechanism with gear-box

As an example we consider the following servomechanism system. It consists of a
DC-motor, a gear-box with selectable gear ratios, and a mechanical load. The system
setup is depicted in Figure 4.6.

V

R

JM

JL

µL

µM

TM

½(j)

TL

¯M

¯L

kT _µM
kT I

Fig. 4.6.Servomechanism model with controllable gear ratio.

The dynamics of the system is described by the relations

V = RI + kT θ̇M ,

JM θ̈M = kT I − βM θ̇M − TM ,

θ̇M = ρ(j)θ̇L,

5It is one variable minimization and the function is only known by points
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TL = ρ(j)TM ,

JLθ̈L = −βLθ̇L + TL,

where

• V is the applied armature voltage,
• I is the armature current,
• R is the armature resistance,
• θM , θL are the angular position of the motor and load shafts, respectively,
• TM is the torque developed by the motor,
• kT is the motor constant,
• JM andJL are the equivalent moments of inertia of the motor and load, respec-

tively,
• βM andβL are the equivalent viscous frictions coefficients of the motor and load,

respectively,
• ρ(j) the gear ratio,j = 1, 2, 3.

The above relations can be easily rewritten as the linear differential equation

[
JL + ρ2(j)JM

]
θ̈L +

[
βL + ρ2(j)

(
k2

T

R
+ βM

)]
θ̇L = ρ(j)

kT

R
V.

We assume thatV can be generated by one of the following PD controllers:

V = −k1(h)θL − k2(h)θ̇L, h = 1, 2,

whereh = 1 corresponds to a smooth control action, whileh = 2 corresponds
to an aggressive one.

By setting

x ,
[

θL

θ̇L

]
,

the overall model can be represented as the autonomous switched linear system

ẋ = A(h, j)x,

thus

ẋ = A(h, j)x =
[

0 1
a21(h, j) a22(h, j)

]
x (4.26)

where

a21(h, j) = −ρ(j)(kT /R)k1(h)
JL + ρ2(j)JM

, (4.27)

and

a22(h, j) = −βL + ρ2(j)
(
(k2

T /R) + βM

)
+ ρ(j)(kT /R)k2(h)

JL + ρ2(j)JM
. (4.28)

Equivalently, we write

ẋ = Aix,

with
i , 1 + (h− 1) + 2(j − 1),

Ai , A(h, j),

andh = 1, 2, j = 1, 2, 3, and consequentlyi = 1, . . . , 6.
We assume that
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(i) the gear shift is sequential, i.e., only transitions1 ↔ 3, 3 ↔ 5 are allowed;
(ii) a gear can be shifted only when the smooth control is active, in order to avoid

power losses.

The automaton showing all the allowed transitions is depicted in Figure 4.7. The
parameters of the system are reported in the table below.

Table 4.1.Model parameters of the servomechanism system considered in Section 4.5.

Symbol Value (IS) Physical meaning
JM 1 motor inertia
βM 0.2 motor friction coefficient
R 50 resistance of armature
kT 15 motor constant
JL 50 nominal load inertia
βL 10 load friction coefficient
ρ 1,2,3 gear ratios

k1(1) 3.2 proportional action (smooth)
k1(2) 31.6 proportional action (aggressive)
k2(1) 3.5 derivative action (smooth)
k2(2) 32.1 derivative action (aggressive)

4.5.1 Numerical simulations

We considered the following numerical values:

• the maximum number of switches isN = 5;
• the statex is a continuous function (i.e.,M i,j is the identity matrix for any

i, j ∈ S);
• no cost is associated to any switch (i.e.Hi,j = 0 for anyi, j ∈ S);
• the minimum permanence time in every location isδmin = 0.2 s;
• the initial state of the system is

x0 =
[−1.4

1.5

]

• the initial discrete location is16.

Moreover, from equations (4.26), (4.27), (4.28) and Table 4.1, we obtain the fol-
lowing set of dynamicsAi each one associated to locationi:

A1 =
[

0 1
−0.019 −0.31

]
A3 =

[
0 1

−0.036 −0.57

]
A5 =

[
0 1

−0.049 −0.94

]

A2 =
[

0 1
−0.186 −0.47

]
A4 =

[
0 1

−0.351 −0.89

]
A6 =

[
0 1

−0.482 −1.38

]

(4.29)
It can be easily verified that all dynamics are Hurwitz stable, thus the Assumption

4.1 is verified.
We assumed
6Note that if the initial location is not given, we may use the procedure illustrated in

Subsection 4.3.3 to evaluate the optimal initial location, given the initial statex0.
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              j=1              j=2               j=3

h=1

h=2

l1 l3 l5

l2 l4 l6

Fig. 4.7.The hybrid automaton that defines the mode switchings and the set of successors for
each locationi, i = 1, . . . , 6.

Q1 = Q3 = Q5 =
[

1 0
0 2

]

and

Q2 = Q4 = Q6 =
[

3 0
0 6

]
.

We evaluate offline theN × 6 switching tables, each of them containing up to|1 +
succ(·)| colors.

Provided such tables, the controller is able to estimate the real-time optimal strat-
egy with regard of the described constraints of the system. Knowing the state value
x, the current locationi and thek switches still available, the tableCi

k will suggest
the optimal decision for the system.

From a numerical point of view, the space discretization was ofr = 101 points
alongΣ2.

The time minimization was performed over a time horizonτmax equal to three
time constant of the slowest mode of matricesAi, i = 1, . . . , 6, i.e.,

τmax = 3 max
i = 1, . . . , 6

j = 1, 2

1
Re(| λi,j |)

Table 4.2.Color mapping of Figure 4.8.

Location Color
1 blue
3 red
5 green
6 black

The state trajectory that minimizes the performance index is depicted in Fig-
ure 4.8, where the circle indicates the initial state and the squares indicate the values
of the state at the switching instants. The color mapping of this trajectory is reported
in Table 4.5.1. We found out

T ∗ = {0.20, 0.40, 1.47, 4.0, 4.2},

I∗ = {1, 3, 5, 6, 5, 3},
and
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Fig. 4.8.The system evolution forθL(0) = −1.4, θ̇L(0) = 1.5, and initial location1.

J∗ = 4.75.

The Figure 4.9 shows, among the 30 tables constructed, only the 5 ones used by
the controller during the evolution of the system.

The system initially evolves for the minimum time in location1. When this time
has elapsed, the controller must keep checking the color in tableC1

1,5 (see Figure 4.9)
corresponding to the current statex (here the state space is the rotational angle of
the shaft and its angular velocity). According to this color the controller decides to
remain in location1 or to switch to an adjacent location. In this example an immedi-
ate switch to location3 takes place, since the current state is in the cyan area. Now
the controller will wait for the minimum time and then consider tableC3

2,5. The same
procedure is repeated until all available switches are performed.

It is relevant to notice how the performance of the system is related to the num-
ber of available switches. Starting from the same initial conditions (see Figure 4.8),
we report the values of the performance indexJ when i = 0, . . . , 6 switches are
available.

Table 4.3.Values of the performance index upon the number of switches.

Available switches Index Value
0 108.62
1 20.78
2 6.69
3 4.84
4 4.84
5 4.75
6 4.69

These results show how the index improves with the number of commutations,
but such improvements become negligible after the third switch, when the system
has practically reached the origin.
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Fig. 4.9.Tables used by the controller to optimally steer the system to the origin from the initial
statex0 = [−1.4, 1.5]′, initial location i0 = 1 and performing 5 switches in the automaton
depicted in Figure 4.7.

4.6 Particular cases

In this section we will highlight two particular cases of the general optimal control
problem applied to switched system described in the previous sections. Let us recall
that in this chapter only a finite number of switchesN are considered. These two
particular cases marked the chronological ordering of the development of the general
procedure. We decided however to postpone their description for sake of generality.

The first case appeared initially in [49] and it presents a method for constructing
the switching regions for a fixed mode sequence. In this frame there is no degree of
freedom in choosing the successor of the current mode, thus the control variables in
the optimal control problem are simply the switching instants. The approach is the
same (it is based on dynamic programming arguments), but the complexity decreases
because at each step of the algorithm only the minimization over the continuous time
variable is required.

The second case is described formally in [9]. It presents an extension of the first
case, but it allows that at each switching the optimal controller can choose amongst
all modes of the system. We might call this method asarbitrary mode sequence.
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There is a complete degree of freedom in the choice of the successor dynamics. The
computational complexity of this approach is certainly higher then the previous one
(it is in fact s2 higher,s is the number of different modes), but definitely lower than
the exhaustive search over all possible fixed sequences of lengthN7.

We will show in this section, by simple considerations, that both systems can
be modelled by an appropriate switched systems and its annexed optimal control
problem as described above. Consequently to avoid any redundancy it will not be
necessary to repeat the procedure of the table construction for these two particular
cases.

In particular the first case represents, in some sense, the simplest way to apply
the STP. It is not by chance, indeed, that the majority of properties, propositions and
theorems given in the general form, are initially studied on this case and then proved
in general.

This is one of the reason why we decided to briefly resume the procedure. More-
over it is helpful for the reader to become more confident with its recursive aspect
and its mechanism. For each case some examples and applications are provided. In
particular for the first case (fixed mode sequence), an example is provided with non
zero switching costs.

4.6.1 Fixed mode sequence

Model and Problem

We consider here the particular switched systemSF as in Definition 3.8 whose main
characteristic is that the setsucc(i) is a singleton or empty for each locationi.

As an examples see the oriented graph of one possibleSF in Figure 4.10.

 

A1 A2 AN+1 

l2 l1 lN+1 

Fig. 4.10.Oriented graph of a switched system that only admits a fixed sequence of modes. In
this case the general optimal control problem is simplified.

In this case the switching sequenceI = {i1, . . . , iN+1} is pre-assigned, hence
to simplify the notation we denote the state matrices as

Ak , Aik

for k = 1, . . . , N + 1. Moreover the Assumption 4.1 is satisfied.

Remark 4.7 We may assume that Assumption 4.1 is satisfied, wlg, for dynamics
AN+1. If this is not the case then there should exist somem < N + 1 such that
the assumption holds. But if this happens then the problem can be trivially redefined
of lengthm. On the contrary, if there is no suchm, then the problem of course is not
solvable with finite number of switches.

7If s is the number of different modes andN is the number of switches, an exhaustive
search of the optimal sequence of modes by using the fixed mode sequence has exponential
growth equal tosN .
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To this systemSF associate an optimal control problem OPN (S), as defined in
Section 3.4.2, reported below.

J∗N , min
T

{
F (T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt +
N∑

k=1

Hk

}

s.t. ẋ(t) = Akx(t) for τk−1 ≤ t < τk, k = 1, . . . , N + 1,
x(0) = x0

0 = τ0 ≤ τ1 ≤ . . . ≤ τN+1 = +∞,
x(τ+

k ) = Mk . . . Mhx(τ−h ) if τh−1 < τh = . . . = τk < τk+1,
(4.30)

We consider the following restrictions:

1. ∀ i ∈ S δmin(i) = 0;
2. ∀ e in E M e = In, i.e., the state space is continuous at the switching instants;
3. ∀ e in E He = 0, i.e., all switching costs are null.

Computation of the switching tables

We repeat here the procedure described in general in Section 4.3 for a fixed mode
sequence with the additional simplifications given in the end of the last section.

In this paragraph we will present the procedure for this particular case in a simple
manner. However the reader can refer to the mentioned Section 4.3 or to Algorithm
4.1, where the pseudo code of the region construction is given for the general case.

Note that the procedure is recursive onk, wherek, from now on, represents the
number of missing available switches.

The procedure starts in locationN + 1, where 0 switches are available. From
every pointy onΣn, we calculate

T ∗0 (y) , y′ZN+1y,

where ZN+1 is the unique solution of the Lyapunov equationA′
N+1ZN+1 +

ZN+1AN+1 = −QN+1.
Consider now the locationN , where 1 switch is available. We calculate, for each

y onΣn,

T1(y, %) = y′Q̄N (%)y + λ2T ∗0

(
ĀN (%)y

λ

)
,

where the functionT ∗0 is calculated in the point reached after a time%, evolving with
AN and starting from pointy. Note that the factorλ is a scaling factor, due to the
fact that the functionsTk ’s are 2-homogeneous, and therefore calculated only inΣn.

Now we minimize. For each pointy we look for the value of%∗1(y) ≥ 0 such
thatT1(y, %) is minimized, i.e.,

%∗1(y) = arg min{T1(y, %)}
and we call

T ∗1 (y) , T1(y, %∗1(y)).

Now we construct the tableC1 by assigning each pointy (and all pointsx = λy,
λ ∈ R) to
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• RegionRst if %∗1(y) > 0;
• RegionRsw if %∗1(y) = 0.

Repeating this assignment for ally’s we obtain the switching tableC1.
Suppose now that the same steps are repeated fork − 1 times and consider now

the locationN − k + 1, wherek switches are available. We calculate, for eachy on
Σn,

Tk(y, %) = y′Q̄N (%)y + λ2T ∗k−1

(
ĀN (%)y

λ

)
,

and find, by a single variable time minimization,

%∗k(y) = arg min{Tk(y, %)}
to obtain

T ∗k (y) , Tk(y, %∗k(y)).

According to the value of%∗k(y) we assign the pointy toRst orRsw respectively
and buildCk.

Numerical examples

Let us now present the results of some numerical simulations. We consider a second
order linear system whose dynamics may only switch between two matricesA(1)

andA(2) and the sequenceI is pre-assigned,

I = {1, 2, 1, 2}.
Thus only three switches are possible (N = 3) and the initial system dynamics

is A1 = A(1). Thus, the sequence of switching is

A1 = A(1) → A2 = A(2) → A3 = A(1) → A4 = A(2),

where

A(1) =
[ −1 1
−18 −5

]
, A(2) =

[
1 −5
1 −3

]
.

We also assume that allMk ’s are equal to the identity matrix. Finally, we takeQ1 =
Q2 = Q3 = Q4 = diag{[1, 2]}.

We consider two different cases. We firstly assume that no cost is associated to
switches. Secondly, we associate a constant cost to each switch.
First case

The switching regionsCk, k = 1, 2, 3, are shown in Figure 4.11 where the fol-
lowing color notation has been used: the lighter (green) region represents the set of
states where the system switches to the next dynamics, while the darker (blue) region
represents the set of states where the system still evolves with the same dynamics.
Note that these regions have only been displayed inside the unit disc because they
are homogeneous.

In the bottom right of Figure 4.11 we have shown the system evolution in the
case ofx0 = [0.6, 0.6]′.

The switching times are

T = {τ1 = 0.01, τ2 = 0.35, τ3 = 0.40}
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Fig. 4.11.The switching regionsCk, k = 1, 2, 3 in the case of no cost associated to switches,
and the system evolution forx0 = [0.6, 0.6]′.

and the optimal cost isF (τ1, τ2, τ3) = 0.15.
Second case

Now, let us assume that non zero costs are associated to switches. In particular,
let us assume thatH1 = H3 = 0.3 andH2 = 0.1.

The switching regionsCk, k = 1, 2, 3, are shown in Figure 4.12 where we used
the same color notation as above, i.e., the lighter (green) region represents the set of
states where the system switches to the next dynamics, and the darker (blue) region
represents the set of states where the system still evolves with the same dynamics.

In this examplẽλ is < 2 and it is sufficient to display the regions within the circle
of radius 2.

In the bottom right of Figure 4.12 we have shown the system evolution in the
case ofx0 = [1.3, 1.4]′. In this case, the switching times are

T = {τ1 = 0.014, τ2 = 0.5, τ3 = +∞}
and the optimal cost isF (τ1, τ2, τ3) = 0.75.
Modification of the regions
To show how the switching regionCk may change asHk varies, we have also com-
puted for this example the regionC3 for different values ofH3 ∈ {0.1, 0.5, 2}.

These regions are shown in Figure 4.13, where larger regions correspond to
smaller values ofH3.

4.6.2 Arbitrary mode sequence

We consider here the particular switched systemSA as in Definition 3.9 whose main
characteristic is that the setsucc(i) ≡ S \ {i} for each location. In this case the
automaton has a hyper connected oriented graph, as it can be seen in Figure 4.14.

We annex to the systemSA an optimal control problem OPN (SA), as extensively
described in Section 3.4.2, reported below.
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Fig. 4.12.The switching regionsCk, k = 1, 2, 3 in the case of non zero costs associated to
switches, and the system evolution forx0 = [1.3, 1.4]′.

−2 −1 0 1 2
−2

−1

0

1

2

Fig. 4.13.The switching regionsC3 for different values of the costH3 ∈ {0.1, 0.5, 2}.

J∗N , min
I,T



F (I, T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt+
N∑

k=1

Hik−1,ik





s.t. ẋ(t) = Ai(t)x(t)
x(0) = x0

i(t) = ik for τk ≤ t < τk+1 k = 0, . . . , N
ik+1 ∈ S k = 0, . . . , N
τ0 = 0, τN+1 = +∞
τk+1 ≥ τk + δmin(ik) k = 0, . . . , N
x(τ+

k ) = M ik−1,ik
x(τ−k ) k = 1, . . . , N

(4.31)
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Fig. 4.14.Oriented graph of a switched system that admits all possible sequence of modes.

Computation of the switching tables

We will describe here the procedure, in simplified manner, to construct the switching
tables. In particular we will highlight the differences with the fixed mode sequence
and with the general case. As before, for sake of clarity we will consider the follow-
ing simplifications:

(i) there is no minimum permanence time in each location;
(ii) all switching costs are null;
(iii) the evolution in the state space is a continuous function oft, i.e., ∀ k =

1, . . . , N + 1 the matricesMk = In.

As a first step we calculate and store, for each locationi of the automaton and
for each pointy onΣn, the function

T ∗0 (y, i) ,
{

y′Ziy if Ai is stable
+∞ else

,

whereZi is the unique solution of the Lyapunov equationA′
iZi + ZiAi = −Qi,

see also Appendix A.3. By Assumption 4.1, there exists at least onei ∈ s, such
thatT ∗0 (y, i) is finite∀ y.

Now suppose that 1 switch is available. As before, we evaluate

T1(y, i, j, %) = y′Q̄i(%)y + λ2T ∗0

(
Āi(%)y

λ
, j

)
,

whereλ is a normalizing factor of the reached point, that in general will not belong
to Σn.

Now minimizeT1(y, i, j, %) over the time continuous variable% and the possible
successorsj of locationi, finding

T ∗1 (y, i) = min
j ∈ S
% ≥ 0

T1(y, i, j, %),

i.e., whenever the state space isy, the current location isi and one switch is still
available, then the optimal strategy is to remain in locationi for a time%∗1(y, i) and
then switch to locationj∗1 (y, i), where
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[%∗1(y, i), j∗1 (y, i)] = arg min{T1(y, i, j, %)}.
The tableCi

1 is constructed as follows:

• if %∗1(y, i) = 0, (i.e., switch immediately) then assign the color of locationj∗1 ;
• if %∗(y, i) > 0, (i.e., stay in locationi) then assign the color of locationi.

By iteration over the number of switches all the other tables can be constructed.

4.6.3 Numerical Examples

Consider the second order switched linear system with dynamic matrices

A1 =
[

1 −10
100 1

]
, A2 =

[
1 −100
10 1

]
, A3 =

[−0.1 0
0 −0.1

]

(f1 = f2 = f3 = 0) and letQ1 = Q2 = Q3 = I2, N = 3, x0 = [1, 1]′.
Note that whileA1 andA2 are unstable matrices,A3 is strictly Hurwitz, so that
Assumption 4.1 is satisfied.
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Fig. 4.15.The set of tables for the numerical example described in Section 4.6.3 whereN = 3
andS = {1, 2, 3}.

We first execute the offline part of the procedure, consisting in the construction
of theN × s = 9 tablesCi

k, for k, i = 1, 2, 3. Results are reported in Figure 4.15
where the following color notation has been used: Red color (medium gray) is used
to denote regionR1, i.e., the set of states where the system either switches toA1 if
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the current variable of the control variable isi(t) 6= 1, or no switch occur ifi(t) = 1;
light blue (light gray) denotes regionR2, and dark blue (dark gray) is used to denote
R3.

As an example, by looking atC2
1 we know that, if the initial dynamics isA2, then

the system may either switch toA1 or still evolve with the same dynamicsA2: on
the contrary a switch to dynamicsA3 may never occur.
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Fig. 4.16.The system evolution forx0 = [1, 1]′ andi1 varying inS for the example described
in Section 4.6.3.

In Figure 4.17 we have reported tableC0 that shows the partition of the state space
introduced in Subsection 4.3.3. The same color notation has been used. In particular,
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this table enables us to conclude that the global optimum may only be reached when
the initial system dynamics is eitherA1 or A2. On the contrary, whenever the initial
system dynamics isA3, we may only reach a suboptimal value of the performance
index.

Now, let us present the results of some numerical simulation. Let us assume
that the initial state isx0 = [1, 1]′. We compute the optimal mode sequence for
all admissible initial system dynamics, i.e., we assumei0 = 1, 2, 3, respectively.

The results of numerical simulations are reported in Figure 4.16 where switches
are highlighted trough a small black square.

Detailed results may be read in Table 4.4 where we have reported the optimal
mode sequence, the optimal timing sequence and the corresponding cost value for
the different initial dynamics. We may observe that the best solution may only be
reached when the initial system dynamic is the second one. In the other cases only
a suboptimal value of the cost may be obtained. Note that these results are in accor-
dance with those of Figure 4.17 beingx0 ∈ R1.

The correctness of the solution has been validated through an exhaustive inspec-
tion of all admissible mode sequences. More precisely, for each admissible mode
sequence we have computed the optimizing timing sequence and the corresponding
cost value. In such a way we have verified thatJ∗3 = 0.126 is indeed the global
optimum.

i0 i1 i2 i3 τ1 τ2 τ3 V3

1 2 1 3 0.000 0.009 0.060 0.669

2 1 2 3 0.009 0.062 0.116 0.126

3 2 1 3 0.000 0.009 0.060 0.669

Table 4.4.Detailed results of the numerical example described in Section 4.6.3 when the initial
state isx0 = [1, 1]′.
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Fig. 4.17.TableC4, for the computation of the initial mode of the example described in Section
4.6.3.
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4.7 A servomechanism with gear-box

As a final application example, consider the servomechanism system described in
Section 4.5. The difference with the model in Section 4.5 are the following:

1. It only has 2 selectable gear ratios;
2. The oriented graph associated to the system is hyper connected

In Figure 4.18 we depicted a sketch of the system.
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Fig. 4.18.Servomechanism model with controllable gear ratio.

For the details and models please refer to Section 4.5 Thus the system may switch
betweens = 4 different LTI modes. In particular

A1 =
[

0 1
−0.019 −0.309

]
A2 =

[
0 1

−0.186 −0.477

]

A3 =
[

0 1
−0.036 −0.572

]
A4 =

[
0 1

−0.351 −0.890

]
,

whose eigenvalues are all in the stable half plane. Note that the automaton graph,
showing all the allowed transitions is depicted in Fig. 4.19.
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Fig. 4.19.Graph of the switched system described in Section 4.7.
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4.7.1 Numerical simulations

To complete the simulation setup consider the following numerical values:

• the maximum number of switches isN = 6;
• the statex is a continuous function (i.e.,M i,j = I2 ∀ i, j ∈ {1, . . . , 4});
• no cost is associated to switches (i.e.,Hi,j = 0 ∀ i, j ∈ {1, . . . , 4});
• the initial state of the system isx0 = [−0.78, 0.63]′;
• the initial system dynamics isA3.

Finally, we take as weighting matrices

Q1 = Q3 =
[

1 0
0 2

]
Q2 = Q4 =

[
3 0
0 6

]
,

obviously positive definite. We solve this optimization problem using the procedure
described above.

4.7.2 Switching table procedure

We evaluate offline theN × s = 24 switching tables, each of them containing up to
s = 4 colors. A space discretization ofr = 51 points alongΣ2 and a local minimum
search over five time constants were considered sufficiently fine.

The state trajectory that minimizes the performance index is depicted in Fig-
ure 4.20, where the circle indicates the initial state and the squares indicate the value
of the state at the switching instants. The optimal mode sequence is

I∗ = {3, 4, 1, 3, 4, 1}
and the optimal sequence of switching times is

T ∗ = {1.95, 4.75, 39.85, 48.70, 51.45, +∞}.
The resulting value of the performance index isJ∗(x0) = 1.263.

We can observe that the system after three switches has practically reached the
origin, thus the complete evolution is no longer visible. The cheapest trajectory is
obtained starting with the most aggressive voltage level (A3), then changing gear to
A4, and finally going to dynamicsA1 in order to drive smoothly the shaft towards
the steady state.

One may argue that the number of switches considered for this problem is not
appropriately chosen in order to obtain a significant reduction of the performance
index. Thus, for the given initial pointx0 and initial modei = 3, we reported in
table 4.5 the values ofI∗, T ∗ andJ∗, for different growing values ofN8.

Table 4.5 suggests at least three very interesting ideas. First of all it should be re-
marked that not all the number of available switches is useful to obtain a cost reduc-
tion and a different trajectory. This is evident for the two different values ofN = 2
andN = 3, whose corresponding optimal switching sequence and switching times
are the same. Secondly it shows that the optimal costJ∗, given the initial conditions,
is a non increasing function ofN . Finally, there exists a value ofN∗, depending on
the particular problem9, that yields to an asymptotic value of the switching cost for
the given initial point. These considerations, formally proved in the following chap-
ter, lead to a fundamental theoretical result, that allowed us to deal withN = ∞
number of switches and eventually to completely relax Assumption 4.1. For sake of
completeness we report in Figure 4.21 a diagram of the first and the last column of
Table 4.5.

8Number of switches
9For this problemN∗ = 3
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Fig. 4.20.The system evolution forθL(0) = −0.78, θ̇L(0) = 0.63, and initial dynamicsA3.

N I∗ T ∗ (s) J∗

0 {3} {+∞} 2.092
1 {3, 4} {1.9, +∞} 1.311
2 {3, 4, 1} {1.95, 4.75, +∞} 1.263
3 {3, 4, 1} {1.95, 4.75, +∞} 1.263
4 {3, 4, 1, 3, 4} {1.95, 4.75, 39.85, 48.7, +∞} 1.263
5 {3, 4, 1, 3, 4, 1} {1.95, 4.75, 39.85, 48.7, 51.45, +∞} 1.263
6 {3, 4, 1, 3, 4, 1} {1.95, 4.75, 39.85, 48.7, 51.45, +∞} 1.263

Table 4.5.Optimal solutions of the problem described in Section 4.7 for increasing values of
the allowed number of switchesN

4.8 Conclusions

We formally presented in this chapter the kernel of this thesis, i.e., to provide a
constructive method for designing a feedback control law for a particular class of
switched system that minimizes a given performance index. We have shown that
there exist a numerically viable procedure, based on the principle of optimality, that
leads to the construction of appropriate switching tables.

The minimization of a given LQR like index, of the model under consideration,
takes the form of a state space partition into regions that suggest the optimal switch-
ing strategy. In this chapter we restricted the analysis to switched linear affine sys-
tems.

It has been shown that the procedure can be applied offline, thus providing the
law in feedback form, but as a disadvantage it requires a discretization of the state
space, with evidentcurse of dimensionality.

One of the main restrictions on the model and problem considered in this chapter
are the finiteness of the of switches and the absence of constraints in the state space.
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Fig. 4.21.Convergence of the optimal costJ∗ with the number of theN available switches
for the given initial conditions.

The following chapters aim to relax these two restrictions, to provide more general
results.





5

Finite number of switches: hybrid automaton

5.1 Introduction

In Chapter 4 we considered switched systems and a particular optimization problem,
with an infinite horizon quadratic cost function and a fixed numberN of allowed
switches.

Here we show how to solve the same optimal control problem for a more general
hybrid automataHA. We will show that the STP, described in the previous chapter,
can be extended to the problems featured by constraints on the state space.

In a switched system all switches are assumed to becontrollable(i.e., they can be
triggered by the controller). In a hybrid automaton there may also existautonomous
switches that are internally forced by the crossing of a given threshold. This type of
autonomous switch has also been considered by [122] in a recent work.

This is formalized in Chapter 3 by the introduction in the basic switched system
with invariants and guards. We considered, under the described set up of theHA,
two different approaches.

In fact, the presence of internal triggers that force the occurrence of switches may
be interpreted in two ways:

(a) a subset of edges may fire autonomously, depending upon a set of constraints
(guards) on the space stateRn, i.e., the discrete controller has no influence on
this event;

(b) a switch must occur as a prioritized event, depending upon a set of constraints
(guards) on the space stateRn, and it is commanded by the discrete controller.

The modelling power of these aspects of anHA can be read in Chapter 3. Here
we will limit ourselves to developing the extension of the STP in both cases. We
might recall however that, in general, the approach (a) is more suitable for those
physical systems with "constructive" constraints. As a trivial example consider a
circuit containing a diode where the voltage threshold

x1(t) < 0

denotes the condition where the diode behaves as an open circuit.
The approach (b) is more suitable to model cases where the continuous evolution

of the system must be restricted to a safe or specification region, i.e., the systems
behave under certain safety and liveness constraints. An application to a physical
system is discussed in Example 5.5.2.

In particular, based on the notion ofl-complete approximations [95, 43], [83]
and on the supervisory control theory of Ramadge and Wonham [96] we design a
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discrete supervisor that guarantees safety and liveness constraints, expressed in terms
of an invariant set on the state space, that restricts the switching DOF of the optimal
controller. This method was developed byGromov et al.in a joint work [32] and
described in Appendix D.

Provided that the behavior of theHA is deterministic, i.e., for each state of the
evolution(x(t), i(t)), ∀ t ∈ [0,+∞), it is always possible to model(x(t+dt), i(t+
dt)) with probability 1, the STP is applicable to both interpretations of the problem.

Note however that the trade-off of this important result is a quite high computa-
tional cost (to be performed offline). In fact the whole space discretization is required.

As an advantage, we remark that the investigation of the continuous evolution
of the system can be restricted to the invariant set. This leads to some degree of ap-
proximation, especially in the case where the invariant set is not limited. In this case
some extra information on the physical modelling procedure must be considered.

5.2 The considered model

In this chapter we will deal with the optimal control of the hybrid automatonHA,
as in Definition 3.16. Briefly a hybrid automaton theHA considered here is a tuple
HA = (L, act, inv, E ,M), whose entries have the following meaning

• L is a finite set of locations indexed byi = 1, . . . , s.
• act : L → Inclusionsis a function that associates to each locationi a differential

equation of the forṁx = Aix + f i.
• inv : L → Invariantsis a function that associates to each locationi an invariant

invi ⊆ Rn such thatx ∈ invi.
• E ⊂ L × Guards × L is the set of edges. The edgeei,j is enabled when the

current location isi and the current continuous state isx ∈ gi,j ⊆ Rn: it may
fire reaching the new locationj.

• A linear jump relation isM ⊂ Rn × Rn associated to an edgeei,j . When the
edge fires,x is reset tõx = M i,jx, whereM ∈ Rn×n.

Additionally aminimum permanence timeδmin(i), Definition 3.7, in each loca-
tion can be considered.

As described in the introduction of this chapter, the presence ofinvariant and
guards, Definitions 3.17 and 3.18, associated to edges influences the behavior of the
HA, and consequently the problem formulation and its solution should be described
consistently. More precisely the presence of these sets have an effect on the switching
scheduling, and thus on the designing of the control policy.

It is fundamental for the successful design of the control law by the construc-
tion of switching tables, that the system is deterministic, i.e., thehybrid evolution
(x(t), i(t)) is exactly known for any given initial state.

Once this is guaranteed we may analyze two different interpretations of the
switching constraints. More precisely we will refer toautonomous hybrid automaton
AHA, as in Section 3.6.1 (Case a) and toconstrained hybrid automatonCHA, as
in Section 3.6.4 (Case b).

5.2.1 Case a: autonomous hybrid automatonAHA

This case considers anautonomousHA, meaning that this system is subject to se-
quences of autonomous switches. Detailed description of theAHA and its dynamical
behaviors are given in Section 3.6.1.



Chapter 5- Finite number of switches: hybrid automaton 83

In this model, not only the time driven evolutionx(t) is uncontrolled (we only
studied hybrid systems whose continuous controlu = 0), but also the discrete event
evolution i(t) is subject to autonomous behaviors according to subsets (named as
guards) of the state space.

Assume that the current hybrid state is, at a given timet, (x, i). For this state
there are two possible conditions:

1. x ∈ invi.
2. x /∈ invi.

In case (1) it is possible to define a set of controllable successors,succc(i) ∈ 2S

as in Definition 3.21, each one associated to eachcontrollable edges(Definition 3.19)
exiting the locationi.

While the system is evolving in locationi within the corresponding invariant, the
DOF of the switcher is defined bysuccc(i) ∪ {i}.

For this particular research we assume that theguardsassociated to the control-
lable edges coincide with theinvariant invi of locationi.

In case (2) the system must leave locationi, in agreement with the definition of
the invariant. Hence anautonomous switchwill occur, and the systems falls "spon-
taneously" into another location, let’s sayj, which is univocally determined by the
guardgi,j , according to the Assumption 3.1.

We also recall here the Definition 3.22 ofsucca(i) which denotes the indices
associated to the locations reachable fromi, by firing anautonomous edge.

Here we assume that the number ofN availablecontrollableswitches is finite,
but we do not assume the same for the number ofautonomousswitches. Thus, ac-
cording to the shape of the autonomous guards, the system may

• become unstable with no control;
• exhibit Zenoness.

In Section 3.6.3 we provided sufficient structural conditions on theAHA that
avoid these undesirable behaviors.

5.2.2 Case b: constrained hybrid automatonCHA

This case considers aconstrainedHA, CHA, meaning that the switching strategy
is influenced by the value of the current continuous statex. Detailed description of
theCHA and its dynamical behaviors are given in Section 3.6.4.

We suddenly state that in this case there are no autonomous sequences of
switches, thus the instability issue and the Zenoness are avoideda priori. In fact
the number of available switchesN (all controllable) is limited.

In this model we consider the guards defined as in Definition 3.28, where the
guardgi,j ≡ invj is enablediff the statex belongs to the invariant of the locationj,
destination of a switch.

The invariants are constructed by converting a specification1, imposed on the
quantized output signals of the system, that guarantees safety and liveness of the
CHA. The procedure is described in detail in Appendix D.

We recall the Definition 3.29 of theset of successors, succ(x, i) ≡ {j ∈ S :
x ∈ gi,j}. Note the dependency of this set from both components of the hybrid
state, in opposition to switched systemsS in Chapter 4, where the dependency was
only on the discrete parti.

1Some typical specifications on the dynamical behavior of aHA are for instance thesafety
and theliveness.
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The dynamical behavior is briefly described as follows. Let us assume that the
current hybrid state is, at a given timet, (x, i). For this state there are two possible
conditions:

1. x ∈ invi.
2. x /∈ invi.

In case (1) the controller can choose to switch to anyone of the locations enabled,
through the guards, by the current valuex, or it can decide to remain in the current
locationi, since the invariant condition is verified.

In case (2), the system must leave locationi, becausei is no longer considerable.
Hence the DOF of the controller issucc(x, i).

It is meaningful to remark that this model is potentially blocking, as outlined in
Remark 3.3. In fact there is the evident possibility thatx leaves the invariant and the
set becomessucc(x, i) ≡ ∅.

5.3 Case a: optimal control problem forAHA

The optimal control problem forAHA, OP(AHA) is based on the assumption that
the discrete controller has at mostN (fixed a priori) controllable switches available.
The formal definition of the problem is given in Section 3.6.3, where all the prop-
erties, the symbols and the assumption that allow the existence of a solution are
extensively described.

Here we shall limit to report the problem formulation, as it appears in Definition
3.26, and we refer the reader to the mentioned Section 3.6.3 for a complete illustra-
tion of the formalism.

J∗N , minI,T {F (I, T ) ,
∫ ∞

0

x′(t)Qi(t)x(t)dt

}

s.t. ẋ(t) = Ai(t)x(t) + f i(t)

0 = τ0 ≤ . . . ≤ τk ≤ . . . ≤ τN+1 = +∞
(controlled switching times)

i(0) = i0 (initial location)
x(0) = x0 (initial state)
i(τk) ∈ succc(i(τ−k )) (location reached after thek − th controlled switch)
x(τk) = M i(τ−k ),i(τk)x(τ−k )

(state reached after thek − th controlled switch)
σk = σ(x(τk), i(τk)) (autonomous sequence)
i(τk + θ) = ϕσk

(θ) for θ ∈ [0, τk+1 − τk)
(autonomous index trajectory)

(5.1)
Briefly, functioni(t) is composed ofN + 1 blocks delimited by the instantsτk ’s

where the controlled switches occur. Each block is a piecewise constant function:
steps internal to the intervalt ∈ [τk, τk+1) correspond to autonomous switches.
More precisely between the occurrence of two controllable switches the location
does not remain constant, as in switched systems of Chapter 4, but it may bepiece-
wiseconstant, according to the occurrence of autonomous switches.

We named this piecewise constant function of autonomous switches asϕσ(t),
and an example is depicted in Figure 5.1.

The control variables in this problem are thesequence of controlled switching
timesT , {τ1, . . . , τN}, and thesequence of location indicesassociated with con-
trollable switchesI , {i(τ1), . . . , i(τN )}.
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Fig. 5.1. Functionϕσ(t) of the autonomous sequenceσ(x, i) = {(1, 2), (3, 1.5), (2, 2.5),
(4, +∞)}.

5.3.1 State feedback control law forAHA

In this section we show that the optimal control law for the optimization problem
above takes the form of astate feedback, i.e., it is only necessary to look at the
current system statex in order to determine if a controllable switch from locationik
to ik+1, or equivalently from linear dynamicsAik

to Aik+1 , should occur.
In particular, we show that for a given locationi and for a given controllable

switchk ∈ 1, . . . , N it is possible to construct a tableCi
k that partitions the invariant

spaceinvi into si regionsRj ’s, wheresi = |succc(i)|+ 1, i.e., we can write

invi = Ri ∪

 ⋃

j∈succc(i)

Rj


 .

Wheneveri(τk + θ) = i we use tableCi
k to determine if a switch should occur:

as soon as the state reaches a point in the regionRj for a certainj ∈ succc(i) a
controllable switch will occur and we switch to modei(τk+1) = j; finally, no switch
will occur while the system’s state belongs toRi.

We simply show how the tablesCi
1 for the last switch can be computed using the

cost function associated to an autonomous evolution. The tables for the intermediate
switches can also be constructed using the same dynamic programming arguments
given in Chapter 4.3.

5.3.2 Computation of the tables for controllable switches

Consider a state(x, i) and letσ(x, i) = {(i0, θ0), . . . , (ih, θh)} (wherei0 = i) be
the corresponding sequence of autonomous switches. Let us evaluate the following
function:

Jσ(x, i, %) =
∫ %

0
x′(t)Qϕσ(t)x(t)dt

=
h̄−1∑

k=0

x′kQ̄ik
(θk)xk + x′̄hQ̄ih̄

(%−
h̄−1∑

k=0

θk)xh̄

(5.2)

wherex0 = x, xk+1 = M ik,ik+1Āik
(θk)xk and where0 ≤ h̄ ≤ h is an integer

value that depends on% through the following inequalities:

h̄−1∑

k=0

θk ≤ % <

h̄∑

k=0

θk (5.3)
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The function in (5.2) represents the cost of the evolution of the system, starting from
state(x, i) and only subject to autonomous switches, for a time%.

We will first explain how to build the table of the last controlled switch and then
proceed recursively for the others. Assume thatiN = i, i.e., afterN − 1 controlled
switches the currentAHA state is(x, i). We show how to compute the tableCi

1. First
of all we must createσ(x, i) = {(i0, θ0), . . . , (ih, θh)}.
• Consider first the case in which no controlled switch occurs. The remaining cost

starting fromx, due to the time-driven evolution and only subject to autonomous
switches is

T ∗i (x, i) = Jσ(x, i, +∞). (5.4)

• If the system evolves without performing controlled switches for a time% and
then a controlled switch to locationj occurs, the remaining cost starting fromx
due to the time-driven evolution is

Ti(x, j, %) = Jσ(x, i, %) + T ∗j (x̄, j). (5.5)

where

– j ∈ succc(ih̄) is a controllable successor ofih̄. This set depends on%
throughh̄, as in Equation (5.3)

– x̄ = M ih̄,jĀih̄
(% −

h̄−1∑

k=0

θk)xh̄ is the destination point after̄h autonomous

switches.

The minimization of function (5.5) has to be performed over% and overj ∈
succc(ih̄) (and note that̄h depends on%). This minimization problem can be written
as

min
0≤h̄≤h

min
j ∈ succc(ih̄)

min
%∈Ih̄

Ti(x, j, %), (5.6)

whereIh̄ is the time interval defined by the inequalities in (5.3).
Let us denote by%∗(x, i) andj∗(x, i) the values of% andj that minimize (5.6).

We may now indicate

T ∗i (x, j∗(x, i)) = Ti(x, %∗(x, i), j∗(x, i)) (5.7)

We now show how these data are used to construct the tables for the last control-
lable switch.

In presence of autonomous switching regions the state space available for con-
trollable partitions is only theinvi. Such subspace will be then partitioned intoRj

regions according to the following criterion:

• x ∈ Ri if %∗(x, i) > 0; this physically means that the optimal strategy is to
remain for a non zero time% in locationi;

• x ∈ Rj∗(x,i) if %∗(x, i) = 0; this physically means that the optimal strategy is
to immediately switch to locationj∗.

Once the table for the last switch is constructed, it is simple to build all the
others following the principle of dynamic programming and solving problem (5.6)
recursively over the total number of allowed controllable switches as in [28].
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5.3.3 The homogeneous case

We present now a particular class ofAHA where the structure of the guards and
invariants is homogeneous. Firstly we recall that a guardge is homogeneous if

(∀x ∈ ge, ∀λ ∈ R) λx ∈ ge.

Such case is meaningful because it allows one to describe guards of the form

x′(t)Zx(t) ≥ 0,

where x(t) is the continuous state of the hybrid system, i.e., guards given by
quadratic forms.

A physical example of this is given by an electric system whose threshold

x1(t)x2(t) > 0

(herex1(t) andx2(t) are voltage and current, resp.) denotes the condition where the
system behaves as a power generator.

Moreover, as we show in the following remark, in such conditions the computa-
tional complexity of the offline to compute the switching regions is reduced.

Remark 5.1.For each state(x, i) of anAHA with homogeneous guards,σ(x, i) is
a homogeneous function with respect to its second variable, i.e.,∀λ ∈ R \ {0},
σ(x, i) ≡ σ(λx, i). ¥

This obvious fact implies that the residual costJσ(x, i, %) given in Section 5.3.2
can be calculated only in the pointsy on Σn. In fact, knowingJσ(y, i, %), clearly
Jσ(x, i, %) = λ2Jσ(y, i, %), x = λy.

As a consequence a discretization of the all invariant setinvi is no longer re-
quired, because all the necessary information to construct the optimal switching ta-
bles can be calculated alongΣn. Hence this special case reduces the computational
complexity of the construction of tableCi

k,N [28] fromO((si−1)rn) for the general
AHA, toO((si−1)rn−1), where we indicate bysi the number of controllable edges
of locationi, r is the discretization sampling along each direction,n is the state space
dimension.

5.4 Case b: optimal control problem forCHA

The optimal control problem for aCHA, OP(CHA) is based on the assumption
that the discrete controller has at mostN (fixed a priori) controllable switches avail-
able. The formal definition of the problem is given in Section 3.6.6, where all the
properties, the symbols and the assumption that allow the existence of a solution are
extensively described.

Here we shall limit to report the problem formulation, as it appears in Definition
3.30, and we refer the reader to the mentioned Section 3.6.6 for a complete illustra-
tion of the formalism.

J∗N , min
I,T

F (I, T ) , min
I,T

∫ ∞

0

(x(t)− xeq)′Qi(t)(x(t)− xeq)dt

s.t. ẋ(t) = Ai(t)x(t) + f i(t)

i(0) = i0 (initial location)
x(0) = x0 (initial state)
i(t+) ∈ succ(x(t), i(t)) ∪ {i(t)}
x(t) ∈ invi(t) ⊂ Rn, ∀ t ≥ 0

(5.8)
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andT , {τ1, . . . , τN}, with τ0 ≤ . . . ≤ τk ≤ . . . ≤ τN+1 = +∞ are thecontrolled
switching timeswith τk − τk−1 ≥ δmin(i(τk−1)) ∀ k = 1, . . . , N + 1, theminimum
permanence timeimposed in each location.

We also havex(τk) = xk, the state reached after thek − th controlled switch2,
andi(t) is a(N + 1)-piecewise constant function, defining the second set of control
variables

I , {i(τ1), . . . , i(τN )}.
The performance index described here weights the distance from atarget state

xeq. However appealing this is not the formulation of ahybrid reachability problem,
that requires a completely different framework (see for the case the works of [81,
106]). However some authors proposed a method of solving a reachability problem
via a minimization of a HJB equation, thus, to an extent, solving a particular class of
optimal control problem [80].

In fact in order to be sure that the cost is finite we are forced to introduce the
following assumption:

Assumption 5.1 There exist a locationi in the consideredCHA, such that

xeq = −A−1
i f i

with Ai strictly Hurwitz.

Assumption 5.1 is an extension of Assumption 4.1. If verified, the problem mir-
rors exactly the one described in Chapter 4, with the new set of variablesz = x−xeq.

Based on the results given in Chapter 4, we show in the sequel how it is possible
to construct a partition of the state space in order to determine, in state feedback
form, the optimal switching signali(t), that steers the system to the target statexeq

minimizing the performance index of equation (5.8).

5.4.1 Case b: state feedback control law forCHA

The procedure STP that allows to solve problem (5.8) has been extensively described
in Section 4.3. Hence we will not repeat here all the derivation, but we shall limit to
provide the algorithm.

In fact this case is different in force of the fact that the set of successors of a
given location is dependentalsoon the continuous state spacex, as described in the
dynamical behavior of theCHA on Section 3.6.4.

For sake of clarity we report here the following remark.

Remark 5.2.An important caution should be taken when considering the successors
of the current locationi. In fact, let us consider the edgee = (i, ge, j). It may be
activated whenx ∈ invj but two different cases may occur.

1. The continuous statex ∈ invi

⋂
invj . In this case the discrete controller has

the DOF between keeping the evolution in locationi or switching to locationj.
2. The continuous statex /∈ invi. The evolution cannot continue in locationi thus

the discrete controller must leave locationi.

This implies that the set of "admissible" successors also depends on the current
continuous statex. ¥

2Here we assume that the state is continuous thus there are no jumps at the occurrence of
a switch.
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As in problem (5.8), all switching costs are null, and all jump matricesM i,j are
the identity.

In this affine case we can no longer restrict to the unitary semisphere, but we
have to discretize the whole state space. Hence we define a rectangular gridD as it
is shown in Figure 5.2.

R=1

x2

x1

∆=0.5R∆θ=0.5∆θ

(a)

 

x2

x1

(b)

∆ 2

∆1
 

Fig. 5.2.Different shapes of the discretization pattern inR2. In particular (a) spherical pat-
tern, used when all affine terms and switching costs are null and (b) grid pattern.

Assume thatN is the number of available switches ands = |S|, and that all
dynamicsAi of the automaton are Hurwitz.

The algorithm is divided into several steps.

Algorithm 5.1 (Switching table procedure for CHA) The input of this algorithm
is the constrained hybrid automatonCHA, its target statexeq, its annexed optimal
control problem OP and the number of available switchesN , a tuning parameter
tmax that expresses the duration of the future exploration.

The output is a set ofN × s tables that the controller can use to provide the
feedback control law during the real time evolution.

The list of instructions is depicted in Figure 5.3. ¥
The main advantage of the proposed procedure may be briefly summarized as

follows.

• It is guaranteed to find the optimal solution to problem (5.8).
• It provides the global optimal solution, i.e., the tables may be used to determine

the optimal state feedback control law for all initial states.

The optimal control law can be computed as follows. For a given locationi and
for a given switchk ∈ {1, . . . , N}, it is possible to construct a tableCi

k that partitions
the invariant setinvi into up tosi = |succ(i)|+ 1 regionsRj ’s. Wheneverik−1 = i
we use tableCi

k to determine if a switch should occur: as soon as the state reaches
a point in the regionRj we will switch to modeik = j provided that the minimum
permanence timeδmin(i) has elapsed; on the contrary no switch will occur while the
system state belongs toRi.

5.5 Numerical examples

We provide in this section two numerical examples, one referred to the case (a), i.e.,
when an autonomous sequence is allowed, the other referred to the case (b), i.e., the
set of successors of a given location is state dependent.
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1. Initialization:k = 0 remaining switches
Redefinex ← x− xeq.
For i = 1 : s

Calculate if possibleZi : A′
iZi + ZiAi = −Qi.

∀ y ∈ D
Cost assignment

T0(y, i) =

�
y′Ziy if f i = 0
+∞ else.

Color assignment
C0(y, i) = i

end (i)
2. Fork = 1 : N

For i = 1 : s
∀ y ∈ D
Compute the setsucc(y, i);
Remaining cost:
t = 0
While t < tmax ∧ y ∈ invi

For j ∈ succ(y, i)
y ← Ā

′
i(t)y

y(j, t) = Āj(δj)y
T (y, i, j, t) = y′Q̄i(t)y + y′Ā′

i(t)Q̄j(δj)Ā
′
i(t)y + Tk−1(y(j, t), j)

end (j)
t ← t + dt.

end (t)
Cost assignment

Tk(y, i) = min
j,t

T (y, i, j, t)

Color assignment

(j∗, t∗) = arg min
j,t

T (y, i, j, t).

Ck(y, i) =

�
j∗ if t∗ = 0
i if t∗ > 0.

end (i)
end (k)

Fig. 5.3.Algorithm for the implementation of the STP in presence of state space constraints
as in the modelCHA.

5.5.1 Case a: anAHA example in the homogeneous case

Let us consider the AHA whose graph is reported in Figure 5.4 where dashed arrows
have been used to denote edges associated to autonomous switches, while continuous
arrows have been used to denote edges associated to controllable switches.

In this particularR2 case, guards and invariants of the automaton are homoge-
neous. In such a case they may be easily described [90] as quadratic forms ofx. In
particular, we assume that the guards associated to autonomous switches are3

g1,2 = {x ∈ R2| x′G1,2x ≥ 0}, G1,2 =
[−0.2 0.6

0.6 −1

]

g1,3 = {x ∈ R2| x′G1,3x ≥ 0}, G1,3 = −
[

1 1.25
1.25 1

]

3To avoid a heavy notation we denote heregi,j the guard associated to edgeei,j .
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e1,2 

e2,1 

e3,2 

e2,3 

e3,1 

e1,3 

l1 l2 

l3 

Fig. 5.4.Oriented graph of theAHA considered in Example 5.5.1. The dashed arcs represent
the autonomous edges, while the continuous arcs represent the controllable edges.

and

g2,3 = {x ∈ R2| x′G2,3x ≥ 0}, G2,3 =
[−3 0.5

0.5 0

]

whereg1,2 ∩ g1,3 = ∅.
Consequently, by Assumption 3.1 given in Chapter 3, the invariant sets may be

defined as
inv1 = R2 \ (g1,2 ∪ g1,3),
inv2 = R2 \ g2,3, inv3 = R2,

while the guards associated to controllable switches are

g2,1 = inv2, g3,1 = g3,2 = inv3.

The above set of guards and invariants are shown in Figure 5.5.
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Fig. 5.5.The guards and invariants of the AHA in Example 5.5.1.

This automaton is also homogeneous, thus it allows to perform calculations along
Σ2.

Let us assume that the activity functions at the discrete locations are defined by
the following matrices:

A1 =
[−1.85 −1

1 0

]
, A2 =

[
0 1

−0.74 −1.29

]
,A3 =

[−2.75 −2.84
1 0

]
.
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All jumps are coincident with the identity relation, i.e.,M i,j = I2, for all i, j
with i 6= j, whereI2 denotes the second order identity matrix.

Finally we assume that weighting matrices are coincident with the identity ma-
trix, and thatN = 3 controllable switches are allowed.

To solve the resulting optimal control problem, we first evaluate offline theN×s
controllable switching tables, using the procedure presented in the Subsection 5.3.2.

In this particular case9 tables have been constructed (3 for every switch).
A space discretization of101 points alongΣ2 and a local minimum search within

five time constants have been considered sufficiently fine.
Provided such tables, the controller/supervisor is ready (and fast) to estimate the

optimal strategy in real time mode subject to the constraints of the automaton.
The state trajectory that minimizes the performance index is depicted in Fig-

ure 5.6, where the black squares indicate the controllable switches and the red stars
indicate the autonomous switches.

Finally, we found out the following values of the switching (both controllable
and autonomous) instantsT , of the optimal sequenceI, and of the optimal costJ :

T = {0.05, 0.11, 0.11, 0.78, 0.96, 1.505}
I = {3 ⇒ 1 → 3 ⇒ 2 → 3 ⇒ 2 → 3}
J = 62.15

In the subsetI the arrow⇒ indicates a controllable switch, and the arrow→
indicates an autonomous switch.

The system initially sojourns in location3 then the supervisor switches to loca-
tion 1. Tables indicate that it is worth waiting until the autonomous threshold with
location3, in order to go directly to location2 in zero time. Now it is better to re-
main in location2 until the autonomous boundary is reached before using the third
controllable switch, which takes place during the evolution in location3. From now
on the system evolves independently towards zero, performing a finite number of
autonomous switches.

−4 −3 −2 −1 0 0.5

0

2

4

6

8

10

Autonomous  
Threshold   
l
1
 to l

3
  

Autonomous  
Threshold   
l
2
 to l

3
  

Controlled 
Switches 

Fig. 5.6.System evolution forx(0) = [−3.4,−9.4]′, and initial location3. A square denotes
a controlled switch. A star denotes an autonomous switch.
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5.5.2 Case b: application and case study

As an example of the described procedure, the following problem is considered. This
problem was inspired by [25]. A physical system is composed of two cylindric tanks,
equipped with inflow pipe and subject to leakage (see Figure 5.7).

 
 
 
  q 

a1 a2 

Fig. 5.7.Schematic view of the physical system considered for the Example 5.5.2.

The continuous variables of this system are the levels of the fluid in each tank,
namelyx = [x1, x2]′.

The physical dimension of the tanks imposes a minimum and a maximum value
of the fluid level, i.e.,

x ∈ X = [0, 30]× [0, 20].

The levelxj in each tank is governed by the linearized DE, namely

ẋ1 = −a1x1 + fi,1,
ẋ2 = −a2x2 + fi,2

wherea1, a2 are the flow losses of tank 1 and tank 2,f i , [fi,1, fi,2]′ is the flow
input, described next. We assign in this examplea1 = 2 anda2 = 3.

The inflow pipe (Figure 5.7) is capable of a flow rateq = 60, but it may only
assumequantized positionstaken from a finite set

Q = {f1, . . . , f5}
where

f1 =
[

q
q

]
, f2 =

[
0
q

]
, f3 =

[
q
0

]
,f4 =

[
0
0

]
, f3 =

1
2

[
q
q

]
.

The global linearized DE of the system is thus

ẋ =
[−2 0

0 −3

]
x + f i,

i = 1 . . . 5, whereA represents the linearized fluid loss due to static height pressure.
The resulting system can be modelled as aCHA composed of 5 locations, as

depicted in Figure 5.8. The structure of the automaton takes into account the order
in which the different inflow rates can be changed.

Furthermore we consider an extra specification based on Figure 5.10. In par-
ticular the output signal of the system is of three levels:{Y +

d , Y 0
d , Y −

d }, denoting
respectively, that the continuous statex is in thesaferegion (i.e., the interior part of
X), theconditionally saferegion (i.e., the sides ofX), and theunsaferegion (i.e.,
the corners ofX).
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l2
f2
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l5
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Q= 10 I

l1
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l3
f3

Q= I
 

Fig. 5.8. TheHA modelling the considered affine system. The double arrows indicate that
both switching directions are allowed.

Yd

Yd

Yd

Yd
0

Yd
0

Fig. 5.9.Specification for the outputs, safe, conditionally safe and unsafe regions.

We impose a specification on the sequences of outputs represented in Figure 5.9.
More precisely this automaton imposes the following requirements:

1. if the state is in the safe region, then the next output symbol can either beY +
d

or Y 0
d (meaning respectively that the state will remain in the safe region or may

enter the conditionally safe region;
2. if the state is in the conditionally safe region, then the next output symbol can

either beY +
d or Y 0

d (meaning respectively that the state will go back to the safe
region or may remain in the conditionally safe region and potentially the unsafe
region);

3. if the state is in the unsafe region, then the next output symbol can only beY +
d

(meaning that the state will go back to the safe region in not more than one step).

Thus, the specification requires that the state can belong to theconditionallysafe
region for no longer than two time intervals. After that, the system should stay at
least one time interval within thesaferegion producing the corresponding output
symbol.

In the low level step, a procedure based onl-complete approximation and super-
visory control theory, described in Appendix D the specification of outputs depicted
in Figure 5.9 is converted into a set of invariants, i.e., constraints on the state space,
which are attached to the swithced system to form theCHA on which we finally
apply the Algorithm 5.1.

These invariants restrict the behavior of the overall system to guarantee the safety
and liveness conditions. The invariant set of locations1, . . . , 5 are reported in Figure
5.11.

The high-level step requires the solution of an optimal control problem of the
form (5.8). The weight matricesQi are indicated for each location in Figure 5.8
whereI denotes the identity matrix.

The maximum number of switches isN = 3. The target state is equal to
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Fig. 5.10.Partitioning of the state spaceX.
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Fig. 5.11.Invariant regions for locations1, . . . , 5.
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xeq =
[

15
10

]
,

that satisfies Assumption 5.1 fori = 5.
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Fig. 5.12.Switching tables used by the controller during the simulation described in the ex-
ample. (a) is the table used when 1 switch is available, (b) when 2 switches are available, (c)
when 3 switches are available.

The offline part of this procedure consists in the construction of5 × 3 = 15
tables, one per each location and per number of available switches. A state space
discretization is a grid of125×125 points. The minimum search algorithm works on
a time domain oft = 5s with time step 0.1s. The latter value was chosen to guarantee
an appropriate synchronization between the two levels. The offline calculation effort
for this step of the problem took approximately 2 hours, on a common commercial
laptop with average up to date performances. For sake of brevity we only report
some of these tables (depicted in Figure 5.12), i.e., those tables used by the controller
during the simulation ran for the initial continuous state

x =
[

21
3

]

and the initial location1. The trajectory obtained for this particular value of the initial
state is plotted in Figure 5.13. The optimal switching sequence and switching times
are
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I = {1, 2, 4, 5}
and

T = {0.121, 0.221, 0.321},
and the optimal cost is

J∗3 = 19.47.

Note that, due to the minimum permanence time within each location, it may
occur that the switching from one discrete location to another, does not necessarily
occur as soon as the state trajectory exits the current region. This is the case of the
last switching point of the trajectory reported in Figure 5.13.

The controller uses the appropriate switching tables to impose the appropriate
switching. The simulation does not require any extra calculations other then observ-
ing the state space and compare its value with the switching table (already calcu-
lated) corresponding to the current location and to the current number of remaining
switches.
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Fig. 5.13.State space trajectory and discrete location sequence.

5.6 Conclusions

In this chapter we analyzed the problem of providing a feedback optimal control law
for a switched system in presence of state space constraints, that can be seen as a
generalization of the class of switched system we have considered in Chapter 4. This
led us to the introduction of a the more general model, i.e., theHA, featured by
constraints on the state space.

In particular we studied two cases.

5.6.1 Case a

A class ofHA that we called Autonomous Hybrid Automata whose main aspect is
that not only the continuous time evolutionx(t) is autonomous, but also the dis-
crete event evolutioni(t) is autonomous and it follows an evolution governed by
autonomous, internally forced switches.
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This is really a dangerous aspect in the framework ofHS, because it is well
known that in general an autonomous evolution of discrete events may provoke in-
stability of the system.

We provided sufficient conditions to ensure that this does not occur. Although
may not be restrictive, these conditions are structural on theAHA.

In this model there are two types of edges: firstly a controllable edge represents
a mode switch that can be triggered by the controller; secondly an autonomous edge
represents a mode switch that is triggered by the continuous state of the system as it
reaches a given threshold.

We have shown how the special structure of autonomous hybrid automata allows
one to solve an infinite horizon quadratic optimization problem with a numerically
viable procedure; the optimal control law takes the form of a state-feedback.

The application of the STP is not straightforward for this class. In fact, during
the time search subroutine, there exists the possibility of starting an autonomous
sequence.

5.6.2 Case b

In this case two approaches based respectively on discrete approximation of contin-
uous systems and optimal control of switched systems, were successfully cast and
merged to the framework of aHA.

More precisely a the discrete approximation part, i.e., the low level part, converts
some specifications on the output signals of the plant into constraints on the state
space. The approach is described in Appendix D.

In this case the autonomous switches are not admissible, but the set of successors,
that in Chapter 4 was a function of the current discrete state, is now a function of the
hybrid state(x, i).

The oriented graph of the automaton is state dependent, i.e., some arcs may be
"forbidden" according to the value of the state space.

The STP of Chapter 4 can be extended provided that now a dynamic value of the
set of successors must be taken into account.

Both cases, apart from extremely special shapes of the constraints, require the
discretization of the whole state space, or, which is equivalent, the sampling ofΣn+1.
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Infinite number of switches

6.1 Introduction

In this chapter we focus our attention on the optimal control problem of a switched
system when an infinite number of switches is allowed.

In Chapter 4 we assumed that an upper bound on the maximum numberN of
available switches is imposed. We developed the STP that provides the state feedback
optimal control law for this particular case.

Here, under reasonable assumptions, we show how the proposed procedure can
be extended to the case ofN = ∞. In other words we will provide a constructive
method to design a switching table that can be used indefinitely until the continuous
statex of the switched system has practically reached the origin.

Furthermore, since this switching law is based on the minimization of a piecewise
LQ performance index, it is also optimal.

The caseN = ∞ contains interesting theoretical developments, such as the
convergence of the switching tables, and relevant practical applications. In fact the
majority of real systems are able to infinitely switch.

As an example the approach has been applied to the servomechanism system
studied in Section 4.5. As a real case study we considered the design of a semi active
suspension system, to which we dedicated part of this chapter.

6.2 The model and the optimal control problem

In this section we recall the model and the optimal control problem defined in Chap-
ter 3 that we consider in this chapter.

6.2.1 The model: switched system

We consider a switched systemS = (L, act, E ,M), extensively described in Section
3.3, in consistency with Definition 3.2.

We recall that:
— L is a finite set of locations.
— act : L → Diff_Eq is a function that associates to each locationi a linear

affine DE of the formẋ = acti(x) = Aix + f i.
— E ⊂ L × L is the set of edges. An edgee = (i, j) is an arc from locationi to

j, i 6= j.
— M : E → Rn×n associates to each edgee ∈ E a constant matrix inRn×n,

that represents the linear resetting of the state spacex at the switching instants.
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We recall the definition of the set of successors, as in Definition 3.4,succ(i)
which denotes the set of indices associated to the locations reachable from location
i.

Once entered in a locationi a minimum permanence timeδmin(i) must elapse
before the controller may decide the best strategy, whose formal Definition is 3.7.

In this chapter, wlg, we will restrict the analysis to the following class:

1. Thehybrid evolution(x(t), i(t)) is continuous inx, i.e., there are no state jumps;
2. The affine termsf i are all null;
3. The item (i) of Assumption 4.1 is verified, i.e., at least one dynamics ofS is

strictly Hurwitz.

6.2.2 The optimal control problem: infinite number of switches

For the class of system defined above we consider the optimal control problem
OP∞(S), as in Definition 3.15, reported below.

J∗∞ , min
I,T

{
F (I, T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt

}

s.t. ẋ(t) = Ai(t)x(t) + f i(t), x(0) = x0, i(0) = i0
i(t) = ik ∈ succ(ik−1) for τk ≤ t < τk+1,
τk+1 ≥ τk + δmin(ik),

(6.1)

where all terms, symbols and control variables are described in Section 3.4. Never-
theless we would like to recall that the control variables are

T , {τ1, τ2, . . .}

and
I , {i1, i2, . . .},

whereT is thesequence of switching timesandI is the sequence of indices as in
Definitions 3.11 and 3.12 respectively. Note that these sets are unlimited.

In fact the subscript∞ indicates that we relax the restriction considered in the
previous chapters allowing that the number of switches may be infinite.

To solve this problem we initially assume that the number of available switches is
finite and equals toN , thus we consider a problem OPN (S), as in Definition 3.14and
reported below.

J∗N , min
I,T

{
F (I, T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt

}

s.t. ẋ(t) = Ai(t)x(t), x(0) = x0, i(0) = i0
i(t) = ik for τk ≤ t < τk+1, k = 0, . . . , N
τ0 = 0, τN+1 = +∞
τk+1 ≥ τk + δmin(ik), k = 0, . . . , N
ik+1 ∈ succ(ik), k = 0, . . . , N

(6.2)

In the sequel we will refer to the solution of the finite problem asJ∗N , and to the
solution of the infinite problem asJ∗∞.
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6.3 State feedback control law

We briefly recall the procedure STP that gives the solution of Problem (6.2) in feed-
back form, described in Section 4.3, derived for a finite number of switchesN .

The general idea of the STP is to proceed backward from the last switchk = 0,
and obtain, for any given hybrid point(x, jk), whenk switches remain, a residual
cost of the form

Tk(x, jk, . . . , j0, %k, . . . , %0) = F (x, jk, jk−1, %k)+
+ Tk−1(z, jk−1, . . . , j0, %k−1, . . . , %0)

(6.3)

where
z = Ājk−1(δmin(jk−1))Ājk

(%k)x

expresses the state reached after the evolution for%k time units in locationjk and a
switch tojk−1 for δmin(jk−1) time units1.

It has been proved that

T ∗k (x, jk) = min
jk−1,%k

Tk(x, jk, jk−1, %k) (6.4)

with jk−1 ∈ succ(jk) and%k ≥ 0, provided that we take

Tk(x, jk, jk−1, %k) = F (x, jk, jk−1, %k) + T ∗k−1(z, jk−1, . . . , j0, %k−1, . . . , %0),

in agreement with the well known principle of optimality [3, 14, 69].
In this case, (all switching costs are null and all jumps are the identity matrix)

F (x, jk, jk−1, %k) = x′Q̄jk
(%k)x + x′Ā′

jk
(%k)Q̄jk−1

Ājk
(%k)x, (6.5)

as it was defined in Definition 4.4 and explained there on.
The strategy associated to the current hybrid state(x, jk), whenk switches are

missing, is thus dependent, as explained in Definition 4.7 on the values

%∗k(x, jk) = arg min
jk−1,%k

Tk(x, jk, jk−1, %k)

j∗k−1(x, jk) = arg min
jk−1,%k

Tk(x, jk, jk−1, %k),

wrt the lexicographic ordering of Paragraph 4.3.2.
By induction ofk up toN we terminate the procedure of table construction.
Things are numerically simplified when all switching costs and affine terms are

null, as it is the case we consider in this chapter. In fact, thanks to the 2-homogeneity
(see Definition 4.2) of terms in equation (6.3), the investigation can be limited toΣn.

1For a detailed definition of all elements of (6.3) see Paragraph 4.3.1.
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6.4 Conjecture

The results given in Paragraph 4.3.1, resumed in the previous section, may naturally
lead to the following question:

What happens ifN keeps increasing?
We may provide the following conjectures:

Conjecture 6.1 (Convergence of the switching tables)The tablesCi
N , i ∈ S,

constructed with the STP for increasing values ofN , convergeto a final set of tables
that we can callCi

∞. ¥

This conjecture, formally proved in Section 6.5.2, may be deduced as follows: if
the number of available switches isN , whereN is a sufficiently large integer, then
in a given point(x, i) the optimal strategy, i.e., the color of the tableCi

N in x, should
be the same as if we consider the tableCi

N+1 in x, obtained with the STP applied to
a problem withN + 1 allowed switches.

Conjecture 6.2 (Convergence of the cost)The optimal cost from point(x 6= 0, i),
namelyJ∗N (x, i), calculated for increasing values ofN , is a decreasing function of
N and it convergesto a strictly positive lower boundJ∗∞(x, i). ¥

The first part of Conjecture 6.2 can be deduced by the following consideration:
augmenting the number of available switches is equivalent, to an extent, to relax the
number of constraints in a minimization problem. The solution of such a problem
(with fewer constraints) can onlyimprove, permitting us to foresee that the cost is a
decreasing function ofN . The second part of the conjecture comes from the fact that
any evolution that starts fromx 6= 0, has necessarily a strictly positive cost. This
conjecture is formally proved in Section 6.5.1

Assume now that the convergence of the tables is observed whenN̄ switches
are allowed. Conjecture 6.1 allows one to use indefinitely only the tablesCi

∞ ≡
Ci

N̄
during an evolution that admits an infinite number of switches. The cost of this

evolution must beJ∗∞.
We may also provide the following conjecture:

Conjecture 6.3 (Cost reduction) For any point(x 6= 0, i) and for all N ∈ N, the
costs

1. J∗N (x, i), i.e., the cost obtained performingN switches,
2. J∗N,∞(x, i), i.e., the cost obtained performing∞ switches, and using only tables
Ci

N ,
3. J∗∞(x, i), i.e., the cost obtained performing∞ switches, and using only tables
Ci
∞,

are related as
J∗∞(x, i) ≤ J∗N,∞(x, i) ≤ J∗N (x, i).

¥
We formally prove the extreme parts of the inequality, i.e.,J∗∞(x, i) ≤ J∗N (x, i),

as stated above. The intermediate property is not proved yet.
This last conjecture states that a reduction of the cost can be obtained albeit

the tables haven’t converged yet. In fact using indefinitely the last calculated tables,
namelyCi

N , it should holdJ∗N,∞(x, i) ≤ J∗N (x, i).
What we find interesting in this conjecture is that it permits to economize in

terms of computational effort. In fact if we are not able to compute tables until the
convergence is met, we may consider the last calculated ones and assume as optimal
the trade off valueJ∗N,∞(x, i), which is worst thanJ∗∞(x, i) but better thanJ∗N (x, i).
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Let us now consider the following example, through which we would like to
highlight the results claimed by the three conjectures above.

6.4.1 An example

Let us consider a switched system composed of three locationsi = 1, 2, 3 and a set
of edgesE , whose oriented graph is depicted in Figure 6.1(a).

The dynamics associated to each location are:

A1 =
[

0 9
−1 −0.5

]
A2 =

[
3.09 2.78

−7.22 −3.59

]
A3 =

[−3.84 3.22
−6.78 −3.34

]
. (6.6)

The single trajectories of each dynamics are juxtaposed in Figure 6.1(b) for three
different initial states (a color mapping is given in Figure 6.2). It can be seen that all
dynamics are stable. The dynamicsA2 andA3 are obtained fromA1 by a rotation
of 2π

3 and 4π
3 respectively.
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Fig. 6.1.(a):Oriented graph of the example detailed in Section 6.4.1. (b): Trajectories of the
three dynamics considered in Section 6.4.1. The blue evolution is dynamicsA1, the greenA2,
the redA3 (Figure 6.2).

For sake of completeness:

A2 = T−1A1T , A3 = T−1A2T

where

T =
[

cos( 2π
3 ) sin( 2π

3 )
− sin( 2π

3 ) cos( 2π
3 )

]
.

All jumps are the identity matrix, i.e., the time driven evolutionx(t) is continu-
ous.

A minimum permanence time is required in each location, thus:

δmin(1) = 0.1 δmin(2) = 0.1 δmin(3) = 0.3

The optimal control problem is in form (6.2), and the matricesQi, i = 1, 2, 3 are
chosen all equal toI2.
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Location Color mapping 
l1  
l2  
l3  

 
Fig. 6.2.Color mapping of the locations1, 2, 3 described in Section 6.4.1.

The general setup is very simple.
Now we fix the parameterN = 10 as the maximum number of allowed switches

and we start to perform the STP over the variablek = 0, . . . , 10, to constructCi
k.

It takes approximately 50 minutes with a discretization of 51 points onΣ2.
The STP produces 30 tables, being(N = 10) × (s = 3). These tables are used

according to the current hybrid state(x, i) and to the number of switches that have
been done, as described in Section 4.3.

Note that the tables depicted in Figure 6.3 converge from approximately the value
of N = 7, thus the Conjecture 6.1 is verified.

Consider now the initial pointx0 = [0, 1]′ and initial locationi = 1. We evaluate
the cost from this given point as a function ofN . The plot is depicted in Figure 6.4.

It is clear from Figure 6.4 that the cost is alower bounded non increasing function
of the number of allowed switchesN .

Finally we consider 51 initial points, onΣ2, parameterized inϑ, i.e.,
(

x0(ϑj) =
[

cos(ϑj)
sin(ϑj)

]
, i0 = 1

)
,

with
ϑj = j

π

50
, j = 0, . . . , 50.

From each one of these point we calculate the cost obtained with a performance
of up toN switches, namelyJ∗N (x(ϑj), i = 1) andJ∗N,∞(x(ϑj), i = 1) as described
in Conjecture 6.3.

The significant result is reported in Figure 6.5 , where we depict the function

fN (ϑj) =
J∗N (ϑj)− J∗N,∞(ϑj)

J∗N (ϑj)
%,

that represents thenormalized difference2 (in percentage) of these two values of the
cost.

Note thatfor all values ofN and for all initial points the functionfN (ϑj) is
positive, meaning thatJ∗N (ϑj) ≥ J∗N,∞(ϑj) as claimed by Conjecture 6.3.

Furthermore if we consider the last plot in Figure 6.5, i.e.,N = 10, the highest
value reached by this index alongΣ2 is not even2 · 10−4, showing that from10
switches on, we do not obtain significant reductions of the cost value.

When this happens the condition of tables convergence is reached. In other words
for this particular problem all tables, fromN = 10 on, are the same, i.e.,

Ci
10 ≡ Ci

11 ≡ Ci
12 ≡ . . . .

This important result is general. In the next sections it will be formally proved
and it will permit us to define the tableCi

∞, i.e., the unique tables that must be used,
in each locationi = 1, 2, 3, when an infinite number of switches are available.

2In the next sections we will see that this is a key comparison between the costs.



Chapter 6- Infinite number of switches 105

 
 

 

Fig. 6.3.The 30 tables constructed with the STP for the example described in Section 6.4.1.
From left to right location1, 2, 3 and from top to bottom the tables obtained per increasingN
until N = 10. The color mapping (Figure 6.2) is: blue-1, green-2, red-3.
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Fig. 6.4.Asymptotic behavior of the optimal cost as the number of available switches increases
for the example described in Section 6.4.1.

We report in Figure 6.6 the tablesCi
10 ≡ Ci

∞, i = 1, 2, 3, i.e., the bottom row of
Figure 6.3.

For completeness we show in Figure 6.7 the plot of an evolution from the point
(

x0 =
[

0
1

]
, i0 = 2

)
.

The optimal variables and cost are:

T ∗ = {0.15, 0.34, 0.26, 0.25, 0.36, 0.26, 0.25, 0.35, 0.28, 0.37, . . .}
I∗ = {2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . .}
J∗10 = 0.1896.

6.5 An infinite number of switches

In this section we discuss how, under appropriate assumptions, the above conjectures
are proved, thus allowing us to efficiently extend the STP to the case ofN = ∞.

Consider an OP∞(S) of the form (6.1) where

(i) there existsi ∈ S, such that the linear dynamicsAi is stable;
(ii) for all i ∈ S, Qi ≥ 0.

In Chapter 7 we will even relax (i) and extend the procedure to the case where
all dynamics of the switched systems are unstable.

6.5.1 Convergence of the cost

Let us state initially an obvious monotonicity result.

Property 6.1 (Monotonicity of the cost) Let N, N ′ ∈ N. If N ′ > N and the
switched system evolves along an optimal trajectory, then for some initial hybrid
state(x0, i0),

J∗N ′(x0, i0) ≤ J∗N (x0, i0) < +∞.

¤
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Fig. 6.5.Example in Section 6.4.1. Percentage relative difference of the total cost of the evolu-
tion from 51initial pointson Σ2. In particular J∗N,∞(ϑ) is the cost of the evolution obtained
using indefinitely the same tablesCi

N , i = 1, 2, 3, while J∗N (ϑ) is the cost of the evolution
obtained using all tablesCi

j , j = N, N − 1, . . . , 1.

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(a) (b) (c) 

Fig. 6.6.(a) TableC1
10, (b) TableC2

10, (c) TableC3
10, for the example described in Section 6.4.1.

The color mapping (Figure 6.2) is: blue-1, green-2, red-3.
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Fig. 6.7. Plot of the hybrid evolution of the automaton described in Section 6.4.1 from the
initial point (x0 = [0, 1]′, i0 = 2) and performing at most 10 switches governed by the tables
obtained from the STP of Section 4.3.

Proof. We first observe that by Assumption (i), there exists a locationi0 such that
J∗N (x0, i0) is finite for anyN ≥ 1.

To prove the first inequality we observe that the same evolution that generates
J∗N (x0, i0) is also admissible for (6.2) when a larger valueN ′ of switches is allowed.
¥

An immediate consequence of Property 6.1 is the following proposition.

Proposition 6.1 (Convergence of the cost)For all initial state (x0, i0), x0 6= 0,
and for allε′ > 0, ∃ N̄ = N̄(x0, i0) such that for allN > N̄ ,

J∗N (x0, i0)− J ∗̄N (x0, i0) < ε.

¤

Proof. We first observe that by Assumption (ii)J∗N (x0, i0) is lower bounded by
a strictly positive number. Then, the result trivially follows from the monotonicity
property above and the fact thatJ∗N is lower bounded, hence it is a Cauchy sequence.
¥

In other words the proof of the proposition leans on the fact that the cost is de-
creasing withN (Property 6.1) and on the fact that it is obviously lower bounded by
a strictly positive value.

This can only beiff the functionJ∗N as an asymptotic behavior withN . Let us
consider the example described in Section 6.4.1. We depicted in Figure 6.4

J∗N (x0 = [0, 1]′, i0 = 2)

as a function ofN , number of available switches.
Its asymptotical behavior for the given initial point requires no further comments.
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The reader can also refer to the example described in Section 4.7, and in particu-
lar Figure 4.21, where the property was analyzed in the case of the servomechanism
model described in Section 4.5.

From the proposition above it is clear that the cost,given a particular initial point
(x0, i0), converges to some finitēN(x0, i0).

One may argue that the dependency ofN̄(x0, i0) on the initial point might be
such that

lim
‖x0‖→+∞

N̄(x0, i0) = +∞.

If this was the case the results above would be useless. In fact it would not be
possible to affirm that a unique finite value of̄N can be found. However by the
homogeneity property of the cost function, it is easy to show that this is not true, and
indeed the Proposition 6.1 can be extended to the normalized values of the costs on
Σn.

We state formally this important result. We omit here, to avoid a cumbersome
notation, the subscript 0 of the initial state, thus(x0, i0) = (x, i). We show that,
independently from the initial state, a relative toleranceε on the cost can be found.

Proposition 6.2 (Normalized convergence of the cost)For any initial state(x, i),
x 6= 0, and for allε > 0, ∃ N̄ such that for allN > N̄ ,

J∗N (x, i)− J ∗̄
N

(x, i)
J∗N (x, i)

< ε.

¤
Proof. Since all switching costs are null, the optimal residual costs are 2-homogeneous
functions (see Definition 4.2) ofx.

Thus ifx = λy, then
J∗N (x, i) = J∗N (λy, i)

and
J ∗̄N (λy, i) = λ2J ∗̄N (y, i).

Moreover, by Proposition 6.1∀ (y, i) and∀ ε′ > 0, ∃ N̄(y, i) such that

∀ N > N̄(y, i),

J∗N (y, i)− J ∗̄N (y, i) < ε′.

Hence if we define

N̄ = max
i ∈ S

y ∈ Σn

N̄(y, i)

it holds that

J∗N (x, i)− J ∗̄
N

(x, i)
J∗N (x, i)

=
λ2[J∗N (y, i)− J ∗̄

N
(y, i)]

λ2J∗N (y, i)
≤ ε′

min
y∈Σn

J∗N (y, i)
= ε.

¥
According to the above result, one may use a given relative toleranceε to ap-

proximate two cost values, i.e.,

J∗N (x, i)− J∗N ′(x, i)
J∗N (x, i)

< ε =⇒ J∗N (x, i) ∼= J∗N ′(x, i).
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6.5.2 Convergence of the switching tables

Finally we can prove the main result of this chapter. All tables, computed with the
STP described in Section 4.3, converge to the same one (for each location) for in-
creasing values ofN .

We keep omitting the subscript 0 in(x0, i0), thus(x0, i0) = (x, i).

Theorem 6.1 Given a fixed relative toleranceε, if N̄ is chosen as in Proposition 6.2
then for allN > N̄ + 1 it holds thatCi

N ≡ Ci
N̄+1

. ¤

Proof. By definitionJ∗k (x, i) = T ∗k (x, i) for all k ≥ 1, hence from equations (6.4)
and (6.5) it follows that

J∗N (x, i) =

= min
j ∈ succ(i) ∪ {i}

% ≥ 0

{
x′Q̄i(%)x + x′Ā′

i(%)Q̄j(δmin(j))Āi(%)x + J∗N−1(z, j)
}

wherez = Āj(δmin(j))Āi(%)x.
Now, being by assumptionN − 1 > N̄ , by virtue of Proposition 6.2 we may

approximate
J∗N−1(z, j) ∼= J ∗̄N (z, j)

thus

J∗N (x, i) ∼=
∼= min

j ∈ succ(i) ∪ {i}
% ≥ 0

{
x′Q̄i(%)x + xĀ

′
i(%)Q̄j(δmin(j))Āi(%)x + J ∗̄

N
(z, j)

}
=

= J ∗̄
N+1

(x, i).

Therefore, the optimal arguments(%∗, j∗) used to computeCi
N andCi

N̄+1
are the

same. ¥

The above result allows one to compute with a finite procedure the optimal tables
for a switching law whenN goes to infinity.

In such a case, in fact, it holds that

Ci
∞ ≡ lim

N→∞
Ci

N ≡ Ci
N̄+1.

Hence, we only need to use the tablesCi
∞, i ∈ S for all switches.

We recall that under the assumptions (i) and (ii), the system, optimally controlled
with an infinite number of switches, is stable as proved in [50].

6.5.3 A convergence criterion

We have proved in Proposition 6.2 that there exist a finite value of number of switches
N such that the tables converge.

It is not clear yet how this value can be found analytically. We know in fact that
a value ofN exists and it is finite, but we will never be sure, in principle, that the
convergence is reached if we do not consider exhaustively all possible values ofN .

Since this is impossible in a practical implementation, then our approach consists
in constructing tables until a convergence criterion is met.
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In the special case where all the matrices of the switched system are stable and
δmin(i) 6= 0 for somei, a criterion may be obtained by simple considerations on the
slowest decay time of each dynamics.

In fact it is reasonable to observe that the convergence rate [109] of the switched
system (if any) is certainly higher then the slowest mode of the set

{A1, A2, . . . , As}.
We can prove a theorem that establishes an upper bound on the value ofN̄ . Let

us first give the following definition:

Definition 6.1 (Slowest decay time)Consider a switched systemS composed of
only Hurwitz dynamics. Consider the absolute real part of the slowest of slowest
mode of each dynamics,

ν = min
i∈S

min
j=1,...,n

Re(|λi,j |).

We define the numberT , 5
ν

as theslowest decay timeof the given switched

system. ¥
Observe that this definition is an extension of thetime constantfor classic linear

system. The factor 5 in the definition above is the number of time constants that
should be taken in order to obtain a decay ofx from any initial state, lower than 1%.

Theorem 6.2 (Upper bound ofN̄ ) Consider a switched systemS composed of only
Hurwitz dynamics andδmin(i) 6= 0 for all i ∈ S. Anupper bound ofN̄ is

N̄ =
⌈

T

δmin

⌉
,

whereδmin = min
i∈S

δmin(i). ¤

Proof. If we performN̄ switches it means that the system spends at least the min-
imum permanence time in the visited dynamics. Hence we are sure that from all
initial states we can obtain a decay of the norm of the state space of a factor ofat
least10−2, in the worst case, evolving only in the slowest dynamics. This shows that
with higher values ofN > N̄ thenormalized costof the evolution will improve with
the order of10−4, which can be considered negligible for practical purposes.¥

Note that this criterion is in many cases too restrictive. In the example described
in Section 6.4.1 it holds

ν = 4, δmin = 0.1 ⇒ N̄ > 200,

which is a very high upper bound compared toN = 10, where we start to observe
convergence experimentally.

6.6 Computational complexity

The computational complexity of this extension is the same of the STP. In fact, from
an implementation point of view, we apply the same method recursively until we
meet a convergence criterion.

The interested reader can refer to Section 4.4.2.
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6.7 Application: case study

In this section we describe a case study, the design of a semiactive suspension system,
that motivated the extensions of the STP described above.

6.7.1 Framework on suspension systems and design

A semiactive suspension [51, 54, 70, 98] consists of a spring and a damper where the
value of thedamper coefficientf3 can be controlled and updated.

In some types of suspensions, the active ones, it may also be possible to control
the elastic constantλs of the spring. This case is considered here only as a target of
the semiactive one.

A semiactive suspension is a valid trade-off solution because it can be easily
realized at a lower cost than that of a fully active one [35, 56].

Note, however, that a semiactive system clearly lacks other important secondary
advantages of the fully active one, like the ability to resist downward static forces
(due to loads) and to control the altitude of the vehicle.

The optimal control technique known as LQR [87] is probably the simplest way
to design an active law for suspension systems and such an idea has been initially
proposed by Thompson [111]. In such a case the objective is that of minimizing a
given performance index, that consists of a quadratic cost.

The control input is the valueu(t) of the force generated by the suspension. The
optimal law takes the form of a state feedback law with constant gains, i.e.,

u(t) = −Kx(t).

We can model a semiactive suspension system as a switched system, if we assume
that the damping coefficientf(t) may take values within a finite set

F = {f1, f2, · · · , fs}

where
f1 < f2 < . . . < fs.

In the resulting model a different location corresponds to each value off . The
control input is now the discrete switch: we change the value off , switching within
locations, with the objective of minimizing a given performance index, that consists
of a quadratic cost.

The optimal law takes the form of a state feedback law: in fact it has been shown
that the optimal switch can be triggered by looking at the current hybrid state(x, i).

As in [48] we assume a time is required to update the damping coefficient. This
is modelled by the introduction of a minimum permanence timeδmin.

Furthermore, within this time it is only possible to pass to adjacent values off ,
i.e., if f(t) = fi then

f(t + δmin) ∈ {fi−1, fi, fi+1}.
The results of some numerical simulations show that the proposed semiactive

suspension system always provides a good approximation of a fully active suspen-
sion system, while producing significant improvements wrt purely passive suspen-
sions.

3Damper coefficient is a technical term. A common term in applied science isviscous
coefficient, i.e., the proportional factor between Force and Velocity in viscous media.
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6.7.2 Dynamical models of the suspension system

We consider a quarter car suspension system and derive two different dynamical
models. The first one is a 2-DOF fourth order dynamical model that takes into ac-
count the dynamics of the tire. The second one is a 1-DOF second order dynamical
model that neglects the effect of the tire.

While the second order model allows one to study the filtering properties of the
suspension in terms of passenger comfort, it does not describe the interaction of the
tire with the suspended mass and the ground, and thus it cannot be used to evaluate
other important features such as road holding.

From an benchmark point of view, however, the reduced order model is extremely
useful, because it is possible to give a geometrical representation of the optimal
switching regions, thus providing a more intuitive explanation of the proposed ap-
proach. This is the main reason that led us to consider both models.

The fourth order dynamical model

Let us now consider the completely active suspension system of a quarter car with
two degrees of freedom schematized in Figure 6.8.a.

We used the following notation:

— Mw is the equivalent unsprung mass consisting of the wheel and its moving parts;
— Ms is the sprung mass, i.e., the part of the whole body mass and the load mass

pertaining to only one wheel;
— λt is the elastic constant of the tire, whose damping characteristics have been

neglected. Note that this is in line with almost all researchers who have investi-
gated synthesis of active suspensions for motor vehicles as the tire damping is
minimal;

— λs is the elastic constant of the spring;
— x1(t) is the deformation of the suspension wrt the static equilibrium configura-

tion, taken as positive when elongating;
— x2(t) is the vertical absolute velocity of the sprung massMs;
— x3(t) is the deformation of the tire wrt the static equilibrium configuration, taken

as positive when elongating;
— x4(t) is the vertical absolute velocity of the unsprung massMw;
— u(t) is the control force produced by the actuator.

It is readily shown that the state variable mathematical model of the system under
study is given by [35]

ẋ(t) = Ãx(t) + B̃u(t) (6.7)

where

x(t) =




x1(t)
x2(t)
x3(t)
x4(t)




is the state, and the constant matricesÃ andB̃ have the following structure:

Ã = −




0 −1 0 1
0 0 0 0
0 0 0 −1
0 0 λt

Mw
0


 , B̃ =




0
1

Ms

0
− 1

Mw


 .
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Fig. 6.8.Scheme of the 2-DOF suspension: (a) active suspension; (b) semiactive suspension.
Scheme of the 1-DOF suspension: (c) active suspension; (d) semiactive suspension.

Now, let us consider Figure 6.8.b that represents a conventional semiactive sus-
pension composed of a spring and a damper with adaptive characteristic coefficient
f = f(t).

The effect of this suspension is equivalent to that of a control force

us(t) = − [
λs f(t) 0 −f(t)

]
x(t). (6.8)

Note that, asf may vary,us(t) is both a function off(t) and of x(t). It is
immediate to verify that the state variable mathematical model of the semiactive
suspension is still given by equation (6.7) whereu(t) is replaced byus(t).

Therefore, in such a case the system dynamics is regulated by the following state
equation:

ẋ(t) = Ax(t) =




0 1 0 −1
− λs

Ms
− f(t)

Ms
0 f(t)

Ms

0 0 0 1
λs

Mw

f(t)
Mw

− λt

Mw
− f(t)

Mw


 x(t). (6.9)

The second order dynamical model

If the dynamics of the tire is completely neglected, the suspension system of a quarter
car can be schematized as shown in Figures 6.8.c and d. More precisely, Figure
c provides the scheme of a completely active suspension system, while Figure d
provides the scheme of a semiactive suspension system, where the physical meaning
of all variables is the same as in the 2-DOF case.
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The state variable mathematical model of the active system is still given by a
linear DE of the form (6.7), where the state is

x(t) =
[

x1(t)
x2(t)

]
,

and the constant matrices̃A andB̃ have the following structure:

Ã =
[

0 1
0 0

]
, B̃ =

[
0
1

Ms

]
.

The effect of the semiactive suspension is equivalent to that of a control force

us(t) = − [
λs f(t)

]
x(t). (6.10)

Thus, the system dynamics of a semiactive suspension is regulated by the follow-
ing state equation:

ẋ(t) = Ax(t) =
[

0 1
− λs

Ms
− f(t)

Ms

]
x(t). (6.11)

6.7.3 Semiactive suspension design

Now, let us discuss in detail how the proposed methodology can be successfully used
to design a semiactive suspension system.

As already said in Section 6.7.1, we assume that the value of the damping coef-
ficientf may take values within a finite set

F = {f1, f2, . . . , fs}

where
f1 < f2 < . . . , fs.

We select the value off in F so as to minimize a given performance index,
consisting of a quadratic cost depending on the time evolution.

Moreover, we assume that:

(A1) the state is measurable;
(A2) wheneverf is updated, its value remains the same within a given time interval

δmin, that does not depend on the current value off ;
(A3) if at time t the damping coefficient is updated to

f(t) = fi ∈ F ,

then at timet + δmin the value off may either remain the same or it may switch
to an "adjacent" value, namely,

f(t + δmin) ∈



{fi, fi+1} i = 1
{fi−1, fi, fi+1} i = 2, · · · , s− 1
{fi−1, fi} i = s

(6.12)

Note that assumption (A2) enables us to take into account the fact that the damp-
ing coefficientf cannot be updated at an arbitrarily high frequency. Clearly, the
amplitude of the time intervalδmin depends on the particular physical damper.

As an example, in the case of a solenoid valve damper [48, 99], under the above
assumption (A2) an admissible value isδmin = 0.007 [48].
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If the assumption (A3) is removed, and we assume that the value off may arbi-
trarily change from any value to any other one, a largerδmin should be considered,
e.g.,δmin = 0.03 [48].

Under the assumptions (A1) to (A3), the considered optimal control problem can
be written as in (6.2).

The matricesAi(t) are uniquely defined given the value off according to equa-
tions (6.9) or (6.11), depending on the considered dynamical model.

More precisely, to each value off in F it corresponds a matrixA(f(t)) that
specifies the discrete state (location) of the switched system.

Note that we consider a particular case where the minimum permanence time in
the discrete locations is the same for all locations.

Moreover, from the assumption (A3), the oriented graph of the switches system
that shows all the arcs, has the structure of abirth-death process[47] and is shown
in Figure 6.9.

 
 

 l1  l2  ls-1  ls 

Fig. 6.9. The oriented graph of the switched system that models the semiactive suspension
described in Section 6.7.3.

In the following we present the results of some numerical simulations carried out
on both the second order and the fourth order dynamical system.

In particular, we first assume that a finite numberN of switches is available, then
we allow the system to perform an infinite number of switches.

6.7.4 Application example

The proposed procedure has been applied to the quarter car suspension shown in
Figure 6.8, with values of the parameters taken from [51], and reported in Table 6.1.

Table 6.1.Model parameters of the suspension system considered in Section 6.7.3.

Symbol Value (IS) Physical meaning
Ms 288.90 mass of the quarter car
Mw 28.58 mass of the wheel
λs 14345 elastic coefficient of the spring
λt 155900 elastic coefficient of the tire

The damping coefficientf4 may take values within the finite set

F = {800, 1500, 2300, 3000}

while the minimum permanence time is takenδmin = 0.007. The oriented graph of
the switched system is depicted in Figure 6.10.

4In the IS the damper coefficient is measured in Ns/m.
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 l1  l2  l3  l4 

 f1=800  f2=1500  f3=2300  f4=3000 

Fig. 6.10.The oriented graph of the switched system that models the semiactive suspension
described in Section 6.7.3 with the corresponding numerical values.

6.7.5 Simulations on the second order model

We first present the results of some numerical simulations carried out on the second
order dynamical model of the suspension system.

A different weighting matrix is associated to each discrete location, or equiva-
lently to each value off . In particular, we assume that

Qi(t) = Q(f(t)) =
[

1 0
0 0

]
+ 0.8 · 10−9 ·

[
λs

f(t)

]
[λs, f(t)].

In such a way, by virtue of equation (6.10), we can perform a significant compar-
ison, in terms of performance index, among the proposed semiactive suspension and
an active suspension system, considered as a target.

The purely active suspension can be obtained by solving an LQR problem where

Q =
[

1 0
0 0

]
, R = 0.8 · 10−9.

Note that the numerical values of the weighting matricesQ andR are the same
as in [51].

Simulation 1: N = 6

We first assume that a finite numberN = 6 of switches is available. We evaluate
offline theN × s switching tables. A state space discretization ofr = 100 points
alongΣ2 and a minimum local search over three time constants were considered
sufficiently fine.

We assume that the initial state is

x0 =
[

0.1
0

]
, i0 = 1.

The state trajectory that minimizes the performance index is depicted in Fig-
ure 6.11, where the circle indicates the initial state and the squares indicate the values
of the state at the switching times. We found out

T ∗ = {0.096, 0.1370, 0.222, 0.473, 0.482, 0.646}
I∗ = {1, 2, 3, 4, 3, 2, 3}
J∗6 = 1.419 · 10−3.

Figure 6.12 shows, among the 24 tables constructed, only the 6 ones used by the
controller during the evolution of the system.

The system initially evolves in location1. When the minimum permanence time
δmin has elapsed, the controller must keep checking the color in tableC1

6 (see Fig-
ure 6.12) corresponding to the current state(x, 1).
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Fig. 6.11.The results of Simulation 1: the state trajectory.

According to this color the controller decides whether to remain in location1
or to switch to the adjacent location2. In this case, no switch occurs until a time
τ1 = 0.096 has elapsed, when the continuous state reaches the cyan area relative to
location2. Now the controller will wait for the minimum permanence time and then
consider tableC2

5 . The same procedure is repeated until all the available switches are
performed.

Note that, given the structure of the automaton, while the switching tables asso-
ciated to discrete locations2 and3 may have up to 3 colors, the tables associated to
locations1 and4 may have at most two different colors.

To better appreciate the performance of the proposed semiactive suspension it is
necessary to look at the time evolution of the sprung mass displacement. This curve
is reported in Figure 6.13.a where we can also visualize the evolution of the fully
active suspension considered as a target, and that of a completely passive suspension
obtained using a value off = 1918 Ns/m [34].

In Figure 6.13.b we have reported the different values of the damping coefficient
f during the simulation.

In Table 6.7.5 we compare the values of the quadratic performance index ob-
tained using the active suspension (considered as a target), the semiactive suspen-
sion in the case ofN = 6 (i0 = 1 in all cases), and the passive suspension system
obtained usingf = 1918, chosen as in [34].

The results of Table 6.7.5 enable us to conclude that the proposed semiactive
suspension exhibits an intermediate behavior between the passive suspension and
the considered active one, even if a small number of switches is allowed.

Simulation 2: N = ∞

As already discussed in Section 6.5, for a sufficiently large value ofN , the tables
relative to the first switches always converge to the same one, only depending on the
discrete locationl ∈ L.

As an example, assumeN = 8 and consider the discrete location3. The ta-
bles relative to the first 6 switches, namelyC3

k, k = 8, 7, . . . , 3, are reported in Fig-
ure 6.14.
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Fig. 6.12.Tables used by the controller to compute the state evolution in Figure 6.11.

Table 6.2.Different values of the performance index in the case of some numerical simulations
carried out on the second order model.

x0 semiactive (N = 6) semiactive (N = ∞) active passive
[0.100 0.000]′ 1.419 · 10−3 1.419 · 10−3 1.278 · 10−3 1.546 · 10−3

[0.045 0.090]′ 3.960 · 10−4 3.959 · 10−4 3.294 · 10−4 4.189 · 10−4

[−0.015 0.100]′ 1.493 · 10−5 1.492 · 10−5 1.437 · 10−5 1.905 · 10−5

[−0.057 0.080]′ 3.719 · 10−4 3.717 · 10−4 3.506 · 10−4 4.114 · 10−4

We may observe that, as the number of available switches increases, i.e.,k goes
from 3 to 8, the tables converge. In particular, in this case the tables relative to the
first two switches, namelyC3

8 andC3
7 , are the same.

Now, if we consider a larger value ofN , i.e.,N = 9 (10), and look at the tables
relative to location3, we may observe thatC3

9 (C3
10) tables coincide withC3

8 andC3
7 .

Using the notation introduced in Section 6.5, we denote these tables asC3
∞.

Analogous considerations may be repeated for all the other discrete locations.
Now, let us consider the OP∞(S) (6.1) with no bound on the maximum number

of available switches.
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Fig. 6.13.The results of Simulation 1: (a) the time evolution of the sprung mass displacement;
(b) the different values off used by the semiactive suspension. 
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6.15.
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Fig. 6.15.Color mapping of the locations1, 2, 3, 4 of the semiactive suspension system design
described in Section 6.7.3.

By virtue of the above convergence properties, this problem can be solved by
using only the tablesCi

∞, for i ∈ S, as described in Section 6.5.
We report these tables in Figure 6.16.
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Fig. 6.16.Convergence tablesC1
∞, . . . , C4

∞ (a), (b), (c), (d), respectively, for the semiactive
suspension design with an infinite number of switches. Color mapping is in Figure 6.15.

Assume that the initial state is still equal tox0 = [0.1 0]′ andi0 = 1.
The state trajectory that minimizes the performance index is reported in Fig-

ure 6.17 where the circle indicates the initial state and the squares indicate the values
of the state at the switching times.

It can be easily observed that this trajectory is practically coincident with that in
Figure 6.11.

This clearly occurs because after the first 6 switches, the system has practically
reached the origin. As a consequence, the optimal value of the performance indexJ∗

is practically the same, as it can be read in Table 6.7.5.
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Fig. 6.17.The results of Simulation 2: the state trajectory.

In Figure 6.18.a we have reported the sprung mass displacement of the semiactive
suspension together with that of the fully active suspension considered as a target,
and that of a completely passive suspension [34].

In Figure 6.18.b we can see the different values of the damping coefficientf
during the numerical simulation.

Note that the periodicity of the switching sequence is a consequence of the partic-
ular example (second order system, rotating dynamics), but it is not a general result.
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Fig. 6.18.The results of Simulation 2: (a) the time evolution of the sprung mass displacement;
(b) the different values off used by the semiactive suspension.
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6.7.6 Simulations on the fourth order model

Now, let us present the results of some numerical simulations carried out on the
fourth order dynamical model of the suspension system.

As in the previous case, a different weighting matrix is associated to each discrete
location, or equivalently to each value off . In particular, we assume that

Qi(t) = Q(f(t)) =




1 0 0 0
0 0 0 0
0 0 10 0
0 0 0 0


 + 0.8 · 10−9 ·




λs

f(t)
0

−f(t)


 · [λs, f(t), 0,−f(t)].

In such a way, by virtue of equation (6.8), we can perform a significant compari-
son, in terms of performance index, among the proposed semiactive suspension and
an active suspension system, considered as a target, and obtained by solving an LQR
problem whereQ = diag{1, 0, 10, 0} andR = 0.8 · 10−9 [51].

We consider straightforward the most realistic case ofN = ∞.
As already explained above, we first compute theN × s switching tables for a

"sufficiently" large value ofN until we observe that there exists ak < N such that
for all i ∈ S,

Ci
k = Ci

k+1 = · · · = Ci
N .

In this case we tookN = 6 and we observed that the convergence occurs for
k = 5. Thus, we can reasonably assume

Ci
∞ = Ci

6, i = 1, . . . , 4.

These switching tables are not reported here because a significant graphical rep-
resentation is not possible.

The STP applied for this4− th dimensional case was an interesting challenging
problem from an implementation point of view. See the Appendices C.1 and C.2 for
a brief description of the algorithm that allowed the numerical construction of the
tables inR4.

The three anglesξ, ϕ, ϑ that describeΣ4 in spherical coordinates (Appendix C.1)
are appropriately sampled.

A trade-off value was found inNξ = 15, and it produces, with the criteria de-
scribed in Appendix C.1, 8581 points.

Note that with a constant discretization,Nξ = 15 would have produced 27000
points, without providing a denser information.

Moreover the criteria in Appendix C.2 was important in order to allow us to take
such a small value ofNξ.

Running in MATLAB environment on a pentium III450 MHz the computational
time per switch is about 60 hours. Note however that these burdensome calculations
are performed offline.

Assume that the initial state is

x0 =




0.1
0

0.01
0


 , i0 = 1.

In Figures 6.19.a and b we have reported the sprung mass and the unsprung
mass displacement of the semiactive suspension together with that of the fully active
suspension considered as a target, and that of a completely passive suspension [34].
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In particular, by looking at plot (a) that shows the most significant variable, we
can conclude that the semiactive system guarantees better performance than the pas-
sive one.

In fact, in such a case, the behavior of the semiactive suspension system in terms
of the sprung mass displacement, is quite similar to that obtained using the purely
active system. Finally, in Figure 6.19.c we can see the different values of the damping
coefficientf during the numerical simulation.
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Fig. 6.19.The results of the simulation carried out on the fourth order model: (a) the time
evolution of the sprung mass displacement (x1 + x3); (b) the unsprung mass displacement
x3; (c) the different values off used by the semiactive suspension.

A comparison among the semiactive, the active and the passive suspension in
terms of performance index is given in Table 6.3, for a small group of significant
initial points.

We may conclude, as in the 1-DOF case, that the proposed semiactive suspension
provides an intermediate performance between that of the passive suspension and
that of the purely active one.



Chapter 6- Infinite number of switches 125

Table 6.3.The results of the numerical simulations carried out on the fourth order model.

x0 semiactive active passive
x0 = [0.100 0 0.010 0]′ 1.775 · 10−3 1.591 · 10−3 1.829 · 10−3

x0 = [−0.050 0.300 − 0.005 0.010]′ 2.423 · 10−4 2.374 · 10−4 2.976 · 10−4

x0 = [0.050 0.300 0.005 0.010]′ 1.011 · 10−3 8.200 · 10−4 1.052 · 10−3

x0 = [0.010 − 0.300 0.010 0.100]′ 1.678 · 10−4 1.164 · 10−4 2.175 · 10−4

x0 = [0 0.400 0.010 0.300]′ 3.513 · 10−4 3.109 · 10−4 4.312 · 10−4

x0 = [−0.080 − 0.100 0.012 0.400]′ 1.144 · 10−3 8.903 · 10−4 1.151 · 10−3

6.8 Conclusions

In this chapter the problem of infinite number of switches has been examined. We
proved a convergence behavior of the switching tables under particular assumptions.

In particular we formally shown that the cost function, is a decreasing function of
the number of switches, and that there exists a sufficiently great numberN̄ , indepen-
dent from the initial point, such that if the systems performs more thanN̄ switches
the relative improvements on the cost are irrelevant.

Such result permitted us to demonstrate that the tables must converge, and more-
over we provide a constructive way to design them.

Once these tables are constructed the controller is allowed toindefinitelyuse the
last calculated tableCi

N̄
, for an infinite number of switches.

This result, in junction with the STP was applied to a literature and industrial
case study, i.e., the design of a particular semiactive suspension.

The possibility of performing an infinite number of switches and to design the
optimal control law with a finite procedure, allowed the authors to explore possible
relations with other important issues concerning the switched systems, in particular
the stabilizability issue. This will be done in Chapter 7.
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Infinite number of switches: optimal control and
stability

7.1 Introduction

We have dealt in the previous chapters with the problem of designing a feedback con-
trol law for a class of switched system and a class of hybrid automaton. To this aim
we have developed a recursive procedure, called STP, that under particular assump-
tions, provides a partition of the state space into time invariant switching regions.

The procedure was initially developed under the constraint that the number of al-
lowed switchesN is finite. Then we observed a convergence behavior of the switch-
ing tables with an increasing number of allowed switches, leading us to deal also
with an infinite number of switches.

In the last chapter we proved this important aspect of the STP formally. This al-
lows the construction of the feedback control law for hybrid automata that optimally
drives the system to the origin performing an infinite number of switches.

In both cases (N finite andN infinite) we introduced the fundamental Assump-
tion 4.1 thatbasically guarantees the existence of a switching sequence, finite or
infinite, whose corresponding cost is finite.

In this chapter we use the STP to obtain a stabilizing switching sequence, that is
also optimal.

Note that some switched systems composed of only unstable modes can be sta-
bilized by appropriate switching surfaces (as a reference see for instance [17, 90]
among many others) of conic shape. It is reasonable to assume that the quadratic
LQR cost of theseasymptotically stablesolutions is finite.

These simple considerations suggest, forN = ∞, to relax the Assumption 4.1
and see if we can find a finite cost solution for a switched system composed of only
unstable modes.

In [50] it is proved that if a switched system can be optimally controlled with a
finite cost, then the closed loop system isasymptotically stable.

In such a framework the STP becomes a numerically viable approach to design-
ing a stabilizing control law, which is indeed a significant issue in the context of the
autonomous switched systems.

Moreover we prove that if the switched system isexponentially stabilizable, then
the STP can always find an optimal control law with a finite cost that makes the
closed loop system at least asymptotically stable.

The method of using the STP to provide a stabilizing switching sequence is based
on the consideration outlined below.

Once all tablesCi
∞ (defined in Section 6.5.2) are constructed, it may happen that

the regionRj associated to a given dynamicsj never appears.
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In this case, the optimal evolution for the given switched system is equivalent to
the same switched system where the locationj (that never appears) is removed.

This in particular, may allow us to compute an optimal control law for an unstable
system introducing a dummy stable dynamicsÃ, provided that the corresponding
region does not appear in the tablesCi

∞.
The result is significant. In fact, although there is a rich literature on stability

analysisof hybrid systems, there are very few results on thedesignof stabilizing
laws and they usually apply to restricted classes of systems or give only sufficient
conditions.

7.2 The considered model

In this chapter we will derive the sufficient conditions for the existence of a stabi-
lizing switching law for the class of switched systemSA described in Section 3.3.1,
Definition 3.9.

Briefly this is a particular case ofS where all locations are featured by an au-
tonomous linear dynamics, the set of edges iscomplete. This signifies that the ori-
ented graph of the system is completely connected and that the setsucc(i) ≡ S \{i}

Moreover we set∀ i 6= j ∈ S, M i,j = In (the state is continuous at the
switch), and∀ i ∈ S, δmin(i) = 0 (no minimum permanence time required in each
location). We recall that the evolution is given by

ẋ(t) = f(x, t) , Ai(t)x(t), i ∈ S ≡ {1, . . . , s}, (7.1)

wherex(t) ∈ Rn, i(t) ∈ S is the current mode and represents a control variable,S
is a finite set of integers, each one associated with a matrixAi ∈ Rn×n.

Moreover,∀ i ∈ S, the dynamicsAi are non Hurwitz. We show how it is possible
to design stabilizing laws for theseSA, by extending the optimal control technique
developed for stable switched systems.

For brevity of notation we refer to this particular class of switched systems as
{Ai}i∈S .

7.3 Problem formulation

The general problem of this chapter is to design a stabilizing law for a switched
system of the form (7.1). Before proceeding further it appears useful to recall some
basic definitions that will occur in the following. For more details we address to [68].

7.3.1 The notion of stability

Consider thenon autonomous system

ẋ(t) = f(x, t) (7.2)

wheref : D × [0,∞) → Rn is piecewise continuous int and locally Lipschitz inx
onD × [0,∞), andD ⊂ Rn is a domain that contains the originx = 0.

Definition 7.1 (Equilibrium point) Theorigin is anequilibrium pointfor (7.2) if

f(0, t) = 0, ∀t ≥ 0. (7.3)

¥
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Definition 7.2 (Stability of the equilibrium point) The equilibrium pointx = 0 of
(7.2) is

• stableif, for all ε > 0, there existsδ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0; (7.4)

• unstableif it is not stable;
• asymptotically stable(AS) if it is stable and there exists a positive constantδ =

δ(t0) such thatx(t) → 0 ast →∞, for all ‖x(t0)‖ < δ;
• exponentially stable(ES) if there exist positive constantsδ, K, andλ such that

‖x(t)‖ ≤ K‖x(t0)‖ e−λ(t−t0), ∀ ‖x(t0)‖ < δ. (7.5)

If asymptotic (or exponential) stability holds for any initial state, the equilibrium
point is said to begloballyasymptotically (or exponentially) stable. ¥

Note that exponential stability implies asymptotic stability, which in turn implies
stability.

Definition 7.3 (Global stabilizability) The switched system{Ai}i∈S is said to be
globally stabilizableif there exists a switching control lawi(x, t) such that the con-
trolled system is globally stable. Analogous definitions hold for global asymptotic
(or exponential) stabilizability. ¥

Note that if at least one dynamicsAi is Hurwitz, then the system{Ai}i∈S is
obviously globally exponentially stabilizable.

We show ho to compute a conic switching lawi(x, t), when it does exist, such
that the controlled system{Ai}i∈S is globally asymptotically stable. In particular,
we provide a procedure that guarantees to determine a globally asymptotically stable
switching law whenever the system is globally exponentially stabilizable.

7.3.2 The optimal control problem

The proposed stabilizing procedure is based on the solution of an optimal control
problem of the form, in consistency with Definition 3.15 and the restriction listed in
Section 7.2.

J∗∞ , min
I,T

F (I, T ) ,
∫ ∞

0

x′(t)Qi(t)x(t)dt

s.t. ẋ(t) = Ai(t)x(t), x(0) = x0, i(0) = i0
i(t) = ik ∈ succ(ik−1) for τk ≤ t < τk+1,
τk+1 ≥ τk,

(7.6)

k ∈ N. We will denote this optimal control problem annexed to the switched sys-
temSA with the simplified notation OP(S), omitting the subscript∞ and the class
restrictionSA, that will be assumed valid in the rest of the chapter.

For further explanation on the model and on the problem refer to Sections 3.3
and 3.4.

As in Chapter 6 we will build the result on infinite number of switches by con-
sidering the extension of a finite number of switches in the form:
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J∗N (x0, i0) , min
I,T

F (I, T ) ,
∫ ∞

0

x′(t)Qi(t)x(t)dt

s.t. ẋ(t) = Ai(t)x(t), x(0) = x0, i(0) = i0
i(t) = ik ∈ succ(ik−1) for τk ≤ t < τk+1, k = 0, . . . , N
τ0 = 0, τN+1 = +∞

(7.7)

We denote byi∗(t), t ∈ [0, +∞), i∗(t) = i∗k for τ∗k ≤ t < τ∗k+1 the switching
trajectory solving (7.7), andI∗, T ∗ the corresponding optimal sequences.

7.3.3 State feedback control law

We recall the STP presented in Section 4.3 and analyzed in the particular case of
Section 4.6.2.

The optimal control law for the optimization problem (7.7) takes the form of a
state feedback, i.e., it is only necessary to look at the current system statex in order
to determine if a switch from linear dynamicsAik−1 to Aik

, should occur.
More precisely, for a given modei ∈ S whenk switches are still available, it is

possible to construct a tableCi
k that partitions the state spaceRn into s regionsRj ’s,

j = 1, . . . , s = |S|.
Wheneveri(t) = i andk switches are remaining, we use tableCi

k to determine
if a switch should occur: as soon as the state reaches a point in the regionRj for a
certainj ∈ S \ {i} we will switch to modej; on the contrary, no switch will occur
while the system’s state belongs toRi.

The procedure that shows how to construct the tableCi
k, for all i ∈ S and

all k = 1, . . . , N for the switched system{Ai}i∈S is described in detail in Section
4.6.2, or in [29].

The procedure is based on the principle of optimality and it construct recursively
a partition of the hybrid space(x, i), x ∈ Rn (in this casex ∈ Σn is sufficient)
andi ∈ S, for each value ofk remaining switches.

This partition is based on the information already known whenk − 1 switches
are missing. Proceeding backwards in a recursive procedure all partitionsCi

k can be
constructed.

The key function of the procedure is theresidual cost, as in Definition 4.4, that
we report here. Note that in absence of switching costs it holdsTk(·) = T̃k(·), from
Definition 4.6.

Assume thatk switches are missing and the current hybrid state is(y, i), where
y ∈ Σn.

The residual cost is:

Tk(y, i, j, %) = y′Q̄i(%)y + T ∗k−1(z, j) (7.8)

where% ≥ 0 andj ∈ S are the current control variables,z ∈ Rn is z = Āi(%)y,
i.e., the point reached after a permanence in modei for a time%.

The two members of the sum that definesTk(y, i, j, %) have the following phys-
ical meaning: the first one is the cost of the evolution with the current dynamicsAi

for a time%, the second one is the optimal residual cost from pointz to infinity and its
value has been determined at the previous step of the algorithm, whenk−1 switches
remain.

Its meaning can be easily understood once the function

Tk(y, i)∗ = min
j ∈ S
% ≥ 0

Tk(y, i, j, %), (7.9)
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optimal residual cost, is defined1.
To complete the procedure the functionT ∗0 (y, i) is defined as follows:

T ∗0 (y, i) ,
{

y′Ziy if Ai is stable
+∞ else

, (7.10)

Hence, defined%∗(x, i) and j∗(x, i) as in equations (4.19) and (4.18) respec-
tively, we obtain,∀ y ∈ Σn, the tableCi

k, in agreement with the Definition 4.7.
When all dynamics of{Ai}i∈S are unstable the equation (7.10) is badly posed.

In fact in such a case if we apply brute force the STP the last residual cost will be
equal to infinite and consequently all the other functionT ∗k (·) = +∞.

In the sequel we will explain and formally prove that this inconsistency can be
avoided by the introduction in{Ai}i∈S of a dummydynamicsÃs+1 (Hurwitz) that
servesonly to give a finite value to the functionT ∗0 (y, i).

In other words we consider anaugmentedsystem, defined in the sequel,{Ai}i∈S̃ ,
that obeys to Assumption 4.1, but such that the tableC̃∞2, i = 1, . . . , s does not in-
cludethe regionRs+1.

Informally the new dynamics can be seen as alaunch padfor the STP. Once the
tables have converged, it can be removed, because the system{Ai}i∈S has reached
its orbital equilibrium.

7.3.4 Lexicographic ordering and uniqueness

In general the couple(j∗(y, i), %∗(y, i)), arguments that minimizes (7.9), may be
not unique.

Hence a statey may be assigned to different regionsRj , for j ∈ S ′.
To remove this source of nondeterminism we will refer to the lexicographic or-

dering of the couples(j∗(y, i), %∗(y, i)) as in Definition 4.8. This ensures that an
optimal table is also unique.

There is, however, another issue related to this problem that must be addressed
Consider the case in which the optimal arguments of (7.9) from pointy in loca-

tion i are%∗(y, i) = 0 andj∗(y, i) = j.
This signifies that an immediate switch towardsj∗ is required.
It may be the case that the system, once entered in locationj∗ requires an im-

mediate switch to another location, sayp, causing the presence of 2 switches in zero
time.

This behavior is undesirable, because it leads to a potential risk of a Zenoness
when the number of available switches goes to infinite.

To avoid this it is sufficient to reset

j∗ = arg min Tk−1(x, j∗, j, %).

This choice signifies that the next location ofi must coincide with the optimal
switching strategy obtained fromj∗ at the previous iteration problem.

In fact whenTk(x, i, j, %) is minimized with% = 0 it clearly holds

1In generalT ∗k−1(z, j) is calculated only onΣn, andz /∈ Σn. However, without switch-
ing costs, in force of Property 4.1 it trivially holds

T ∗k−1(z, j) = λ2T ∗k−1

�z

λ
, j
�

,

whereλ = ‖z‖.
2Later on it will be proved that for this class of systems it even holdsCi

∞ ≡ Cj
∞ for all

i, j ∈ S, thus we will refer only to tableC∞.
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T ∗k (y, i) = T ∗k−1(y, j).

When this extra precaution is taken, we can ensure that a spacing condition

τk+1 − τk > 0

is always verified during an optimal evolution.
We observe that thissimple ideais significant only if the functionδmin(i) = 0,

∀ i ∈ S. Moreover it is applicable only to arbitrary mode switched systemsSA. In
the general case, i.e., when

j∗(y, i) ∈ succ(i),

it is not possible to resetj∗ = h , arg min Tk−1(x, j∗, j, %). unless alsoh ∈
succ(i).

For this reason thesimple ideawas not introduced in Section 6.3.

7.4 The optimal control problem with an infinite number of
switches

We will recall some results obtained in Chapter 6 that hold for the STP when the
Assumption 4.1 is satisfied and when the number of switches is allowed to grow to
infinity.

Here we shall only give the statements; proofs and explanations are in the men-
tioned Chapter 6.

Moreover in this particular case we will use the notationJ∗k (x, i) to indicate the
residual costT ∗k (x, i). Initially, when the number of switches was fixed a priori the
notationJ∗N (x, i) indicated the total cost andT ∗k (x, i) the intermediate residual cost.
Now, where the number of switches is a varying parameter, this distinction becomes
senseless.

Property 7.1 (Monotonicity of the cost) Let N, N ′ ∈ N. If N ′ > N and the
switched system evolves along an optimal trajectory, then for some initial hybrid
state(x0, i0),

J∗N ′(x0, i0) ≤ J∗N (x0, i0) < +∞.

¥

Proposition 7.1 (Convergence of the cost)For some initial state(x0, i0), x0 6= 0,
and

∀ ε′ > 0, ∃ N̄ = N̄(x0, i0)

such that∀ N > N̄ ,
J∗N (x0, i0)− J ∗̄N (x0, i0) < ε.

¥

Proposition 7.2 (Normalized convergence of the cost)For any continuous initial
statex0, x0 6= 0, and∀ ε > 0, ∃ N̄ such that for allN > N̄ ,

J∗N (x0, i)− J ∗̄
N

(x0, j)
J∗N (x0, i)

< ε,

for all i, j ∈ S. ¥
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Theorem 7.1 Given a fixed relative toleranceε, if N̄ is chosen as in Proposition 7.2
then for allN > N̄ + 1 it holds that

Ci
N ≡ Ci

N̄+1.

¥
The above result allows one to compute with a finite procedure the optimal tables

for a switching law whenN goes to infinity. In such a case, in fact, it holds that for
all i ∈ S,

Ci
∞ ≡ lim

N→∞
Ci

N ≡ Ci
N̄+1.

We are now ready to formally prove a useful result for the switched system con-
sidered in this chapter.

Theorem 7.2 Given a fixed relative toleranceε, if N̄ is chosen as in Proposition 7.2
then for alli, j ∈ S it holds that

Ci
N̄+1 ≡ Cj

N̄+1
.

¤
Proof. It follows from the fact that, by Proposition 7.2,

J ∗̄N+1(x0, i) = J ∗̄N+1(x0, j)

for all i, j ∈ S, and from the uniqueness of the optimal tables as discussed in Sec-
tion 7.3.4. ¥

This result also allows one to conclude that for alli ∈ S
C∞ ≡ lim

N→∞
Ci

N ,

i.e., all tables converge to the same one.

Remark 7.1 Note that this result does not hold for the general switched system, but
merely for the class considered here, i.e., completely connected and allminimum
permanence timesset to 0. If one of this condition are violated then the tables will
converge differently from one location to another. ¥

This result is in fact very intuitive. In fact in the completely connected automaton
every location has the same point of view of the rest of the systems.

Thus if from the hybrid state(x, i) it is better to switch to locationj, where there
will occur a non trivial evolution, this must be true for all locationsh = 1, . . . , s,
h 6= i, j and in locationj the optimal strategy is to remain inj.

This is in force of the uniqueness of the optimal solution defined in Section 7.3.4.
Hence the optimal strategy in a point(x, i) is independent from the current loca-

tion i.
To construct the tableC∞ the value ofN̄ is needed. We do not provide so far any

analytical way to computēN , therefore our approach consists in constructing tables
until a convergence criterion is met.

TableC∞ can be used to compute the optimal feedback control law that solves
an optimal control problem of the form (7.7) withN = ∞.

More precisely, when an infinite number of switches is available, we only need
to keep track of the tableC∞.

If the current continuous state isx and the current location isi, on the basis of
the knowledge of the color ofC∞ in x, we decide if it is better to still evolve with the
current dynamicsAi or switch to a different dynamics, that is univocally determined
by the color of the table inx.
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Remark 7.1.Note that the tableC∞ is Zeno-free, i.e., it guarantees that no Zeno in-
stability may occur when it is used to compute the optimal feedback control law.
This property is guaranteed by the procedure used for their construction as discussed
in Section 7.3.4. ¥

7.5 Stabilizability of unstable switched systems

In this section we deal with the problem of stabilizing a switched system{Ai}i∈S
whose linear dynamicsAi are not stable.

In particular, we show that a solution to this problem — when it does exist — can
be obtained by solving an optimal control problem of the form (7.7) withN = ∞.

More precisely, we show how this problem can be solved by applying the switch-
ing table procedure to adummyproblem that satisfies the assumption that at least one
dynamicsAi is Hurwitz.

When the original switched system is stabilizable, we select among all stabilizing
laws a switching law that minimizes a given quadratic performance index.

7.5.1 Intuitive notions

It should be clear that we propose a method that is able to find a stabilizing switching
law from a given initial state of conic shapeonly if the switched systems admits at
least a stabilizing solution from a given initial state.

Definition 7.4 (Order of convergence)Consider a functionf(t) such that

lim
t→∞

f(t) = 0,

we define the order of convergencek the value such that

lim
t→∞

tkf(t) = l < ∞.

¥

Proposition 7.3 The STP gives a stabilizing solutiononly if the system admits an
AS solution such that

‖x(t)‖2 → 0

with orderk > 1. ¤

Proof. In fact the STP is based on the finiteness of an infinite time horizon integral
that weights the square norm of vectorx weighted by matricesQi. If the square
norm converge to zero with orderk ≤ 1 the integral is no longer finite, hence the
STP is not applicable. ¥

To better illustrate this statement we provide some intuitive examples.

Example 7.1 The function

f(t) = ‖x(t)‖ =
‖x0‖√
t + 1
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goes to 0 ast → +∞ with orderk = 1
2 .

If the norm of the vector fieldx(t) of a switched system has this convergence
property, it is asymptotically stable but our procedure will fail, i.e., it will not find a
conic switching law that stabilizes the system.

In fact its fundamental mechanism is the minimization of the integral of a norm3,
whose sum is expected to be finite (in the Lebesgue sense), but

min
∫ ∞

0

x′(t)x(t)dt = min
∫ ∞

0

‖x(t)‖2dt = ‖x0‖2 min
∫ ∞

0

1
t + 1

dt = +∞.

¥

Example 7.2 The function

f(t) = ‖x(t)‖ =
‖x0‖
t + 1

goes to 0 ast → +∞ with orderk = 1. In this case the STP will work because

∫ ∞

0

‖x(t)‖2dt < +∞.

¥

Example 7.3 The function

f(t) = ‖x(t)‖ = ‖x0‖e−γ2t

goes to 0 ast → +∞ with orderk = +∞. Fortiori in this case the STP will work
because ∫ ∞

0

‖x(t)‖2dt < +∞.

¥

On the contrary, if our procedure works, it does not guarantee straightforward the
orderk. Thus we can only ensure an asymptotic stability.

In [109] it is proved that for some classes of switched system the order of con-
vergence of the vector field is exponential.

7.5.2 Theoretical results

We present the following preliminary result that is essential for the rest of the deriva-
tion.

Still we deal with a switched system of the form{Ai}i∈S .
For simplicity of notation let us indicate with OP(S) the optimal control problem

of the form (7.7), associated to{Ai}i∈S .
Consider also a set̃S ⊂ S and the corresponding switched system{Ai}i∈S̃ . This

system is trivially obtained from{Ai}i∈S by refiningthe oriented graph.
Figure 7.1 shows graphically this operation.
The corresponding OP(̃S) is the same optimal control problem that associates to

each locationh, h ∈ S̃, the same matrixQh as in OP(S).

3Here wlg we consideredQi(t) = In.
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l1 l3 

l2 

l1 l3 

l2 
(a) (b) 

Fig. 7.1. Refining operation of a switched system. (a) Switched system{Ai}i∈S , S ≡
{1, 2, 3}.(b) Switched system{Ai}i∈S̃ , S̃ ≡ {1, 2} ⊂ S, refined from (a).

Proposition 7.4 Let us consider an OP(S) of the form (7.7) withN = ∞. If the
tableC∞, solution of OP(S), is a partition ofRj , j ∈ S̃ ⊂ S, thenC̃∞, solution of
OP(S̃) coincides withC∞, i.e.,

C∞ ≡ C̃∞.

¤

Proof. The validity of the statement follows from the definition of the tableC∞ and
the possibility of using it to derive an optimal feedback control law for OP(S).

If the regionRh corresponding to a certain modeAh does not appear inC∞, it
means that it is never convenient to switch to modeAh, or to evolve withAh if it is
the initial mode.

Hence, for any initial state, an optimal solution of OP(S) is also an optimal so-
lution for OP(S̃), and in force of the uniqueness of the switching tables it can only
be

C∞ ≡ C̃∞.

regardless of the current continuous state and the current dynamics. ¥

The above result enables us to use the switching table procedure to compute a
stabilizing switching law, if it does exist, for switched systems whose dynamics are
unstable.

In particular, the proposed approach is based on the construction of anaugmented
systemand anaugmented OPthat are defined as follows.

Definition 7.5 (Augmented system)Consider a switched system{Ai}i∈S . We de-
fine theaugmented systema switched system of the same class{Ai}i∈S̃ , such that

• |S̃| = |S|+ 1;
• {Ai}i∈S̃ is composed of the same dynamics as{Ai}i∈S ;
• As+1 ∈ {Ai}i∈S̃ is Hurwitz.

¥

The augmented system{Ai}i∈S̃ coincides with the system{Ai}i∈S , but it con-
tains an extra dynamics,As+1 that is Hurwitz.

As an example consider the switched system whose oriented graph is depicted in
Figure 7.1. If the dynamics associated to location3 is Hurwitz, then the system in
Figure 7.1.(a) is an augmented system of Figure 7.1.(b).
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Definition 7.6 (Augmented OP) Let us consider an OP(S) with N = ∞. Assume
that all possible modesAi, i ∈ S, are not stable and the corresponding weighting
matricesQi, i ∈ S, are strictly positive definite.

Let{Ai}i∈S̃ be an augmented system of{Ai}i∈S as in Definition 7.5.

We defineaugmented OP(̃S) of OP(S)an optimal control problem of the form
(7.7) withN = ∞, andQs+1 = qQ̃, q ∈ R+ andQ̃ > 0. ¥

In other terms, for alli = 1, . . . , s all Qi coincide for both systems. The new
Qs+1 is a strictly positive matrix multiplied by a factorq, whose role will be clear in
the sequel.

Now, let us prove the following proposition.

Proposition 7.5 Consider an OP(S) with N = ∞. Let J∗∞(x0, i0) be the optimal
cost value solution of OP(S) when the initial state is(x0, i0).

Now letJ̃∗∞(x0, i0, q) be the optimal cost value of the augmented OP(S̃), as in
Definition 7.6, for the same initial state.

The optimal cost̃J∗∞(x0, i0, q) is a strictly increasing function ofq for all values
of q such that the Hurwitz dynamicsAs+1 appears in the optimal evolution of OP(S̃).

¤

Proof. We prove this by contradiction. Consider two different augmented problems,
OP(1)(S̃) and OP(2)(S̃) that differ for their value ofq.

In particular, letq(1) and q(2) be the values of the coefficientq associated to
OP(1)(S̃) and OP(2)(S̃) respectively, and letq(1) > q(2).

Assume that
J̃∗∞(x0, i0, q

(1)) = J̃∗∞(x0, i0, q
(2)),

respectively the costs of the evolutions(x(t), i(t))(1) and (x(t), i(t))(2) are the
same.

We will show how this assumption brings to a contradiction. In fact, if we use
the solution of OP(1)(S̃) and compute the cost of the evolution(x(t), i(t))(1) for a
generic initial state using the weights of OP(2)(S̃) we obtain a value that is smaller
thanJ̃∗∞(x0, i0, q

(1)).
For the absurd assumption this value is also smaller thanJ̃∗∞(x0, i0, q

(2)), and
this is a contradiction, because by definitioñJ∗∞(x0, i0, q

(2)), obtained solving
OP(2)(S̃), is the minimum value. ¥

If a switched system{Ai}i∈S composed of exclusively unstable dynamics is
stabilizable, then a stabilizing switching law can always be computed using the STP.

We do this by annexing to the switched system{Ai}i∈S an OP(S) and by con-
sidering the solution of an augmented OP(S̃).

The main feature of the computed switching law is that it stabilizes the system
and at the same time it minimizes the annexed quadratic performance index.

This is very appealing, because this method provides a criterium to design a sta-
bilizing switching law (which is itself a major goal in system theory) and furthermore
the feedback stabilizing law minimizes an index.

7.5.3 Theorem on the stabilizability

Let us now state and prove the main theorem of this chapter.

Theorem 7.3 (Stabilizability of unstable switched system)Given a switched sys-
tem {Ai}i∈S , let us consider an optimal control problem of the form (7.7) with
N = ∞ and weighting matricesQi > 0, i ∈ S. Then, let us define an augmented
{Ai}i∈S̃ and an augmented OP(̃S), as in Definitions 7.5 and 7.6.
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(i) The switched system{Ai}i∈S is globally exponentially stabilizable=⇒ ∃ q̃ ∈
R+ such that the tableC∞, computed by solving OP(̃S), does not contain the
color associated tõA.

(ii) The switched system{Ai}i∈S is asymptotically stabilizable⇐= ∃ q̃ ∈ R+

such that the tableC∞, computed by solving OP(̃S), does not contain the color
associated tõA.

¤

Proof. We denoteJ∗∞(x0, i0) the optimal cost of the optimal control problem for the
system{Ai}i∈S when the initial state is(x0, i0), andJ̃∗∞(x0, i0, q) the correspond-
ing optimal cost of the augmented system{Ai}i∈S̃ .

The costJ̃∗∞(x0, i0, q) is obviously finite for all finite values ofq becausẽA is
stable.

Moreover, it is upper limited by the value ofJ∗∞(x0, i0), i.e.,∀q ∈ R+,

J̃∗∞(x0, i0, q) ≤ J∗∞(x0, i0).

Finally, J̃∗∞(x0, i0, q) is a quadratic function ofx0, i.e., if x0 = λy0 then

J̃∗∞(λy0, i0, q) = λ2J̃∗∞(y0, i0, q).

(i) Assume that the switched system{Ai}∈S , is globally exponentially stabiliz-
able.

This implies thatJ∗∞(x0, i0) < +∞, for all x0 ∈ Rn and for alli0 ∈ S.
In fact, any control law that is exponentially stable implies that along any trajec-

tory it holds

∫ ∞

0

x′(t)Qi(t)x(t)dt =
∫ ∞

0

y′(t)Qi(t)y(t) ‖x(t)‖2dt

≤ K

∫ ∞

0

‖x(t)‖2dt ≤ Kc2‖x0‖2
∫ ∞

0

e−2λtdt ≤ +∞,

where we have writtenx(t) = y(t) ‖x(t)‖ with ‖y(t)‖ = 1,

K = min
i ∈ S

y ∈ Σn

y′Qiy,

andc, λ ∈ R+.
By Proposition 7.5 we know that̃J∗∞(x0, i0, q) is an increasing function ofq for

all values ofq such thatAs+1 appears in the optimal evolution.
Therefore, we may conclude that if{Ai}∈S is globally exponentially stabilizable

then∃ q(1)(x0, i0) ∈ R+ such that

J̃∗∞(x0, i0, q
(1)(x0, i0)) = J∗∞(x0, i0).

Moreover, if the equality holds for a certain value ofq = q(1)(x0, i0), then it also
holds for allq > q(1)(x0, i0).

In fact, the above equality implies that the optimal control law of the augmented
OP(S̃) requires no evolution with the stable modeAs+1.

If this is the case when its weighting matrix isQs+1 = q(1)Q̃, thenfortiori when
its weighting matrix isQs+1 = qQ̃ with q > q(1)(x0, i0).
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Now, the result holds if we let

q̃ = max
i0 ∈ S

x0 ∈ Rn

q(1)(x0, i0) = max
i0 ∈ S

y0 ∈ Σn

q(1)(y0, i0),

where the second equality follows from the fact thatJ̃∗∞(x0, i0, q) is a quadratic
function ofx0.

If we define the augmented OP(S̃) with Qs+1 = q̃Q̃, then for all values of
x0 ∈ Rn and alli0 ∈ S, it holds that

J̃∗∞(x0, i0, q̃) = J∗∞(x0, i0),

i.e., the controlled system never switches to dynamicsAs+1, neither evolves with
As+1 if it is the initial mode.

This obviously implies that the tableC∞, computed applying the switching table
procedure to the augmented OP(S̃) with Qs+1 = q̃Q̃, does not contain the color
associated to the stable modeAs+1 = Ã.

(ii) Assume that∃ q̃ such that the switching tableC∞, computed applying the
switching table procedure to the OP(S̃), does not contain the color associated to the
stable modeAs+1 = Ã.

By Proposition 7.4 this implies that the control law that results using tableC̃∞ is
also optimal for the OP(S).

Therefore, being
J̃∗∞(x0, i0, q̃) < +∞,

andJ∗∞(x0, i0) = J̃∗∞(x0, i0, q̃) for all x0 ∈ Rn and all i0 ∈ S, it follows that
J∗∞(x0, i0) < +∞.

It is not difficult to show, with the same argument we used in [50], that the finite
value of the optimal cost for all initial states and dynamics implies that the switched
system{Ai}i∈S is globally asymptotically stabilizable. ¥

The above theorem provides an efficient way to deal with the problem of deter-
mining an asymptotic stabilizing switching law for a switched system{Ai}i∈S with
linear unstable modes, that can be summarized in the following steps.

1. associate to the switched system an OP(S) with N = ∞;
2. define an augmented system{Ai}i∈S̃ and OP(̃S) choosingq very large positive

real number;
3. construct the tablẽC∞ solving OP(̃S);
4. If this table does not contain the color associated to the stable modeAs+1, by

Theorem 7.3(ii), we conclude that the original switched system{Ai}i∈S is glob-
ally asymptotically stabilizable. In such a case, we compute the stabilizing feed-
back control law that minimizes the chosen quadratic performance index using
tableC∞.

Note, finally, that the procedure may also find control laws that locally stabilizes
a system, as shown in the examples described in Sections 7.6.1 and 7.6.2.

We do not provide an a priori rule to establish if the switched system is stabiliz-
able and in such a case, an analytical way to compute an appropriate value ofq. In
this case the solution of the problem ofknowingif the system is stabilizable remains
open.

Nevertheless in all numerical examples taken from the literature, we found out
that if the system is stabilizable it was sufficient to use a large value ofq (1010÷1020)
to compute stabilizing laws.
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7.6 Numerical examples

In this section we will provide some numerical specific examples and in particular
we will use the theoretical results to provide stabilizing switching laws of switched
systems that minimize a performance index.

Three examples are taken from the literature, and known to be stabilizable. In
particular one is inspired by the famous example ofBranicky [17], another one is
inspired by the example described byPettersson et al.in [40] and stabilized with
LMI approaches. The third one is taken from a work ofColaneri et al.who studied
stabilizability via optimal issues for a switched system of the same class considered
here. All examples are composed of strictly unstable dynamics.

We then show what happens to the STP when the system is evidently nonglobally
stabilizable. The region associated to the stable dynamics, albeit an extremely high
associated weights in the OP(S̃), it does not disappear.

Finally we provide an example that can be even solvedanalytically, providing
the possibility of comparing the results obtained with the STP.

7.6.1 Examples from literature

Example 1: from Branicky

As a first example of the described approach we choose a variant of a very well-
known switched system [17]{Ai}i∈S , with s = 3 and

A1 =
[

1 −10
100 1

]
, A2 =

[
39.97 −77.50
32.50 37.97

]
, A3 =

[−37.97 −77.50
32.50 39.97

]
.

Note that dynamicsA2 andA3 are obtained from dynamicsA1 by an axis rota-
tion of 2π

3 and 4π
3 degrees respectively.

All dynamicsAi’s are unstable.
To determine a stabilizing switching law we first associate to the switched system

{Ai}i∈S an optimal control problem of the form (7.7) withN = ∞.
In particular, we takeQi = I2, i = 1, 2, 3.
We define an augmented OP with the stable dynamics

A4 = −A1

and weighting matrix
Q4 = 105Q̃,

whereQ̃ = I2.
We construct the tableC∞. More precisely, we apply the procedure to construct

the tablesCi
N for finite values ofN and we find out that, for a sufficiently large value

of N , namelyN = 15, the tables converge to the same one. The tableC∞ is reported
in Figure 7.2.

We can immediately observe that the color associated to the stable dynamicsA4

never appears. This means that, regardless of the initial state, the optimal trajectory
of the augmented OP is obtained by infinitely switching among unstable dynamics
Ai, i = 1, 2, 3.

This allows one to conclude that the switched system{Ai}i∈{1,2,3} is globally
asymptotically stabilizable. Moreover, the tableC∞ can be used to compute the stabi-
lizing feedback control law that minimizes the chosen quadratic performance index.
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Fig. 7.2.The optimal trajectory of the switched system{Ai}i∈{1,2,3} of Example 7.6.1.

An example of an optimal trajectory is reported in Figure 7.2 when the initial
state is

x0 =
[−0.707

0.707

]
, i0 = 1.

The stabilizing and optimal sequences are

I∗ = { 1 3 2 1 3 2 1 . . .}
T ∗ = 10−2 { 0.48 3.84 3.78 3.42 3.72 3.48 3.18 . . .}
J∗∞ = 0.0208.

Note that the system, because of the homogeneous regions, presents a periodic
behavior.

Example 2: from Pettersson et al.

This example is taken from [40], where it was stabilized via a LMI approach. The
same examples was also analyzed in [64], where the switching rule is obtained via a
probabilistic gradient based algorithm.

The system dynamics are:

A1 =
[

0 10
0 0

]
, A2 =

[
1.5 2
−2 −0.5

]
.

The annexed optimal control problem associates to each dynamics the weight
identity matrices, and allowsN = ∞ switches. HenceQ1 = Q2 = I2.

As in the other examples we consider an augmented OP, given by the couple

A3 = −A2, Q3 = 105Q1. (7.11)
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The STP converges, in this case, afterN = 16 switches, and the tablẽC∞ does
not contain the color of the dummy dynamics, hence it is the stabilizing one of the
original system, only composed of unstable dynamics.

The table, juxtaposed with an exemplificative trajectory, is depicted in Figure 7.3.
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Fig. 7.3.TableC∞ for the switched system taken from [40] and described in Example 7.6.1.
The obtained table stabilizes the system and it minimizes an LQR like performance index.

An example of an optimal trajectory is reported in Figure 7.3 when the initial
state is

x0 =
[−0.707

0.707

]
, i0 = 1.

The stabilizing and optimal sequences, according to the given index, are

I∗ = { 1 2 1 2 1 2 1 . . .}
T ∗ = { 0.09 0.77 0.61 0.77 0.61 0.77 0.61 . . .}
J∗∞ = 0.76.

We take advantage of this example to highlight the fact that there might exists
other stabilizing laws, but their performance is lower in terms of the considered in-
dex.

For sake of completeness we provided another switching law, reported in Figure
7.4. We may easily observe that this law, however stabilizing, is not optimal in the
sense of minimizing the given performance index.

The trajectory starting from the same initial point is completely different and it
is described by the following schedule:

I = { 1 2 1 2 1 2 1 . . .}
T = { 0.08 0.86 0.27 0.86 0.27 0.86 0.27 . . .}
J∞ = 1.26.

and obviously its costJ∞ > J∗∞.
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Fig. 7.4.Stabilizing, however non optimal, switching table for the switched system taken from
[40] and described in Example 7.6.1.

Example 3: from Colaneri et al.

This example is taken from a recent work ofColaneri and Geromel[26], to appear at
the triennial IFAC (International Federation of Automatic Control) conference 2005.
In this paper the authors consider the issue of providing a stabilizing switching se-
quence. Their approach is based on Lyapunov like methods.

We recall now the result provided by Colaneri and Geromel that interestingly
suits our research. The reader is referred to [26] for proofs and details.

Given a switched system of the form{Ai}i∈S , i.e., a switched system composed
of autonomous dynamics and whose oriented graph is completely connected, the goal
is to search for a set of matricesZi that satisfies the Lyapunov-Metzler equation,
namely

A′
iZi + ZiAi +

s∑

j=1

πj,iZj < 0, (7.12)

for i = 1, . . . , s, wheres = |S| andπji are the entries of a matrix of Metzler class4.
The solution of equation (7.12) provides the switching signali(x(t)) in feedback

form as

i(x(t)) = arg min
i=1,...,s

x′(t)Zix(t). (7.13)

4The class of Metzler matrices [26] is constituted by all matricesΠ ∈ Rs×s, with

elementsπij such thatπi,j ≥ 0, i 6= j and
sX

i=1

πi,j = 0, ∀ j.
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Furthermore if the equation (7.12) becomes

A′
iZi + ZiAi +

s∑

j=1

πj,iZj + Q < 0, (7.14)

with Q ≥ 0, then

∫ ∞

0

x′(t)Qx(t)dt ≤ min
i=1,...,s

x′0Zix0, (7.15)

We expect that the switching signali(x(t)) = arg min
i=1,...,s

x′(t)Zix(t) where

Zi’s solve (7.14), is the optimal one, i.e., it minimizes the integral in equation (7.15).
Thus we applied both procedure to the example presented in the paper.
A switched system is composed of 2 dynamics, namely

A1 =
[

0 1
2 −9

]
, A2 =

[
0 1

−2 2

]
,

bothunstableand an annexed OP with weight matricesQ1 = Q2 = Q = I2.
Colaneri and Geromel solve 7.14 and obtain the following matrices:

Z1 =
[

6.7196 1.6293
1.6293 1.0222

]
, Z2 =

[
6.0825 2.1293
2.1293 2.2206

]
,

and using equation (7.13) we can obtain the switching region depicted in Figure
7.5(a).

Now we apply to the given setup the STP, described in this chapter. To this pur-
pose we define the augmented problem

A3 = −A2, Q3 = 105Q,

and we keep constructing switching tables until the convergence is met. For this
example we established a convergence afterN = 15 switches. The last table,C15 ≡
C∞, is depicted in Figure 7.5(b).

Observe that the tables obtained with the two different methods are the same.
We choose to give different colors to remark that they are obtained with different
approaches.

To conclude we simulated these switching tables starting from two different ini-
tial points.

The first one isx0 = [−0.7, 0]′ and initial dynamicsi0 = 2. We obtained the
following values:

• Optimal switching sequence:I = {2, 1, 2, 1, . . .};
• Optimal switching times:T = {0.37, 0.01, 0.02, 0.01, . . .};
• Optimal costJ∗(x0, i0) = 0.561.

The trajectory is depicted inred in Figure 7.5(b), or in Figure 7.6, where it has been
zoomed.

The second one isx0 = [0, 0.7]′ and initial dynamicsi0 = 1. We obtained the
following values:

• Optimal switching sequence:I = {1, 2, 1, 2, 1, . . .};
• Optimal switching times:T = {0.42, 0.62, 0.01, 0.02, 0.01, . . .};
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Fig. 7.5.Example studied in [26] reported in Section 7.6.1: (a) Switching table obtained with
the approach described byColaneri and Geromel, (b) Switching table obtained with the STP
described in this chapter and optimal trajectories. Note that these switching manifolds admit
sliding motions.
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Fig. 7.6.Zoomed picture of Figure 7.5(b) representing two optimal trajectories of the system
described in Section 7.6.1. Observe the sliding motion around a switching surface, a frequent
behavior of switched systems.
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• Optimal costJ∗(x0, i0) = 0.0394.

The trajectory is depicted inorangein Figure 7.5(b), or in Figure 7.6, where it has
been zoomed.

7.6.2 Non stabilizable case

We shall present another example to illustrate the behavior of our procedure when
the switched system is not globally stabilizable.

This example was inspired by [64].
We consider a system{Ai}i∈S , with s = 2 and

A1 =
[

0 1
0 0

]
, A2 =

[
0 0
1 0

]
.

Clearly this system is not stabilizable in the I and III quadrant, where both vector
fields diverge in independent directions (A1’s flow is parallel to thex1 direction and
A2’s to thex2 one).

A more convincing argument can be found by looking at the picture in Figure 7.7
of these two vector fields.
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Fig. 7.7.Vector fields of the dynamics considered in the example in Section 7.6.2. Note that in
the first and third quadrant there is no possibility to obtain a switching strategy that stabilizes
the switched system.

In the II and IV quadrant, where the direction of the flow is opposite, we expect
the presence of an optimal switching sequence, that stabilizes the system.

To maintain the high symmetry of the system we consider

Qi = I2,

i = 1, 2, and we define an augmented optimal control problem with the stable dy-
namics

A3 = −I2, Q3 = 1013Q1.
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The converging switching table of the augmented problemC̃∞ is achieved after
N = 10 switches.

Its construction required a finer discretization ofΣ2 (150 points, versus 50 of the
examples in Section 7.6.1) and it is reported in Figure 7.8.

Note that whenx1x2 ≥ 0 the minimum cost is obtained by performing the evo-
lution exclusively with the stable dynamicsA3, despite the extremely high value of
the weighting matrixQ3.
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Fig. 7.8.Non globally stabilizable example. Note that, however extremely expensive, the con-
troller cannot find a stabilizing sequence of only dynamicsA1 andA2 in the odd quadrants,
thus the color of the augmented dynamicsA3 cannot disappear from̃C∞. Note also the stabi-
lizing sliding motion along the switching attractive manifoldx2 = −x1.

On the contrary, whenx1x2 < 0, there exists a stabilizing switching law that
collapses into a sliding mode along the surfacex2 = −x1.

This intuitive result can also be obtained analytically by providing the expression
of the cost as a function of the angle variable onΣ2.

Moreover it is possible to identify analytically the equivalent dynamicsAe =
−0.5I2 along the sliding surface.

Let us consider now the initial point

x0 =
[−0.707

0.707

]
, i0 = 1.

The trajectory is plotted in Figure 7.8, and it has the typical chattering shape of
the sliding mode.

The corresponding cost (sampling stepdt = 0.1) is

J∗∞(x0, i0) = 1.0025.

Obviously, when the sampling step of the simulation program goes to zero, the
evolution follows the equivalent dynamicsAe with equivalent weighting matrix
Qe = I2 whose quadratic cost is trivially equal to 1.
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7.6.3 Analytical example

In this section we describe a particular switched system whose stabilizing control law
that minimizes the correspondingOP can be computed analytically. Furthermore
we will apply the procedure described in this chapter to show the equivalency of the
approaches.

Consider the switched system featured by the unstable dynamics

A1 =
[

0 1
0 0

]
, A2 =

[
0 0

−1 0

]
.

It is trivially the same of Section 7.6.2, except for the fact thatA2 has opposite
sign.

However this is sufficient to guarantee the existence of a stabilizing control law.
This can be seen from the vector fields of these dynamics that are parallel to the

coordinate axis as depicted in Figure 7.11a.
Our purpose, with this very simple example, is to obtain the switching law ana-

lytically, and then show that it coincides with the one obtained with the STP.

Analytical construction of the optimal switching region

To develop the conic switching surfaces analytically it is necessary to choose a gen-
eral initial state and a general switching surface.

We can choose

x0 =
[−1

α

]
, i0 = 2.

Note that this point isgeneralbecause one DOF can be omitted in force of the
2-homogeneity of the cost.

We parameterize the switching surfaces by their slopesm1,m2 ∈ (−∞, +∞),
i.e., {

(1) x2 = m1x1

(2) x2 = m2x1,

and such that we useA1 (A2) if x′Gx > 0 (< 0), where

G =
[

m1m2 −m1+m2
2

−m1+m2
2 1

]

defines the conic regions depicted in Figure 7.9. Note that according to this set up it
is m1 > 0 andm2 < 0.

We first calculate the sequence of switching states, namelyxk, k = 0, 1, 2, 3, . . ..
To avoid confusion we recall that the vectors are inbold, while the components of the
vectors aren’t. Let us initially givex(t) as a function of the state transition matrices
and a generic initial statexk:

x(t) = Ā1(t)xk =
[

1 t
0 1

]
xk, (a)

x(t) = Ā2(t)xk =
[

1 0
−t 1

]
xk. (b)

(7.16)

We start from the point

x0 =
[−1

α

]
, i0 = 2,
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Fig. 7.9.Parameterization of the switching surfaces for the example of Section 7.6.3.

with α < −m2. Evolving with dynamicsA2 we will hit the first surface (of slope
m2) after a timeδ0 = −m2 − α. This can be obtained using equation (7.16.b) as
follows:

x(t) =
[

1 0
−t 1

] [−1
α

]
,

and imposing thatx(t) belong to the switching surface of slopem2, hencex(t) =
[−1,−m2]′.

We obtain the first switching point

x1 =
[ −1
−m2

]
.

From this point we now switch into dynamicsA1. With analogous calculations, i.e.,
using equation (7.16.a) with initial pointx1, the next switching point is

x2 =
m2

m1

[ −1
−m1

]
.

The time spent with dynamicsA1 is the time necessary to cross theconebetween
the two manifolds parameterized bym2 andm1. For a well known property of the
linear systems inR2, this time isindependentfrom the particular initial state. Its

value isδH =
m2 −m1

m2m1
.

Now from pointx2 the system switches again intoA2 and in analogy with the
previous calculations we obtain the point
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x3 =
m2

m1

[ −1
−m2

]
=

m2

m1
x1

after a timeδV = m1 −m2.
Now from pointx3 the system switches again intoA1 and in analogy with the

previous calculations we obtain the point

x4 =
(

m2

m1

)2 [ −1
−m1

]
=

m2

m1
x2,

after a timeδH .
It goes now straightforward that the sequences of switching points are governed

geometrically. In particular:

x0 =
[−1

α

]
, x1 =

[ −1
−m2

]
, x2 = m2

m1

[ −1
−m1

]
, x3 = m2

m1
x1, x4 = m2

m1
x2,

. . . , x2k+1 =
(

m2
m1

)k

x1, x2k+2 =
(

m2
m1

)k

x2, . . . ,

(7.17)
with k = 1, . . . ,∞.

Simple considerations on the switching sequences and on the geometrical behav-
ior of the given dynamics lead to assert the following remark.

Remark 7.2 The conditions of stability for this particular system are the following:

• if
1. m2m1 ≥ 0;

2.
m2

m1
< −1;

the system is unstable. In fact in case (1), i.e., the switching surfaces are both in I
and III quadrants or II and IV quadrants, the system has no possibility to perform
any stabilizing rotation. In case (2) the switching sequence in(7.17)diverges;

• if
m2

m1
= −1 the system is at its limit cycle [46, 53]. In fact the switching sequence

in (7.17)becomes stationary;

• if −1 <
m2

m1
< 0 the system is ES;

¥
The conic switching surfaces, whose corresponding stabilizing switching se-

quence minimizes the performance index

J =
∫ +∞

0

x′(t)Qi(t)x(t)dt,

can be calculated analytically for the simple caseQ1 = Q2 = I2 = Q.
To this aim we need to express the costJ as a function of the initial point and

the parameters of the switching surfacesm1 andm2. This is appealing, because,
the trajectory is composed of 2 kinds of homothetic branches, the vertical and the
horizontal ones.

Since the initial points of the vertical (horizontal) branches have the form

x2k+1 =
(

m2
m1

)k

x1 (x2k+2 =
(

m2
m1

)k

x2) we expect to formulateJ as a com-

bination of geometrical series indexed byk.
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Moreover, as stated above, the time spent in the vertical (horizontal) branch is

δV = m1 −m2 (δH =
m2 −m1

m2m1
), regardlessof the particular value ofk.

Hence the cost expression is:

J(α, 2, m1, m2) = x′0Q̄2(δ0)x0 +
+∞∑

k=1

x′2k−1Q̄1(δH)x2k−1 +
+∞∑

k=1

x′2kQ̄2(δV )x2k,

(7.18)
where 2 is the index of the initial dynamics.

We may calculate analytically

Q̄2(δ0) =
∫ δ

0

Ā
′
1(t)Ā1(t)dt,

Q̄1(δH) =
∫ δH

0

Ā
′
2(t)Ā2(t)dt,

Q̄2(δV ) =
∫ δV

0

Ā
′
1(t)Ā1(t)dt.

(7.19)

and substitute the valuesxk given in equation (7.17). Now all terms in (7.18) can
be expressed as a function of(α,m1,m2). The global expression becomes long and
complicated, but conceptually simple. In fact, once we have theJ(α, 2,m1, m2) all
is left to do is to find its global minimum, in the two variablesm1 andm2, in the
stability range provided in Remark 7.2.

The minimization task, via partial derivative, is not analytically feasible, because
in the cost expression there appears polynomial terms of order 6, but it can be done
numerically.

A smartshortcut can be achieved considering that it must holdm1m2 = −1, for
sake ofsymmetry.

In fact there is no significant reason to believe that the system prefer to sojourn
longer in one specific dynamics, because they are both weighted with the same matrix
Q.

Thus it can bem1 = m > 1 andm2 = − 1
m and this is a significant simplifica-

tion, because we pass from a two variables problem into a single variable problem.
Now we would like to recalculate the function

J = J(x0, i0,m) = J(α, 2,m) =
∫ +∞

0

x′(t)Qi(t)x(t)dt. (7.20)

Using the sum expression of the cost we obtain thatJ can be written as

J(α, 2,m) = x′0Q̄i0(δ0)x0 +
+∞∑

k=1

x′kQ̄ik
(δ)xk, (7.21)

where

• xk are the switching states of equation (7.17) that can be seen also in Figure 7.9;
• δ0 = 1

m − α > 0;
• δ = δH = δV = m + 1

m > 0 is the time spent dynamicsA1 or A2, from x1 on.
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We can also recalculate the switching statesxk:

x0 =
[−1

α

]
, x1 =

[−1
1
m

]
, x2 = − 1

m2

[ −1
−m

]
, x3 = − 1

m2 x1, x4 = − 1
m2 x2,

. . . , x2k+1 =
(− 1

m2

)k
x1, x2k+2 =

(− 1
m2

)k
x2, . . . ,

(7.22)
with k = 1, . . . ,∞.

Hence equation (7.21) can be rewritten as

J(α, 2,m) = x′0Q̄i0(δ0)x0 + (x′1Q̄i1(δ)x1 + x′2Q̄i2(δ)x2)
+∞∑

k=0

m−4k. (7.23)

Now, being

Q̄i0(δ0) =

[
δ0 + δ3

0
3 − δ2

0
2

− δ2
0
2 δ0

]
, Q̄i1(δ) =

[
δ δ2

2
δ2

2 δ + δ3

3

]
, Q̄i2(δ) =

[
δ + δ3

3 − δ2

2

− δ2

2 δ

]
.

after some quite long calculations we obtain

J(α, 2,m) = −α

3
(
3 + α2

)
+

(
1
m

+
1

3m3
+

(m2 + 1)3

3m3(m2 − 1)

)
. (7.24)

Finally, solving
∂J

∂m
= 0,

and consideringacceptableonly the stabilizing solutionsm > 1, in force of Remark
7.2, we find a unique solution

m∗ ∼= 3.146,
1

m∗

that represent the slope of the switching surface in the I and III quadrants, and
in the II and IV quadrants respectively. Note that, as expected, the value ofm∗ is
independent fromα, i.e., from the initial point.

We depict in Figure 7.10 the equation (7.24) plotted in function of the design
parameterm in the surrounding of its minimum value. The function cost reaches the
minimum whenm = m∗.

Numerical construction of the optimal switching region via STP

The same result can be obtained by applying the STP. To do this we consider the
augmented problem, provided that its weight in the performance index expression is
high. In particular

A3 =
[ −1 100
−10 −1

]
, Q3 = 104I2

Convergence is met inN = 12 switches. In Figure 7.11(b) the switching region
is depicted, with two trajectories for different initial points. It goes straightforward
that the optimal sequences, are, for the initial point
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Fig. 7.10.Plot of function(7.24)in the surrounding of its global minimum.
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Fig. 7.11.Example studied in Section 7.6.3: (a) Vector field of dynamicsA1 and A2 , (b)
Optimal switching surfaces and two trajectories.

x0 =
[−0.707
−0.707

]
, i0 = 2,

I∗ = { 2 1 2 1 2 1 2 . . .}
T ∗ = { δ0 δ δ δ δ δ δ . . .}.

The cost of the trajectory obtained with the STP isJ
∗(STP )
∞ = 1.6099, while the

exact value, from equation (7.24), withm = m∗ = 3.146, α = −1, normalized on
Σ2 is J∗∞ = 1.6095

7.7 Conclusions

Based on the results of the optimal control of switched systems with a infinite num-
ber of admissible switches and at least one Hurwitz dynamics, we showed that this
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approach can also be efficiently applied when all LTI dynamics are not stable. This
is done by solving an appropriate optimal control law, called the augmented OP,
that contains a Hurwitz dynamics. In particular, we show that if the switched system
with unstable modes is globally exponentially stabilizable, then an optimal feedback
control law can be computed, that guarantees the closed-loop system to be globally
asymptotically stable.



8

Concluding notes, open issues and future research
interest

In this chapter we will summarize the contributions of this thesis, illustrate the open
issues and propose some directions for future research.

8.1 Summary of contributions

The research contributions of this thesis are set out in Chapters 3, 4, 5, 6 and 7. We
will subsequently summarize their contents.

In Chapter 3 the considered model is defined. We dealt with a subclass of the
recent dynamic models known ashybrid systems, a mathematical formalization that
integratesevent drivendynamics withtime drivendynamics. The subclass of inter-
est is thehybrid automata, a model composed of a set of locations (nodes), each
associated with a mode governed by a linear affine differential equation, and a set
of edges (arcs), whose firing is the occurrence of a discrete event that provokes the
mode switching. In this chapter we formally defined the hybrid automata, itsstate,
composed of the continuous statex ∈ Rn and the discrete statei the current active
mode, itspropertiesand itsdynamical behavior. In parallel we defined an annexed
optimal control problem, that is formulated as the minimization of a performance
index based on the quadratic cost of the continuous statex and the sum of a cost as-
sociated to the event driven dynamics. The control variable is the piecewise function
i(t), namely the sequence of locations and switching instants. In a hybrid automaton
the degree of freedom of the functioni(t) may be limited by the continuous state
x(t). Besides we described in detail a subclass of the hybrid automata, commonly
denoted asswitched system, characterized by a functioni(t) independent from the
continuous statex.

In Chapter 4 we developed a procedure, theswitching table procedureSTP, that
solves the optimal control problem defined in Chapter 3, for a switched system and
for a finite number of switches. The procedure, based on dynamic programming
arguments, consists in the construction of a set of tables that partition the state space
into several regions which suggest the optimal switching strategy in feedback form.
We proved that the thus obtained tables guarantee to find the global optimum of the
given performance index. Moreover the dynamic programming principle bounds the
computational complexity of the table construction, that is linear in the number of
switches and quadratic in the number of modes of the switched system. The main
drawback of the STP resides in the necessity of discretizing thewholestate space,
so practically limiting the application to low dimensional examples. Despite this, we
showed that under particular conditions, specifically when all switching costs and
affine terms are null, the regions are homogeneous, thus permitting to discretize only
along the unitary semisphere.
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In Chapter 5 we applied the STP to hybrid automata and to the case of finite
number of switches. Namely we demonstrated that the procedure is still applicable
even in the case when the design functioni(t) is allowed to take values from a set
constrained by the current continuous valuex of the hybrid evolution. In particu-
lar we analyzed in detail two special cases, defined in Chapter 3. The former is the
autonomous hybrid automataAHA, where there may occurinternally forced[122]
spontaneous switchings, according to the current valuex. For this model, charac-
terized by uncontrollable edges, we prove the conditions under which the STP may
be applicable and the optimal solution is finite. The latter is theconstrained hybrid
automataCHA, where the choice of the controller may be restricted in order to
respond tosafetyspecifications on the output signal. This problem is solvedhierar-
chically, namely alow levelprocedure deals with the specifications, and ahigh level
procedure, STP, with the optimal control within the remaining degree of freedom left
by the low level. In both cases a whole state space discretization is required, unless
for the peculiar case where guards and invariants of the hybrid automaton, defined in
Chapter 3, are homogeneous.

In Chapter 6 we considered the same model and problem studied in Chapter 4,
i.e., switched systems, but we relaxed the condition that the number of switches is
upper bounded by a finite valueN . In other words we applied the STP for increasing
values ofN , pointing toinfinite. Then we observed and formally proved that there
alwaysexists asufficiently largevalueN̄ , independent from the particular initial state
and initial mode, that marks the convergence of the switching tables. So the tables
obtained for greater values than̄N are the same. This is a significant result because it
allows one to useonly the tablesCi

N̄
= Ci

∞ indefinitely fort ∈ [0,∞). Furthermore
the method has been successfully applied to the design of a semiactive suspension
system of a quarter car model, and it appeared that its performances are consistently
intermediate between a purely active and a purely passive one.

Lastly, in Chapter 7 we investigated the possibility of using the STP, for a
switched system, restricted to the case ofcompletely connectedautomaton, with
infinite number of switches, as a design tool of a stabilizing switching signal. We
demonstrated that this is possible provided that the switched system isglobally ex-
ponentiallystabilizable. In fact this is a sufficient condition to guarantee that the
performance index, an integral of the quadratic norm of the statex(t), is finite. From
this viewpoint the STP appears an alternative synthesis method of a feedback stabi-
lizing control law for a switched system. Another significantadded valueproposed
in Chapter 7 is the extension of the STP to the cases where all modes of the switched
system are non Hurwitz. This is obtained by the addition of a slow and expensive
Hurwitz dynamics in the original switched system, that serves as alaunching pad
for the STP, whose presence may disappear from tableC∞1. If this happens thenC∞
is the stabilizing switching table for the unstable given system. Specific examples
from literature have been considered for comparison.

The software that implements the STP is described in Appendix E and it may be
downloaded from the web site

http://www.diee.unica.it/∼dcorona/thesis.html.

8.2 Open issues

In this paragraph we will briefly describe some issues that still remained open in the
development of the STP.

1If the switched system is completely connected we proved thatCi
∞ ≡ Cj

∞, for all modes
i, j of the system. Hence simplyCi

∞ ≡ C∞.
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8.2.1 Estimation of the value ofN in the table convergence issue

In Chapter 6 and 7 we showed how the STP can be extended to the case where the
value ofN , the number of available switches, becomesinfinite. We proved formally
that there exists a threshold value ofN̄ such that all tables constructed for greater
values ofN̄ are the same. This is a relevant theoretical result, but the practical imple-
mentation may require an estimation or an upper bound ofN̄ . In Chapter 6, Theorem
6.2, we provided a method, yet not sufficiently general. We argue that this value of
N̄ may be obtained by knowing the convergence rate of the statex, but so far, to our
knowledge, there are no general results for switched systems2.

8.2.2 Estimation of the value ofq in the table convergence issue

A similar problem arises in Chapter 7. The stabilizing switching signal for a switched
system composed of only unstable dynamics is subject to the existence of asuffi-
ciently large value of a parameterq that weights the stable augmented dynamics, see
Theorem 7.3. This problem is similar to the one described in the previous Section
8.2.1. In fact if we know that the system is stabilizable then wemightfind an appro-
priateq such that the color of the stable dynamics disappears fromC∞. Conversely,
if the color does not disappear it may be due to an erroneous choice ofq, i.e., too
small, or to the effective non stabilizability of the system. We might conclude that the
existence ofq is a criterion that guarantees stabilizabilitya priori. Hence a method
that gives an upper bound onq would be a relevant result. In fact, to our knowledge,
apart from special cases, i.e., quadratically stable systems [42], the available meth-
ods to assert stabilizability, based on the existence of multiple Lyapunov functions,
are often burdensome.

8.2.3 Analytical estimation of the switching tables

Another open issue is the analytical calculation of the optimal switching tables. This
is possible only in the extremely special case ofN = 1 switch, because it descends
straightforward from the solution of the Lyapunov equation, defined in A.3. We are
quite sure that there must be some methods, based on LMI applied to multiple Lya-
punov functions, that should solve this problem. A hint can be found in [26], however
the setup is not exactly coincident with ours. Furthermore we are interested in calcu-
lating all tables, while a Lyapunov based method at most gives the table of conver-
gence. Succeeding in this task is very significant, since it means that the procedure
may be easily applied to higher dimensional problems.

8.2.4 Analytical calculation of the residual cost

From Chapter 4 on, while applying the STP, a recursive procedure, at stepk we
always encountered the problem of estimating the optimal residual cost, obtained
numerically at stepk − 1, from a pointx and given modei. It would be extremely
useful to have ananalyticalexpression of the residual cost whenever more than one
switch is still available. This would not only reduce the computational time of the
procedure, but it may also gain in precision, because of a reduction of the error prop-
agation. Note that this step has been partially done by considering an approximation,
via linear spline interpolation, of the value of the cost in a point with the surround-
ing values in the discretization points. This is described in Appendix C.2. Finally we

2For example, Sun, in [109], calculates the stabilizing convergence rate for the class of
switched triangular systems.
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have the feeling that this issue and the one deployed in the previous Subsection 8.2.3
must be somehow related.

8.3 Future research interest

Here we will briefly describe how the STP can be further extended, and in addition
some of my personal research interest are listed.

8.3.1 Stabilizability and optimal control of hybrid automaton

A natural extension fills agap contained in this thesis. In fact we considered opti-
mal control withfinite number of switches for switched systems in Chapter 4 and
for hybrid automata in Chapter 5. Then we consideredinfinite number of switches
for switched systems in Chapter 6. Consistently, the extension to the infinite number
of switches for hybrid automata is missing. This extension is still in progress and
some preliminary results have been submitted at the IEEE International Symposium
on Intelligent Control 2005 [33]. The possibility of performing an infinite number
of switches in presence of constraints on the state space may cause the activation
of undesirable behaviors such asblockingor Zenoness. Hence, before extending the
STP to this case we considered important to set ahead a procedure that guarantees
the livenessof the hybrid automaton. Briefly it consists in the design of a stabilizing
switching table, for an unstable hybrid automaton, thatavoidsobstacles, i.e., for-
bidden regions of the state space. Here, rather than performing the calculations in
continuous time, we passed to discrete time systems, which has been a necessary
condition for the synchronization of the two approaches. However original and inter-
esting the results are not, in our opinion, complete. In fact a structural criterion that
permits us to conclude the existence of a stabilizing switching table is still missing.

8.3.2 Optimal quantized control

Another interesting extension is offered by the fact that we always considered au-
tonomous dynamics. This may be considered too restrictive in many applications,
hence we would be interested in building the feedback optimal control law for a non
autonomous switched system, namelyẋ = Ai(t)x + Bi(t)u, whereu ∈ Rm is a
continuous control input. In these cases two controllers may be active: the switch-
ing signali(t) and the continuous actionu(t). As it is, the problem appears com-
plex, hence we recently started to consider restrictive cases. In particular, as a first
step, we abandoned theswitched systemand considered aquantized, see, among
many others, [73, 92], discrete time single input optimal control problem of the form
x(k + 1) = Ax(k) + Buj(k), whereuj ∈ {u1, u2, . . . , us} is a finite set of
quantized inputs. The optimal control problem is a classical discrete LQR, with the
additional constraint thatu is quantized and bounded. Note that this problem is, to
an extent, a particular affine system, hence the STP should be applicable straightfor-
wardly. The numerical results, although very close to those obtained by Borrelliet
al. [55] via model predictive control methods, present strong numerical disturbances.

8.3.3 Extensions of the result to classes of non linear vector fields

The STP was explicitly designed for linear switched systems. However there are sev-
eral interesting non linear problems that may be considered. In this case the proce-
dure would not work properly, but there might be some classes of non linear switched
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systems in which the procedure may still be applicable. Another theoretical develop-
ment may be to approximate a non linear vector fields with a linear switched systems
and then exploit the STP to design a suboptimal control law for the original non lin-
ear problem.

8.3.4 Extensions of the result to classes of uncertain switched systems

Currently we are also interested in developing algorithms to synthesize control laws
for switched or more generally hybrid systems in presence of uncertainties. This
might appear both in the model parameters, often affected by measurement distur-
bances or time variational as well as in the non deterministic occurrence of a discrete
event. We believe that results in this field would be relevant to physical applications.





A

The linear quadratic optimal control

We will recall here the fundamental theoretical results of thelinear quadratic optimal
control. These results are taken from [44].

A.1 LQR feedback control law: the Riccati equation

Given an LTI system of the form

ẋ(t) = Ax + Bu

and a quadratic performance index

J(t) =
∫ T

t

(x′(τ)Qx(τ) + u′(τ)Ru(τ)) dτ, (A.1)

Q, R symmetric and semi definite positive, we seek for a suitablegain matrixK,
such that indexJ(t) is minimized whenever

u(t) = −Kx(t).

By defining
Ac , A−BK,

(closed loop system) we have

x(τ) = Āc(τ − t)x(t),

and substituting in (A.1) we obtain

J(t) = x′(t)
∫ T

t

(
Ā
′
c(τ − t)(Q + K ′RK)Āc(τ − t)

)
dτx(t) = x′(t)Z(t, T )x(t),

(A.2)
Z(t, T ) symmetric.

By definition of integral

J̇ = −x′(τ)Lx(τ)|τ=t = −x′(t)Lx(t)

with L = Q + K ′RK, and from direct derivation of (A.2) we have

J̇ = ẋ′(t)Z(t, T )x(t) + x′(t)Z(t, T )ẋ(t) + x′(t)Ż(t, T )x(t)
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and beingẋ(t) = Acx(t) we obtain

J̇ = x′(t)
(
A′

cZ(t, T ) + Z(t, T )Ac + Ż(t, T )
)

x(t).

Hence
A′

cZ(t, T ) + Z(t, T )Ac + Ż(t, T ) = −L. (A.3)

It can be proved thatJ(t) is minimized provided that

K = R−1BZ(t, T ).

This particular gain, substituted in (A.3) yields (after trivial passages) to

AZ(t, T ) + Z(t, T )A + Ż(t, T )−Z(t, T )BR−1BZ(t, T ) = −Q (A.4)

known as theRiccatiequation.
The Riccati equation, integrated with terminal conditionZ(T, T ) = 0, gives the

state feedback optimal control lawu(t) = −K(t)x(t) for t < T .

A.2 LQR feedback control law: steady state solution

Consider the infinite time horizon, i.e.

J(t) = lim
T→∞

∫ T

t

(x′(τ)Qx(τ) + u′(τ)Ru(τ)) dτ = lim
T→∞

x′(t)Z(t, T )x(t).

(A.5)
If the value ofJ(t) is limited thenZ(t, T ) will converge to a constant matrixZ, and
eventuallyŻ(t, T ) → 0.

In this case the equation (A.3) becomes

A′
cZ + ZAc = −L, (A.6)

that yields to thealgebraic Riccati equation, ARE,

A′Z + ZA−ZBR−1B′Z = −Q (A.7)

wheneverK = R−1BZ.
If the control action is chosenu(t) = −Kx(t) then the function (A.5) is mini-

mized.
Let us report here for completeness two sufficient conditions for the uniqueness

of the solution, relevant in most of the applications.

Theorem A.1 If the system is asymptotically stable (AS), then the ARE(A.7) has a
unique positive definite solution that minimizes(A.5). ¥

Theorem A.2 If the system(A, B) is controllable, and the couple(A,C), with C
any orthogonal decomposition ofQ, i.e., C ′C = Q, then the ARE(A.7) has a
unique positive definite solution that minimizes(A.5). ¥
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A.3 Evaluation of the LQ cost in the autonomous case

Let us now show a crucial result in the theoretical and implementative aspects of the
STP.

Theorem A.3 (Value of the finite time horizon cost for autonomous system)Given
a LTI system of the forṁx = Ax and a matrixQ ≥ 0 then the cost of a trajectory

J(t) =
∫ T

t

x′(τ)Qx(τ) dτ (A.8)

is equal to

J(t) = x′(t)
[
Z − Ā

′(T − t)ZĀ(T − t)
]
x(t),

whenever the Lyapunov equationA′Z + ZA = −Q admits a unique solution.
¤

Proof. By the Lyapunov equationA′Z + ZA = −Q,

J(t) = −
∫ T

t

x′(τ)(A′Z + ZA)x(τ) dτ

and beingẋ(τ) = Ax(τ),

J(t) = −
∫ T

t

ẋ′(τ)Zx(τ) + x′(τ)Zẋ(τ) dτ.

Evidently the last equation can be expressed as

J(t) = −
∫ T

t

dx′(τ)Zx(τ)
dτ

dτ = −x′(τ)Zx(τ)|T
t

= x′(t)Zx(t)−x′(T )Zx(T ),

(A.9)
hence

J(t) = x′(t)
[
Z − Ā

′(T − t)ZĀ(T − t)
]
x(t),

becausex(T ) = Ā(T − t)x(t). ¥

Note that the cost is aquadraticfunction of the initial state and of the measure
of the time interval.

Moreover we can state the following corollary.

Corollary A.1 (Value of the infinite time horizon cost for autonomous system).
Given a LTI system of the forṁx = Ax, with A strictly Hurwitz, and a matrix
Q ≥ 0 then theinfinite time horizon costof a trajectory

J(t) = lim
T→∞

∫ T

t

x′(τ)Qx(τ) dτ (A.10)

is equal to
J(t) = x′(t)Zx(t),

whereZ > 0 is the unique solution of the Lyapunov equationA′Z + ZA = −Q.
¤
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Proof. From Theorem A.1 the Lyapunov equation, the special case of equation (A.6)
whenR = B = 0, admits a unique positive definite solution. Furthermore from
Theorem A.3 we have

J(t) = lim
T→∞

∫ T

t

x′(τ)Qx(τ) dτ = lim
T→∞

x′(t)Zx(t)−x′(T )Zx(T ) = x′(t)Zx(t).

In fact, beingA strictly Hurwitz,

lim
T→∞

x(T ) = 0.

¥

Remarks:

• the Lyapunov equation (A.9) is the special case of equation (A.6) whereB =
R = 0;

• if A is Hurwitz the infinite time horizon cost is a quadratic function of the initial
state and of the unique solutionZ > 0 of the Lyapunov equation;

• if A is non Hurwitz, then theinfinite time horizoncost is infinite.
• if A is non Hurwitz, then thefinite time horizoncost is finite, and it can be

calculated from Theorem A.3, provided that the Lyapunov equation has a unique
solution (but not necessarily positive definite)1;

• in all cases the cost is a quadratic function of the initial state and, in the finite
time horizon cases it is a function of the measure of the time interval.

1If all the real parts of the eigenvalues ofA have the same sign then the Lyapunov equation
admits a unique solution.
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Computation of the performance index

The piecewise LQR problems presented in this thesis required to calculate the fol-
lowing integral: ∫ δ

0

x′(t)Qx(t)dt

subject toẋ = Ax+f . It can be shown that for any initial statex0 = x(0), it holds

∫ δ

0

x′(t)Qx(t)dt = x′0Q̄(δ)x0 + c̄(δ)x0 + ᾱ(δ)

where

Q̄(δ) =
∫ δ

0

Ā
′(t) Q Ā(t)dt,

c̄(δ) = 2f ′
∫ δ

0

(∫ t

0

Ā
′(τ)dτ

)
Q Ā(t)dt,

ᾱ(δ) = f ′
[∫ δ

0

(∫ t

0

Ā
′(τ)dτ

)
Q

(∫ t

0

Ā(t)dτ

)
dt

]
f

In general cases it is not easy to provide analytical expressions forQ̄(δ), c̄(δ),
andᾱ(δ), thus numerical integration is needed. On the contrary, under appropriate
assumptions onA andf , these analytical expressions can be easily determined. As
an example, let us consider the following two cases.

• AssumeA is strictly Hurwitz andf = 0. In such a case

Q̄(δ) = Z − Ā
′(δ)ZĀ(δ),

c̄(δ) = 0,
ᾱ(δ) = 0,

whereZ is the unique solution of the Lyapunov equationA′Z + ZA = −Q.
The same computation is valid when the eigenvalues ofA are all unstable.

• Assume thatA is diagonalizable. In such a case,A = T−1ΛT , whereΛ =
diag{λ1, . . . , λn} andλj , j = 1, . . . , n are the eigenvalues ofA. We obtain:

Q̄(δ) = T ′
(∫ δ

0

Λ̄(t)(T−1)′ Q T−1Λ̄(t)dt

)
T ,

c̄(δ) = 2f ′ T ′
[∫ δ

0

(∫ t

0

Λ̄(τ)dτ

)
(T−1)′ Q T−1Λ̄(t)dt

]
T ,

ᾱ(δ) = f ′ T ′
[∫ δ

0

(∫ t

0

Λ̄(τ)dτ

)
(T−1)′ Q T−1

(∫ t

0

Λ̄(τ)dτ

)
dt

]
T f ,
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and it is straightforward to symbolically compute the integrals exploiting the simple
form of the exponential diagonal matrix.



C

Issues on state space discretization

C.1 Discretization ofn dimensional unitary semisphereΣn

The main computational effort in the construction of the switching tables is the dis-
cretization of the state space. There are several ways to discretize the state space and
it is important to identify the best one case by case.

An unappropriate discretization of the state space can provoke explosions in the
computational time and in terms of needed resources. Note that the most intuitive
one (i.e., the cartesian grid) is not always the better idea. In some cases a polar
discretization (evidently when the homogeneous property holds) is more suitable.

We provide in the following the first step to construct the relation between polar
and cartesian system inRn. Then polar coordinates are composed of 1 radiusρn

andn− 1 anglesθ2, . . . , θn. Given a pointx = [x1, x2, . . . , xn]′, such relation is




xn = ρn sin(θn)
xn−1 = ρn−1 sin(θn−1)
...
x3 = ρ3 sin(θ3)
x2 = ρ2 sin(θ2)
x1 = ρ2 cos(θ2)

whereρn = ‖x‖, ρi = ρi+1 cos(θi) for i = n− 1, . . . , 2. To describeRn, variables
must range in:ρn ∈ [0, +∞), θ2 ∈ [0, 2π), andθ3, . . . , θn ∈ [−π

2 , π
2 ]. To

describeΣn we chooseρn = 1, θ2 ∈ [0, 2π) θ3, . . . , θn−1 ∈ [−π
2 , π

2 ), and
θn ∈ [0, π

2 ].
Note that a uniform discretization for each angle brings to areas with high density

of points (think of the grid on the earth surface at the poles), as it can be seen in
Figure C.1. This aspect is useless: there is no need at all to increase the density
around a point. InR3 one may suggest to take the vertexes of a regular polyhedron,
such as hexahedron, octahedron, dodecahedron, icosahedron, but these ones at most
contain 20 points. Moreover there is no further method for higher dimensions. Thus
we provide an approximation, named asconstant arc length.

An approximately equal spaced grid can be obtained with a reduced number of
points using the following criterion, that provides constant arc length.

As an example, assumen = 4. Let us callθ4 = ξ, θ3 = ϕ andθ2 = ϑ.

1. Define nominal values of discretizationNϑ, Nϕ, Nξ; sinceϑ ∈ [0, 2π), ϕ ∈
[−π

2 , π
2 ) andξ ∈ [0, π

2 ] we chooseNϑ = 2Nϕ = 4Nξ proportional to the
respective range of each variable;
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Fig. C.1.Uniform discretization ofΣ3. Observe that the density of point is not uniform when
approaching the North pole.

2. discretizeξ uniformly, i.e.,ξi = i π
2Nξ

, i = 0, · · · , Nξ;

3. denoted by round(·) a function that approximates to the closest integer, for every
ξi defineN̄ϕ = round(Nϕcos(ξi)) and discretizeϕ uniformly, i.e.,ϕj = −π

2 +
j π

N̄ϕ
, j = 0, · · · , N̄ϕ − 1;

4. for every ξi andϕj defineN̄ϑ = round(Nϑcos(ξi)cos(ϕj)) and discretizeϑ
uniformly, i.e.,ϑk = k 2π

N̄ϑ
, k = 0, · · · , N̄ϑ − 1;

With such criteria we obtain a grid ofN ∼= NξNϕNϑ

3 .
A geometrical representation can be given inR3. In this case thezenithangleϕ

is divided intoNϕ uniform samples. For each value ofϕ we obtain adisc (parallel
to the equator), whose radius is evidentlyR = sin(ϕ). We divide the equator disc
(R = 1) into Nϑ sectors and then all the others are divided in such a way that the arc
length is constant and equal to the biggest. The number of points on each disc will
then decrease as the latitude increases.

In Figure C.2 we reported, as an example, the aerial view of the discretization
along each parallel disc in a case where the zenith interval is divided in 3 sectors (0,
π
6 , π

3 , respectively).

Fig. C.2. Discretization of the parallel discs ofΣ3 according to the criteria of constant arc
length.
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C.2 Interpolation of the value of the cost

The algorithm of the tables construction is based on the calculation of a function
Tk, k is the number of available switches, in each point of a space discretization
gridD. This value is obtained by the sum of the cost with the current dynamics and
the residual optimal costT ∗k−1 in a pointx that in general does not belong to the
discretization set. Unfortunately onlyT ∗k−1(xi) is available, thus we approximate
T ∗k−1(x) with the values of the points ofD aroundx.

The simplest approach is the nearest neighbor policy, i.e.,T ∗k−1(x) ' T ∗k−1(xi),
wherexi is the nearest (in the Euclidean sense) point tox. We describe here another
approach, that was successfully used in the STP of the fourth dimensional case. It
should be remarked that both approaches are valid only if the functionsT ∗k−1(x) are
continuous.

To contain the level of discretization and to guarantee an acceptable accuracy on
T ∗k−1(x), an interpolation criteria is required. When a pointx isn’t in the grid, we
consider the residual optimal cost valuesT ∗k−1 in H points of the grid aroundx,
namelyx1, . . . , xH . For example, we report a picture of the discretizationD onΣ2

(Figure C.3) andΣ3 (Figure C.4).

R=1

x2

x1

∆θ

 

Fig. C.3.Spherical discretization pattern inR2.
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Fig. C.4. Neighborhood of the pointx on Σ3. Note that the number of points of the closest
neighborhood is at most equal to 4.
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Let us observe that in general, inΣn, the number of pointsH aroundx is equal
to 2n−1. If a cartesian grid is used, this number is equal to2n.

In this framework let us definedi = ‖x− xi‖−1
, i = 1 . . . H. An estimation

of the value ofT ∗k−1(x) can be obtained by the average of the values ofT ∗k−1(xi),
i = 1, . . . , H, weighted with the reciprocal distance from the given pointx.

T ∗k−1(x) =

H∑

i=1

diT
∗
k−1(xi)

H∑

i=1

di

.

From a geometrical point of view, this is equivalent to substitute the function
with the hyperplane (named asspline) that passes in all the points(xi, Tk−1(xi)),
i = 1, . . . ,H. This approximation was considered better than the nearest neighbor
policy. In fact it can be proved [27] that the error on the estimation of the functionT ,
in a one dimensional discretization, is proportional to∆2, where∆ is the parameter
of the grid. As a disadvantage, this interpolation introduces more calculations. Note
that in the one dimensional manifold (like onΣ2) this is a "linear interpolation", as
it can be seen in Figure C.5.

 

xi xi+1 x 

T(xi) 

T(xi+1) 

T(x) 

x 

T(x) 

Nearest  
Neighbor 

Linear  
Interpolation 

Fig. C.5.Linear interpolation and nearest neighbor method for the estimation of the value of
the residual costT in a point that does not belong to the discretization. This one dimensional
case also holds inR2 if the sampling alongΣ2 is sufficient.
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The l-complete approximation

We provide here the approach, developed byRaisch et al.that converts the specifica-
tions1 on the dynamical behavior of the outputs signals of a hybrid automatonHA
into constraints on the state space.

These constraints can be considered invariants, i.e.,invi ⊆ Rn where the state
spacex must remain when evolving in locationi.

Some constraints on the admissible state trajectory can be expressed via a discrete
automaton that is based on a partition of the state spaceX ⊂ Rn. To each element
of this partition we associate an output signalYd. A discrete automatonSPY is used
to restrict the set of the admissible sequences of output signals.

In the following we callsafety constrainsthe constraints that originate from the
structure of theHA, and the constraints on the output sequences given by the discrete
automatonSPY . An example of this specification will be given in Section 5.5.2.

The low-level step consists in the definition of the invariant sets that guaran-
tee that the discrete output sequences obey an imposed specification modelled by
a discrete event automatonSPY . The resulting hybrid automaton does not posses
blocking states, i.e. it guarantees the liveness of the overall system. The resulting
system is considered as an input for the top-level optimization procedure.

The hybrid plant model is converted to a purely discrete one via the l-complete
approximation approach [95, 83]. Subsequently, Ramadge and Wonham’s supervi-
sory control theory [96] is implemented to synthesize a least restrictive supervisor.
If the hybrid plant is interpreted as a hybrid automaton, attaching the supervisor is
equivalent to adding invariants to this automaton.

D.1 Ordered set of discrete abstractions

Let us now restrict our attention to the class of switched affine systems that evolve in
discrete time and generate discrete-valued outputs. The sampling interval is denoted
by ∆t. Furthermore we assume that all processes in our overall system are synchro-
nized (i.e. they operate on a common time scale). The model of the plant is then
described by the set of time-invariant difference equations

x(tk+1) = fψ(tk)(x(tk)),

yd(tk+1) = qy(x(tk+1))
(D.1)

1Some typical specifications on the dynamical behavior of aHA are for instance thesafety
and theliveness.
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wherek ∈ N0 is the time index,tk ∈ T = {k∆t}k∈N0 ; x ∈ X ⊂ Rn, {fψ(i)(x) =
Aix + bi : ψ(i) ∈ Ψ} is a family of affine state transition maps fromX into Rn

that is parameterized by some finite index setΨ = {ψ(1), . . . , ψ(α)}; ψ : T → Ψ is
a switching signal which can be interpreted as a discrete control input.

yd ∈ Y Td is a discrete-valued measurement signal. The set of output symbols,Yd,

is assumed to be finite:Yd = {y(1)
d , . . . , y

(β)
d }, andqy : X → Yd is the output map.

Without loss of generality, the latter is supposed to be surjective (onto). The output
map partitions the state space into a set of disjoint subsetsY (i) ⊂ X, i = 1, . . . , β,
i.e.

β⋃
i=1

Y (i) = X,

Y (i) ∩ Y (j) = ∅ ∀i 6= j .

To implement supervisory control theory, the hybrid plant model is approximated
by a purely discrete one. This is done using the method ofl -complete approximation
[95, 83], which is described in the following paragraphs.

Denote the behavior of the hybrid plant model byBplant, i.e.Bplant ⊆ (Ψ×Yd)T

is the set of all pairs of (discrete valued) input/output signalsw = (ψ, yd) that (D.1)
admits. In general, a time-invariant system with behaviorB is calledl-complete if
w ∈ B ⇔ σtw|[t0,tl] ∈ B|[t0,tl] ∀t ∈ T, whereσ is the backward shift operator and
w|[t0,tl] denotes the restriction of the signalw to the domain[t0, tl] [116]. Hence, for
l-complete systems we can decide whether a signal belongs to the system behavior by
looking at intervals of lengthl. Clearly, anl-complete system can be represented by a
difference equation in its external variables with lagl. The hybrid plant model (D.1)
is, except for trivial cases, notl-complete. For such systems, the notion ofstrongest
l-complete approximationhas been introduced in [83]: a time-invariant dynamical
system with behaviorBl is called strongestl-complete approximation forBplant if

(i) Bl ⊇ Bplant,
(ii) Bl is l-complete,
(iii) Bl ⊆ B̃l for any otherl-completeB̃l ⊇ Bplant,

i.e. if it is the “smallest”l-complete behavior containingBplant. Obviously,Bl ⊇
Bl+1 ∀l ∈ N, hence the proposed approximation procedure may generate an ordered
set of abstractions. Clearly,w ∈ Bl ⇔ w|[t0,tl] ∈ Bplant|[t0,tl]. For w|[t0,tl] =
(ψi0 , . . . , ψil , yi0

d , . . . , yil

d ) this is equivalent to

f
ψ(il−1)

(
. . . fψ(i1)

(
fψ(i0)

(
q−1
y (y(i0)

d )
)
∩

(
q−1
y (y(i1)

d )
))

. . . (q−1
y (yi(l−1)

d )
)
∩ q−1

y (y(il)
d ) := X(w|[t0,tl]) 6= ∅.

(D.2)

Note that for a given stringw|[t0,tl], X(w|[t0,tl]) represents the set of possible
values for the continuous state variablex(tl) and that (D.2) does not depend on
ψ(il). For switched affine systems evolving on discrete timeT, (D.2) can be checked
exactly. For switched affine system evolving on continuous time and special classes
of nonlinear systems,X(w|[t0,tl]) can be safely over approximated, hence (D.2) can
be checked “conservatively” (e.g. [43, 84]). This will still lead to anl-complete ap-
proximation but, in general, not a strongestl-complete approximation.

As both input and output signal evolve on finite sets,Ψ andYd,Bl can be realized
by a (nondeterministic) finite automaton. In [95, 83], a particularly intuitive realiza-
tion is suggested, where the approximation state variable stores information on past
values ofψ andyd. More precisely, the automaton state set can be defined as
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Xd :=
l−1⋃

j=0

Xdj

where
Xd0 = Yd

and
Xdj = {(ψ(i0), . . . , ψ(ij−1), y

(i0)
d , . . . , y

(ij)
d )}

such that

∃ψ(ij) ∈ Ψ : (ψ(i0), . . . , ψ(ij), y
(i0)
d , . . . , y

(ij)
d ) ∈ Bl|[t0,tj ].

As the statesx(j)
d of the approximation realization are strings of input and output

symbols, we can associatex(j)
d with a set of continuous states,X(x(j)

d ), in com-
pletely the same way as in (D.2).

Note that the transition functionδ : Xd×Ψ → 2Xd follows immediately fromBl

and that we can associatey
(ij)
d as the unique output for each discrete statex

(j)
d ∈ Xd.

The resulting (non deterministic) Moore-automatonMl = (Xd, Ψ, Yd, δ, µ, Xd0)
with state setXd, input setΨ , output setYd, transition functionδ, output function
µ, and initial state setXd0 is then a realization ofBl. Note that the state ofMl is
instantly deducible from observed variables.

To recover the framework of supervisory control theory [96] as closely as pos-
sible, we finally convertMl into an equivalent automaton without outputs,Gl =
(X̃d, Ψ × Yd, δ̃, X̃d0), whereΨ represents the set of controllable events andYd the
set of uncontrollable events.

D.2 Specification and supervisor design

Safety requirements can often be formalized as a set of acceptable pairs of in-
put/output signals. In many applications we have independent specification behav-
iors for both inputs and outputs,BΨ ⊆ ΨT, BYd

⊆ Y Td , which are assumed to
be mΨ andmY -complete. They can hence be realized by finite automataSPΨ =
(SΨ , Ψ, δΨ , SΨ0) andSPY = (SY , Yd, δY , SY 0).

Yd

Yd

Yd

Yd
0

Yd
0

Fig. D.1.Specification for the outputs

The overall specification is then easily obtained by forming the shuffle product
of SPΨ andSPY (e.g. [22]),

SP = (S, Ψ ∪ Yd, δSP , S0)
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whereS = SΨ ×SY , S0 = SΨ0×SY 0. SP realizes the concurrent behavior ofSPΨ

andSPY .
Given an approximating automatonGl and a specification automatonSP , super-

visory control theory checks, whether there exists a nonblocking supervisor and, if
the answer is affirmative, provides a least restrictive supervisorSUP via "trimming"
of the product ofGl andSP . Hence the state set of the supervisor,XSUP , is a subset
of X̃ × S.

The functioning of the resulting supervisor is very simple. At timetk it "receives"
a measurement symbol which triggers a state transition. In its new statex

(j)
sup, it en-

ables a subsetΓ (x(j)
sup) ⊆ Ψ and waits for the next feedback from the plant. As shown

in [83], the supervisor will enforce the specifications not only for the approximation,
but also for the underlying hybrid plant model (D.1).

In the following, we will be interested in the special case ofquasi-staticspec-
ifications. To explain this notion, letpapp : XSUP → X̃ denote the projection of
XSUP ⊆ X̃ × S onto its first component. Ifpapp is injective, the specification au-
tomaton is called quasi-static with respect to the approximation automatonGl.

Proposition D.1.S is quasi-static with respect toGl if

l ≥ max(mΨ ,mY ). (D.3)

D.3 Closed loop model

We now interprete the hybrid plant model (D.1) as a hybrid automaton with locations
ψ(1), . . . , ψ(α) and attach the supervisorSUP . For the case of quasi-static spec-
ifications, each supervisor statepapp(x

(i)
sup) corresponds exactly to a statẽx(i)

d =
papp(x

(i)
sup) of the approximating automaton, which, in turn, can be associated with

a setX(x̃(i)
d ) = X(papp(x

(i)
sup)).

Attaching the supervisor to the hybrid plant automaton therefore boils down to
adding invariants to each location

inv(ψ(j)) =
⋃

i, papp(x
(i)
sup) ∈ X̃dl−1

ψ(j) ∈ Γ (x(i)
s )

X(papp(x(i)
sup)),

whereX̃dl−1 = Xdl−1 . Union of all invariants forms the refined, safe state space that
contains only safe points, i.e. points for which exists at least one sequence of control
symbols such that the resulted behavior satisfies the specification.

The resulting hybrid automaton is guaranteed to obey the specification but retains
degrees of freedom, which can be used in a separate optimal control layer.
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Software user-guide

This brief appendix aims to present some of the software packages, implemented
during this doctoral period at the University of Cagliari. This software was used to
obtain part of the results described in this thesis.

The software is implemented in MATLAB, version 6.0, Release 12. It can be
downloaded from

http://www.diee.unica.it/∼dcorona/thesis.html.
With the packageSTP2_corona.zipyou can:

1. Construct theswitching tablesfor aR2 hybrid automata, modelled in this thesis,
that provide the feedback switching law of the considered optimal control and
stability problem (Chapters 3,4,7) – Functionregions.m.

2. Visualize graphically these tables – Functionplot_tables.m.
3. Obtain the number of switches̄N (Chapters 6,7) where the convergence is

achieved. The convergence criterion has not been automatized, hence this de-
cision is up to the user, by direct visualization of the tables.

4. Simulate the use of the switching tables, in both cases ofN finite andinfinite –
Functionsimulation.m.

5. In addition an efficient general function that calculates the LQR cost from a
given initial point and for a given time interval is proposed – Functionindex.m.

Additionally with the packageSTP4_corona.zipyou can implement the STP in
R4. We decided to provide separate files because of the more complex data structure
in R4 compared toR2. The STP4 software guide is in Section E.5.

E.1 Function regions.m

This software is for two dimensional use, i.e., the state spacex ∈ R2. This implies
that matricesA, Q andJump are matrices of classR2.

The function receives in input the following data:

1. Thehybrid automata(dynamics, jumps, edges and minimum permanence time);
2. Theoptimal control problem(weight matrices and number of available switches);
3. The discretization data (Time and space discretization);
4. Eventually, to be used when you need to keep increasingN to meet convergence,

the previously calculated table.

Before proceeding further with the help of the software we provide the notion of
MATLAB matrix array.
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A matrix array is an array whose elements are matrices. A set of matrices
A1, A2, A3 can be collected in a unique data structure

>> A= {A1, A2,A3}

Each element is recalled with the typing of the required index within brackets{}.
For example, the command

>> A{1}

shows matrix elements ofA1. In general also matrices of matrices can be repre-
sented. For example

>> M = {M1,1, M1,2;M2,1, M2,2}

whereM i,j , i, j = 1, 2 are matrices. The command

>> M{2, 2}

shows matrixM2,2.

E.1.1 Initial use: no tables are calculated

At the MATLAB prompt type:

>> Table = regions(A,Q, G, Jump, d_min,Nϑ, τM , Nt, N)

where

INPUT

1. A is amatrix array1×s, s is the number of locations, that contains all dynamics
of the automaton. Note that the software, in this preliminary version,does not
have internal checkson the stability of each element, hence make sure that at
least one matrix of the arrayA is stable.

2. Q is amatrix array1 × s, that contains all weights in the LQR cost. Note that
all Q must benon negativedefinite.

3. G is a matrixs × s of edges. If there exists an arc from locationi to locationj
then set the elementG(i, j) = j, else setG(i, j) = 0. Note that in this context
there are no self-loops, hence setG(i, i) = 0.

4. Jump is amatrix arrays × s of switching jump matricesJump{i, j}. In case
of continuous state setJump{i, j} = eye(2).

5. d_min is a row vector that contains the minimum permanence times in each
location. Note that each element of this vector must be positive or null.

6. Nϑ is the number ofequallyspaced points on the unitary semisphere. Typical
values are 51, 71, 101, 151. You might prefer odd values in order to represent
the point on thex2 axis. Point 1 corresponds to[1, 0]′, point Nϑ+1

2 corresponds
to [0, 1]′, pointNϑ to [−1, 0]′.

7. τM maximum time exploration, in theory infinite. Note that an appropriate value
should be 4 or 5 times the slowest time constants of the stable matricesAi
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8. Nt number of points in the time exploration. Note that this number should be
coordinated withτM in order to obtain a fine enough time stepdt = τM

Nt
. Unless

A’s have high frequencies modes, values betweendt = 10−2, 10−3 are accept-
able.

9. N number of allowed switches.

Remark E.1 (Stabilization usage)If you are aiming to use the software to design
a table thatstabilizesa switched system where all dynamics are unstable, make sure
the following:

1. Insert in the matrix arrayA a stable dynamicsA{s+1}, typically, a good choice
is to take one of the unstable dynamics (with all positive real parts eigenvalues)
with opposite sign. Rotating stable dynamics are observed to behave better.

2. Insert in the matrix arrayQ an extremely expensive positive definite matrix.
Good examples1 are

>> Q{s + 1} = 1e10 ∗ eye(2).

3. The matrixG must be complete, i.e., all its terms out of diagonal are non null. If
a switched system (augmented) of three locations is considered then

G =




0 2 3
1 0 3
1 2 0


 .

4. All Jump matrices are the identity.

¥

OUTPUT

The calculations may be long, hence a sequence of dots are visualized to confirm
that the software is effectively running. Eachcarriage returnin the line of dots in-
dicates that a new locationi is being processed, hence the tableCi

k is in progress of
construction.

In the end the lines of dots will be(N+1)×s, wheres is the number of locations.
The data, residual cost and color from each point of the unitary semisphere and

for each dynamics, is collected in a matrix arrayTable. The data structure requires
further explanations.

• Table{k}, k = 1, . . . , N +1, contains the information relative tok−1 remaining
switches. For exampleTable{3} contains the residual cost and the color from
each point of the semisphere, when 2 switches are left. HenceTable{N + 1} is
the last calculated one, forN available switches. The command

>> Table

lists this matrix array.
• Each element ofTable, Table{k}, is a matrix ofs rows and2Nϑ columns. In

other words each rowi, i.e., the current dynamics, is a vector of2Nϑ elements.
This should be seen as a list ofNϑ couples, (a couple per point of the discretiza-
tion) where theoddelement is the residual cost, and the evenelementis an integer
j = 1, . . . , s that indicates the switching strategy.

1MATLAB exponential number notation.
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Example E.1 Assume thatNϑ = 101, N = 10 ands = 4. Then the element

>> Table{k}(i, 2h− 1)

contains the residual cost whenk − 1 switches are left, from locationi and from
point indexedh = 1, . . . , Nϑ on the semisphere, and

>> Table{k}(i, 2h)

contains the location index where it is optimal to switch. ¥

Remark E.2 It is a good habit, when the functionregion.m has terminated, to save
the data by running the MATLAB command

>> save < file_name > Table, A, Q,G, Jump, d_min,Nϑ, τM , Nt, N

that stores the input and the calculated data in a file called< file_name >. To
load this file type the MATLAB command

>> load < file_name >

from the belonging directory.
¥

E.1.2 Iterative use: a set of tables are available

Use this modality when you want to keep calculating tables for increasing values of
N . More specifically: the program has constructed alreadyN tables,Tab. Probably
you want to calculateM = N + Ñ , without losing the previous effort.

Hence, at the MATLAB prompt type:

>> Table = regions(A,Q, G, Jump, d_min,Nϑ, τM , Nt,M, Tab)

where:

INPUT

All elementsmustbe the same as in the previous section, except the last two.

1. M : new number of allowed switches, greater then the previous one.
2. Tab is the set of tables previously calculated.

OUTPUT

See previous section.

E.2 Function plot_tables.m

This function prepares the data to plot the switching tables inR2.
We assume that the program region has been executed and a set of tables has

been calculated. At the MATLAB prompt type
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>> [X,Y, T ] = plot_table(Table);

The data stored inX,Y, T contains the information for the input of the MATLAB
built-in functionpcolor.

If you want to visualize the tableCi
k−1 (k − 1 switches are left from locationi)

then type

>> pcolor([X{k}; 0 0; 0 0], [Y {k}; 0 0; 0 0], [T{k, i}; 2 2; 1 1])

if the automaton has 2 locations,

>> pcolor([X{k}; 0 0; 0 0; 0 0], [Y {k}; 0 0; 0 0; 0 0], [T{k, i}; 3 3; 2 2; 1 1])

if the automaton has 3 locations,

>> pcolor([X{k}; 0 0; . . . ; 0 0], [Y {k}; 0 0; . . . ; 0 0], [T{k, i}; s s; . . . ; 1 1])

if the automaton hass locations.

Remark E.3 (Color mapping) The color associated to locationi is the color of
tableTable{1}(i, :) and you may visualize it with command

>> pcolor([X{1}; 0 0; . . . ; 0 0], [Y {1}; 0 0; . . . ; 0 0], [T{1, i}; s s; . . . ; 1 1]).

This command produces a disk with the color associated to thei− th location.
¥

E.3 Function simulation.m

From a given initial hybrid state(x, i) it is possible to use the tables, calculated by
functionregions.m, to calculate the optimal switching intervals, the optimal switch-
ing sequence, the optimal cost and the optimal trajectory.

At the MATLAB prompt type

>> [T, I, J,X] = simulation(A,Q, Jump, d_min, τM , Nt, x, i, Table, op, th);

where all input variables have been defined in Section E.1.1, except for

1. Table is the output of programregions.m;
2. op, a parameter so defined:
• op = 0, finitenumber of switches, uses all tables;
• op = 1, infinitenumber of switches, uses only the last calculated tables.

3. th is a terminating criterion on the norm of the continuous statex, usually values
th = 10−3, 10−4 are acceptable.

OUTPUT

The subroutinesimulation.moutputs the following data:

1. T is an array of the permanence time in each location;



180 Optimal control of linear affine hybrid automata

2. I is an array of the visited locations during the evolution;I(k) is the index of
the location whenk switches are available, whileT (k) is the time interval spent
in locationI(k).

3. J is the total cost of the evolution;
4. X is a sequence of pointsx that describes the evolution.

To sketch the plot of the evolution type the command

>> plot(X(1, :), X(2, :))

Example E.2 In Section 4.5.1 we implemented the switched system model of a ser-
vomechanism with gear box. We firstly run the functionregions.m with the given
numerical values, hence we simulated an evolution from the therein given initial
point. The functionsimulation.m exited the following numerical values:

1. T = [0.20, 0.20, 1.07, 2.53, 0.20],
2. I = [1, 3, 5, 6, 5, 3],
3. J = 4.75.

Note that the arrayT , the switching intervals, has been converted intoT ∗ that
expresses the switching instants in an absolute time scale.

In addition vectorX has been used to sketch the evolution depicted in Figure
4.8.

¥

E.4 Function index.m

This function serves to calculate the integral

J =
∫ %

0

x′(t)Qx(t)dt, (E.1)

subject toẋ(t) = Ax(t) andx(0) = x0.
Albeit not directly involved in the STP its usage is crucial for the described func-

tions. Moreover it is quite general, hence we decided to describe it better.
In this paragraphA, Q are general2 square matrices.
To calculate the value of the integral (E.1), we preliminary need to solve the

Lyapunov matrix equation. To this aim, at the MATLAB prompt, type

>> [Z, f lag] = lyap_mod(A′, Q)

that solves the Lyapunov matrix equationA′Z + ZA = −Q and returns aflag
whose value is

• −1 if Z does not exists or it is not unique;
• 0 if Z exists and the matrixA is Hurwitz;
• 1 if Z exists and the matrixA is non Hurwitz.

Theflag variable is needed because when it assumes the values0, 1 it is possible
to solve the integralanalytically, so gaining in precision and computational time. In
fact, as described in Appendix B, it holds

2Except forQ ≥ 0.
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J =
∫ %

0

x′(t)Qx(t)dt = x′0(Z − Ā
′(%)ZĀ(%))x0.

In caseflag = −1 then the Lyapunov equation has non unique or non existing
solution, hence the cost must be calculatednumerically. To this purpose we found
satisfactory the implementation of aconstant step trapezoidal method[27].

Now type

>> J = index(A, Q, x0, Z, f lag, %, dt)

wheredt is an appropriately chosen time interval, useful if the integral is calcu-
lated numerically.

Note that the call to functionlyap_mod.mmay be done inside the functionin-
dex.m, but in this case the computational time ofindex.m would increase. This is
undesirable, because this function is called byregions.mat leastNs2NϑNt times.

Similarly the execution of

>> J = index(A, Q, x0, Z, f lag)

calculates

J =
∫ ∞

0

x′(t)Qx(t)dt, (E.2)

subject toẋ(t) = Ax(t) andx(0) = x0. In this case the computation is simplified.
In fact it holds:

1. if flag = 0 thenJ = x′0Zx0;
2. if flag = −1, 1 then, immediately,J = +Inf .

E.5 Function regions4.m

Download the fileSTP4_corona.zipfrom
http://www.diee.unica.it/∼dcorona/thesis.html.
The functionmain is called regions4.m. It implements the STP in the fourth

dimensional case. Hence all dynamics and weight matrices are of classR4×4. For
this case we neglected the state jumps.

At the MATLAB prompt type

>> [Table, X] = regions4(A,Q, G, d_min,Nξ, Nϕ, Nϑ, N)

where the input dataA, Q,G, d_min,N have already been described in Section
E.1.1.

The input variablesNξ, Nϕ, Nϑ represent the discretization of the unitary semi-
sphere inR4. To have a better interpretation of these values see also C.1.

An appropriate choice of these values should beNϑ = 2Nϕ = 4Nξ, as it has
been motivated in Appendix C.1. In the example implemented in Section 6.7.6 we
choseNξ = 15. This choice leads to a discretization of8581 points, sparse inΣ4,
that was considered acceptable.



182 Optimal control of linear affine hybrid automata

OUTPUT

The calculations are long, hence a sequence of dots are visualized to confirm that the
software is effectively running.

The data, residual cost and switching strategy, from each point of the unitary
semisphere and for each dynamics, is collected in a matrix arrayTable, whose struc-
ture requires further explanations.

It is a matrix arrayTable{k}, k = 1, ..., N + 1.

• Table{k}, k = 1, . . . , N +1, contains the information relative tok−1 remaining
switches. For exampleTable{3} contains the residual cost and the color from
each point of the semisphere, when 2 switches are left. HenceTable{N + 1} is
the last calculated one, forN available switches. The command

>> Table

lists this matrix array.
• The elementTable{k + 1}(i, h, 1) is the residual cost from point indexed byh

(semisphere, seeX) and from locationi.
• The elementTable{k + 1}(i, h, 2) is the color mapping of point indexed byh

(semisphere, seeX) and from locationi.
• The data structureX is a matrix whose rows represent the polar angles of the

unitary semisphere inR4. HenceX(h, :) is a point inR4 in polar coordinates
and% = 1.

Remark E.4 It is a good habit, when the functionregion4.mhas terminated, to save
the data by running the MATLAB command

>> save < file_name > Table, X, A,Q, G, d_min,Nξ, N

that stores the input and the calculated data in a file called< file_name >. To
load this file type the MATLAB command

>> load < file_name >

from the belonging directory. ¥

E.6 Function simulation4.m

From a given initial hybrid state(x, i) it is possible to use the tables, calculated
by function regions4.m, to calculate the optimal switching intervals, the optimal
switching sequence, the optimal cost and the optimal trajectory.

At the MATLAB prompt type

>> [T, I, J,X1] = simulation4(x, i, d_min,A, Q, Table,X, Ncsi, dt, op, th)

where all input variables have been defined in Section E.1.1 and E.5, except for

1. Table, X are the output of programregions4.m;
2. dt represents the time step of the simulation, usuallydt = 10−3, 10−4 are effi-

ciently fine;
3. op, a parameter so defined:
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• op = 0, finitenumber of switches, uses all tables;
• op = 1, infinitenumber of switches, uses only the last calculated tables.

4. th is a terminating criterion on the norm of the continuous statex, usually values
th = 10−3, 10−4 are acceptable.

OUTPUT

The subroutinesimulation4.moutputs the following data:

1. T is an array of the permanence time in each location;
2. I is an array of the visited locations during the evolution;I(k) is the index of

the location whenk switches are available, whileT (k) is the time interval spent
in locationI(k).

3. J is the total cost of the evolution;
4. X1 is a sequence of pointsx that describes the evolution.

In this case the trajectory of the evolution has no geometrical interpretation. How-
ever it is possible to sketch each row of matrixX1, i.e.,X1(i, :), i = 1, 2, 3, 4 that
represents the time evolutionxi(t), with time stepdt.





F

Notation, Symbols and Acronyms

Unless differently specified, notation, symbols an acronyms used in this thesis have
the meaning detailed in the following tables.

F.1 Acronyms

Acronym Significance
AHA Autonomous Hybrid Automaton
ARE Algebraic Riccati Equation
AS Asymptotically Stable

CHA Constrained Hybrid Automaton
DE Differential Equation

DOF Degree Of Freedom
e.g. Latinexempli gratia
ES Exponentially Stable

GHA General Hybrid Automaton
HA Hybrid Automaton
HJB Hamilton Jacobi Bellman
HS Hybrid System(s)
i.e. Latin id est
IS International System of measurements

LMI Linear Matrix Inequality
LQ Linear Quadratic

LQR Linear Quadratic Regulator
LTI Linear Time Invariant
OC Optimal Cost
OP Optimal Control Problem
OS Operating System

PLC Programmable Logical Controller
RF Radio Frequency
S Switched System

SA Switched System of Arbitrary mode sequence
SF Switched System of Fixed mode sequence
STP Switching Table Procedure
wlg without loss of generality
wrt with regard to
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F.2 Units

All measurements, when omitted, are intended to be in the International System.
Angles are in radiants, angular velocity in radiants per second.

F.3 Notation

Symbol Significance
‖ · ‖ Norm2

| · | Absolute value if· is a scalar, Norm∞ if · is a vector
| · | Cardinality of a set
d·e Approximation to higher integer

Re(a) Real part ofa ∈ C
Im(a) Imaginary part ofa ∈ C
·′ Matrix transposition
·∗ Optimal result or argument
x Vectors arebold in small letter

xi, x(i) i-th element of vectorx
xi Particular vectorx
A Matrices arebold in capital letter

aij , a(i, j) i-th row,j-th column of matrixA
diag{a} Diagonal matrix whose main diagonal is the ordered vectora

N , λ Scalars
S Sets are in mathematical calligraphic

(with the exception of numerical sets such asN orRn)
{. . .} Environment where sets are defined or listed (if countable)

[x1, x2, . . . , xn] Row vector
, Definition via equation
≡ Equivalence for sets or elements of sets
∼= Approximated equality
∝ Proportional
≥ Greater or equal, for matrices semi-definite positive
≺ Smaller, for elements of a set, in a lexicographic ordering sense
∨ Logical OR
∧ Logical AND
! Singleton, uniqueness

iff If and only if ⇔
:, | Such that

< v1, v2 > Scalar, dot, internal, inner product betweenv1 andv2 of appropriate dimension
¥ Closes environments (theorems, definitions, algorithms and so on)
¤ Separates statements from proofs
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F.4 Symbols

Symbol Significance
t Continuous time
t0 Initial time
τ Time instant
% Time, as a variable
δ Time interval
n State space dimension

x(t) State space evolution inRn

ẋ(t), ẋ Time derivative inRn of vectorx
x Values of the state space inRn

xk, x(τk) Values of the state space inRn at timeτk

x(τ+) limt→τ+ x(t)
x(τ−) limt→τ− x(t)
y, y0 State space such that‖y‖ = 1
(x, i) Hybrid state, featured by a continuous term and a discrete term (indicating a location)

(x(t), i(t)) Hybrid evolution, featured by a continuous evolution
and a discrete evolution (indicating a sequence of location)

u(t) Continuous control input
i(t) Discrete control input
f Affine term ofẋ = Ax + f
A Linear dynamics
B Control matrix in state space representation of linear systemsẋ = Ax + Bu
Q Weight matrix forx, usuallyQ ≥ 0
R Weight matrix foru, usuallyR ≥ 0
K Proportional term for feedback optimal control of a LQR problem
J Performance index
H Switching cost
M State reset matrix

Ā(t) Exponential matrixĀ(t) = eAt

Q̄(t) Value of the integral
∫ t

0
x′(%)Qx(%)d%

f̄(t) Value of the integral
∫ t

0
Ā(%)fd%

In Identity matrix inRn

C Switching table: union of partitions of the state space
Ci

k Switching table of locationi andk switchesto be performed
Ci
∞ Switching table of locationi and missing∞ switches
C∞ Common switching table for∞ switches
Ri Partition of the state space with the color of the dynamicsAi

D Set of discretization points of the state space
L Set of locations
S Set of location indexes
E Set of edges
T Set of ordered switching instants
I Set of switching indexes
O Order of magnitude (especially used in computational complexity)
Σn Unitary semisphere inRn,

∑n
1 x2

i = 1 andxn ≥ 0
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64. H. Ishii, T. Başar, and R. Tempo. Synthesis of switching rules for switched linear systems
through randomized algorithms. InProceedings 42nd IEEE Conference on Decision and
Control, pages 4788–4793, Maui, Hawaii USA, December 2003.

65. K.H. Johansson, J. Lygeros, S. Sastry, and M. Egerstedt. On the existence and unique-
ness of executions of hybrid automata. InProceedings 38th IEEE Conference on Deci-
sion and Control, pages 2249–2254, Phoenix, Arizona USA, December 1999.

66. K.H. Johansson, J. Lygeros, S. Sastry, and M. Egerstedt. Simulation of zeno hybrid
automata. InProceedings 38th IEEE Conference on Decision and Control, pages 3538–
3543, Phoenix, Arizona USA, December 1999.

67. M. Johansson and A. Rantzer. Computation of piecewise linear quadratic Lyapunov
functions for hybrid systems.IEEE Transaction Automatic Control, 48(1):2–17, 2004.

68. H.K. Khalil. Nonlinear systems. Prentice-Hall, Upper Saddle River, New Jersey, third
edition, 2002.

69. D.E. Kirk. Optimal control theory: an introduction. Prentice-Hall, Englewood Cliffs,
N.J., 1970.

70. K.J. Kitching, D.J. Cole, and D. Cebon. Performance of semi-active damper for heavy
vehicles.ASME Journal of Dynamic Systems Measurement and Control, 122:498–506,
2000.

71. D.E. Knuth.The art of computer programming, Vol. 1. Addison-Wesley, second edition,
Reading, MA, 1973.

72. T. Kousaka, S. Tahara, T. Ueta, M. Abe, and H. Kawakami. Chaos in simple hybrid
system and its control.Electronic Letters, 37(1):1–2, 2001.

73. D. Liberzon. Hybrid feedback stabilization of systems with quantized signals.Automat-
ica, 39(7):1543–1554, 2003.

74. D. Liberzon and A.S. Morse. Basic problems in stability and design of switched systems.
IEEE Control Systems Magazine, 19(5):59–70, 1999.

75. D. Liberzon and R. Tempo. Gradient algorithms for finding common Lyapunov func-
tions. In Proceedings 42nd IEEE Conference on Decision and Control, pages 4782–
4787, Maui, Hawaii USA, December 2003.

76. B. Lincoln and B. Bernhardsson. LQR optimization of linear systems switching.IEEE
Transaction Automatic Control, 47(10):1071–1074, 2002.

77. B. Lincoln and A. Rantzer. Optimizing linear system switching. InProceedings 40th
IEEE Conference on Decision and Control, pages 2063–2068, Orlando, Florida USA,
December 2001.

78. B. Lincoln and A. Rantzer. Suboptimal dynamic programming with error bounds. In
Proceedings 41st IEEE Conference on Decision and Control, pages 2354–2359, Las
Vegas, Nevada USA, December 2002.

79. B. Lincoln and A. Rantzer. Relaxed optimal control of piecewise linear systems. In
Proceedings IFAC Conference on Analysis and Design of Hybrid Systems, pages 425–
430, St. Malò, France, 2003.

80. J. Lygeros. On the relation of reachability to minimum cost optimal control. InPro-
ceedings 41st IEEE Conference on Decision and Control, pages 1910–1915, Las Vegas,
Nevada USA, December 2002.
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