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PREFACE 

The spreading of the telecommunications market during the last decades has caused an 

increasing interest in the signal-processing field. In particular, the problem of signal storing 

and transmission pushes the birth of more and more sophisticated compression techniques and 

the continuous refinement of the already existing ones. In the mean time, the diffusion of the 

Internet causes an increasing development of refined image and video zooming methods, in 

order to guarantee a good quality in information transmission and to allow fast browsing and 

progressive image and video delivery. 

This thesis focuses on the use of the wavelet representation of signals in several applications, 

from still image compression to data transmission over real channels to video zooming. The 

purpose of the thesis is to show the potentiality of this representation, which, born and 

formalized in the late ‘80s, has rightly gained the interest of the signal processing community, 

till to be inserted in the new standards for visual communications, i.e. JPEG2000 and MPEG-

4. 

One of the main reason of the increasing popularity of this transform is its amazing similarity 

to the human visual system (HVS): the representation in different frequency bands at different 

scales (with different levels of details) is, as a matter of fact, peculiar to the behavior of the 

human eye. In fact, the wavelet transform is an intermediate representation between the 

spatial and the frequency representations and contains both their advantages. 

The rapid growth and development of wavelet representations have been caused and 

supported by several independent studies and discoveries. The idea of multiresolution was 

born out of the work done by Burt and Adelson [1] images obtained from any initial image by 

scaling it with a certain operator are related together by very simple causality relations. A 

disadvantage of such a representation is that it is not possible to know if a similitude among 

the details of an image at different resolution levels is a characteristic of the image itself or if 

it is due to the redundancy of the representation. Moreover, this representation does not 

introduce any selectivity in the spatial orientation during the decomposition process. The 

wavelet decomposition allows instead the separation of the informative content of the image 

itself along the different spatial orientations and at different resolutions. In [2] the possibility 

that the effects of the quantization noise could be limited by signal coding in the wavelet 

domain was discussed. Later on, in [3] the use of wavelets for image encoding was tested and 

it was shown how this approach could allow to take into account in a clever manner the 

characteristics of the HVS in order to render the quantization noise less annoying. Another 

important discovery for the development of these techniques is the one of the quadrature 

mirror filters (QMFs) [4], which allow signal decomposition and reconstruction without 

aliasing even if the filters are not ideal. The basic idea in the construction of the QMFs is the 

use of partially overlapping analysis and synthesis filters designed so that the aliasing is 

cancelled during reconstruction. 

The wavelet representation is strictly related to the idea of multiresolution: a signal at a given 

resolution (or scale) can be represented by its approximation at lower resolution and by the 

difference between this latter approximation and the initial one. Such difference is contained 

in the detail signal. Repeating the process till a fixed resolution, the wavelet representation of 

a signal is obtained as composed by its approximation at the lowest resolution and by the set 

of all the extracted detail signals. The same concept is used for example in pattern 

recognition: the vision system tries to classify an object by an approximation; if the 

classification fails, more details are added so that a more accurate vision of the relevant object 
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can be obtained. This procedure can be repeated till object recognition [5]. In mathematical 

terms, a multiresolution is composed by the projections of a function into different subspaces 

and each projection gives more and more precise details about the function. 

Multiresolution techniques are particularly suitable for images, since concepts as resolution 

and scale are rather intuitive. An important characteristic of these techniques is their property 

of successive approximation: as frequency increases, higher resolution images are obtained, as 

happens in the HVS. The decomposition into subbands itself, each of which relevant to a 

certain frequency band, corresponds to the classification of information more or less 

important for the HVS. Thus some subbands should be transmitted more accurately than 

others should and this permits the use of very efficient bit allocation techniques without 

compromising the quality of the reconstructed signal. Moreover, it is well known that the 

sensitivity of the HVS to the luminance decreases in the regions of the image with high-

contrast details. In these regions, large quantization errors cannot be perceived by the HVS. 

The human eye, as a matter of fact, behaves as a bidimensional lowpass filter and the highest 

spatial frequencies are non-perceptible and thus do not need to be encoded. 

The statistical properties of the wavelet coefficients, besides, are more useful than the ones of 

the original signal, allowing even a hard quantization without decreasing significantly the 

quality of the signal itself. The quantization in the frequency domain, as a matter of fact, 

permits the masking of the quantization errors during the reconstruction. 

The wavelet representation of a signal is also the core for some advanced digital transmission 

schemes. In particular, both linear and quadrature Fractal Modulation algorithm have been 

investigated in the past. 

The wavelet transform and some of its application in the signal-processing field are the 

subject of this thesis. It is divided into the following sections: 

The wavelet transform is introduced in the first chapter as a mathematical tool to represent a 

signal into a different domain than the original one. The wavelet representation of 

monodimensional signals is examined in paragraph 1.2, then the extension to the 

bidimensional case is taken into consideration in paragraph 1.3 and finally the case of 

multidimensional signals is described in paragraph 1.4. 

The use of the wavelet representation for data compression purposes is examined in the 

second chapter as regards pictorial data (paragraph 2.2) and remote sensing data (paragraph 

2.3). A clever exploitation of the statistical properties of the wavelet coefficients allows a hard 

adaptive quantization that permits to obtain high compression levels without perceptual or 

significant annoying artifacts in the reconstructed images. 

In chapter three, we present a performance analysis of fractal modulation transmission over a 

AWGN fast-fading channel. A quadrature transmission scheme is simulated and compared 

with frequently used transmission systems achieving better results in terms of error robustness 

and low complexity. 

The fourth chapter deals with wavelets and data zooming: data zooming is performed 

exploiting iterated function systems (I.F.S.), both in the spatial and in the temporal domain, in 

order to reconstruct the entire sequence by starting from some selected Key-Frames. The use 

of wavelet-based analysis allows a large decrease of time processing, as well as the opportune 

post-processing based on overlapped range blocks coding reduces blockness effects due to the 

fractal coding scheme. 

 

Finally some conclusions and further developments on the whole work are drawn. 
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Chapter 1  

MATHEMATICAL OVERVIEW 

1.1 Introduction 

The wavelet transform of a signal is a multiresolution orthogonal representation [1]: it is 

composed by the set of the signal approximations at several resolutions or, in an equivalent 

manner, by the approximation of the signal at a fixed resolution and the set of the detail 

signals. Each detail signal contains the difference of information between the approximations 

at two adjacent resolutions and can be extracted by decomposing the signal in an orthogonal 

wavelet basis. Such decomposition is obtained through a pyramidal algorithm and defines an 

orthogonal multiresolution representation named wavelet representation. 

The wavelet representation of a signal is thus composed by an approximation of the signal at J 

resolution and by the set of the detail signals that, for each resolution j<J, contain the 

differences between the approximations of the signal at resolution j and j+1. Such 

representation has the same number of data as the original signal and it is a reversible 

representation: the reconstruction of the signal from its wavelet representation is done through 

a pyramidal algorithm. 

The reversibility of the process is related to the use of a bank of quadrature mirror filters 

(QMFs) to perform the decomposition, since they allow the perfect reconstruction
1
 of the 

signal without distortions nor aliasing. 

The monodimensional model is easily extendible to multidimensional signals: the wavelet 

representation of a multidimensional signal is again composed by its approximation at 

resolution J and by the set of the detail signals that, for each resolution j<J, contain the 

differences between the approximations of the signal at resolution j and j+1. However, in the 

multidimensional case these signals differentiate themselves one from the other for the spatial 

orientation they privilege. 

The separable multiresolution approximations allow the decomposition of a multidimensional 

signal by applying the monodimensional method along each direction with the same QMFs. 

From this point of view the wavelet representation of a signal can be seen as its 

decomposition in a set of independent frequency channels, each of which is characterized by a 

particular spatial orientation. The independence of the frequency channels is guaranteed by 

the orthogonality of the representation. Again, the wavelet representation has the same 

number of samples as the original signal and it is a reversible transformation: the 

reconstruction of the signal is obtained starting from its wavelet representation through a 

pyramidal algorithm. 

                                                
1
 Actually, in order to obtain the perfect reconstruction of a signal, it should be necessary to represent the 

coefficients of its wavelet representation with an infinite precision 
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1.2 Orthogonal wavelet representations of monodimensional signals 

1.2.1 Multiresolution approximations of ( )RL2  

Let ( ) ( )RL2∈xf  be a monodimensional measurable and with finite energy signal and let j2
A  

be an operator approximating the signal at resolution j2 , characterized by the following 

properties: 

1. j2
A is a linear operator: if ( )xfj2

A  is the approximation of ( )xf  at resolution j2 , a 

successive approximation at resolution j2
 
does not modify ( )xfj2

A . ( )xfj2
A  is thus a 

projection operator on the vectorial space j2
V  in ( )RL2 , this space being the set of all the 

approximations of functions of ( )RL2  at resolution j2 . 

2. The function ( )xfj2
A  is, among all the functions that approximate ( )xf  at resolution j2 , 

the more similar to it, that is: 

 ( ) ( ) ( ) ( )xfxfxfxg j −≥−
2

A   ( ) jxg
2

V∈∀  (1.1) 

so the operator j2
A  is an orthogonal projection over the vectorial space j2

V . 

3. Causality property: the approximation of a signal at resolution 12 +j  contains all the 

information embodied in the approximation of the same signal at lower resolution. Since 

j2
A  is the orthogonal projection operator over the vectorial space j2

V , this property can 

be expressed in this way: 

 122 +⊂ jj VV   Z∈∀ j  (1.2) 

4. The operation of approximation is similar at all resolutions. The spaces of the 

approximated functions are obtained one from the other by scaling each approximated 

function according to the ratio between the resolution levels, that is: 

 ( ) jxg
2

V∈ ⇔ ( ) 12 +∈ jx2g V   Z∈∀ j  (1.3) 

5. The approximation ( )xfj2
A  is characterized by j2  samples per length unit. If ( )xf  is 

shifted by a length proportional to j−2 , also its approximation at resolution j2
 
is shifted 

of the same quantity and is characterized by the same shifted samples.  

For the causality property, it is sufficient to express the 5. at resolution j=0: 

- Approximation shifting: 

 ( ) ( )kxfxf k −= 11 AA  ( ) ( )kxfxf k −=with  Z∈∀k  (1.4) 

- Discrete characterization: there exists an isomorphism I  from 1V  to ( )ZI 2  with 

 ( ) ( )








∞<= ∑
+∞

−∞=
∈

i

Zii

22
: ααZI    (1.5) 

- Samples shifting: 

 ( )( ) ( )
Ziixf ∈= α1AI ⇔ ( )( ) ( )

Zki,kik xf ∈−= α1AI   (1.6) 
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By approximating a signal some information about the signal itself is lost, but as resolution 

tends to +∞ the approximated signal converges to the original one. Vice-versa, as resolution 

tends to 0, the approximated signal contains less and less information and converges to 0. In 

mathematical terms, since the signal approximated at resolution j2  is the orthogonal 

projection of the original signal over the vectorial space j2
V , this is equivalent to: 

 U
+∞

−∞=
∞→

=
j

22+j
lim jj VV dense in ( )RL2   and  0lim

+

-j=
22-j

==
∞

∞
∞→

I jj VV  (1.7) 

The set of all vectorial spaces ( )
Zj

j ∈2
V  that satisfy the properties (1.2)-(1.7) defines a 

multiresolution approximation of ( )RL2 .  

The set of all operators j2
A  that satisfy properties 1.-5. gives an approximation of any 

function in ( )RL2  at resolution j2 . 

An orthonormal basis for the set of vectorial spaces ( )
Zj

j ∈2
V , that allows the representation of 

any function in those spaces and therefore its multiresolution approximation, is given by the 

following theorem. 

Theorem 1.1 If ( )
Zj

j ∈2
V  defines an approximation of ( )RL2 , then there exists a unique 

function ( )xφ  in ( )RL2 , named scaling function, such that, being ( ) ( )xx jj
j 22

2
φφ =  its 

dilation by a factor of ( ) Zj

j

∈2 , the set ( )( )
Zn

nx
∈

− j-

2

j- 22 jφ defines an orthonormal basis of 

j2
V .  

It is then possible to obtain an orthonormal basis for each vectorial space j2
V  by scaling the 

corresponding scaling function by a coefficient j2  and shifting the resulting function by a 

factor proportional to j−2 . The multiplicative factor is inserted for normalization reasons. 

The scaling function has good localization properties in the time domain as well as in the 

frequency domain. This permits the construction of good orthonormal bases. 

Let now ( )xf  be the signal to be approximated at resolution j2 .  

As previously explained, this is the orthogonal projection of the signal over the space j2
V , and 

so it can be obtained by decomposing the signal through the basis provided by the previous 

theorem: 

 ( ) ( ) ( ) ( ) ( )nxnuf(u),xfxf
j

n

jj
jjj

−
+∞

−∞=

−− −−=∈∀ ∑ 222    
222

2 φφARL  (1.8) 

The approximation of the signal at resolution j2  is then defined by the set of scalar products: 

 ( )
Zn

jd nuf(u),f jj
∈

−−= 2
22

φA    (1.9) 

fd
j2

A  is the discrete approximation of ( )xf  at resolution j2 . 

Each scalar product can then be saw as a convolution product calculated in n
j−2 : 

 ( ) ( ) )2()(d )2()(2),(
2

+

-

22
nu*f(u)unuufnuuf

jjj
jjj

−
∞

∞

−− −=−=− ∫ φφφ  (1.10) 
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so fd
j2

A  can be written as: 

 ( )( )( )( )
Zn

jd
nu*f(u)f jj ∈

−−= 2
22

φA    (1.11) 

Since ( )xφ  is a low-pass filter, fd
j2

A  is a low-pass filtering of the signal followed by a 

uniform sampling with step j2 . So, by approximating the signal at resolution j2 , the details 

of the signal lower than j−2  are removed and the higher frequencies are deleted. 

 

1.2.2 Realization of a multiresolution representation  

For the causality property, from the discrete approximation of a signal at a given resolution all 

the discrete approximations of the signal itself at lower resolutions can be obtained. Let’s 

suppose, for normality reasons, that the maximum resolution at which a device can measure a 

signal is unitary. This means that all the discrete approximations fd
j2

A of a signal f  for each 

0<j  can be obtained from the measure of the signal itself. The following iterative algorithm 

can be used to calculate such approximations. 

Let ( )
Zj

j ∈2
V  be a multiresolution representation and let ( )xφ  be the corresponding scaling 

function. Since j2
V  is contained in 12 +jV  and the functions ( )( )

Zn
nx

∈
− -j

2
2jφ  belong to j2

V , 

these can be expanded through an orthonormal basis 12 +jV . Since for the theorem 1.1 

( )( )
Zk

kx
∈

− 1--j

2

1--j 22 1+jφ  is an orthonormal basis of 12 +jV , the above sentence can be so 

expressed: 

 ( ) ( ) ( ) ( )∑
+∞

−∞=

−−−−−−−− −−−=− ++

k

jjjjj
kxku,nunx jjjj

1

2

1

22

1

2
22222 11 φφφφ  (1.12) 

Through an easy change of variables, it can then be obtained: 

 ( ) ( ) ( ) ( )( )nku,uku,nu
jjj

jj 2222 11 2

1

22

1 −−=−− −+
−−−−− φφφφ  (1.13) 

By scalar multiplying ( )xf  for the two members of the (1.12), it is obtained: 

 ( ) ( ) ( )( ) ( )∑
+∞

−∞=

−−− −−−=− +−

k

1j

2

j
k2uff(u),n2ku,unuf(u), 1jj φφφ 122

2  (1.14) 

Let now H  be the discrete filter which impulsive response is given by: 

 ( ) ( )nu,u)n(h −= − φφ 12
  Zn∈∀  (1.15) 

and H
~

 the corresponding mirror filter with impulsive response ( ) ( )nhnh
~

−= . 

From (1.14) it follows: 

 ( ) ( ) ( )∑
+∞

−∞=

−−− −−=−= +

k

jd
kuf(u),knh

~
nuf(u),f jjj

1j

222
222 1φφA  (1.16) 

that is, fd
j2

A can be obtained by fd
j 12 +A  by convolution with H

~
 and downsampling by a 

factor of 2. All the discrete approximations of the signal ( )xf  at resolutions j−2 , with 0<j , 

can then be obtained from its approximation at resolution 1, by iteratively repeating this 

algorithm. This process is called pyramidal transformation. 
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As already said, an approximation at resolution j2  is characterized by N
j2  samples, being 

N  the number of the samples at unitary resolution given by the acquisition device.  

In order to avoid border effects, the original signal is supposed to be symmetrical with respect 

to 0=n  and Nn = , that is to say that the samples are: 

 








=

−

−

nN

n

n

n

2

1

α

α

α

α   

NnN

Nn

nN

2for 

1for 

1for 

<<

≤≤

<<−

   

As set out by theorem 1.1, if ( )
Zj

j ∈2
V  defines an approximation of ( )RL2 , then there exists a 

unique function ( )xφ  in ( )RL2 , named scaling function, such that, being )(22)(j2
xx jj φφ =  

its dilation by a factor of ( ) Zj

j

∈2 , ( )( )
Zn

nx
∈

− -j

2

-j 22 jφ  defines an orthonormal basis of j2
V . 

The scaling function characterizes then the corresponding multiresolution approximation. In 

figure 1.1 a scaling function and its Fourier transform are reported. 

Some conditions about regularity of such a function should be imposed:  

- continuity; 

- differentiability; 

- asinthotic behavior: 

 ( )2)( −= xOxφ  and ( )2)(' −= xOxφ   (1.17) 

 

0 5-5

0

1

0.5

( )xφ

x  
a) 

0 π−π

0

1

( )ωφ̂

ω
 

b) 

 

Figure 1.1 
The scaling function that characterizes Lemariè-Battle multiresolution  

approximation described in appendix A (a) and its Fourier transform (b) 

 

It holds also the following: 

Theorem 1.2 Let ( )xφ  be a scaling function and H  the filter with impulsive response 

( ) ( )nu,u)n(h −= − φφ 12
. If ( )ωH  is the Fourier series obtained by ( )nh , that is: 

 ( ) ∑
+∞

−∞=

−=
n

in
enh

ωω )(H    (1.18) 
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it satisfies the following properties: 

1. ( ) 10 =H  and ( )2)( −= nOnh  at ∞; 

2. ( ) ( ) 1
22

=++ πωω HH  

Vice-versa, if ( )ωH  is the Fourier series that satisfies the 1. and 2. and it holds: 

3. ( ) [ ]20,for    0 πωω ∈≠H  

then the function defined by:  

 ( )∏
+∞

=

−=
1

2)(
p

pˆ ωωφ H    (1.19) 

is the Fourier transform of the scaling function. 

The filters that satisfy the 2. are named conjugate filters. Given a conjugate filter that satisfies 

the three above properties, it is possible to calculate the Fourier transform of the 

corresponding scaling function by using the (1.19). The choice of the filter can be done so that 

scaling functions with good localization in the time and frequency domains can be found. 

Further information about conjugate filters and their synthesis can be found in [2], [3] and [4].  

 

1.2.3 The detail signal 

The difference of information between the approximation of the function ( )xf  at resolution 
12 +j  and that at resolution j2  is contained in the detail signal at resolution j2 . As already 

said, the approximations of a function at resolutions 12 +j  and j2  are the orthogonal 

projections of the function itself on the vectorial spaces 12 +jV  and j2
V  respectively. As 

defined, the detail signal at resolution j2  will be the orthogonal projection of the original 

signal on the orthogonal complement of j2
V on 12 +jV . Let j2

O  be such a space, so that: 

 j2
O  is orthogonal to j2

V    (1.20) 

 j2
O ⊕ j2

V = 12 +jV    (1.21) 

In order to find the detail signal at resolution j2  it is then necessary to find an orthonormal 

basis in j2
O . It can be shown that such a basis can be built starting from a function ( )xψ : 

Theorem 1.3 Let ( )
Zj

j ∈2
V  be a multiresolution approximation of ( )RL2 , ( )xφ  the 

corresponding scaling function and H  the corresponding conjugate filter. Let then ( )xψ  be a 

function which Fourier transform is: 

 )()()( 22
ωω φωψ ˆˆ G=  with )()( πωω ω += − HG j

e  (1.22) 

If ( )xjj
j 22

2
ψψ =  is the dilation of ( )xψ  by a factor of j2 , then: 

 ( )( )
Zn

nx
∈

− -j

2

-j 22 jψ  defines an orthonormal basis of j2
V   (1.23) 

 ( )( )
Z)j(n,

nx
∈

− j-

2

j- 22 jψ  defines an orthonormal basis of ( )RL2  (1.24) 
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( )xψ  is called wavelet. In figure 1.2 the wavelet corresponding to the scaling function in 

figure 1.1 and its Fourier transform are reported. 

It is then possible to find an orthonormal basis of j2
O  by scaling the corresponding wavelet 

by a factor of j2  and shifting it by a factor proportional to j−2 .  

 

0 5-5

0

1

-1

( )xψ

x  
a) 

0 2π−2π

0

1

( )ωψ̂

ω  
b) 

 

Figure 1.2 
The wavelet corresponding to the scaling function in figure 1.1 (a) and its Fourier transform (b) 

 

The wavelet decomposition of a signal is an intermediate representation between the Fourier 

and the spatial representations. Thanks to this double localization, in the Fourier and the 

spatial domains, it is possible to locally characterize the regularity of a function through the 

coefficients of its decomposition in an orthonormal wavelet basis. For instance, it is possible 

to determine the multiple differentiability of a function in a precise point starting from the 

velocity of asymptotical slope of its wavelet coefficients. For further information about the 

properties of the wavelet transform see [5]. 

Given a filter ( )ωH  that satisfies the theorem 1.2, it is therefore possible to calculate the 

Fourier transform of the corresponding orthonormal wavelet with (1.19) and (1.22). This 

process, however, does not guarantee that the scaling function and the corresponding wavelet 

have good properties regarding frequency separation and good time localization. The problem 

of finding good wavelet representations is still an open task. 

A consequence of the theorem 1.3 is that, if j
2OP  is the operator of orthogonal projection onto 

j2
O , the orthogonal projection of a function ( )xf  on j2

O  can be written in this way: 

 ( ) ( )nxnu,ufxf
j

n

jj
jj

j

−
+∞

−∞=

−− −−= ∑ 22)(2)( 
22

2

ψψOP   (1.25) 

)( 
2

xf
jOP  is then characterized by a set of scalar products: 

 ( )( )
Zn

j
nuf(u),f jj

∈

−−= 2 
22

ψD    (1.26) 

fj2
D  is the discrete detail signal of ( )xf  at resolution j2 . It contains the difference of 

information between the discrete approximation of ( )xf  at resolution 12 +j , fd
j 12 +A , and that 

at lower resolution, fd
j2

A .  
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Again, it can be easily shown that each of these scalar products corresponds to the 

convolution of ( )xf  with ( )xjj
j 22

2
ψψ =  calculated in n

j−2 , and then the discrete detail 

signal at resolution j2  corresponds to the uniform sampling of such convolution by a step j2 : 

 ( )( )( )( )
Zn

jd nu*uff jj ∈

−−= 2)(
22

φD   (1.27) 

Since the wavelet is a band-pass filter with band [ π2− , π− ]∪[π , π2 ], the detail signal can 

be interpreted as the result of the filtering of the original signal in the band [ π12 +−− j , πj−− 2 ] 

∪[ πj−2 , π12 +− j ]. 

It can be demonstrated by induction that the discrete original signal at unitary resolution is 

represented by the set: 

 ( ){ }
122

,
−≤≤−−

jJ

d
ff jJ DA   for each 0>J  (1.28) 

Such set of signals constitutes the orthogonal wavelet representation of the original signal 

( )xf , and defines the decomposition of the signal in a set of independent frequency channels. 

The independence of the bands is assured by the orthogonality of the wavelet functions. 

 

1.2.4 Realization of an orthogonal wavelet representation  

In order to find the wavelet representation of a signal a pyramidal algorithm is used. As in 

paragraph 1.2.2, it can be demonstrated that the detail signal at resolution j2  is obtained by 

convolution of the discrete approximation of the original signal at resolution 12 +j  with an 

appropriate filter. 

Since the function ( )nx
j

j

−− 2
2

ψ  belongs to the space 122 +⊂ jj VO , it can be decomposed in an 

orthonormal basis of 12 +jV , which, for the theorem 1.1, is constituted by 

( )
Zk

kx
∈






 − 1-j-

2

1-j- 22 1+jφ : 

 ( ) ( ) ( ) ( )∑
+∞

−∞=

−−−−−−−− −−−=− ++

k

jjjjj
kxku,nunx jjjj

1

2

1

22

1

2
22222 11 φφψψ  (1.29) 

As for (1.13), with a change of variables, it can be obtained: 

 ( ) ( ) ( ) ( )( )nku,uku,nu
jjj

jj 2222 11 2

1

22

1 −−=−− −+
−−−−− φψφψ  (1.30) 

Then, by scalar multiplying ( )xf  for the (1.29): 

 ( ) ( ) ( )( ) ( )∑
+∞

−∞=

−−− −−−=− +−

k

1j

2

j
k2uf(u),nku,unuf(u), 1jj φφψψ 22 122

 (1.31) 

Let now G  be the discrete filter which impulsive response is given by: 

 ( ) ( )nu,ug(n) 12
−= − φψ   Z∈∀ n  (1.32) 

and G
~

 the corresponding mirror filter with impulsive response ( ) ( )ngng~ −= . 

From (1.31) it can be found: 

 ( ) ( ) ( )∑
+∞

−∞=

−−− −−=−= +

k

jj
kuufkng~nu,uff jjj

1

222
2),(22)( 1φψD  (1.33) 
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that is to say that fj2
D  can be obtained from fd

j 12 +A  by convolution with G
~

 and 

downsampling by a factor of 2. 

The orthogonal wavelet representation of a discrete signal can be then obtained by iteratively 

decomposing its discrete approximations fd
j 12 +A  in fd

j2
A  and fj2

D  for 1−≤≤ jJ  with 

the described pyramidal algorithm. Figure 1.3 shows the basic step of the algorithm. 

 

fj2
D

H
~

G
~

2↓

2↓

f
d

j2
A

f
d

j 1
2

+A

 
 

Figure 1.3 
Decomposition algorithm 

 

The signal, as measured by the acquisition device, has a finite number of samples and, in 

order to avoid border problems, it is supposed to be symmetrical with respect to the first and 

the last samples. If N  is the number of samples of such signal, fd
j2

A  and fj2
D  have N

j2  

samples each and the wavelet representation ( ){ }
122

,
−≤≤−−

jJ

d
ff jJ DA  has the same number of 

samples as the original signal fd

1A , thanks to the orthogonality property. 

The energy of the samples of fj2
D  gives indications about the irregularity of the signal at 

resolution 12 +j : as a matter of fact, the detail signal fj2
D , as defined, has large amplitude if 

the approximations of the signal at resolutions 12 +j  and j2  are very different one from the 

other.  

For the (1.22) the impulsive responses of the filters H  and G  are related from the following: 

 ( ) ( ) ( )-nh-ng
-n

11
1=    (1.34) 

The filters H  and G  are called Quadrature Mirror Filters (QMFs) since they are symmetrical 

with respect to π/2 (that is, 1/4 of the normalized sampling frequency).  

Since H  is a low-pass and G  a high-pass filter, the approximations of a signal at several 

resolutions reproduce the informative content of the signal at low frequencies, while that 

corresponding to the high frequencies is contained in the detail signals. 

Figure 1.4 shows the frequency behavior of the QMFs. 

 

 |H(ω)| |G(ω)|

π/2 π0     ωωωω
 

Figure 1.4 
QMFs frequency responses 

 



1.2 Orthogonal wavelet representations of monodimensional signals 

DIEE - University of Cagliari  

 

12 

1.2.5 Signal reconstruction from an orthogonal wavelet representation  

The original representation of a signal ( )xf  can be reconstructed from a wavelet 

representation of the signal through a pyramidal algorithm. 

For the (1.21), an orthonormal basis of 12 +jV  can be derived from the bases of the spaces j2
V  

and j2
O , which, for the theorems 1.1 and 1.3, are given respectively by ( )( )

Zn
nx

∈
− j-

2

j- 22 jφ  

and ( )( )
Zn

nx
∈

− j-

2

j- 22 jψ . So, the set ( ) ( )( )
Zn

nxnx
∈

−− j-

2

j-j-

2

j- 22,22 jj ψφ  constitutes an 

orthonormal basis of 12 +jV  and the function ( )nx j
j

1

2
21

−−−+φ  can be then decomposed in such a 

basis: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )k2xn2uk2u

k2xn2uk2unx

j

k

1jjj

j

k

1jjjj

jjj

jjjj

−
∞+

−∞=

−−−−

−
+∞

−∞=

−−−−−−

−−−

+−−−=−

∑

∑

+

++

222

222

1

2

1

11

,2+                          

,22

ψφψ

φφφφ
 (1.35) 

 By scalar multiplying ( )xf  for the previous expression it is obtained:

 

( )

( ) ( ) ( )

( ) ( ) ( )k2uf(u),n2u,k2u

k2uf(u),n2uk2u

n2uf(u),

j

k

1j

2

j

2

j

j

k

1jjj

1j

j1jj

jjj

j

−
∞+

−∞=

−−−−

−
∞+

−∞=

−−−−

−−

−−−

+−−−=

=−

∑

∑

+

+

+

2

222

2

φψ2+                 

,2                 1

1

ψφψ

φφφ

φ

 (1.36) 

This latter expression can be written for the (1.15) and (1.32) in the following way: 

 

( )

( ) ( ) ( ) ( )k2uf(u),k2ngk2uf(u),k2nh

n2uf(u),

j

k

j

k

1j

jj

j

−
∞+

−∞=

−
∞+

−∞=

−−

−−+−−=

=−

∑∑

+

22

2

22    

1

ψφ

φ
 (1.37) 

f
d

j 12 +A  is then reconstructed from f
d

j2
A  and fj2

D  by inserting a zero between a sample 

and the successive one and by convoluting the resulting signals respectively with the filters 

H  and G . 

Ideally the analysis and synthesis filter bank should consist in a set of non-overlapping filters 

with unitary gain impulsive responses, but adjacent, in order to avoid frequency gaps in the 

subband signals. In real filters the overlapping causes the aliasing effect in the filtered signal. 

The QMFs permit a reconstruction without aliasing in absence of quantization errors, due to 

the fact that the reconstruction filters are designed so as to cancel the aliasing and to minimize 

the total gain and the phase distortion [6]. The non-ideality of the filters is then compensated 

during the reconstruction. 

The signal f
d

1A  is reconstructed by iteratively repeating such process for 0≤≤ jJ  and the 

continuous approximation ( )xf1A  can be obtained by the (1.9). As in decomposition, also in 

the reconstruction phase a pyramidal algorithm is applied. 

Figure 1.5 shows the basic step of the algorithm. 
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f
d

j 1
2

+A

fj2
D

f
d

j2
A H

G2↑

2↑

⊕

 
 

Figure 1.5 
Reconstruction algorithm 

 

 

 

1.3 Orthogonal wavelet representations of bidimensional signals 

1.3.1 Multiresolution approximations of ( )22 RL  

The model described for monodimensional signals can be easily extended to the 

bidimensional case for applications in the image-processing field. In this case the signal is a 

function ( )y,xf  belonging to the space ( )22 RL  of the functions with finite energy. A 

multiresolution approximation of ( )22 RL  should satisfy the bidimensional extension of the 

properties (1.2)-(1.7). If ( )
Zj

j ∈2
V  is such multiresolution approximation, the approximation of 

( )y,xf  at resolution j2  is given by its orthogonal projection on the space j2
V . 

Theorem 1.1 can be easily extended to the bidimensional case in the following way: 

Theorem 1.4 If ( )
Zj

j ∈2
V  defines a multiresolution approximation of ( )22 RL , there exists then 

a unique function ( )y,xΦ  in ( )22 RL , named scaling function, such that, being 

( ) ( )y,xy,x
jjj

j 2222

2
Φ=Φ  its dilation by a factor of ( ) Zj

j

∈2 , the set 

( )( )
( ) 2222 j-

2 Zm,n

jj
myn,xj ∈

−− −−Φ  defines an orthonormal basis of j2
V . 

An orthonormal basis for each vectorial space j2
V can be then obtained by scaling the 

corresponding scaling function by a coefficient j2  and shifting the resulting function by a 

factor proportional to j22− . The multiplicative factor is inserted for normalization reasons. 

A particular case of these kind of approximations is constituted by the separable 

multiresolution approximations, that is to say that each vectorial space j2
V  can be 

decomposed in the tensorial product between two identical vectorial subspaces that constitute 

in turn a multiresolution approximation of ( )RL2 . In this case it can be demonstrated that the 

scaling function ( )y,xΦ  is the product between the scaling functions corresponding to the 

vectorial subspaces constituting a multiresolution approximation of ( )RL2 , so an orthogonal 

basis of j2
V  for such approximations can be obtained starting from monodimensional scaling 

functions by opportunely scaling and shifting them. The use of separable multiresolution 

approximations is very efficient in computational terms as it allows a reduction in the number 

of operations per sample from 2
N  to N , if NN ×  is the dimension of the used filters. More 

importance is given to horizontal and vertical orientations of the image by using a separable 

multiresolution approximation. 
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If f
d

1A  is the approximation of an image at unitary resolution and N  the number of its 

pixels, the approximation at resolution j2  consists of N
j2  pixels. Border effects are avoided 

by supposing the image symmetric with respect to horizontal and vertical borders. 

 

1.3.2 The detail signals 

As in the monodimensional case, the detail signal at resolution j2  is defined as the difference 

of information between the approximations of the original signal at resolution 12 +j  and j2 , so 

it is given by the orthogonal projection of the signal on the orthogonal complement of j2
V  in 

12 +jV , indicated by j2
O . 

By extending theorem 1.3, the following holds: 

Theorem 1.5 Let ( )
Zj

j ∈2
V  be a separable multiresolution approximation of ( )22 RL  and 

( ) ( ) ( )yxy,x φφ ⋅=Φ  the corresponding scaling function. Let then ( )xψ  be the 

monodimensional wavelet function associated to the scaling function ( )xφ .  

Then, defined the following wavelet functions: 

 ( ) ( ) ( )yxy,x ψφ ⋅=Ψ1 , ( ) ( ) ( )yxy,x φψ ⋅=Ψ 2 , ( ) ( ) ( )yxy,x ψψ ⋅=Ψ 3   

an orthonormal basis of j2
O  is given by: 

 

( )
( )
( )

( ) 2
(2

)(2

(2

3

2

2

2

1

2

Zm,n

jjj

jjj

jjj

m)2yn,2x

m2yn,2x

m)2yn,2x

j

j

j

∈

−−−

−−−

−−−

















−−Ψ

−−Ψ

−−Ψ

   (1.38) 

and an orthonormal basis of ( )22 RL  is given by: 

 

( )
( )
( )

( ) 3
(2

)(2

(2

3

2

2

2

1

2

Zj,m,n

jjj

jjj

jjj

m)2yn,2x

m2yn,2x

m)2yn,2x

j

j

j

∈

−−−

−−−

−−−

















−−Ψ

−−Ψ

−−Ψ

  (1.39)
 

The difference of information between the approximations of the original signal ( )y,xf  at 

resolutions 12 +j  and j2  is given by the orthogonal projection of the signal on j2
O  and it is 

characterized by the scalar products between ( )y,xf  and the vectors that constitute an 

orthonormal basis of j2
O . For the previous theorem, this difference of information is given by 

the three detail images: 

 

( )
( )

( )
( )

( )
( ) 2

2

2

)(

)(

)(

3

2

3

2

2

2

2

2

1

2

1

2

Zm,n

jj

Zm,n

jj

Zm,n

jj

m2yn,2xy),f(x,f

m2yn,2xy),f(x,f

m2yn,2xy),f(x,f

jj

jj

jj

∈

−−
∈

−−
∈

−−

−−Ψ=

−−Ψ=

−−Ψ=

D

D

D

  (1.40) 

As in the monodimensional case, the scalar products that define the approximation and the 

detail signals of an image at resolution j2
 
are given by the uniform sampling of convolution 

products that, for the expressions of the wavelet functions, are: 
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( ) ( )( )( )( )
( )

( ) ( )( )( )( )( )

( ) ( )( )( )( )( )

( ) ( )( )( )( )( ) 2

2

2

2

22

22

22

22

22

3

2

22

2

2

22

1

2

222

Zm,n

jj

Zm,n

jj

Zm,n

jj

Zm,n

jjd

mn,yx*y)f(x,f

mn,yx*y)f(x,f

mn,yx*y)f(x,f

mn,yx*y)f(x,f

jjj

jjj

jjj

jjj

∈

−−
∈

−−
∈

−−
∈

−−

−−=

−−=

−−=

−−=

ψψ

φψ

ψφ

φφ

D

D

D

A

  (1.41) 

The approximated and the detail images at different resolutions are then obtained by filtering 

the images separately along the abscissas and the ordinates axes. From this point of view, the 

wavelet representation of an image can be interpreted as its decomposition in a set of 

independent frequency channels, characterized by a particular spatial orientation. Again, the 

independence between the bands is guaranteed by the orthogonality of the function. 

Since the scaling function ( )xφ  is a low-pass filter and the wavelet ( )xψ  a band-pass one, the 

approximation of f
d

j 12 +A  at lower resolution contains the information corresponding to the 

low frequencies, while the detail images fj

1

2
D , fj

2

2
D  and fj

3

2
D  put in evidence, 

respectively, the vertical high frequencies (horizontal edges), the horizontal high frequencies 

(vertical edges) and the high frequencies in both the directions (diagonal edges). 

The set: 

 ( ) ( ) ( )( )
01

3

21

2

21

1

2

d

2 jjjJ- ,,
>−≤≤−−≤≤−−≤≤− JjJjJjJ

ffff, DDDA    (1.42) 

defines an orthogonal wavelet representation in two dimensions. 

This set of 13 +J  images (see figure 1.6) represents completely f
d

1A  and contains the same 

number of pixels of the original image, thanks to the orthogonality of the representation. In 

particular, the image f
d

J−2
A  is the approximation of the original image at lowest resolution 

and it is composed by N
J22−  pixels, and fj

1

2
D , fj

2

2
D  and fj

3

2
D  are the detail signals at 

resolution j2
 
at the three different orientations. Each of these detail images is constituted by 

N
j22−  pixels.  

 

fAd
J−2

fD J

1

2
−

fD J

2

2− fD J

3

2−

fD J

1

2 1+−

fD J

3

2 1+−fD J

2

2 1+−

 
Figure 1.6 

Wavelet representation of an image 
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1.3.3 Realization of an orthogonal wavelet representation  

Also in the bidimensional case a pyramidal algorithm is used to build the orthogonal wavelet 

representation of the signal. By repeating the process applied in paragraph 1.3.2, the 

bidimensional wavelet transform is calculated through a separable extension of the 

monodimensional decomposition algorithm.  

At each step f
d

j 12 +A  is decomposed in f
d

j2
A , fj

1

2
D , fj

2

2
D  and fj

3

2
D :  

- f
d

j2
A  is obtained by convoluting the rows of f

d
j 12 +A  and the monodimensional filter H

~
, 

sub-sampling the result by a factor of 2, and convoluting the columns of the so-obtained 

signal and the monodimensional filter H
~

, sub-sampling again by a factor of 2; 

- fj

1

2
D  is obtained by convoluting the rows of f

d
j 12 +A  and the monodimensional filter H

~
, 

sub-sampling the result by a factor of 2, and convoluting the columns of the so-obtained 

signal and the monodimensional filter G
~

, sub-sampling again by a factor of 2; 

- fj

2

2
D  is obtained by convoluting the rows of f

d
j 12 +A  and the monodimensional filter G

~
, 

sub-sampling the result by a factor of 2, and convoluting the columns of the so-obtained 

signal and the monodimensional filter H
~

, sub-sampling again by a factor of 2; 

- fj

3

2
D  is obtained by convoluting the rows of fd

j 12 +A  and the monodimensional filter G
~

, 

sub-sampling the result by a factor of 2, and convoluting the columns of the so-obtained 

signal and the monodimensional filter G
~

, sub-sampling again by a factor of 2. 

Figure 1.7 shows the basic step of this algorithm. 

 

rows columns

H
~

fD j

1

2

fAd
j 12 +

H
~

G
~

G
~

12 ↓

21↓

21↓

21↓

21↓

fAd
j2

fD j

2

2

fD j

3

2

12 ↓

H
~

G
~

 
 

Figure 1.7 
Decomposition algorithm in two dimensions 

 

The filters used in this decomposition are the QMFs defined by the (1.15) and (1.32). The 

wavelet representation of an image is obtained by repeating such process for 1−≤≤− jJ  and 

corresponds to a decomposition through separable quadrature mirror filters. 

 

1.3.4 Signal reconstruction from an orthogonal wavelet representation  

Also the reconstruction algorithm can be obtained as a bidimensional extension of the process 

described in paragraph 1.2.5.  

At each step fd
j 12 +A  is recomposed from fd

j2
A , fj

1

2
D , fj

2

2
D  and fj

3

2
D (see figure 1.8):  



1.3 Orthogonal wavelet representations of bidimensional signals 

DIEE - University of Cagliari  

 

17 

- an all zeroes row is inserted between the rows of f
d

j2
A , the result is then convoluted with 

the monodimensional filter H , an all zeroes column is then inserted between the columns 

of the so-obtained image and finally it is convoluted with the monodimensional filter H ; 

- an all zeroes row is inserted between the rows of fj

1

2
D , the result is then convoluted with 

the monodimensional filter G , an all zeroes column is then inserted between the columns 

of the so-obtained image and finally it is convoluted with the monodimensional filter H ; 

- an all zeroes row is inserted between the rows of fj

2

2
D , the result is then convoluted with 

the monodimensional filter H , an all zeroes column is then inserted between the columns 

of the so-obtained image and finally it is convoluted with the monodimensional filter G ; 

- an all zeroes row is inserted between the rows of fj

3

2
D , the result is then convoluted with 

the monodimensional filter G , an all zeroes column is then inserted between the columns 

of the so-obtained image and finally it is convoluted with the monodimensional filter G . 

All the so-obtained images are added together and, if necessary, the result is amplified 

(depending on the used representation). 

 

rowscolumns

fD j

1

2

21 ↑

fAd
j

2

fD j

2

2

fD j

3

2

fAd
j 12 +

H

H

H

G

G

G

21 ↑

21 ↑

21 ↑

12 ↑

12 ↑⊕

⊕

⊕

 
 

Figure 1.8 
Reconstruction algorithm in two dimensions 

 

The image fd

1A  is reconstructed from its wavelet representation by repeating the illustrated 

process for 1−≤≤− jJ . 
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1.4 Extension of the orthogonal wavelet representation to multidimensional 
signals 

1.4.1 Multiresolution approximations of ( )nRL2  

The model described in 1.2 and 1.3 can be further extended for multidimensional signals for 

specific applications in the image-processing field. As in the bidimensional case, the signal is 

a function ( )n x,x,xf ..., 21
 belonging to the space of the finite energy functions ( )nRL2 . A 

multiresolution approximation of ( )nRL2  should satisfy the multidimensional extension of the 

properties (1.2)-(1.7). If ( )
Zj

j ∈2
V  is such multiresolution approximation, the approximation of 

( )n x,x,xf ..., 21
 at resolution j2  is given by its orthogonal projection on the space j2

V . 

Again, Theorem 1.1 can be easily extended to the multidimensional case in the following 

way: 

Theorem 1.6 If ( )
Zj

j ∈2
V  defines a multiresolution approximation of ( )nRL2 , there exists then 

a unique function ( )n x,x,x ..., 21Φ  in ( )nRL2 , named scaling function, such that, being 

( ) ( )n

jjjj

n x  x,x x, , xxj 222Φ2Φ 21

2

212
…=…  its dilation by a factor of ( ) Zj

j

∈2 , 

( )( )
( ) n

i
j

Zmn

-j

n

j-jj
mxm,xmx

∈

−− −…−− 2  ,22Φ2 22112
 defines an orthonormal basis of j2

V . 

An orthonormal basis for each vectorial space j2
V can be then obtained by scaling the 

corresponding scaling function by a coefficient j2  and shifting the resulting function of a 

factor proportional to nj−2 . The multiplicative factor is inserted for normalization reasons. 

Also for multidimensional signals, a particular case of these kind of approximations is 

constituted by the separable multiresolution approximations, that is to say that each vectorial 

space j2
V  can be decomposed in the tensorial product between n  identical vectorial 

subspaces that constitute in turn a multiresolution approximation of ( )RL2 . In this case the 

scaling function ( )n x,x,x ..., 21Φ  is the product between the scaling functions corresponding 

to the vectorial subspaces constituting a multiresolution approximation of ( )RL2 , so an 

orthogonal basis of j2
V  for such approximations can be obtained starting from 

monodimensional scaling functions by opportunely scaling and shifting them.  

As already said, the use of separable multiresolution approximations is very efficient in 

computational terms as it allows a reduction in the number of operations per sample from n
N  

to N , if NNN ××× ...  is the dimension of the used filters.  

 

1.4.2 The detail signals 

As in the monodimensional case, the detail signal at resolution j2  is defined as the difference 

of information between the approximations of the original signal at resolution 12 +j  and j2 , so 

it is given by the orthogonal projection of the signal on the orthogonal complement of j2
V  in 

12 +jV , indicated by j2
O . 

By extending theorem 1.3, the following holds: 
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Theorem 1.7 Let ( )
Zj

j ∈2
V  be a separable multiresolution approximation of ( )nRL2  and 

( ) ( ) ( ) ( )nn xxx x, , xx φφφ ⋅…⋅⋅=… 2121Φ  the corresponding scaling function. Let then ( )xψ  

be the monodimensional wavelet function associated to the scaling function ( )xφ .  

Then, defined the following wavelet functions: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )nnn

k

nnn

nnn

xxxx x, , xx

xxxx x, , xx

xxxx x, , xx

ψψψψ

φψφφ

ψφφφ

⋅⋅…⋅⋅=…Ψ

⋅⋅…⋅⋅=…Ψ

⋅⋅…⋅⋅=…Ψ

−

−

−

12121

12121

2

12121

1

...

...   (1.43)

  

with 12 −= nk , an orthonormal basis of j2
O  is given by: 

 

( )( )
( )( )

( )( )
{ } n

i

j

j

j

Zm
n

-j

n

j-jkj

n

-j

n

j-jj

n

-j

n

j-jj

mxm,xmx

mxm,xmx

mxm,xmx

∈

−−

−−

−−





























−…−−

−…−−

−…−−

2  ,22Ψ2

...

...

2  ,22Ψ2

2  ,22Ψ2

22112

2211

2

2

2211

1

2

  (1.44) 

and an orthonormal basis of ( )nRL2  is given by: 

 

( )( )
( )( )

( )( )
{ }( ) n

i

j

j

j

Zj,m
n

-j

n

j-jkj

n

-j

n

j-jj

n

-j

n

j-jj

mxm,xmx

mxm,xmx

mxm,xmx

∈

−−

−−

−−





























−…−−

−…−−

−…−−

2  ,22Ψ2

...

...

2  ,22Ψ2

2  ,22Ψ2

22112

2211

2

2

2211

1

2

  (1.45) 

The difference of information between the approximations of the original signal 

( )n x,x,xf ..., 21  at resolutions 12 +j  and j2  is given by the orthogonal projection of the signal 

on j2
O  and it is characterized by the scalar products between ( )n x,x,xf ..., 21  and the vectors 

that constitute an orthonormal basis of j2
O . For the previous theorem, this difference of 

information is given by the 12 −= n
k  detail images: 

 

( )
( )

( )
( )

( )
( ) n

i

jj

n
i

jj

n
i

jj

Zj,m
n

-j

n

j-jk

n

k

Zj,m
n

-j

n

j-j

n

Zj,m
n

-j

n

j-j

n

m x, m,xmx , x, , xxff

m x, m,xmx , x, , xxff

m x, m,xmx , x, , xxff

∈

−

∈

−

∈

−

−…−−…=

−…−−…=

−…−−…=

)222(Ψ)(

...

...

)222(Ψ)(

)222(Ψ)(

22112212

2211

2

221

2

2

2211

1

221

1

2

D

D

D

 (1.46) 
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As in the monodimensional case, the scalar products which define the approximation and the 

detail images of an image at resolution j2
 
are given by the uniform sampling of convolution 

products that, for the expressions of the wavelet functions, are: 

( ) ( ) ( ) ( )( )( )( )
{ }

( ) ( ) ( ) ( )( )( )( )
{ }

( ) ( ) ( ) ( )( )( )( )
{ } n

i
jjjjj

n
i

jjjjj

n
i

jjjjj

Zmn

j

n

jjj

nnn

k

Zmn

j

n

jjj

nnn

Zmn

j

n

jjj

nnn

d

m,m,,... m,mxψx ...  ψxx* x, , xxff

m,m,,...m,mxψx ...  xx* x, , xxff

m,m,,...m,mxx ...  xx* x, , xxff

∈

−
−

−−−
−

∈

−
−

−−−
−

∈

−
−

−−−
−

−−−−…=

−−−−…=

−−−−…=

2222)(

...

...

2222)(

2222)(

1212122212212

121212221221

1

2

1212122212212

ψψ

φφφ

φφφφ

D

D

A

    (1.47) 

The approximated and the detail images at different resolutions are then obtained by filtering 

the images separately along all the axes. From this point of view, the wavelet representation 

of a multidimensional signal can be interpreted as its decomposition in a set of independent 

frequency channels, characterized by a particular spatial orientation. Again, the independence 

between the bands is guaranteed by the orthogonality of the functions. 

Since the scaling function ( )xφ  is a low-pass filter and the wavelet ( )xψ  a band-pass one, the 

approximation of f
d

j 12 +A  at lower resolution contains the information corresponding to the 

low frequencies, while the detail images f
i

j2
D , with k,,i  ... 21=  and 12 −= n

k , put in 

evidence the high frequencies (edges) along the corresponding directions.  

The set: 

 ( ) ( )( )
1

20,121

1

22
 ... 

n-
jj-J

kJjJ

k

jJ

d
f,ff,

=>−≤≤−−≤≤−
DDA    (1.48) 

defines an orthogonal wavelet representation in n  dimensions. 

This set of 1+⋅ Jk  images represents completely fd

1A  and contains the same number of 

pixels as the original image, thanks to the orthogonality of the representation. In particular, 

the image fd
J−2

A  is the approximation of the original image at lowest resolution and it is 

composed by N
nJ−2  pixels, and 

k,i

i fj
...212 =

D  are the detail signals at resolution j2
 
at the 

different orientations. Each of these detail images is constituted by N
nj−2  pixels. 

 

1.4.3 Realization of an orthogonal wavelet representation  

Again, a pyramidal algorithm is used to build the orthogonal wavelet representation of the 

signal. By repeating the process applied in paragraph 1.3.2, the multidimensional wavelet 

transform is calculated through a separable extension of the monodimensional decomposition 

algorithm.  

At each step fd
j 12 +A  is decomposed into fd

j2
A , fj

1

2
D , … fk

j2
D  (see figure 1.9): 

- fd
j2

A  is obtained by successively convoluting the rows of fd
j 12 +A  along each of the 

different directions n x,x,x ..., 21  with the monodimensional filter H
~

, sub-sampling each 

time the result by a factor of 2; 

- fj

1

2
D  is obtained by successively convoluting the rows of fd

j 12 +A  along 121 ..., −n x,x,x  

with the monodimensional filter H
~

 and nx  with the monodimensional filter G
~

, sub-

sampling each time the result by a factor of 2; 
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- …. 

- fk
j2

D  is obtained by successively convoluting the rows of fd
j 12 +A  along each of the 

different directions n x,x,x ..., 21  with the monodimensional filter G
~

, sub-sampling each 

time the result by a factor of 2. 

The wavelet representation of an image is obtained by repeating such process for 

1−≤≤− jJ  and corresponds to a decomposition through separable quadrature mirror filters. 
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Figure 1.9 
Decomposition algorithm in three dimensions 

 

1.4.4 Signal reconstruction from an orthogonal wavelet representation  

Also the reconstruction algorithm can be obtained as a multidimensional extension of the 

process described in paragraph 1.2.5.  

At each step fd
j 12 +A  is recomposed from fd

j2
A , fj

1

2
D , … fk

j2
D : an all zeroes row is inserted 

between the rows of the signal, each time along the corresponding direction. The result is then 

convoluted with the monodimensional filter H  or G . All the so-obtained signals are added 

together and, if necessary, the result is amplified (depending on the used representation). 

The image fd

1A  is reconstructed from its wavelet representation by repeating the illustrated 

process for 1−≤≤− jJ . 
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Chapter 2  

WAVELETS AND DATA COMPRESSION 

 

2.1 Introduction 

The most of the popularity of the wavelet transform to the image processing community is 

surely due to its impressive suitability to data compression: the statistical properties of the 

wavelet coefficients make it possible to adapt the level of compression according to the 

required quality, similarly to what happens with JPEG. Besides, the similarity of the wavelet 

representation with the HVS permits an adaptive quantization of the coefficients according to 

their informative content. 

Moreover, the characteristics of the statistical distribution of wavelet coefficients permit the 

localization, inside each subband, of regions with higher informative content (active zones), 

where quantization should be more accurate. So, there should be an analysis phase before 

encoding in order to decide which subbands to encode and which not. The encoding of 

regions with low information content is not important for the quality of the reconstructed 

image. Classification of active zones is thus the tool for obtaining high compression levels 

without precluding the possibility of getting reconstructed images with good quality. 

In this chapter the power of the wavelet transform for data compression purposes is examined 

as regards two real applications: one is the compression of pictorial data, which is becoming 

more and more interesting for commercial purposes, as regards both storing and transmission 

(with the spreading use and diffusion of CDs and the Internet); the other is the compression of 

remote sensing data, which represents a useful tool for space applications (both data storing 

and transmission for satellite systems). 

The proposed coding technique is based on the following idea. Since quantization errors in the 

low-pass image are propagated during reconstruction, it is necessary to apply a lossless 

technique for LL subband encoding, as DPCM. The active zones of the other subbands can 

instead be encoded with a lossy technique (as VQ) with parameters chosen according to the 

characteristics of the subbands themselves (orientation, resolution, statistical properties). 

The effectiveness of the proposed technique is analyzed from different point of views, 

according to the kind of applications for which the data are used. So, results on pictorial data 

are analyzed as regards especially the perceptual quality of the images, while for remote 

sensing data the quality of the reconstructed images is analyzed as regards the accuracy of 

their classification. 

In both the presented applications, an adaptive technique for the selection of the “useful” 

wavelet coefficients has been used. 
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2.2 Pictorial data 

2.2.1 Introduction 

Wavelet decomposition is a very efficient tool for image coding, as it allows data compression 

also at very low bitrate without introducing annoying blocking effects. This is especially true 

for pictorial data, since their informative content is strongly related to the visual perception. 

The reason of the popularity of this kind of representation is related to the statistical properties 

of the wavelet coefficients: their distribution at a fixed orientation and resolution is very 

similar to a Gaussian distribution with zero mean and a very small variance. The rapid slope 

of this distribution permits the distinction, into each subband, of a region characterized by a 

great energetic and informative content (active zone). The coefficients corresponding to 

almost uniform regions (whose values are rather near to the mean) do not carry high 

informative content and thus they do not need an accurate coding (they can even be discarded 

during the encoding process without significantly decreasing the performance of the method). 

This fact allows the achieving of a higher compression level without appreciably worsening 

the quality of the reconstructed image. 

Once the significant regions have been detected for each subband, they are encoded with 

vector quantization (VQ). Several methods are presented in literature for wavelet-based image 

compression and, among them, a number of approaches using VQ of wavelet coefficients in 

different subbands has been proposed [1,2]. This technique, when applied in the spatial 

domain, can present annoying artifacts in the reconstructed image due to an inevitable 

blocking effect. The application of this method in the frequency domain avoids this drawback, 

since the reconstruction process masks the quantization errors. 

One or more masks containing the information regarding the shape and the position of the 

active zones should be sent to the decoder in order to reconstruct the image. 

The encoding of the low-pass image should be very accurate, since the quantization errors in 

this image can propagate during the reconstruction, so it is done with a lossless technique. 

 

The following steps then compose the encoding process [3]:the image is decomposed into N  

levels, according to the target compression factor; 

- the resulting low-pass image (in the LL subband) is error-free encoded (with DPCM); 

- classified wavelet coefficients into each subband only are encoded by adaptive VQ. 

 

2.2.2 The encoding of the low-pass image 

The image in the LL subband is a low-pass version and maintains the same characteristics as 

the original image. A classical image coding technique can be used for this image. As already 

said, the use of a lossy technique (as, for example, VQ) can cause annoying artifacts due to 

the propagation of the quantization errors, even if the low-pass is reconstructed with an 

acceptable quality. The use of a lossless technique, as the DPCM, assures a better quality, 

since the only introduced errors are due to the conversion from floating point numbers to 

unsigned char ones. The error deriving from this transformation is not significant. 

The description that follows holds for gray level images, but it could be easily extended to 

other kind of signals. 

 

2.2.2.1 DPCM encoding 

The basic idea of the DPCM encoding technique is to encode the difference of values between 

two neighboring pixels instead of the whole value of each pixels, exploiting the correlation 



2.2 Pictorial data 

DIEE - University of Cagliari  

 

26 

usually present in most of the natural images. Of course, the more an image presents gradual 

variations along the scanning direction, the more this technique will be efficient.  

The signal is processed in a raster scan mode. The first pixel is entirely encoded with 8 bits. 

The successive one can be then encoded with n  bits if the associated gray level value is no 

greater or lower than 12 1 −−n  with respect to the previous one. If this is not the case, an error 

signal should be sent and the entire value of the current pixel should be encoded. 

Table 2.1 reports the possible codes for a DPCM encoder with 3 bits: the possible 

configurations are 8, one of these is necessary in order to identify the possible error, one other 

to code the possibility of no variation and the other 6 for the other cases. 

 
Code Interpretation 

000 no variation 

001 variation +1 

010 variation +2 

011 variation +3 

100 variation –1 

101 variation –2 

110 variation –3 

111 larger variation 

 

Table 2.1 An example of a 3 bit (monodimensional) DPCM encoder 

 

2.2.2.2 Bidimensional DPCM encoding 

The monodimensional DPCM technique is not very efficient for image coding, since it does 

not take advantage of the correlation between near pixels in all the directions (horizontal, 

vertical and diagonal). As a matter of fact, only the possible correlation between pixels that 

are neighboring along the scanning direction is exploited even if they could have no relation 

(as happens for pixels belonging to the borders of the image). 

So the bidimensional DPCM technique defined in [4] has been used: the value associated to 

each pixel is estimated according to the values of the near pixels and the prediction error is 

encoded. 

First, a 1-D DPCM is applied to the first row and to the first column of the image. Then each 

pixel value is predicted by a linear combination of the values of its three near pixels and the 

prediction error is coded. Among all the possible combinations, it has been found that the best 

estimations are obtained with the following ones: 

 1111 750500750 −−−− ⋅+⋅−⋅= j,ij,ij,ij,i x.x.x.x̂   (2.1) 

 1111 750531250750 −−−− ⋅+⋅−⋅= j,ij,ij,ij,i x.x.x.x̂   (2.2) 

The techniques of this kind are called of third order, since the estimation of the pixel is made 

by a linear combination of three values. 

The DPCM encoding is now applied on the error: 

 j,ij,ix xx̂
j,i

−=ε    (2.3) 

Now, n  bits are sufficient to encode an error lower than 12 1 −−n . 

Table 2.2 reports the possible codes for a DPCM encoder with 3 bits. 
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Code Interpretation 

000 Null error 

001 Error = +1 

010 Error = +2 

011 Error = +3 

100 Error = –1 

101 Error = –2 

110 Error = –3 

111 Larger error 

 

Table 2.2 An example of a 3-bit bidimensional DPCM encoder 

 

2.2.2.3 DPCM low-pass image encoding 

The length of the DPCM code is adaptively chosen in order to minimize the total number of 

bits. 

Table 2.3 contains the results on some well-known images, reported in figure 2.1, 

decomposed into 3 and 4 levels. 

 

 Baboon 
 

Carmen  Lena Masquerade 
 

Model 

 

Figure 2.1  
The test images  

 
Image Dimension Original Encoded Codelength 

Baboon 64x64 pixels 32768 bits 26778 bits 6 bits 

 32x32 pixels 8192 bits 6530 bits 6 bits 

Carmen 64x64 pixels 32768 bits 29889 bits 6 bits 

 32x32 pixels 8192 bits  7457 bits 6 bits 

Lena 64x64 pixels 32768 bits 27642 bits 6 bits 

 32x32 pixels 8192 bits 7378 bits 6 bits 

Masquerade 64x64 pixels 32768 bits 29553 bits 7 bits 

 32x32 pixels 8192 bits 7641 bits 7 bits 

Model 64x64 pixels 32768 bits 27122 bits 6 bits 

 32x32 pixels 8192 bits 7417 bits 7 bits 

 

Table 2.3 Results of 2D DPCM encoding of LL subband of the images in figure 2.1 

 

2.2.3 Classification and encoding of the active zones 

The statistical properties of the wavelet coefficients (see appendix B) allow the selection of 

the coefficients according to their informative content, which is correlated to their energetic 

content. The selected regions are called active zones: they are encoded separately from the 

background and their shape and position is encoded by a binary mask, constituted by the logic 

values that determine the belonging of the corresponding block of pixels. 

Figure 2.2 shows a subband of the wavelet decomposition of Lena image. 
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Figure 2.2 
LH2 subband of the wavelet decomposition of the Lena image  

 

Two different strategies have been used: one mask containing shape and position of all the 

active zones or three different masks, one for each orientation, are extracted. 

The active coefficients are encoded by quadtree or run length. Alternatively, binary streams 

can be transmitted without encoding and the whole mask has a fixed size of 1024 bits.  

 

2.2.3.1 Classification of the active zones 

After an extensive experimental analysis on different images, a heuristic algorithm for 

identifying the active zones has been designed: an accurate analysis of the quantized wavelet 

coefficients histogram is performed into each subband in order to apply a thresholding process 

to the histogram. The histogram is first regularized, to avoid falling into a local minimum 

during the thresholds searching, then its maximum value is found. Since the histograms are 

not exactly symmetrical, the two thresholds cannot be taken symmetrically with respect to the 

mean. The thresholding is thus done along the ordinates axis instead of the abscissas one. In 

fact, since the histogram can be modeled as unimodal, with the maximum usually located 

around the zero value, two thresholds can be found proceeding into the two directions starting 

from this maximum, so that they include a histogram area around the 95% of the total (see 

figure 2.3). The search of these thresholds is made adaptively, in the sense that at each step 

the threshold, whose movement minimizes the variation of the included area, is shifted.  

 

      th1  th2

 95%

P(xj)

xj

 
Figure 2.3 

Selection of the two thresholds 

 

Going into further details, the procedure is applied into each subband and is composed by the 

following steps: 

 

Histogram regularization 

This is a useful shrewdness in order to avoid the “falling” into a local minimum during the 

research of the best thresholds. As a matter of fact, this could cause the blocking of the 

shifting of a threshold and two thresholds strongly asymmetrical with respect to the mean 

could be thus selected. 
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The mean value of 4 among the 5 values that are around the current one, after discarding the 

minimum, is substituted to it.  

So, for each value i  ( 2532 ≤≤ i ): 

- take into account the values between 2−i  and 2+i ; 

- discard the minimum among them; 

- calculate the average value among the 4 remaining ones; 

- substitute the calculated mean value for i . 

In this way, the histogram is regularized from possible local oscillations. 

 

Maximum detection 

The maximum is the central value among the 5 ones containing the maximum area. 

In order to detect it, the histogram is scanned and, for each value i , the area contained 

between 2−i  and 2+i  is computed with opportune weights: the larger weight is assigned to 

the central value and the other weights are distributed in a symmetrical and inversely 

proportional manner with respect to the distance from the central value. 

 

Thresholds searching 

Once the maximum has been fixed, two thresholds are chosen with the following algorithm 

(see figure 2.4): 

 

a value that is lower than the maximum is fixed in the ordinates axis and the two 

corresponding values in the abscissas axis are selected; 

the area contained between them is computed: 

if the area is lower than the 95% of the total, the threshold corresponding to 

the larger value is shifted away from the other; 

if the area is larger than the 95%, the thresholds are drawn near with the same 

criterion; 

the process is repeated until two thresholds, such that the area included between them 

is the minimum value larger than the 95% of the total one, are found; 

the initial value (to which the initial values of the thresholds correspond) can be 

chosen for example as half the value of the maximum. 

 

Active zones selection 

At the end of this process the distinction between active zone and not is made in this way: the 

pixels whose values are included between the two thresholds are classified as belonging to the 

non-active zone (their values are near the mean and they constitute an enough uniform zone of 

the image), while pixels whose values are not included between the two thresholds are 

classified as belonging to the active zone, since their values constitute the distribution tails 

and are quite different from the mean value. 

 

Extraction of the mask 

After the classification process, for each subband a binary-value “mask”, that contains the 

information corresponding to the position and the shape of the active zone, is extracted. The 

mask is then scaled down and logically summed with the one obtained with the same 

procedure at the lower resolution and at the same orientation. 

In order to avoid the loss of any of the element of the active zone, if there is at least one active 

coefficient into each of the 2x2 blocks, the whole block is classified as active. There is a 

lower limit to the possible resolution of the mask, since at low-resolution level the subbands 

have a high energetic content and the active zone would fill completely the mask, limiting in 
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this way the global compression level. A good compromise between the quality and the 

compression level has led to the choice of a mask at resolution 3−=j . 

For example, the final mask for 256x256 images is constituted by 32x32 binary values. 

 

 A?

 STOP

 th1 th2

 A=?
P(xj)

 xj

   > 95%  < 95%

 ≅95%

     th1 th2

 A=?

 xj  th1 th2

 A=?
P(xj)

 xj

P(xj)

 
 

Figure 2.4 
The thresholds searching algorithm  

 

At the end, three masks, each of which contains the information regarding the active zones of 

the subbands at the same orientation, are extracted. In alternative, a unique mask can be 

obtained by the logic sum of these three ones. Figure 2.5 shows the extracted masks 

containing the active zones of Lena image. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Figure 2.5 
The masks of the active zones of Lena image for:  

(a) LH orientation, (b) HL orientation, (c) HH orientation and (d) total mask 

 

2.2.3.2 Encoding of the active zones 

The final mask (or the final masks) is encoded by quadtree or optimized run length, according 

to the convenience. 

 

Quadtree 
The quadtree is an iterative algorithm that is very efficient for binary image encoding [5]. The 

basic idea is the following: if the image is uniform, one bit is sufficient for its encoding (e.g. 

0=black, 1=white), otherwise the image is decomposed into 4 blocks and each of them is 

analyzed in the same way.  
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A tree is thus generated. Each node corresponds to a block with decreasing dimensions and a 

bit is associated to each node to code if the corresponding block is uniform or not. If it is not, 

the block is divided into 4 sub-blocks until all uniform blocks are found. 

Once all uniform blocks (leaves) are found, a bit encodes the associated binary value (e.g. 

0=black, 1=white). 

The worst case is when the algorithm terminates with all blocks constituted by only 1 pixel. In 

this case, if the original image is constituted by NN ×  pixels (with n
N 2= ), n

n

i

i
44

0

+∑
=

 bits 

are necessary to encode the image. This method is convenient for images with uniform 

regions. Figure 2.6 shows an example of quadtree and figure 2.7 the basic algorithm. 

 
1

1 0 0 1

0 0 0 0 0 0 0 0
 

 

Figure 2.6 
An example of quadtree (0=uniform block, 1=non-uniform block) 

 

 
  Block

Uniform

?

YES
    Leaf

NO

 Division

  Block   Block   Block   Block

 
 

Figure 2.7 
Quadtree algorithm 

 

Table 2.4 shows the results obtained with the quadtree encoding of the three masks and of the 

total one on some test images. 
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image # bits LH 

mask 

# bits HL 

mask 

# bits HH 

mask 

# bits total 

mask 

Agave 1234 1101 1297 905 

Airplane 961 737 583 772 

Baboon 1346 1339 1374 1059 

Carmen 1059 1080 1066 835 

Cat 1451 1360 1213 1269 

Lena 1122 1031 982 863 

Masquerade 1535 1346 1374 1437 

Model 877 856 737 716 

Peppers 1220 1458 1259 1255 

Tiffany 1157 1234 1206 1024 

 

Table 2.4 Results of quadtree encoding of the test masks 

 

Run length 
The run length is a technique often used for black and white text and fax transmission and is 

based on the coding of binary streams along a prefixed scanning direction. The encoding of 

consecutive 0s or 1s sequences (runs) is made with codewords whose first bit indicates the 

type of sequence and the following ones binary encode the length of the run, that is, the 

number of equal consecutive bits. Figure 2.8 shows the basic algorithm of run length 

encoding. 

The performance of this technique depends on the average length of 0 or 1 runs in the image 

to be encoded, that is on the source statistics, and on the scanning direction. 

In order to optimize the compression, both scanning directions (horizontal and vertical) are 

investigated. 

The used algorithm is the following: 

 

for each scanning direction: 

calculate the average lengths of 0 and 1 runs; 

initialize the lengths of the runs with the found average values; 

for each run: 

calculate the number of bits necessary to encode the present sequences; 

increase the length of the run and continue until the minimum number 

of bits is found; 

the minimum found value in both the directions is chosen. 

 

Table 2.5 shows the results obtained with the runlength encoding of the three masks and of 

the total one on some test images. 

The choice of the encoding technique for the mask is made according to the maximum value 

of compression that can be obtained. In some cases it could be even more convenient to send 

the mask without any of the two described techniques.  

Table 2.6 shows the results obtained for the test masks. 
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Figure 2.8  
Run length algorithm 

(L=length, m=minimum, N=number, b=bit, h=horizontal, v=vertical) 

 

 
image #bits LH 

mask 

#bits HL 

mask 

#bits HH 

mask 

#bits total 

mask 

 H V H V H V H V 

Agave 1131 1492 1332 1307 1256 1343 964 1214 

Airplane 1065 1263 672 826 602 732 658 1031 

Baboon 1492 1508 1488 1468 1520 1512 1126 1074 

Carmen 1251 1230 1372 1155 1115 1115 868 1050 

Cat 1512 1536 1532 1416 1460 1440 1373 1341 

Lena 1261 1294 1392 1055 1287 1060 974 968 

Masquerade 1508 1656 1652 1468 1564 1512 1537 1493 

Model 1002 956 1210 899 858 750 812 680 

Peppers 1285 1300 1564 1428 1396 1440 1233 1221 

Tiffany 1285 1264 1436 1267 1298 1327 1149 993 

 

Table 2.5 Results of runlength encoding of the test masks 
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image LH mask HL mask HH mask #bits total mask 

 technique #bits technique #bits technique #bits technique #bits 

Airplane quadtree 961 run H 672 quadtree 583 run H 658 

Lena ---------- 1024 --------- 1024 quadtree 982 quadtree 863 

Model quadtree 877 quadtree 859 quadtree 737 run V 680 

 

Table 2.6 Best encoding results for the test masks 

 

2.2.4 Encoding of the wavelet coefficients 

Some common properties arise from the analysis of the statistical distribution of the wavelet 

coefficients of the images constituting the training set (see appendix B). This permits the use 

of an adaptive VQ, with parameters chosen according to the resolution and orientation of the 

corresponding subband. 

In each subband the coefficients belonging to the non-active zone are not coded because their 

informative content is very low (they constitute the background of the subband). The 

coefficients of the active zone, on the other hand, have the main part of the energetic and 

informative content of the subband, so their encoding must be accurate. 

These coefficients are coded by VQ with parameters chosen starting from energetic 

considerations. As a matter of fact, the HH subbands are in general poorer of informative 

content than LH and HL ones. Moreover, a subband at low resolution is more energetic than 

subbands at the same orientation but at higher resolutions. In fact, as the resolution reduces, 

the energetic content of a subband increases and thus quantization must be more accurate. 

The parameters of the VQ (codebooks and codevectors dimensions) are chosen accordingly to 

the variation of MSE value during the LBG algorithm. Codebooks are specific for each 

subband (at each resolution and orientation) and are generated from the active zones of the 

subbands of the images belonging to the training set. 

 

2.2.4.1 VQ for wavelet coefficients encoding 

The VQ is a multidimensional extension of the scalar quantization [6]. In the latter one, the 

set of all the possible input values is divided into a finite number of intervals, each of which is 

represented by an opportune value. This value is the output associated to every value falling 

into the corresponding interval. 

In VQ, the same association is made in a N -dimensional space: the space is divided into 
NR

cN 2=  subsets, a representative value (codevector) is associated to each of them, and a 

block constituted by N  pixels can be thus encoded by RN ⋅  bits, constituting the address of 

the corresponding codevector. R  is the average number of bits per pixel (bitrate) and the set 

of all the codevectors is called codebook. 

The process consists of 3 main steps: 

- codebook generation; 

- encoding, with an opportune metric; 

- decoding, with a look-up table. 

The first phase strongly influences the performance of the method. The most used algorithm 

has been ideated by Linde, Buzo and Gray, and it is well known as LBG algorithm [7]. 

Once the algorithm has been generated, the encoding is simply done by substituting to each 

block the nearest codevector, according to a prefixed metric. For each block the information 

to be transmitted is the address of the codevector with minimum distance. 

A set of representative images, decomposed into blocks of N  pixels, is used in order to build 

the codebook (training set). As in the scalar case, the quantizer introduces a distortion 
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corresponding to the distance from the input vector X  and the code one X̂ : in order to 

minimize the global distortion, the main problem is then the opportune choice of the partition 

of the original space and of the corresponding codevectors. 

The most used metric ( )X̂,Xd  is the mean square error ( MSE ), defined as: 

 ( ) ( )[ ]{ }2
MSE n,mcn,moE −=    (2.4) 

being ( )n,mo  the original image and ( )n,mc  the encoded one. The corresponding distortion is 

defined by: 

 ( ) ( )( ) ( )

N

x̂x

N

X̂X,X̂X,
X̂,Xd

N

i

iiT ∑
=

−
== 1

2

  (2.5) 

and the global distortion is the mean of the distortion on the single blocks. 

 

2.2.4.2 Codebook generation 

LBG algorithm 
Codebooks are generated starting from a training set composed by representative images. 

Obviously, the optimum codebook for an image is the one created starting from the image 

itself (local codebook), but this should be generated each time for each image and moreover it 

should be sent to the decoder, limiting in this way the compression level. Again a compromise 

between quality and compression should be found. 

 

Stop
criterion
satisfied

?

Codebook
initialization

Baricenter computation
and codebook refresh

STOP

YES
NO

decision regions

Calculation of the

 

 

Figure 2.9  
LBG algorithm for the codebook construction 

 

The LBG algorithm (see figure 2.9) is composed of the following steps: 

 

1. The codebook is initialized with a set of vectors belonging to the training set opportunely 

chosen (the choice of the initial vectors strongly influences the performance of the 
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method). Let (0)

iX̂ , for cN,i  ... 1= , be the initial codebook, d  a distortion measure and ε a 

prefixed threshold. The number of iterations l  is initialized to 1 and ( )0D , the mean 

distortion of all the training vectors, is initialized to ∞.  

2. A codevector )(l

iX̂  is associated to each training vector belonging to the corresponding 

decision region, according to a criterion of minimum average distortion. The codebook is 

refreshed by substituting the new vector )(l

iX̂  that minimizes the quantization error for the 

corresponding decision region, to each codevector 1)-(l

iX̂ . If the MSE  criterion is applied, 

the codevector that minimizes the distortion is the baricenter of the training vectors 

belonging to the corresponding decision region, that is, each of its components is the mean 

of the corresponding components of the training vectors. 

3. The mean distortion ( )lD  obtained by the encoding process of the training set is 

calculated. The algorithm terminates if 
( ) ( )

( ) ε≤
−
−

−

1

1

l

ll

D

DD
, otherwise the number of 

iterations increases and the step 2 is repeated. The maximum number of iterations should 

be prefixed in order to avoid a too long processing. 

 

Figure 2.10 shows the 8 images constituting the training set. All images have 512x512 pixels 

and are quantized with 256 gray levels. 

 

 
Airplane 

 
Agave 

 
Baboon 

 
Cat 

 
Lena Masquerade 

 
Peppers 

 
Tiffany 

 

Figure 2.10 
The training set  

 

Construction of a multiresolution codebook 
The wavelet representation allows the generation of specific codebooks for each orientation 

and resolution. Each of these is generated by the LBG algorithm and uses a training set of 

images with opportune orientation and resolution. For each input vector, only the specific sub-

codebook is analyzed, lighting the computational burden of the encoding process. 

The parameters of each sub-codebook can be chosen according to the requirements. For 

example, a region that is not very important in the reconstruction of the image can be 

quantized with a codebook with a low number of vectors, increasing in this way the 

compression level without damaging too much the quality. 
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2.2.4.3 Adaptive encoding of the wavelet coefficients 

The encoding of the active zones is done, for each subband, with codebooks generated 

starting from a training set of the active zones of images at the same orientation and 

resolution. The parameters of each sub-codebook are chosen such that the compression does 

not preclude a good reconstruction quality: subbands constituted by coefficients whose 

distribution has a low variance can be heavily encoded without damaging too much their 

informative content, while a more accurate quantization is done on the regions characterized 

by wider distributions. 

The following characteristics arise from the analysis of the distributions of the wavelet 

coefficients into each subband (see appendix B): 

- for a fixed orientation, as the resolution decreases the variance of the distribution 

increases; 

- for a prefixed resolution, the subband with diagonal orientation has the distribution with 

the minimum variance with respect to the other orientation. 

Thus, the subband that can then be encoded in the heaviest manner is:  

- the one with diagonal orientation for a fixed resolution; 

- the one with higher resolution for a fixed orientation. 

It is then evident that the subbands at low resolution and with horizontal and vertical 

orientations are richer of active zones (and thus have higher informative content) than the 

others.  

At the same resolution, the subbands with vertical orientation are the more energetic ones. 

This accurate analysis has led to the choice of the following parameters: 

- all codebooks are composed by 256 codevectors; 

- the encoding of the subbands with higher resolution at diagonal orientation does not 

significantly weigh on the quality of the reconstructed image and thus this is not done; 

- codevectors with dimensions 16x16 are used to encode the subbands with higher 

resolution. 

Figure 2.11 shows the used bit allocation schemes.  
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Figure 2.11 
Bit allocation schemes used for active zones VQ 

 

2.2.5 Results 

The use of a unique mask for all orientations permits to obtain results with a good quality for 

compression levels between 20 and 60, while the use of three separate masks (one for each 

orientation) worsens the performance of the technique (at the same compression levels). 

However, bitrates lower than 0.1 bpp can be obtained in the latter case without having high 

losses in the quality of the reconstructed image. 

Some results obtained on the test images with Active Zones Wavelet coefficients Vector 

Quantization (AZWVQ) are reported in the following. 

 

2.2.5.1 Identification and use of a unique mask 

Images belonging to the training set 
Results obtained on the well-known images Baboon, Lena and Masquerade are reported in 

figure 2.12 and table 2.7. Lena is often present in the literature and it is useful for 

comparisons with other data compression methods. The other two images present some 

encoding difficulties due to the elevated presence of high frequencies and are useful to test the 

efficiency of the technique even in “difficult” conditions. 

A comparison with the JPEG coding at the same compression level is done. 

 

  
AZWVQ 

(rb=0.34 bpp, PSNR=28.65 dB) 

  
JPEG  

(rb=0.34 bpp, PSNR=27.45 dB) 
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AZWVQ 

(rb=0.132 bpp, PSNR=26.89 dB) 

  
JPEG  

(rb=0.132 bpp, PSNR=24.39 dB) 

a) 

 
AZWVQ 

(rb=0.329bpp, PSNR=32.90 dB) 

 
JPEG  

(rb=0.329 bpp, PSNR=33.30 dB) 

 
AZWVQ 

(rb=0.128 bpp, PSNR=30.50 dB) 

 
JPEG  

(rb=0.128 bpp, PSNR=28.43 dB) 

b) 

 
AZWVQ 

(rb=0.329 bpp, PSNR=26.77 dB) 

 
JPEG  

(rb=0.329 bpp, PSNR=26.35 dB) 



2.2 Pictorial data 

DIEE - University of Cagliari  

 

40 

 
AZWVQ 

(rb=0.13 bpp, PSNR=25.43 dB) 

 
JPEG  

(rb=0.13 bpp, PSNR=23.36 dB) 

c) 

 

Figure 2.12 
Results of AZWVQ vs. JPEG at some compression ratios for  

(a) Baboon, (b) Lena and (c) Masquerade images 

 

The quality of the images encoded by AZWVQ is higher than the one with JPEG both in 

quantitative (PSNR) and in qualitative terms: as a matter of fact, a notable artifact caused by 

JPEG is the blockness distortion, which is absent in AZWVQ. The images encoded by 

AZWVQ present an effect known as ringing around the edges. This is caused by the loss of 

information at high frequencies, due to the hard quantization of these zones. The main 

advantage of the use of the VQ in the frequency domain is that a high compression level can 

be obtained by exploiting the statistical properties of the wavelet coefficients without having 

the well-known artifacts of this technique. 
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a 0.340 23.46 28.65 dB 27.45 dB

b 0.275 28.99 28.22 dB 26.46 dB

c 0.259 30.77 28.18 dB 26.10 dB

d 0.210 37.92 27.72 dB 25.58 dB

e 0.194 41.04 27.69 dB 25.30 dB

f 0.132 60.18 26.89 dB 24.39 dB
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a 0.329 24.27 32.90 dB 33.30 dB

b 0.267 29.93 32.73 dB 32.38 dB

c 0.253 31.56 32.56 dB 32.14 dB

d 0.206 38.79 32.31 dB 30.97 dB

e 0.191 41.81 32.15 dB 30.62 dB

f 0.128 62.34 30.50 dB 28.43 dB
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Masquerade 

 
schema bitrate

[bpp]

CR PSNR

AZWVQ

PSNR

JPEG

a 0.329 24.24 26.77 dB 26.35 dB

b 0.270 29.52 26.64 dB 25.80 dB

c 0.257 31.01 26.67 dB 25.45 dB

d 0.218 37.57 26.48 dB 25.05 dB

e 0.199 40.01 26.52 dB 24.59 dB

f 0.130 61.10 25.43 dB 23.36 dB
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Table 2.7 Quantitative results of AZWVQ vs. JPEG at some compression  

ratios for (a) Baboon, (b) Lena and (c) Masquerade images 

 

AZWVQ vs. WVQ 
The main innovative aspect of the presented technique is in the selection of the active zones 

into the subbands. In order to highlight the advantage of the AZWVQ with respect to the use 

of the same technique without the classification of the active zones (Wavelet coefficient 

Vector Quantization, WVQ), comparisons between the results obtained on some test images 

with both the techniques are reported in table 2.8. 
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a 0.340 23.46 28.65 0.441 18.13 29.586

b 0.275 28.99 28.22 0.340 23.5 28.797

c 0.259 30.77 28.18 0.316 25.29 28.615

d 0.210 37.92 27.72 0.246 32.47 27.959

e 0.194 41.04 27.69 0.223 35.82 27.81

f 0.132 60.18 26.89 0.164 48.85 27.16
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schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.329 24.27 32.90 0.445 18 33.077

b 0.267 29.93 32.73 0.344 23.26 32.680

c 0.253 31.56 32.56 0.320 25 32.485

d 0.206 38.79 32.31 0.250 32 31.824

e 0.191 41.81 32.15 0.227 35.24 31.664

f 0.128 62.34 30.50 0.167 47.96 30.204
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Masquerade 

 
AZWVQ WVQ

schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.329 24.24 26.77 0.452 17.7 28.21

b 0.270 29.52 26.64 0.351 22.79 27.70

c 0.257 31.01 26.67 0.327 24.47 27.52

d 0.218 37.57 26.48 0.257 31.13 27.02

e 0.199 40.01 26.52 0.234 34.19 26.87

f 0.130 61.10 25.43 0.174 46 25.83
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Table 2.8 Quantitative results of AZWVQ vs. WVQ at some compression  

ratios for (a) Baboon, (b) Lena and (c) Masquerade images 

 

 

AZWVQ presents advantages with respect to WVQ both in terms of compression and of 

quality of the reconstructed image. As regards the compression, this result is quite obvious: 

only a part of the subbands of the image (corresponding to the 60-70 % of the total) is 

quantized. 

As concerns the quality, in AZWVQ the codebook is built on a training set composed by the 

active zones of the 8 input images, which are the richest of informative content. Regions 

constituted by almost uniform zones are not considered in the generation of the codebook, as 

they can be reconstructed by substitution with the mean value, and a more specific codebook 

is thus built. 

 

Images that do not belong to the training set 
The performance of the VQ is strongly influenced by the images in the training set. The best 

results for an image are obtained if the training set is composed only by that image. In this 

case, however, the encoding of different images would require every time the generation of a 

different codebook. 

The generation of the most general codebook requires several images in the training set so 

that an enough complete statistics can be considered in order to guarantee a good quality in 

the encoding of images that do not belong to the training set itself. 

The results obtained on two images that do not belong to the training set are reported in figure 

2.13 and table 2.9 for a more complete evaluation of the performance of the proposed method. 

Again, comparisons with the standard JPEG are reported. 

 

 
AZWVQ 

(rb=0.291 bpp, PSNR=24.87 dB) 

 
JPEG  

(rb=0.291 bpp, PSNR=28 dB) 
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AZWVQ 

(rb=0.109 bpp, PSNR=23 dB) 

 
JPEG  

(rb=0.109 bpp, PSNR=23.11 dB) 

a) 

 

 
AZWVQ 

(rb=0.29 bpp, PSNR=28.79 dB) 

 

 
JPEG  

(rb=0.29 bpp, PSNR=31.61 dB) 

 
AZWVQ 

(rb=0.111 bpp, PSNR=27.13 dB) 

 
JPEG  

(rb=0.111 bpp, PSNR=27.07 dB) 
b) 

 

Figure 2.13 
 Results of AZWVQ vs. JPEG at some compression ratios for  

(a) Carmen and (b) Model images 

 

The performance of the method for images that do not belong to the training set can be bad 

for two main reasons: 

- it is difficult to compress the image, apart from the training set, due to the presence of 

high frequencies in the image itself; 

- the training set is not enough general and does not contain any image with characteristics 

similar to the one to be encoded. 
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Carmen 

 
schema bitrate

[bpp]

CR PSNR

AZWVQ

PSNR

JPEG

a 0.291 27.47 24.87 dB 28.00 dB

b 0.243 32.89 24.71 dB 27.37 dB

c 0.233 34.33 24.42 dB 27.00 dB

d 0.195 40.98 24.53 dB 26.30 dB

e 0.183 43.66 24.25 dB 25.94 dB

f 0.109 73.25 23.00 dB 23.11 dB
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Model 

 
schema bitrate

[bpp]

CR PSNR

AZWVQ

PSNR

JPEG

a 0.290 27.52 28.79 dB 31.61 dB

b 0.238 33.52 28.74 dB 30.75 dB

c 0.226 35.29 28.46 dB 30.55 dB

d 0.187 42.63 28.76 dB 29.68 dB

e 0.175 45.54 28.48 dB 29.30 dB

f 0.111 71.66 27.13 dB 27.07 dB
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Table 2.9 Quantitative results of AZWVQ vs. JPEG at some compression ratios for (a) Carmen and (b) Model 

 

From the comparison with other techniques (e.g. JPEG) it is possible to understand if the 

encoding difficulty is due to the kind of image or to the training set. In the latter case, it is 

necessary to generate a more general codebook. 

Anyway, from the performed tests it has been found that the AZWVQ is advantageous with 

respect to JPEG for high levels of compression. 

 

2.2.5.2 Identification and use of a mask for each orientation 

Images belonging to the training set 
Results obtained with the use of three different masks on the images Lena, Baboon and 

Masquerade are reported in figure 2.14 and table 2.10 and compared to the JPEG at the same 

compression ratios. 

 

 
AZWVQ 

(rb=0.249 bpp, PSNR=27.49 dB) 

 
JPEG  

(rb=0.249 bpp, PSNR=26.04 dB) 
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AZWVQ 

(rb=0.102 bpp, PSNR=26.37 dB) 

 
JPEG  

(rb=0.102 bpp, PSNR=23.56 dB) 

a) 

 

 
AZWVQ 

(rb=0.251 bpp, PSNR=31.94 dB) 

 
JPEG  

(rb=0.251 bpp, PSNR=32.14 dB) 

 
AZWVQ 

(rb=0.1 bpp, PSNR=29.56 dB) 

 
JPEG  

(rb=0.1 bpp, PSNR=28.43 dB) 

   b) 
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AZWVQ 

(rb=0.236 bpp, PSNR=25.82 dB) 

 
JPEG  

(rb=0.236 bpp, PSNR=25.27 dB) 

 
AZWVQ 

(rb=0.097 bpp, PSNR=24.59 dB) 

 
JPEG  

(rb=0.097 bpp, PSNR=22.43 dB) 

c) 

 

Figure 2.14 
Results of AZWVQ vs. JPEG at some compression ratios for  

(a) Baboon, (b) Lena and (c) Masquerade images 

 

 

Baboon 

 
schema bitrate

[bpp]

CR PSNR

AZWVQ

PSNR

JPEG

a 0.249 32.03 27.49 dB 26.04 dB

b 0.212 37.60 27.36 dB 25.58 dB

c 0.204 39.06 27.46 dB 25.48 dB

d 0.175 45.51 27.18 dB 25.03 dB

e 0.156 51.02 27.28 dB 24.70 dB

f 0.102 77.83 26.37 dB 23.56 dB
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Lena 

 
schema bitrate

[bpp]

CR PSNR

AZWVQ

PSNR

JPEG

a 0.251 31.77 31.94 dB 32.14 dB

b 0.205 38.87 31.91 dB 30.97 dB

c 0.195 40.86 31.79 dB 30.62 dB

d 0.177 45.00 31.96 dB 30.30 dB

e 0.167 47.68 31.84 dB 30.15 dB

f 0.100 80.00 29.56 dB 28.43 dB
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Masquerade 

 
schema bitrate

[bpp]

CR PSNR

AZWVQ

PSNR

JPEG

a 0.236 33.79 25.82 dB 25.27 dB

b 0.205 38.87 25.84 dB 24.59 dB

c 0.200 40.00 25.88 dB 24.50 dB

d 0.176 45.25 25.93 dB 24.06 dB

e 0.180 44.44 25.97 dB 24.08 dB

f 0.097 81.81 24.59 dB 22.43 dB
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Table 2.10 Quantitative results of AZWVQ vs. JPEG at some compression  

ratios for (a) Baboon, (b) Lena and (c) Masquerade images 

 

The performance of the AZWVQ with different masks for each orientation is still better than 

JPEG, especially at high levels of compression. The visual quality of the so-encoded images 

is even better than the found PSNR. 

 

AZWVQ vs. WVQ 
Comparisons between AZWVQ and WVQ with the use of three masks are reported in table 

2.11. Again, AZWVQ gives better results than WVQ at the same compression ratios.  

 
 

Baboon 

 
AZWVQ WVQ

schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.249 32.03 27.49 0.441 18.125 29.586

b 0.212 37.60 27.36 0.340 23.5 28.797

c 0.204 39.06 27.46 0.316 25.29 28.615

d 0.175 45.51 27.18 0.246 32.47 27.959

e 0.156 51.02 27.28 0.223 35.82 27.81

f 0.102 77.83 26.37 0.164 48.85 27.16
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Lena 

 
AZWVQ WVQ

schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.251 31.77 31.94 0.445 18 33.077

b 0.205 38.87 31.91 0.344 23.26 32.68

c 0.195 40.86 31.79 0.32 25 32.485

d 0.177 45.00 31.96 0.25 32 31.824

e 0.167 47.68 31.84 0.227 35.24 31.664

f 0.100 80.00 29.56 0.167 47.96 30.204
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Masquerade 

 
AZWVQ WVQ

schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.236 33.79 25.82 0.452 17.7 28.209

b 0.205 38.87 25.84 0.351 22.79 27.70

c 0.200 40.00 25.88 0.327 24.47 27.52

d 0.176 45.25 25.93 0.257 31.13 27.02

e 0.180 44.44 25.97 0.234 34.19 26.87

f 0.097 81.81 24.59 0.174 46 25.83
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Table 2.11 Quantitative results of AZWVQ vs. WVQ at some compression  

ratios for (a) Baboon, (b) Lena and (c) Masquerade images 

 

Images that do not belong to the training set 
As already said, the performance of VQ is strongly influenced by the images used in for the 

generation of the codebook. In order to evaluate in a more complete manner the performance 

of the proposed method, results obtained on images that do not belong to the training set are 

reported in figure 2.15 and table 2.12 in comparison with JPEG. 

 

 
AZWVQ 

(rb=0.248 bpp, PSNR=24.61 dB) 

 
JPEG 

(rb=0.248 bpp, PSNR=27.37 dB) 

 
AZWVQ 

(rb=0.104 bpp, PSNR=22.83 dB) 

 
JPEG  

(rb=0.104 bpp, PSNR=23 dB) 

a) 
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AZWVQ 

(rb=0.251 bpp, PSNR=28.71 dB) 

 
JPEG  

(rb=0.251 bpp, PSNR=30.80 dB) 

 
AZWVQ 

(rb=0.102 bpp, PSNR=27.12 dB) 

 
JPEG  

(rb=0.102 bpp, PSNR=26.6 dB) 

b) 

 

Figure 2.15 
Results of AZWVQ vs. JPEG at some compression  

ratios for (a) Carmen and (b) Model images 

 

 

Carmen 

 
schema bitrate

[bpp]

CR PSNR

AZWVQ

PSNR

JPEG

a 0.248 32.16 24.61 dB 27.37 dB

b 0.215 37.20 24.52 dB 26.55 dB

c 0.208 38.46 24.28 dB 26.30 dB

d 0.181 44.20 24.39 dB 25.94 dB

e 0.174 45.98 24.17 dB 25.25 dB

f 0.104 76.93 22.83 dB 23.00 dB
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Model 

 
schema bitrate

[bpp]

CR PSNR

AZWVQ

PSNR

JPEG

a 0.251 31.87 28.71 dB 30.80 dB

b 0.215 37.21 28.72 dB 30.26 dB

c 0.208 38.46 28.44 dB 30.18 dB

d 0.176 45.45 28.76 dB 29.30 dB

e 0.168 47.62 28.48 dB 28.88 dB

f 0.102 78.43 27.12 dB 26.60 dB
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Table 2.12 Quantitative results of AZWVQ vs. JPEG at some  

compression ratios for (a) Carmen and (b) Model images 

 

From the results, it arises that the AZWVQ results in a better quality than JPEG only at high 

compression levels. One application of the proposed method is then image coding at low 

bitrate. In order to increase the performance of the technique, it is necessary to enlarge the 

training set to have a wider statistics. 

 

2.2.5.3 Comparisons between AZWVQ with one mask and with three masks 

Finally, a comparison between the performance of the proposed method with the 

identification and use of a unique mask for all the orientations and with three different masks, 

specific for each orientation, is shown in table 2.13. 

 
 

Baboon 

 
One mask Three masks

schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.340 23.46 28.65 0.249 32.03 27.49

b 0.275 28.99 28.22 0.212 37.60 27.36

c 0.259 30.77 28.18 0.204 39.06 27.46

d 0.210 37.92 27.72 0.175 45.51 27.18

e 0.194 41.04 27.69 0.156 51.02 27.28

f 0.132 60.18 26.89 0.102 77.83 26.37
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Lena 

 
One mask Three masks

schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.329 24.27 32.90 0.251 31.77 31.94

b 0.267 29.93 32.73 0.205 38.87 31.91

c 0.253 31.56 32.56 0.195 40.86 31.79

d 0.206 38.79 32.31 0.177 45.00 31.96

e 0.191 41.81 32.15 0.167 47.68 31.84

f 0.128 62.34 30.50 0.100 80.00 29.56
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Masquerade 

 
One mask Three masks

schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.329 24.24 26.77 0.236 33.79 25.82

b 0.270 29.52 26.64 0.205 38.87 25.84

c 0.257 31.01 26.67 0.200 40.00 25.88

d 0.218 37.57 26.48 0.176 45.25 25.93

e 0.199 40.01 26.52 0.180 44.44 25.97

f 0.130 61.10 25.43 0.097 81.81 24.59
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Carmen 

 
One mask Three masks

schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.291 27.47 24.87 0.248 32.16 24.61

b 0.243 32.89 24.71 0.215 37.20 24.52

c 0.233 34.33 24.42 0.208 38.46 24.28

d 0.195 40.98 24.53 0.181 44.20 24.39

e 0.183 43.66 24.25 0.174 45.98 24.17

f 0.109 73.25 23.00 0.104 76.93 22.83
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Model 

 
One mask Three masks

schema bitrate

[bpp]

CR PSNR

[dB]

bitrate

[bpp]

CR PSNR

[dB]

a 0.290 27.52 28.79 0.251 31.87 28.71

b 0.238 33.52 28.74 0.215 37.21 28.72

c 0.226 35.29 28.46 0.208 38.46 28.44

d 0.187 42.63 28.76 0.176 45.45 28.76

e 0.175 45.54 28.48 0.168 47.62 28.48

f 0.111 71.66 27.13 0.102 78.43 27.12
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Table 2.13 Quantitative results of AZWVQ with one mask vs. AZWVQ with three masks at some  

compression ratios for (a) Baboon, (b) Lena, (c) Masquerade, (d) Carmen and (e) Model images 

 

AZWVQ with one unique mask gives better PSNRs at the same compression ratios than 

AZWVQ with three different masks. On the other hand, the use of three different masks, each 

specific for an orientation, allows the reaching of very high compression levels without an 

excessive degrading of the encoded images. As a matter of fact, for each orientation only 

regions characterized by a high energetic content in the specific orientation are encoded. 

 

2.2.6 Conclusions 

The performance of the described method (AZWVQ) has been compared with that of the 

standard JPEG and with that of the WVQ (i.e. vector quantization of all wavelet coefficients 

in each subband). The method was tested on a large variety of images.  
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In the first case the proposed method gives better results than JPEG, both in quantitative terms 

(PSNR) and in qualitative terms (there is no blockness distortion). In the second case the 

classification of actives zones permits the reaching of higher compression levels and better 

quality. 

The results obtained on two well-known images are reported in comparison with those of 

JPEG at the same bitrate. 

Images encoded with the described method have not the blocking effect that is typical of the 

standard JPEG. There is a ringing effect in the borders caused by the loss of information in 

these zones, but, in spite of this, the images are more pleasant than JPEG ones. 

In summary, the performance of the proposed approach is better than JPEG one, especially at 

low bitrates. High compression levels can be reached with this method without damaging the 

informative content of the images, because the classification of the active zones permits an 

accurate encoding of only a part of each subband, increasing the compression factor but 

maintaining a good quality in the reconstructed image. 
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2.3 Remote sensing data 

2.3.1 Introduction 

Remote sensing is comprised of all information acquisition techniques by means of a device 

that is not directly in contact with the object under analysis. However, usually this term refers 

to the investigation of the earth surface for several applications (meteorological, agricultural, 

pollution and, more in general, territorial control). 

One of the major bottlenecks in remote sensing of the Earth's surface by satellites is the 

transmission of the obtained images to the ground station: it is often the case, particularly for 

low orbit satellites, that  they remain in contact with a single tracking station for only a few 

minutes per orbit during which they can download only a very limited number of images, 

while they can capture and store hundreds in a single orbit. To solve this problem in an 

inexpensive way, one has to process and encode the images on-board so that they can be 

transmitted with fewer bits. Depending on the application for which these images are to be 

used, one may be interested only in a subset of the imaged regions. For example, in an 

agricultural application, one is not interested in urban and forested  regions.  

On the other hand, urban and forested regions appear in such images as highly textured  

regions and they require a large number of bits to be encoded.  

The image coding task can be split into two successive steps, the first being the search for a 

hierarchy of messages, inside a set containing original information: the most important ones  

are to be coded with higher fidelity. The second step does not involve any analysis of original 

information, and is only devoted to efficiently coding extracted messages. 

The classical image coding approach focuses on this second aspect of the problem, and many 

optimal codes to minimize the amount of information required for message transmission have 

been presented in the literature; moreover, this approach is the basis for the standards used in 

currently used apparatuses for image/video transmission. These first-generation techniques 

show good performance, in terms of low-distortion, at medium-high bit-rates, but present 

unacceptable degradations when stressed to low bit-rates (e.g., annoying blocking effects in 

DCT-based coding). 

 

For some years, researchers addressed the problem of organizing hierarchically messages 

making up an image, i.e., they started to analyze the semantics of pictorial information 

[10,11]. Results obtained by this strategy show that pictures can be compressed even hundreds 

of time, while maintaining the overall semantics of a scene. Later on, other approaches aimed 

at mixing these two philosophies were presented in the literature (for instance, [9] ), aimed at 

combining the best of both approaches and achieving good semantics in some image regions 

as well as good high fidelity in the other ones. Different approaches for adaptively coding an 

image may be used, as for instance two-sources coding using adaptive sampling and 

interpolation [8], but they are not tailored to a specific application where regions of interest 

may be defined by an end-user. 

A region-based approach seems to be a good solution to the problem above described, and the 

last task is to choose the two coding methods that should be used for coding high-interest data 

or the background ones. The approach known as Clipping Service
 
(which is now called 

Intelligent Bandwidth Compression) is using automatic target detection and recognition 

techniques to transmit or store  only those parts of an image that are of interest [16]; Clipping 

Service is so named because the concept is similar to that of a newspaper clipping service that 

cuts out only those articles of interest and sends them to the customer. 
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Wavelet decomposition offers good capabilities for implementing both methods, as it allows 

the location of the relevant transformed coefficients for each defined region in an image. The 

separable wavelet transform has been used successfully by numerous authors for lossy image 

compression [17], [18], [19], and [20]. 

In this paper, we propose the segmentation and identification of such regions with the help of 

the texture boundary detection algorithm proposed in [12], and the subsequent encoding of the 

segmented regions independently from the rest.  

As the identified regions are of irregular shape, all encoding methods that rely on block 

coding and in general 2D coding are excluded. We propose, therefore, the conversion of the 

regions to be encoded into 1D strings of data, which are encoded with the help of the 1D 

Wavelet transform. 

 

                                
 

Fig.2.16. Original test images. 

 

We perform experiments using 10m and 20m resolution images showed in Fig.2.16, which 

include some urban regions and we demonstrate the effectiveness of the method by comparing 

it to a no region-based algorithm based on a 2D wavelet code, and evaluating the 

improvement in the reconstruction achieved for fixed compression ratio. In this case the aim 

is to achieve as much compression as possible without significantly altering the image; of 

course “significant” is the keyword here. The determination of what constitutes a significant 

difference between an original image and a compressed and reconstructed version of the 

original is application dependent. However, if archiving is the goal, the future application may 

be unknown. Therefore, for the purposes of this paper, we will assume that archiving is the 

objective since it is the most general purpose application for compression. As a measure  of 

quality of reconstruction we have used the well known computational metric of the minimum 

square error (MSE) or the equivalent peak signal to noise ratio (PSNR), with the definitions: 
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In section 2.3.2 we shall introduce the concept of free angle In section 2.3.3 we shall first 

present a review of the Wavelet transform and its statistical proprieties. We shall present the 
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details of our algorithm in section 2.3.4, our experimental results in section 2.3.5, and our 

conclusions in section 2.3.6. 

 

 

2.3.2 The Free-Angle concept 

Upon edge detection, a region that is highly textured is characterized by a high density of 

edge points. Surrounding non-textured regions, by contrast, show regular strings of edge 

points around well-defined objects. For example, in rural scenes, they may form the 

boundaries of fields or lakes. The information about edge location inside the textured region is 

not of interest to us, but we can use the difference in the edge characteristics between textured 

and non-textured regions to locate boundaries between them. 

Consider one edge pixel in the edge map produced by edge detector. We can consider its 

“view” in the two-dimensional (2D) world of the image plane, where other edge pixels are 

obstructions. The edge pixels in a highly textured region are therefore like trees in a forest, 

whose field of view is severely limited. Edge pixels in more open regions of the image, such 

as in a arable land, will be able to “see” much more openly. To express this mathematically, 

we introduce the concept of the free angle. This is an angle with its vertex at an edge pixel, 

which is equal to the field of view of the edge pixel in any particular direction. It is the angle 

formed by lines joining the edge pixel with two successive neighboring edge pixel once they 

have been ranked in order of rotation angle about the edge pixel. An edge pixel, therefore, 

may have associated with it several free angles, possibly a different one for  “looking” 

through any pair of successive neighbors. We choose the largest of these angles and assign it 

to the edge pixel. This angle is expected to be large for edge pixels that happen to be in open 

regions of the image and small for those in the middle of textured regions. 

In principle, the edge pixels that restrict a field of view can be arbitrarily far away in the 

image plane. In the definition of the free angle, it is included the concept of a neighborhood. 

Thus, to compute the free angle, we have first to define the neighborhood of the pixel of 

interest. The maximum free angle at an edge pixel gives the largest field of view in any 

direction that is not obscured by edge pixels within its neighborhood. 

We define a neighborhood of a pixel as a square region of the image of size (2N+1) x (2N+1) 

pixels centered on that pixel. We define the set of pixels associated with a neighborhood of a 

given size N by CN. We may characterize the location of a pixel in the neighborhood CN by its 

Cartesian coordinates, but for our purposes, it is much more convenient to use polar 

coordinates in the image plane (ρ,θ). We define these polar coordinates in a square-based 

region rather than a circular region. The radius ρ is measured outwards from the central pixel; 

therefore, if a pixel P∈CN and has coordinates (ρ,θ), then ρ ≤ N. It is also follows that if pixel 

P has a radius ρ, then  P ∈Cρ , but P∉Cρ-1. The angle θ is also an integer measured  around 

the square region from the top left corner  (θ = 0) in a counter-clockwise sense. For 

neighborhood pixels of a fixed ρ, 0 ≤ θ ≤ 8ρ. These square-based polar coordinates are 

defined in Fig. 3 (a). Fig. 3 (b) shows the (ρ,θ) coordinates of neighboring pixels.  

It is sometimes convenient to relate (ρ,θ) coordinates to (x,y) offsets from the central pixel. 

We can compute the square polar coordinates from the offsets by the relations 

 

ρ = max(|x|,|y|); θ = 2ρ + x + y   if x ≤ y; θ = 6ρ - x – y   otherwise 

 

The inverse formulae are a little more involved but straightforward to compute. 
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Fig.2.17. (a) Neighborhood around an edge pixel and the square polar coordinates (ρ,θ) that define pixel 

locations within this neighborhood. As ρ increases so the shading becomes lighter in color. (b) ρ and θ  

coordinates of boundary pixels in the N = 2 neighborhood of  pixel C. This pixel has three neighboring boundary 

pixels. There are three free angles - ABC, BCD and DCA. 

 

Consider now the computation of the free angles. In Fig. 2.17 (b), we show the neighborhood 

of an edge pixel. it is clear from our definitions above that the free angle is simply the 

difference in the scaled angles θ/ρ associated with two successive neighbors when the 

neighbors are ranked in order of increasing θ. It is clear that there are three free angles 

associated with the pixel C in Fig. 2.17 (b). The angles are ABC, BCD and DCA. Simple 

arithmetic shows that these free angles are 1.5, 3.5 and 3.0, respectively. Therefore, the 

maximum free angle is BCD. 

From Fig. 2.17 (b), it is evident that edge pixels on the boundary of a textured region will 

have a large maximum free angle in the direction looking away from the texture. Edge pixels 

inside the textured region, however, will all have a small free angle, and therefore, they can be 

removed by thresholding the maximum free angle. We note, however, that the size of the 

neighborhood plays a crucial role in determining the maximum free angle. 

 

2.3.3 Filter Bank 1D wavelet implementation 

One dimensional discrete wavelet transform can be described in terms of a filter bank as 

shown in Fig.4. An input signal ( )nx  is input to the analysis low-pass filter ( )nh0  and the 

analysis high-pass filter ( )nh1 . The odd samples of the outputs of these filters are discarded, 

corresponding to decimation by a factor two. The decimated outputs of these filters constitute 

the reference signal ( )nr1  and the detail signal ( )nd1  for a one level decomposition. For 

reconstruction, interpolation by a factor two is performed, followed by filtering using the low-

pass and high-pass synthesis filters ( )ng0  and ( )ng1  as shown. Provided that the system 

satisfies the perfect reconstruction property, the sum of the outputs synthesis filters will give 

( ) ( )dnnAxny −=  where A is a gain factor and dn  an odd delay. 

For a multilevel decomposition, the reference signal ( )nr1  serves as the input to a filter bank 

whose analysis stage is identical to that of Fig.4. This process, which is repeated iteratively as 

shown in Fig.5 provides, after L levels, a reference signal ( )nrL  with resolution reduced by 

factor L2  with respect to the original input ( )nx  as well as the detail signals 

( ) ( ) ( )ndndnd LL 11 ,...,, − . Each detail signal ( )nd i  contains precisely the information that, 
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together with the reference signal ( )nri , enables reconstruction of ( )nri 1− , which is the 

reference signal at the next higher resolution.  

One can associate a continuous scaling function and a wavelet with a multilevel analysis filter 

bank. A generally different scaling function and wavelet are associated with the synthesis 

stage. References [23] [24] contain a through treatment of the relationship between the filter 

coefficients and scaling functions. 

Signal compression can be obtained by wavelet transformation of integer input data followed 

by quantification and coding. As the quantification is usually lossy, the whole compression 

scheme is lossy too. The wavelet transform allows implementation of multiresolution sub-

band compression schemes, in which the decompressed data are gradually refined, retaining 

the option of perfect reconstruction [15]. 
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Figure 2.18. (a) Basic filter bank for wavelet transform (b) Tree structure showing three levels decomposition 

 

2.3.4 Outline of the encoding algorithm 

The textured regions of the image are first identified using the texture boundary detection 

algorithm described in [12]. This algorithm works on the basis of the free angle of a detected 

edge, and it does not use any other information concerning the textured region apart from the 

fact that textured regions are characterized by high density of edges. The free angle simply 

measures the maximum angle of the field of view an edge has through its neighboring edges. 

Edges that form texture boundaries have higher values of the free angle than edges interior to 

the texture. Some post-processing described in [12] allows one to extract only the closed 

boundaries of the textured regions, and not edgels along boundaries of non-textured regions. 

The result of the application of the above mentioned detection algorithm to the two test  

images is shown in Fig.2.19. 
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Fig. 2.19. Textured region extraction. 

 

The extracted textured regions are subsequently treated individually; for each region the 

minimum enclosing box is identified, and the pixels of the region are flagged, using a simple 

region filling algorithm. The minimum enclosing box is then scanned in a raster fashion and 

all flagged pixels are read sequentially to form a string of numbers that has either to be 

carefully encoded or given a flat value, depending on whether we are interested in the 

textured regions or the background.  In the examples presented below, the pixels of the 

textured regions are given the mean gray value of the region, and the background is encoded 

carefully. The whole process is shown in Fig.2.20. 

 

INPUT

IMAGE

OUTPUT STRING

FILLED

REGION

N

MINIMUM

SQUARE BOX

BACKGROUND

REGION

 
 

Fig. 2.20. Outline of the processing steps. 

 

The outlines of the textured regions are encoded using Freeman's chain code and transmitted 

separately to the receiving station. The background pixels are then read sequentially to form a 

string of data that is encoded using 1D wavelet expansion using Mallat filters [14]. Three 

levels of expansion and sub-sampling are used. The final low pass component is assumed to 
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contain most of the information, so it is encoded in a lossless way, using DPCM and the 

Huffman codes. The successive high pass components are encoded in a lossy way [13]: For 

each level of resolution the histogram of the wavelet coefficients is created. This histogram is 

quantized as follows: The weakest 95% of the coefficients are given the mean which is near to 

0 value. All other coefficients  are encoded by means of  a VQ scheme: an alphabet of 16 

vectors is created by applying the LBG algorithm [21] to a set of remotely sensed gray level 

images.  

 

2.3.5 Active zone classification 

The statistical distribution of wavelet coefficients in each subband is a nearly Gaussian 

distribution with zero mean and small variance. This generic property of wavelet coefficients 

allows the distinction, in each subband, of a zone characterized by greater energetic and 

informative contents (i.e. an active zone). For this zone the coding process must be more 

accurate in order to guarantee for a better reconstructed image.  

After an extensive experimental analysis on different images, a heuristic algorithm for 

identifying these zones has been designed. In each subband an accurate analysis of the 

quantized wavelet coefficients histogram is performed in order to apply a thresholding 

process to the histogram. The histogram is first regularized, to avoid falling into a local 

minimum during the thresholds searching, then its maximum value is found. In fact, since the 

histogram can be modeled as unimodal, with the maximum usually located around the zero 

value, two thresholds can be found proceeding into the two directions starting from this 

maximum, so that they include a histogram area around the 95% of the total. The search of 

these thresholds is made adaptively, in the sense that at each step the threshold, whose 

movement minimizes the variation of the included area, is shifted.  
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Fig.2.21 The threshold searching algorithm 

 

At the end of this process the distinction between active zone and not, is made in this way: 

pixels which have values included between the two thresholds found are classified as 

belonging to the non-active zone, because their values are near the mean value and they 

constitute an enough uniform zone of the image, while pixels whose values are not included 
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between the two thresholds are classified as belonging to the active zone, because their values 

constitute the distribution tails and are quite different from the mean value. 

 

2.3.6 Mask extraction 

After the classification process, for each subband a binary-value “mask”, which contains the 

information relative to the position of the active zone, is extracted. The mask is then scaled 

down and logically summed with the one obtained with the same procedure at the lower 

resolution and at the same orientation. At the end, three masks, each of which contains the 

information regarding the active zones of the subbands at the same orientation, are extracted. 

In alternative, an unique mask can be extracted by the logic sum of these three ones.  

The final mask (or the final masks) is encoded by quadtree or optimized run length, according 

to convenience. 

 

2.3.7 Wavelet coefficient encoding 

For each subband the coefficients belonging to the non-active zone are not coded because 

their informative content is very low (they constitute the background of the subband). The 

coefficients of the active zone, on the other hand, have the main part of the energetic and 

informative content of the subband, so their encoding must be accurate. 

These coefficients are coded by vector quantization with parameters chosen from energetic 

considerations. In fact, as the resolution reduces, the energetic content of a subband increases 

and thus quantization must be more accurate. 

The parameters of the vector quantization (codebooks and codevectors dimensions) are 

chosen accordingly to the variation of MSE value during the LBG algorithm. Codebooks are 

specific for each subband (at each resolution) and are generated from the active zones of the 

subbands of the images belonging to the training set. 

 

 

 

2.3.8 Experimental results 

Figs. 2.22 and 2.23 show the reconstruction of the image when the whole image is encoded 

using 2D wavelet decomposition, and the reconstruction of the background when the textured 

regions are isolated and encoded separately. Both images are encoded at the same 

compression ratio. 

The MSE calculated when the whole image is encoded is, for the image in Fig.2.22, 25.19 and 

for the image in Fig.2.23, 68.1. The MSE on the other hand when the textured regions are 

removed is 16.00 and 12.87 respectively. 
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(a) 

 
(b) 

 
Fig.2.22. Images compressed at CR=20. 

 

 

 
(a) 

 

 
(b) 

 
Fig.2.23. Images compressed for CR=22. 

 

 

2.3.9 Conclusions 

We propose here a scheme for the region-based encoding of remote sensing images. The 

scheme is based on the observation that textured regions require a large number of bits to be 

encoded and they are often of no interest to a large number of applications. The scheme relies 

on the use of a texture boundary detection algorithm which can identify reliably the regions of 

a textured region irrespective of the class of the texture [12]. The outline of the textured 

region can then be encoded and transmitted separately and the rest of the image can be 

encoded on its own. Because the encoded image of interest will have irregular (non-

rectangular) shape, and in order to preserve the detail with which the textured regions have 

been extracted, we use 1D coding of the string that is created by reading the pixels of the 

regions of interest sequentially in a raster format. We showed that the 1D wavelet transform 

can be used to encode the images with improved compression ratio. The scheme is very 

simple and can be implemented in a completely automatic way, so that it is appropriate for 

on-board satellite implementation. 

 



Appendix A – Some wavelets filters 

DIEE - University of Cagliari  

 

62 

References 

 
[1] P.H.Westerink, J.Biemond, D.E.Boekee, J.W.Woods, “Subband coding of images 

using vector quantization,” IEEE Trans. Comm., Vol.36, N.6, pp.713-719, 1988. 

 

[2] M.Antonini, M.Barlaud, I.Daubechies, P.Mathieu, “Image coding using vector 

quantization in the wavelet transform domain,” Proc. ICASSP, pp.2297-2300, 1990.   

 

[3] M.Ancis, D.D.Giusto, “Image data compression by adaptive vector quantization of 

classified wavelet coefficients,” Proc. IEEE PACRIM Conference, pp. 330-333, Victoria, 

Canada, 1997 

  

[4] A.N.Netravali, B.G.Haskell, “Digital picture: representation, compression and 

standards,” Plenum Press, 1995. 

  

[5] H. Samet “A top-down quadtree traversal algorithm,” IEEE Trans. Pattern Anal. 

Machine Intell., Vol. PAMI-7, 1984. 

 

[6] R.M. Gray, “Vector quantization,” IEEE ASSSP Magazine, pp.4-28, 1984. 

 

[7] Y. Linde, A. Buzo, R.M. Gray, “An algorithm for vector quantizer design,” IEEE 

Trans. Comm., Vol. 28, No. 1, pp. 84-95, 1980. 

 

[8] F.G.B.DeNatale, G.S.Desoli, D.D.Giusto, “Adaptive sampling and interpolation for 

image data compression,” Journal of Visual Communication and Image Representation, 

Vol.5, no.4, pp.388-402, 1994. 

[9] F.G.B.DeNatale, G.S.Desoli, D.D.Giusto, G.Vernazza, “Polynomial approximation 

and vector quantization: A region-based integration,” IEEE Trans. Communications, Vol.43, 

pp.198-206, 1995. 

[10] M.Kunt, A.Ikonomopoulos, M.Kocher, “Second-generation image coding techniques,” 

Proc. IEEE, Vol.73, pp.549-575, 1985. 

[11] M.Kunt, M.Benard, R.Leonardi, “Recent results in high compression image coding,” 

IEEE Trans. Circuits and Systems, Vol.34, pp.1306-1336, 1987. 

[12] P.L.Palmer, M.Petrou, “Locating boundaries of textured regions,” IEEE Trans. 

Geoscience and Remote Sensing, Vol.35, pp.1367-1371, 1997. 

[13] S.Mallat, “A theory for multiresolution signal decomposition: The wavelet 

representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, 1989. 

[14] S.Dewitte, J.Cornelis, “Lossless integer wavelets transform,” IEEE Signal Processing 

Letters, 1997. 



Appendix A – Some wavelets filters 

DIEE - University of Cagliari  

 

63 

[15] R.D.Chaney, E.J.VanAllen, D.E.Dudgeon, “Reduction of communication 

requirements for wide-area surveillance systems,” Proc. SPIE, Vol.2755 (Signal Processing, 

Sensor Fusion, and Target Recognition V, I.Kadar, V.Libby, Eds.), 1996. 

[16] M.Antonini, M.Barlaud, P.Mathieu, I.Daubechies, “Image coding using wavelet 

transform,” IEEE Trans. Image Processing, Vol.1, pp.205-220, 1992. 

[17] A.Said, W.A.Pearlman, “A new fast and efficient image code based on a set 

partitioning in hierarchical trees,” IEEE Trans. Circuits and  Systems for Video Technology, 

Vol.6l, pp.243-250, 1996. 

[18] J.M.Shapiro, “Embadded image coding using zerotrees of wavelet coefficients,” IEEE 

Trans. Signal Processing, Vol.41, pp.3445-3462, 1993. 

[19] P.Sriram, M.W.Marcellin, “Image coding using wavelet transform and entropy-

constrained trellis-coded quantization,” IEEE Trans. Image Processing, Vol.4, pp.725-733, 

1995. 

[20] P.H.Westerink, “Subband coding of images,” Ph.D. Thesis, Delft University of 

Technology, 1989. 

[21] M.Vetterli, J.Kovacevic, Wavelets and subband coding, Prentice Hall, 1995. 

[22] A.Cohen, I.Daubechies, J.C.Feaveau, “Biorthogonal bases of compactly supported 

wavelets,” AT&T Bell Labs Tech. Rep., 1990. 

[23] B.S.Everrit, G.Dunn, “Applied multivariate data analysis,” Hodden and Stoghton, 

1991. 

[24] A.Grossman, J.Morlet, “Decomposition of handly functions into square integrable 

wavelets of constant shape,” J.Math.Phys., Vol.26, pp.2473-2479, 1985. 

[25] I.Daubechies, “Ten lectures on wavelets,” CBMs-NFS, Regional Conferences Series 

in Applied Math., 1992. 

[26] I.Daubechies, “The wavelet transform, time-frequency localization and signal 

analysis,” IEEE Trans. on Information Theory, Vol.36, no.5, pp.961-1005, 1990. 

 

 

 

  



Appendix A – Some wavelets filters 

DIEE - University of Cagliari  

 

64 

 

 

 

 

 

Chapter 3 

WAVELETS AND DATA ZOOMING 

5.1 Introduction 

Nowadays,  the surprising diffusion of multimedia applications (from scientific to 

commercial, from informative to recreational) has caused an increasing joint development of 

both hardware and software technologies. Furthermore, this sudden and fast spreading process 

has generated a large interest of the scientific community in the signal processing field, due to 

the necessity of dealing with large amounts of data in machines with limited computational 

and storage capacities. Mainly, the problem arises with multimedia-based content signals (i.e. 

videos). The common standards developed  for digital image and video applications (JPEG, 

MPEG) seem to have given a solution to the problem, achieving, with added computational 

complexity, a good trade-off  between quality and payload. 

The present work proposes an alternative approach to the video database management  by 

using a novel and promising approach exploiting iterated function systems (I.F.S.), usually 

called fractals. Still relatively immature, this technique has been applied as a compression 

technique for image coding. The aim of this paper is to show how the fractal coding technique 

can be successfully extended to the video processing. Actually, it has been developed a 

technique performing a zoom of the video sequence both in the spatial and in the temporal 

domain, in order to reconstruct the entire sequence by starting from some selected Key-

Frames. These are a sample of frames representative of the whole video, which are extracted 

by a temporal sub-sampling process and selected by an opportune criterion. A three-

dimensional fractal coding is applied to the key frames and, during the decoding phase, both a 

spatial zoom, with overlapped range blocks, and an adaptive temporal zoom are realized in 

order to reconstruct a sequence classified as an approximation of the original. 

In order to reduce the computational complexity of the fractal encoder, the wavelet image 

representation has been employed: the video sequence is decomposed into several packets 

with frame dimensions lower than the original and depending, as well as the number of 

frames deployed, on the level of wavelet decomposition. The fractal encoder, therefore, does 

not deal anymore with video sequences at the original sizes, but with thumbnails of lower 

dimensions. Thus, the searching space for the domain blocks is drastically reduced, with 

optimal consequences from the computational point of view. Moreover, by discarding video 

packets in the high frequencies bands, it is possible to obtain a strong reduction of the number 

of pixels elaborated by the encoder, with a relatively low loss of information. As a matter of 

fact, the main advantage of the use of the wavelet representation is exactly due to its similarity 

to the human visual system (H.V.S.), by representing images at different levels of detail in 

different frequency bands. The most of the coding techniques based on this representation 
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exploits exactly this property by discarding or hardly quantizing the high frequencies 

information, since the resulting visual quality is only slightly affected by this quantization 

error. Such a feature has made possible, a decreasing up to the 25% of the number of pixels to 

be processed. Another advantage that comes from the wavelet decomposition of the packets is 

that it allows a parallelization of the whole process thus fully exploiting the CODEC 

potentiality, in case a parallel computer is available. On the whole, a large decrease of the 

coding/decoding time is obtained with a low loss of visual quality. 

In order to reduce the unpleasant blocking effect due to the use of separate range blocks in 

images with low spatial correlation between adjacent blocks, overlapped range blocks 

(O.R.B.) have been used during the coding and an opportune processing with ordered square 

overlapping (O.S.O.) during the decoding phase. A partial overlapping between blocks and an 

opportune processing of the shared parts ensure the absence of  blocking effect. 

Finally, a technique to detect a mask of “active zones” has been performed. These zones 

locate the background of the video sequence and separate it from the regions that are not static 

from a temporal point of view. The background of the scene is encoded once for each group 

of frames (G.O.P.),  relieving the encoder of the computational burden deriving from the 

encoding of these regions frame by frame. So, since the sequence of the images containing the 

active zones does not contain the background, the actual number of pixels to process is hardly 

reduced proportionally to the dimensions of the background and to the number of frames to 

encode. Finally, in order to obtain the complete image, the background, opportunely adapted 

according to the spatial zoom factor, is inserted into each frame for each GOP. The whole 

process is done only if the area of the regions constituting the background is large enough, 

otherwise it is avoided. 

Several tests have been done with different sequences and the performance of the proposed 

method has been estimated from objective and subjective points of view. 

 

3.2 The fractal coding 

Coding techniques based on the fractal theory are new and promising approaches for digital 

image compression.  

The general aim in the digital image compression field is to find coding algorithms that 

generate the required compression ratio and the required image quality with an acceptable 

encoding and decoding time. The most popular approach consists in the transformation of the 

image in a different domain (frequency domain), in order to discard the higher frequency 

coefficients and to use only the low frequency coefficients to describe the original image. The 

approach based on the fractal theory is radically different and is very promising even if still at 

a first development. 

The idea derives from a work by Barnsley [1], who first worked with IFS. Then Jacquin [11, 

12] proposed a fractal image encoder. The basic idea of this approach is to exploit the 

redundancy given by the self-similarity always contained in all natural images. The purpose is 

to find a rule to reconstruct an image by approximating the original one.  

Many compression techniques are based on the exploitation of the correlation between pixels 

neighboring in the spatial or the time domain. The fractal compression approach exploits the 

correlation between not adjacent image parts. The fractal image can be seen as a collage 

constituted by copies of the original image that have been transformed through opportune 

geometric and luminance transformations. The novel approach by Jacquin [11] permits to see 

the image as composed by copies of parts of the image itself. The process consists in the 

decomposition of the image into regular distinct blocks and in the search, for each block, of 

another part which matches the block itself. The CODEC is based on the realization of a 
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specific transformation (fractal code) that, once iteratively applied on an arbitrary initial 

image, produces a sequence of images that converge more and more to an approximation of 

the original image. Moreover, the use of IFS allows not only the data compression, but also 

the down- or over-sampling of the data themselves, by exploiting the properties of the 

fractals. 

The reduction of redundancy is obtained by representing the image through contract parts of 

itself: the image to be processed is partitioned into non-overlapping regular regions, named 

range blocks. The task of the encoder is to find for each range block a larger block in the 

same image, named domain block, such that, after an opportune transformation, this 

constitutes a good approximation of the range block. This transformation is a combination of 

geometric and luminance transformations. In the decoding phase, the process is really very 

fast: starting from an arbitrary image, the convergence to the original image is obtained 

through an iterative process with a velocity that could assure real time applications. The main 

problem of this new approach is the long encoding time, due to the complexity of the basis 

algorithm. This complexity has caused in the past the poor use of fractal encoders for the 

lower computation potentialities of the past computer generations. Several trials have been 

made in order to reduce the complexity of the fractal encoder, and thus the encoding time. 

Further attempts have been done in order to apply the fractal encoding technique in other 

fields, for example in musical signals, color images and image sequences processing [8, 15]. 

 
The mathematical foundation of this technique is the general theory of contractive iterated 

transformations, based on the work by Barnsley [1, 3, 10]. Fractal coding of an image consists 

in building a particular transformation τ (a code) such that, if µorig is the original image, than 

µorig≈τ(µorig), that is, µorig is approximately self-transforming under τ.  If τ is a contractive 

transformation, µorig is approximately the attractor of τ, that is µorig≈ ∞→k
lim τk

(µ0) for same 

initial image µ0. The code τ is built on a partition of the original image. Each block of this 
partition Ri (range block) is coded independently of the others by a matching with another 

block Di (domain block) of the image. 

In [11] a fractal code τ(µorig;R,n,px,py,αm) is obtained by using the following parameters: 

− R is the range block size (squared range blocks) and D the domain block size; 

− n is the scale factor for the local self-similarity search, so D=nR; 

− px and py are respectively the horizontal and vertical step which define the set of all the 

domain blocks for an exhaustive research. The coordinates of each domain block’s upper 

left corner are then expressed by (ipx,jpy), where i and j are integers. 

− αm is the upper boundary on the scales. If  τi: Di→Ri and τi =Mi°Ii°ri,n , with Mi(x)=aix+bi 
an affine operator with scale ai and shift bi on the luminance of the pixels, Ii a 

transformation selected from eight discrete isometries and ri,n a reduction by a factor n 

using an averaging, than U
N

i

i

1=

= ττ . So 0≤αi<αm ∀i∈{1,2,…N} during the coding stage. 

So, ri,2 operates the rescaling: thus, for example, a 2x2 pixels block is obtained from a 4x4 

one by averaging its values. With Ii one among eight different isometries is applied 

(identity, horizontal and vertical flipping, reflection of 180° around the principal and the 

secondary diagonal, clockwise and anti-clockwise rotation of  90°, rotation of 180°). 
Finally, Mi locates opportunely the original range block. τi is the global transformation 

(ri,2+Ii+ Mi) that minimizes the error:  

E(D,R)=min ||R-(aD+B)||  
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τ

τi

Di

ri,2 Ii Mi

Ri

µ v=τ(µ)

 

Figure 1 Fractal coding stage 

 

Since the domain block could be located wherever in the image, a long encoding time can be 

necessary. In order to reduce the complexity of this searching process, a characteristic space, 

named feature space [18], is considered. 

Each domain and range block is pre-classified according to a set of invariant  features and 

the range blocks are compared only with the near domain blocks in a n-dimensional 

feature space, as indicated in figure 2.  

Search at level 0

Search at level 1

Search at level 2

2D Feature Space

x

y

Search at level n

 
Figure 2 Research and construction in a bidimensional feature space: given a range block identified by two 

coordinates (x,y), the corresponding domain block is searched in a limited region, which depends on the 

level of the research, between 0 and n. 

 

Jaquin used a classification scheme derived from the work by Ramamurthi e Gersho [20]. 

The domain blocks are classified according to their figurative characteristics. Three 

classes of domain blocks are considered: shade blocks, edge blocks (simple and mixed) 

and midrange blocks. The classification of the blocks can ever be done through a measure 

of their variance. Then, since range blocks that can be classified as shade blocks can be 

well approximated by uniform blocks, it is no more necessary for them to search for a 

domain block, thus reducing the search only for the other two classes, with a notable 

decrease of the computational complexity. 

A more complex classification technique has been proposed by Fisher and Jacobs [11]. 

A domain or range block is divided into four parts (upper left, upper right, lower left and 

lower right), in each of which the mean Ai and the variance Vi are calculated. Every block 

can be oriented in such a way that the means can be in one of the following 

configurations: A1≥A2≥A3≥A4, A1≥A2≥A4≥A3 or A1 ≥A4≥A2≥A3. Once the orientation of 
the block has been determined, there are 24 possible ways to order the variance. So, for 

each range block, the research is done in 2 subclasses among 72. Even if this approach has 

been successful, it is not very satisfying since it does not say anything about the vicinity 
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among the classes, and if the research in a class does not give a good matching, the 

extension to the near classes is not very simple.  

A solution to this problem has been given by Caso, Obrador and Kuo [3], who substitute a 

vector of variances to the rigid variances ordering. In this method the variances are 

rigorously quantized and a set of classes is obtained so that each class has a near one 

where the research can be easily extended. 

 

3.3 Classical fractal decoder 

The classical fractal decoding stage consists simply on an iterated process starting from an 

initial image µ0 (for example constituted by black pixels). In fact, if τ is a contractive 

transformation, τ∞
(µ0) gives an approximation of the original image µorig. 

By denoting εc the coding error, the reconstruction error is bounded, according to the Collage 

theorem, by the following expression: 

s

c

r −
≤

1

ε
ε         (1) 

where εc=d2(µorig,τ(µ orig)), εr=d2(µorig,τ
∞
(µ 0)) and s the contractivity of the transformation τ. 

In this context the contractivity constraint is expressed as follows: for all images u and v, 

d2(τ(u),τ(v)) ≤ s d2(u,v), with s∈[0,1[ and d2 the Euclidean metric. 
It has been noticed that 8-10 iterations are sufficient to find a good approximation and this 

number represents a good compromise between computational cost and perceptual quality 

and this does not depend on the original image µ0. 

 

 
Initial image µ0 

 
τ 1( µ 0 ) 

 
τ 2( µ 0 ) 

 
τ 

3
( µ 0 ) 

 
τ 

4
( µ 0 ) 

 
τ 

5
( µ 0 ) 
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τ 6( µ 0 ) 

 
τ 7( µ 0 ) 

 
τ 8( µ 0 ) 

 

Figure 3 The first 8 iterations of the reconstruction sequence of Lena image by a fractal decoder 

 

It. No 1 2 3 4 5 6 7 8 9 10 

PSNR 15.9 19.5 22.8 25.2 26.4 27.0 27.3 27.5 27.6 27.6 

 

Table 1 PSNR values of the images obtained by the first 10 iterations of the fractal decoding 

 

The fractal code can also be used in order to find an approximation of the original image at a 

resolution which is not the original one, thus obtaining a zoom of the original image. The 

main idea of the fractal zoom is based on the following property of fractals: by iterating a 

determinist transformation on some initial image, a deterministic fractal image is obtained, 

that is, if fractal coding is really a fractal process, the fractal code’s attractor is a fractal 

object. Then, the fact that the fractal code is a transformation that can be applied on any 

images enables to zoom, just increasing the range and the domain blocks sizes, but letting the 

fractal code τ be unchanged. 

The assumption at the base of fractal zoom is that self-similarities (i.e. matchings between 

areas with different sizes in the original image) are scale-independent. The main problem with 

this technique is an important block effect, due to some important discontinuities along the 

range blocks sides. 

 

3.3.1 Variants at the classical  fractal decoder 

In [22] a variant at the classical fractal zoom is described to avoid blockness distortion and 

perform good visual quality: overlapped range blocks (O.R.B.) are used instead of a partition 

(see figure 4) and an averaging of the two or four common areas of the range blocks is made. 

 

R

R

 

R/2

R/2
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a) b) 

 

Figure 4 (a) Classical partition and (b) Overlapped range blocks 

 

This case is equivalent to take four partitions: one of the original image and the others of a 

part of the image with the same cells size, as shown in figure 5 (a)-(d). The image is then 

divided into four areas categories, as shown in figure 6. 

 

 

123 

R 
 

 

123 

R/2 
 

R/2
1
2

3

 

 

a) b) c) d) 

 

Figure 5 Different areas considered with the partition in figure 4 b 

 

C IV

C III

C II

C I
 

Figure 6 The four areas categories considered with the partition in figure 4 b 

 

To encode the original image is then necessary to know the code τ(j)
 of each part (see figure 5 

(a)-(d)) of the original image independently. 

The fractal code of the original image is now defined by the following expression: 

 









⋅=⋅ ∏

=

4

1

)( )()(
j

jτψτ   (2) 

      

where ψ is a transformation used to stick back together the different codes τ(j)
 according to the 

original image, as shown in figure 7. 
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P ( 1 )

P ( 2 )

P ( 3 )

P ( 4 )

τ ( 1 )

τ ( 4 )

τ ( 3 )

τ ( 2 )

τ

µ orig

ψ

τ ( µ orig )

 

Figure 7 Behaviour of the new code τ and the transformation ψ 

 

 

Let p be a pixel, (k,l) its coordinates and V(p) the function which gives the value of the pixel 

p. Let v and v(j),  with the partition P
(j)

 for 1≤j≤4, be 5 images with the same size. Let 

)l,k(p:U:C 2 aℜ→  be the function that gives the coordinates, in the corresponding image, of 

a pixel belonging to ∏
=

=
4

1

)(

j

jvU . Now (see figure 8): 

−  (k,l) ∈ CI⇒ C
-1

(k,l) ={p1,p2,p3,p4} 

− (k,l) ∈ CII∪CIII⇒ C
-1

(k,l) ={p1’,p2’} 

− (k,l) ∈ CIV⇒ C
-1

(k,l) ={p0} 

So: 

[ ]U
)1(

))(()( 1

vp

pCCUv
∈

−== ξψ                 (?) 

and ψ is given by the function ξ, which depends on the method used. 
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P ( 1 )

P ( 2 )

P ( 3 )

P ( 4 )

k

l

C

 

Figure 8 Behavior of the function C 

 

To know the global code it’s sufficient to take v
(j)

=τ(j)
(µ) for same image µ and then, using (1) 

and (2), v=τ(v). 

In order to find the value of each transformed pixel, one can, for example, average the four 

values obtained with the four different partitions of the original image (fractal zoom with total 

averaging), thus taking the redundancy of the coding easily into account (in fact all pixels 

belonging to the area CI are coded four times). In the areas CII and CIII the averaging is only 

done on two values (obtained with the codes of the corresponding partitions) while in the area 

CIV the only value obtained is from the partition of the original image. Hence, ξ is defined by: 

 

{ }( )[ ] ( )
{ }
∑
∈

⋅=
npp

n pV
r

pV
1

ξ    (3) 

    

for r pixels {p1,p2,…pr} (r∈{1,2,4}) and ξ({pn}) is a pixel belonging to v such that its 

coordinates are equal to C(p1)=C(p2)=…=C(pr). 

The main problem with this technique is that a total averaging smoothes the image too much. 

In [19] a fractal zoom with adaptive averaging is described. It is based on this consideration: 

if the fractal coding was perfect, the four independent codes would give same results. In fact, 

it is reasonable to suppose that the fractal coding has a rather stable behavior and then to 

assume that the best values (i.e. closest to the real values) of pixels belonging to the area CI 

are given by the two closest founded ones and to average only these two values, while the 

values belonging to the other areas remaining the same as before. Hence, ξ is defined by: 

− (k,l)∈CIV ⇒ V[ξ(p0)] =V(p0) 

− (k,l)∈CII∪ CIII ⇒ V[ξ(p1’,p2’)] =
2

)]'V(p )'[V(p 21 +
 

Thus ξ is the same function as before if the coordinates belong to CII∪ CIII ∪ CIV. 

If the coordinates belong to CI, let be xj=V(pj) the value of the pixel pj for 1≤j≤4 and dn,m=|xn-

xm|. Therefore, the computation of 6 distances (d1,2, d1,3, d1,4, d2,3, d2,4 and d3,4) is required. 
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Then there exist at least one couple (n0,m0)  such that: 

 

{ }mnmnmn dd ,, min
00 <=   (4) 

      

Hence: 

− (k,l)∈CI⇒ V[ξ(p1,p2,p3,p4)] =
2

00 mn xx +
 

In this case ψ is an adaptive averaging which realizes the average computation from only two 

values, instead of four. 

To increase the performances of this technique, we applied this procedure on a 3x3 mask to 

estimate the value of each pixel. 

For each of the 3x3 neighbours and for the central pixel, 4 values are founded according to the 

four partition of Figure 8, and then the median value of these 36 is an estimation of the central 

pixel (O.S.O.). 

This value constitutes a better estimation then that in [19] because the probable correlation 

between near pixels is reasonably taken under consideration. 

 

3.3.2 Extension to 3D fractal encoders  

The extension from image encoding to video encoding has followed two different 

ways: 

- frame by frame [8, 21, 16] with a possible use of the motion information technique 

(similarly to MPEG) in order to limitate the time for the research of the affine 

transformations; 

- by extending the concept of the range block to the range cube, that is by using 3D 

range and domain blocks [13, 4, 5].  

The second approach is more complex than the first but it conserves the properties of 

the fractals that allow the decoding at every resolution by under or oversampling. 

 

Range cubes

Domain cubes

x

y

t

 
 

Figure 9 3D video fractal coding 

 

The computational cost of the process, already high, will increase with another 

dimension, but a higher correlation along the time (Z) axis than along the spatial (X) and 

(Y) axes can be exploited in order to have a good coding without unacceptable delays. 
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a) 

b) 

c) 
 

Figure 10 Two different views of a video sequence (a) a video packet of the “Carphone” sequence and two 

slices along the temporal direction: (b) vertical section and (c) horizontal section. In the first it is possible to note 

the appearing/disappearing of the head at the center of the sequence, while in the second it is possible to follow 
the movement of the head itself. 

 

Many approaches to video coding use a technique of motion compensation named 

“motion estimation”, encoding the frames one at a time and considering the temporal 

changes between consecutive frames. With this new 3D approach it is possible to encode 

video sequences simultaneously. Figures 10 b) and c) show a video sequence in the 

spatial-temporal domain: the edges are orthogonal to the temporal direction and are 

formed by the movement of objects along the spatial direction of the cut. Many of the 

patterns of the gray levels in these cut visions are either homogeneous regions or borders. 

In general, this kind of structure can be efficiently encoded through fractal encoders. The 

borders generated by the movement can be approximated by contract parts of the near 

volumes.  

 

x

t
r1

d1

r2

d2

r3

d3

r=range block d=domain block

 

Figure 11 3D fractal coding applied to different kinds of movement: linear shifting, shifting with acceleration 

and spatial-temporal zoom 
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So the proposed technique does not use an explicit motion compensation technique. 

Due to the long required encoding time, this new 3-D approach can be efficiently used to 

store video data but it is not very convenient for real time applications.  

In order to generate the range blocks, an intelligent partition method has been ideated: 

instead of using a fixed grid, a variable adaptive partition, named quadtree (cfr. fig. 12) is 

used. 

Level 2

Level 1

Level 0

Main block

Sub block

 

Figure 12 Partition of an image with a quadtree structure (2 levels partition). 

 

This adaptive partition allows the encoding of an image by using larger range blocks in 

homogeneous regions and smaller ones in regions that are rich of small details.  

In a 2D case, the principal n x n block is encoded and a distortion measure is computed 

for each of the n/2 x n/2 sub-blocks. If the distortion of a sub-block is higher than a 

prefixed threshold, this block is divided into other four sub-blocks. The process is carried 

on in a recursive way until in the most distortion blocks sub-blocks the minimum allowed 

level is reached. Experimentally, it has been found that 3 levels are enough in most cases. 

 

 
 

 

 
 

 

(Shade Block) (Edge block) (Total partition) 
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Figure 13 Partition of the image “Lenna”: up, the fixed grid partition and, at the bottom, the 2 levels quadtree 

 

The extension of the quadtree to 3D is called octree. A partition of this kind in two 

levels is shown in figure 14. 

 

 

Figure 15 A 2 levels octree. 

 

The use of this encoding technique for video sequences allows to obtain good results as 

regards compression ratio, quality and encoding time, compared to other fractal 

techniques (MA QUALI???), so that the computational complexity can be well justified. 

 

3.4 The wavelet transform 

The wavelet representation of an image is composed by the approximation of the signal at low 

resolution and the set of details at several resolutions. The image at low resolution is a low-

pass version of the original one, while the details contain the information at high frequencies. 

  

 LL  LH2

 LH1

 HL1  HH1

 HL2  HH2

         

Figure 16 Wavelet representation of “Lenna”  image 

 

The signal into each subband is found through an iterative algorithm which decomposes the 

original signal into four ones, each of which contains the information regarding the original 

one in a frequency band and at a particular orientation.  

The reconstruction algorithm is similar to the decomposition one. The complete signal is 

found again through a pyramidal algorithm from the low-pass one and the set of details. 

The used wavelet representation was studied by Lemarie [14] and Battle [2]. It corresponds to 

a multiresolution approximation constructed beginning from cubic splines.  

Let N1(ω) and N2(ω) be the following functions: 

N1(ω)=5+30cos
2
(ω/2)+30sin

2
(ω/2)cos

2
(ω/2) 

N2(ω)=2sin
4
(ω/2)cos

2
(ω/2)+70cos

4
(ω/2)+2/3sin

6
(ω/2) 

The scaling function associated to the adopted representation can be write as: 
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The QMF used for the wavelet decomposition has then the following expression: 
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The corresponding orthonormal wavelet is then given by the following expression: 
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and the other QMF can be found from the following relation: 

 

G(ω) = e
-jω H( )ω π+

 

 The image in the LL subband is a low-pass version of the original image. Errors in the 

encoding process of this image could propagate in the reconstruction phase, making the final 

image worse. So the encoding of this image must be made with a lossless technique.  

The monodimensional DPCM technique does not take advantage of the correlation between 

near pixels in all the directions (horizontal, vertical and diagonal) so the bidimensional DPCM 

technique defined in [17] has been used.  

First, a 1-D DPCM is applied to the first row and to the first column of the image. Then each 

pixel value is predicted with a linear combination of its three near pixels values and the 

prediction error is coded: 

j,ix̂  =0.75xi-1,j-0.50xi-1,j-1+0.75xi,j-1 

j,ixε =
j,ix̂ -xi,j 

 

3.4.1 Statistical properties of the wavelet coefficients 

The statistical distribution of wavelet coefficients at a fixed resolution and orientation is a 

symmetric distribution with a nearly zero mean and small variance. 

This distribution is often modeled as a Laplacian distribution, but it falls off really more 

rapidly, and it is better approximated by the generalized Gaussian distribution [24, 23]: 
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where σ
2 j
k  is the standard deviation of the subband  distribution at orientation K and 

resolution 2
j
 and Γ(⋅) is the Gamma function. 

This formula contains the Gaussian and the Laplacian PDF as special cases: 

• for k

2 jr =2 it is the Gaussian PDF; 

• for k

2 jr =1 it is the Laplacian PDF. 
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Figure 17 Approximations of the statistical distribution of wavelet coefficients 

 

3.4.1 The classification of the active zones 

The statistical distribution of wavelet coefficients in  each subband is a nearly Gaussian 

distribution with zero mean and small variance. This generic property of wavelet coefficients 

allows the distinction, in each subband, of a zone characterized by greater energetic and 

informative contents (i.e. an active zone). For this zone the coding process must be more 

accurate in order to guarantee for a better reconstructed image.  

 

 

Figure 18 LH2 subband of wavelet decomposition for “Lenna” image 

 

After an extensive experimental analysis on different images, a heuristic algorithm for 

identifying these zones has been designed.  

In each subband an accurate analysis of the quantized wavelet coefficients histogram is 

performed in order to apply a thresholding process to the histogram. The histogram is first 

regularized, to avoid falling into a local minimum during the thresholds searching, then its 

maximum value is found. In fact, since the histogram can be modeled as unimodal, with the 

maximum usually located around the zero value, two thresholds can be found proceeding into 

the two directions starting from this maximum, so that they include a histogram area around 

the 95% of the total. The search of these thresholds is made adaptively, in the sense that at 
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each step the threshold, whose movement minimizes the variation of the included area, is 

shifted.  

 

 A?

 STOP

 th1 th2

 A=?
P(xj)

 xj

   > 95%  < 95%

 ≅95%

     th1 th2

 A=?

 xj  th1 th2

 A=?
P(xj)

 xj

P(xj)

 

Figure 19 The thresholds searching algorithm 

 

At the end of this process the distinction between active zone and not, is made in this way: 

pixels which have values included between the two thresholds found are classified as 

belonging to the non-active zone, because their values are near the mean value and they 

constitute an enough uniform zone of the image, while pixels whose values are not included 

between the two thresholds are classified as belonging to the active zone, because their values 

constitute the distribution tails and are quite different from the mean value. 

 

3.4.3. The extraction of the mask 

After the classification process, for each subband a binary-value “mask”, which contains the 

information relative to the position and the shape of the active zone, is extracted. The mask is 

then scaled down and logically summed with the one obtained with the same procedure at the 

lower resolution and at the same orientation. 

At the end three masks, each of which contains the informations regarding the active zones of 

the subbands at the same orientation, are extracted.  

 

    

a) b) c) 
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Figure 20 The masks of the active zones of “Lenna” image for a) LH orientation, b) HL orientation and c) HH 

orientation 

 

The final masks are encoded by quadtree or optimized run length, according to the 

convenience. 

 

3.4.4 The encoding of the wavelet coefficients 

In each subband the coefficients belonging to the non-active zone are not coded because their 

informative content is very low (they constitute the background of the subband). The 

coefficients of the active zone, on the other hand, have the main part of the energetic and 

informative content of the subband, so their encoding must be accurate. 

These coefficients are coded by vector quantization with parameters chosen from energetic 

considerations. In fact, the HH subbands are in general poorer of informative content than LH 

and HL ones. Moreover, a subband at low resolution is more energetic than subbands at the 

same orientation but at higher resolutions. In fact, as the resolution reduces, the energetic 

content of a subband increases and thus quantization must be more accurate. 

The parameters of the vector quantization (codebooks and codevectors dimensions) are 

chosen accordingly to the variation of MSE value during the LBG algorithm. Codebooks are 

specific for each subband (at each resolution and orientation) and are generated from the 

active zones of the subbands of the images belonging to the training set. 

 

3.4.5 The wavelet representation for video sequences 

The main advantage of the use of the wavelet transform for video encoding is in the strong 

reduction of the computational complexity of the algorithm and, thus, in the reduction of the 

encoding time. As a matter of fact, the use of the wavelet representation allows the encoding 

of the video packets at lower resolutions with parallel processes. Furthermore, the properties 

of the wavelets permit to encode differentially the subbands according to their informative 

content, allowing eventually to discard some subbands from the encoding process (as, for 

example, for the higher frequency band, HH). Besides, the research of the matching between 

range and domain blocks is carried out in a smaller region, reducing thus the encoding time, 

that, as already noticed, is due essentially to this search. It should also be noticed that the 

computational burden introduced by the wavelet filtering is not very appreciable.  

The best compromise between quality and compression ratio can be found by applying the 

described O.S.O. technique only to the LL subband (which is usually the most informative). 
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Figure 21 1 level wavelet decomposition of a video packet with dimensions XxYxZ 
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Figure 22 Parallelization of the CODEC process with 3D fractal zoom in the wavelet domain 
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3.5 Temporal subsampling with key frames extraction and use 

In order to reduce the memory amount necessary to store the video sequence, a subsampling 

of the sequence along the temporal axis can be done by extracting only selected frames. In the 

decoding phase the sequence will be reconstructed by the fractal interpolation.  

For the selection of the key frames, three different approaches have been tested: 

- Fixed grid  

The key frames are chosen according to a fixed step. If N is the original number of frames and 

P the step of the fixed grid, the number of the selected frames is K: 






 −
=

P

N
K

1
 

The main drawback of this approach is that frames rich of informative content (i.e. the scene 

is changing from one frame to the next) could be discarded, while frames without information 

(i.e. static frames, no change from the previous frame) can be selected. 

- MSE method 

In order to overcome the drawback deriving from the use of a fixed grid, the frames are 

chosen according to their difference from the other selected frames. So, if the difference 

(measured by the MSE) between the current frame and the previous one is over a fixed 

threshold, this means that an important changing in the scene is happening and the frame 

should be selected, otherwise it would be discarded. So the reduction of data is obtained 

through the analysis and the reduction of the correlation between consecutive frames. 

The main drawback of this variant is essentially in the fact that to a change of scene does not 

always corresponds a large MSE and thus the selection depends on the type of sequence. This 

approach cannot be applied a priori to every sequence, since the absence of a normalization of 

the MSE could cause the disregarding of important scenes. 

- Adaptive with frames difference method 

The basic idea of this variant is to take into account the differences between two frames by 

considering a frame formed by the difference itself.  

frame k framek+1 ABS[(framek – framek+1)]

 

Figure 23 Extraction of the difference frame. It is possible to note the regions of the image corresponding to 

movements of the head and the body. 

 

The percentage of the number of the pixels that are different from zero is compared to a 

prefixed threshold and determines the selection of the frame as key frames. The main problem 

is that a threshold should be selected for each sequence, and the choice of this threshold does 

influence strongly the number of the selected frames, which could vary largely. In order to 

perform an adaptive method for the selection of the frame, the analysis of the histogram has 

been performed and an adaptive threshold has been chosen according to the entity of the 

peaks in the histograms.  
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Figure 24 Histogram of the difference image in fig. 23 

 

The ideated algorithm consists in the calculation of the maximum peak in the histogram 

(which corresponds to the black background) and in the choice of the threshold as the gray 

level corresponding to the first peak that is larger or equal to the 5% of the maximum. Than 

the selection proceeds as indicated by the flow diagram in fig.25 

 

Maximum peak extraction

Adaptive threshold individuation

# pixels ≥  threshold

# total pixels

(≥10%)(<10%)

f k+1 is not a key frame

Histogram analysis

Difference frame extraction fk-fk+1

f k+1 is a key frame
 

Figure 25 Algorithm for the extraction of the key frames 

 

3.6 Selection of the active scenario  

In order to reduce the computational complexity of the entire process, the background of the 

video sequence, which is almost static, can be encoded once for all, and the most of the bit-
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stream can be dedicated to the encoding of the active part of the sequence. In order to select 

the active regions from the background, a binary mask is extracted: the resolution is 

proportional to the dimension of the range blocks and a mask is extracted for each selected 

key frame.  

Each key frame is decomposed into blocks, which dimensions are equal or multiple of the 

range blocks’, and for each of these blocks a parallelepiped is formed by considering all the 

corresponding blocks in the other key frames, as indicated in figure. .. 

 

t
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fd
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Difference frames
between two

consecutive key
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Figure 26 a) Individuation of the parallelepiped U
1

1

,,

−

=

=
Z

k

k

jiji BP ; b) Zoomed view of the difference frames 

 

In order to classify each region and build the binary mask, two different approaches have been 

taken:  

- the parallelepiped jiP ,  is classified as an active region (white) if the mean value of a block 

k

jiB ,  is over a prefixed threshold; 

- the parallelepiped jiP ,  is classified as an active region (white) if at least one of its pixels is 

over a prefixed threshold. 

Tests have shown the equivalence of the two proposed approaches. The second has been 

chosen for its greater velocity, since it is not necessary to calculate any mean. 

In order to avoid the risk that a region, classified as background, is encoded with a luminance 

which has changed gradually in the scene, and to have in this way a background with a mean 
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luminance different from the rest of the frame, the background is refreshed once in a GOP 

(which has been chosen of 8 frames) (see fig.27). 

Background “isles”

c)

b)

a)

d)

 

Figure 27 Frame 190 extracted from the video sequence “Carphone”: a) Extracted mask; b) Background 

obtained with the mask on the original frame; c) Decoded frame without refresh of the background; d) Decoded 

frame with refresh of the background. 

 

Since the encoding of a background with a small area would not increase the compression 

ratio, this process is done only if the area of the mask extracted is at least equal to the 30% of 

the whole area. Otherwise the mask is not used and the frame is entirely encoded. 

During the decoding, it is not necessary to use the mask, since the background itself can be 

used for this purpose. A new problem arises with the use of the ORB, since background and 

borders of the active zones could not correspond (see fig. 28). In order to overcome to this 

problem, the borders of the active zones and the background should be overlapping, in such a 

way to have a right reconstruction. A dilation operator is applied on the mask in such a way 

that also the regions containing the borders of the active zones are encoded with the active 

zones (see fig. 29). 
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c)b)

a)

d)

 

Figure 28 Bad reconstruction of the zones between background and moving image: a) Mask, b) and c) 

Background and active zones frame decoded by spatial zooming, d) Reconstructed frame. Note the presence of 

black zones in the region between b) and c) 
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d)c)

a)

e)

b)
Dilation

(white structural element)

 

Figure 29 Correct reconstruction of the zones between background and moving image: a) Mask for the 

background, b) dilated mask for the moving image, c) Background with spatial zooming, d) moving image with 

spatial zooming, e) Reconstructed frame. Note the absence of black zones in the region between c) and d) 

 

3.7 Tests and results 

Several tests have been done on well-known sequences, with different quality factors and 

compression ratios. The behavior of the PSNR value for the two sequences “Mother and 

daughter + Carphone” and “Claire + Miss America” are reported in fig. 30.  
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Sequence: M & D  + Carphone

15

20

25

30

35

1 20 39 58 77 96 115 134 153 172 191 210 229 248

# Frame

PSNR(dB)
Without background separation (CR 110:1)

With background separation + O.S.O. (CR 125:1)

 

a) 

 

Sequence: Claire + Miss America

15

20

25

30

35

1 20 39 58 77 96 115 134 153 172 191 210 229 248

# Frame

PSNR(dB)

Without background separation (CR 132:1)
With background separation + O.S.O. (CR 171:1)

 

b) 

 

Figure 30 PSNR values for the two test sequences: a) “Mother & Daughter” and “Carphone” respectively 

composed by 128+128 frames in CIF format (352×288), b) “Claire” and “Miss America” respectively composed 

by 128+128 frames in CIF format (352×288) 

 

The decoding time has been analyzed in the two different situations (with and without 

separation of the background) and the results for the two sequences are reported in tab. 
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DECODING 

Time (s) 
Sequence # frame Format 

With O.S.O. With O.S.O. & background sep. 

M&D - Car 256 
CIF 

(352×288) 
5902 4356 (-26%) 

Cla - Mis 256 CIF 5895 2160 (-63%) 

 

Table 2 Decoding time for two test sequences 

 

No variation has been noticed in the behavior of the PSNR (see fig. 30) between video 

sequences encoded with and without the separated encoding of the background. As regards 

the decoding times, they decrease if the background is encoded separately, since it does not 

need the use of the OSO filter, even if a longer encoding time should be taken into account, 

due to the selection of the active zones. 

In particular, for the sequence “Mother and daughter + Carphone” it has been computed a 

decrease of the decoding time equal to the 26% when the selection of the background is 

applied. However, for the sequence “Claire + Miss America” the decrease of the decoding 

time is of about the 63%. This reflects the fact that the advantages of the selection of the 

background, as regards the decrease of the decoding  times, is strictly related to the 

characteristics of the sequence to be encoded: as a matter of fact, the latter sequence is 

composed by frames with a strong interframe temporal correlation (low velocity in the 

movements of the objects) and a large background area during the entire sequence (small area 

occupied by the moving objects). 

 

3.8 Conclusions and further developments 

A novel and promising approach to the zoom of video sequences with the joined use of 

fractals and wavelets has been described and discussed. The development of the presented 

method has been done with increasing refinements in order to find the best compromise 

between quality and compression. The use of these two powerful mathematical tools (fractals 

and wavelets) combines the advantages of both characteristics in order to exploit the 

redundancy of the video signals, both in the spatial and temporal domains. The originality of 

the work has birth in the idea of extending the fractal zooming properties to 3D signals and 

combining them with the selectivity of the wavelet representation, which allow the selection 

and discarding of redundancy in the frequency domain. The individuation and use of the key 

frames and of the active zones inside them light the amount of data without discarding 

information by using adaptive and intelligent algorithms. 

A strong reduction of the amount of data with limited decoding time has been observed. 

Further improvements of the method could render it very feasible for applications related to 

video demand, database search and videoconferencing.  
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Chapter 4 

Performance Analysis of Fractal Modulation Transmission over 

Fast-Fading Wireless Channels 

 
 

4.1 Introduction 

Prevalent communication systems for time-varying channels are basically designed to achieve 

the required performance under the worst-case channel conditions. Usually, to compensate 

channel variations, large margins are then taken into account during designing. A major 

problem is that such a large fading margins planning does not take maximum advantage of the 

available channel capacity, especially for high-variable channels. In fact, the process of 

designing to worst-case channel capacity results in periods of very good performance and 

periods of performance at, or close to the maximum error rate, in effect yielding variable 

performance with a fixed data rate. It follows that a worst-case approach to the 

communications system design will not be able to use the full channel capacity and it will be 

thus a sub-optimal design. 

In those particular transmitting conditions where the channel availability and bandwidth are 

stochastically time-varying, a complex adaptive scheme, able to evaluate the channel 

characteristics changes and accordingly to adjust the system, can be alternatively, adopted. 

However this approach achieves a high-complex structure and depends on getting a prompt 

feedback from the receiver regarding channel conditions. This makes it unsuitable for 

application like broadcast communications over rapidly-varying channels. 

A viable solution to this problem requires a transmission strategy where the data to be 

transmitted can be found at more frequency bands in order to allow an efficient reception also 

with channel condition variations. In such a case the transmitter is not required to change the 

transmission configuration, but is the receiver is the one which makes the necessary chances 

according to the channel conditions variations. This is the basic concept of fractal modulation, 

where the transmission spectral efficiency is maintained over a broad range of rate-bandwidth 

combinations using a fixed transmitter configuration. A rather natural strategy of this type 

arises out of the concept of embedding the data to be transmitted into a homogeneous signal 

[1]. 

The fractal modulation paradigm has been essentially proposed as an interesting potential 

application of dy-homogeneous signals. Aside from a scale factor, this class of signals 

remains invariant under scaling of the time axis. In [2], Wornell and Oppennheim have shown 

that this kind of signal can carry information distributed over multiple time scales and 

frequency bands and that they appear well-suited for transmission over noisy channels of 
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simultaneously unknown duration and bandwidth. Additionally, they have the advantage of 

being efficiently represented using orthonormal wavelet basis sets. 

The most interesting application of this technique is represented by the wireless 

communication, especially in urban areas, where the network distribution allows a mobile 

user to be reached by signals coming from different based stations. Many random signals that 

propagate through different signal paths from the transmitter are superposed at the receiver to 

produce standing waves. When a receiver and/or a transmitter moves in the standing waves, 

the receiver experiences random variation in the signal level and in the phase, and also a 

Doppler shift. As a consequence of the standing wave characteristics, the minimum distance 

between signal level drops is one half of the wavelength; this microscopic deviation of the 

received signal is called fast fading [3]. 

In this paper, we present a performance analysis of fractal modulation transmission over a 

AWGN fast-fading channel. A quadrature transmission scheme is simulated and compared 

with frequently used transmission systems achieving better results in terms of error robustness 

and low complexity. 

Previous works on the analysis of the performances of such a modulation technique have the 

main limit of not considering time-varying channels [4][5]. Instead, these are very important 

since they represent the main configuration of interest for such modulation technique. The 

originality of our work relies on the comparison with the QAM transmitter, core of the OFDM 

modulation system, which is extensively employed in broadcasting technology, over a test-

bed simulation environment including typical problems occurring in wireless transmission 

like fast-fading and additive noise. Furthermore, we performed experiments, using different 

wavelet families. The results of the experiments show the effectiveness of the fractal 

modulation paradigm and confirm its effective utilization in data broadcasting. 

The concept of fractal modulation is based on the properties and characteristics of 

homogeneous signals, and its implementation relies on the wavelet theory. Based on that, in 

the following two sections of the paper the characteristics of homogeneous signals and their 

wavelet representation are summarized: excellent introductions to these concepts can be found 

in [6] and [7]. In section 4, the structure of fractal modulation transmitter and receiver are 

described. Finally, sections 5 and 6 are devoted to the simulation process and its results. 

 

4.2 Homogeneous signals and wavelet representation 

A dy-homogeneous signal )(tx  is a dyadic self-similar signal satisfying the deterministic 

scale-invariance property: 

)2(2)( txtx kkH−= , (1) 

for all integers k. This is the class of signal of interest for fractal modulation applications. 

Homogeneous signals are inherently well suited as modulating waveforms for use on the 

channels previously described. In fact, as a consequence of their intrinsic self-similarity, these 

waveforms have the property that an arbitrarily short duration time-segment is sufficient to 

recover the entire waveform, and hence the embedded information, given adequate 

bandwidth. Likewise, an arbitrarily low-bandwidth approximation of the waveform is 

sufficient to recover the undistorted waveform, and again the embedded information, given an 

adequate time duration [2]. Additionally, homogeneous signals can be efficiently represented 

through a wavelet basis, that can be exploited in the development of practical systems. 

The expansion of an arbitrary signal )(tx  in a orthonormal wavelet basis takes the following 

form: 
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where ∫
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= dtttxx
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m

n )()( ψ . (2.b) 

The orthonormal wavelet basis functions are related as usual, according to: 

)2(2)( 2/
ntt

mmm
n −= ψψ , (2.c) 

where )(tψ  represents the basic wavelet function, and where m and n are the dilation and 

translation indexes, respectively [8], [9], [10], [11],[12], [13] 

When )(tx  is a homogeneous signal, it follows from (2.b) that the wavelet coefficients take 

the form: 
02/

n

mm

n xx −= β , (3) 

where γβ 22 12 == +H . Denoting 0
nx  with [ ]nq , then (2.a) becomes: 

[ ]∑ ∑
∞

−∞=

∞

−∞=

−=
m n

m

n

m
tnqtx )()(

2/ ψβ . (4) 

From (4) it arises that )(tx  is completely specified in terms of [ ]nq , that is referred to as the 

generating sequence for the homogeneous signal )(tx . The associated time-frequency portrait 

of a homogeneous signal, expressed in terms of generating sequence, is depicted in Fig. 1 (for 

purposes of illustration, H has been set to 21− ). The partitioning in such time frequency 

portraits is of course idealized; in general, there is both spectral and temporal overlap between 

cells. 

As Fig. 1 shows, the synthesis of homogeneous signals can be accomplished by replicating a 

generating sequence [ ]nq  at each scale in the representation (4) via an expansion in terms of 

an orthonormal wavelet basis [14],[15]. According to this expansion, the detail signals in the 

associated multiresolution representation are simply time-dilated versions of one another, to 

within an amplitude factor: 

( ){ } [ ] ( )tnqtxD
m
n

n

m
m ψβ ∑

∞

−∞=

−= 2/ . (5) 

With reference to this wavelet representation, the corresponding resolution m2  approximation 

of the homogeneous signal is then obtained as the projection of ( )tx  onto the subspace mV  of 

the signal space V, is as follows: 

{ } ∑
∞

−∞=

=
n

m

n

m

nm tatxA )()( φ , (6) 

where ( )tm
nφ  are the orthonormal basis of the considered subspace and expressed in terms of 

the associated scaling function ( )tφ  according to: 

)2(2)( 2/ ntt mmm

n −= φφ . (7) 

Since the coefficients m
na  are obtained by projecting ( )tx  onto the ( )tm

nφ  basis function, the 

homogeneity of ( )tx  implies that they are identical at all scales to within an amplitude factor: 

02
n

mm
n aa −= β . (8) 

From this, it results that the sequence 0
na  is an additional characterization of ( )tx  since its 

knowledge is sufficient to reconstruct the signal with arbitrary accuracy. Such a sequence is 
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referred to as the characteristic sequence and represented with [ ]np  notation. Hence, [ ]np  

characterizes arbitrarily fine approximations of ( )tx , and, in turn, ( )tx  itself. 

 frequency 

time 
 

Fig.1 The time-frequency portrait of a homogeneous signal. 

 

4.2.1 Iterative synthesis of homogeneous signals 

There are interesting relations between the two sequences [ ]np  and [ ]nq  that can be exploited 

in a discrete synthesis of the homogeneous signal ( )tx , based on the use of the quadrature 

mirror filter (QMF) pair associated with the wavelet basis [9]. Let refer with [ ]nH 0  and 

[ ]nH1  to the filters pair, so the wavelet coefficients m
na  are: 

[ ]∑ +−=
l

m
l

m
n anlHa

1
0 2 , with [ ]∑ +−=

l

m
l

m
n anlHx

1
1 2 . (9) 

From this expression it is straightforward to obtain the generating sequence [ ]nq  from the 

characteristic sequence [ ]np  as follows: 

[ ] [ ] [ ]∑ −=
k

kpnkHnq 21
21β  (10) 

while the inverse procedure is more difficult and requires the use of an iterative algorithm for 

constructing [ ]np  from [ ]nq : 
[ ][ ]
[ ][ ] [ ] [ ][ ] [ ] [ ]{ }∑

∞

−∞=

+ −+−=

=

k

ii
kqknHkpknHnp

np

22
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10
2/11

0

β
 (11) 
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This recursive upsample-filter-merge algorithm, depicted in Fig.2, can be viewed as 

repeatedly modulating [ ]nq  with the appropriate gain into successively lower octave band of 

the frequency interval. Note that the quantity [ ]nq*  is the sequence [ ]nq  modulated into 

essentially the upper half band of frequencies. 

 
 

Fig. 2 Iterative synthesis of the characteristic sequence [ ]np  from the generating sequence [ ]nq  

 

 

4.3 Fractal modulation transmitter and receiver 

The results of the preceding section suggest an efficient way for embedding a symbol stream 

[ ]nq  into a homogeneous waveform ( )tx  by only using such a sequence as the generating one 

for the signal ( )tx . This synthesis is the essence of the fractal modulation, which yields [ ]nq  

to be modulated into a finite number of contiguous octave-width frequency bands. 

The fractal modulation transmitter can be implemented in a computationally efficient manner 

using the discrete-time algorithm of the previous section. In particular, after obtaining 
[ ][ ]np
M  from [ ]nq  using M iterations of the synthesis algorithm (11), the result is mapped 

into the associated continuous-time waveform by modulating with the appropriate scaling 

function as follows: 

( ) )2(2][][
ntnptx

MM

n

M −= ∑ φ . (12) 

Finite length messages are accommodated by modulating their periodic extensions 

[ ]Lnq mod , thereby generating a transmitted waveform: 

( ) [ ] ( )tLnqtx
H

n

n

θ∑
∞

−∞=

= mod , (13) 

where ∑
∞

−∞=

−=
m

m

n

mH

n tt )()(
2/ ψβθ . 

Denoting with [ ] [ ][ ]10 −= Lqq Kq  the data vector, the time-frequency portrait associated with 

this signal is shown in Fig. 3. This naturally leads to a strategy for data transmission on block-

by-block basis. 

The parameter H in fractal modulation controls the relative power distribution among 

frequency bands and, hence, the overall transmitted power spectrum. 
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time 

frequency 

 
Fig. 3. A portion of the time-frequency portrait of the transmitted signal for fractal modulation of a finite length 

data vector q 

 

For transmission of finite-length messages composed of M-ary symbols in the presence of 

Gaussian noise, efficient maximum likelihood (minimum probability of error) receivers can 

be developed [2]. Such receivers exploit processing in the wavelet coefficient domain. 

Accordingly, the first stage receiver extracts the wavelet coefficients m
nr  of the received 

waveform ( )tr  using the DWT. These coefficients take the form: 

[ ] m

n

mm

n zLnqr += − mod2/β , (14) 

where m
nz  are the wavelet coefficients of the noise process ( )tz . 

The duration-bandwidth characteristics of the channel in general affect which observation 

coefficients m
nr  may be accessed and, hence, the available redundancy. If the channel is band-

limited to UT
2 Hz for some integer UT , this precludes access to the coefficients at scales 

corresponding to UTm > . Simultaneously, the duration-constraint in the channel results in a 

minimum allowable decoding rate of LT
2 symbols/sec for some integer LT , which precludes 

access to the coefficients at scales corresponding to LTm < . As a result, the available number 

of noisy measurements of  the message is: 

122
1 −== +−

=

−∑ LU
U

L

L TT
T

Tm

Tm
K . (15) 
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Under the hypothesis of m
nz  being a Gaussian variable with zero mean and variance 

m

z

m

nz
−= βσ 2var , the resulting bit-error probability that characterizes such a fractal 

demodulator can be written as: 






















−= 1

/

22

WR
QP F

ce

η
σ , (16) 

where 2

cσ  represents the signal to noise ratio. 

 

4.4 Experiments set-up 

The performance of a high-order constellation fractal modulation scheme has been 

investigated with the aid of the Ptolemy tool, that is a heterogeneous simulation environment 

supporting different computational models developed at the Berkeley University [16]. Aim of 

our experiments is to investigate the robustness of fractal modulation schemes for digital data 

transmission over AWGN channels affected by multi-path fading. 

Initially, the orthonormal wavelets firstly described by Daubechies was used in the 

experiments, due to the compactness of the associated discrete wavelet transform filters [17]-

[18]. The order used for these wavelets has been selected taking into account the complexity 

in the realization of the basic function and the fact that they are not time-limiting, that is, the 

wavelets of the same dilation overlap each other. The number of wavelets overlapped by a 

given wavelet is 22 −N , where N is the order of the wavelet family. As N increases the 

number of data symbols simultaneously being modulated within one-frequency band 

increases as well. The implementation of high-order system would require heavy increase of 

the system complexity, due to the additional buffers, modulators, and other components to be 

added. Then we selected N = 4 as a reasonable order to use for our simulation, according also 

with the strategy already adopted by Ptasinsky and Fellman [4]. The wavelet have been 

generated by means of the MacWavelets [19]. 

When digitizing wavelets, we must use a sufficient number of samples to maintain their 

desired characteristics. Since the wavelets are not ideally band-limited, any sampling 

introduces some distortion. The main characteristic of interest is the orthogonality of wavelets 

at the different dilations. We selected a 1024 points representation for the prototype wavelet, 

and a number of 4 dilations obtaining the following signal representation: 

( ) [ ] ( )tnqtx
m

n

m n

m ψβ∑ ∑
−=

∞

−∞=

−=
0

3

2/ , (17) 

according to the representation of the dilation with the longest time duration to be the 0=m  

dilation, and that with the shortest duration the 3−=m  one. It can be shown that this strategy 

for Daubechies wavelet of order 10 lead to a 40 dB separation between dilations that reduces 

to 24 dB increasing the number of dilation to 6 [5]. For simplicity, we will not consider the 

sign in the dilation indexes and we shall indicate each signal dilation by means of the indexes 

0m , 1m , 2m  and 3m  decreasing the order of resolution. 

Other than the Daubechies families of wavelt of order 8, 18, 20, the Beylkin wavelets of order 

18, the Coifman families of order 30, and the Vaidyanathan wavelets of order 24 have been 

considered. We refer to these with D8, D18, D20, B18, C30 and V24 respectively. The same 

considerations made for the Daubechies wavelets can be extended for all the considered 

families. All the wavelets have normalized energy of 1 W/Hz, and the scaling factor in the 

frequency band modulators was set β  = 1 corresponding to a Hausdorf dimension 

2/1−=H optimizing the system for AWGN channels. We chose 1024 points for m0, and this 



Appendix A – Some wavelets filters 

DIEE - University of Cagliari  

 

99 

strategy lead to a 2048, 4096 and 8192 points representation for m1, m2 and m3 respectively. 

The energy associated to each dilation reduces to half within each decreasing of resolution. 

We implemented a digital quadrature modulation scheme, coding the inphase and quadrature 

component with 4 bits performing a 16 level constellation. 

 

4.4.1 Channel Model 

Noise is a random process affecting the decoding of the transmitted data, making it uncertain. 

Generally the effect of the noise is represented in simulation test-bed by an additive source at 

the front of the receiver. In this work, we considered the transmission of digital data over a 

AWGN channel, with zero mean and spectral power density N0 affected by fast-fading effect. 

Fading effect is typically due to a particular terrain geometry or to a particular atmospheric 

conditions. We characterize the phenomena by defining the fading-rate, the number of 

variation of the signal level per time unit, and by the fading intensity, generally measured in 

dB that can be higher than 20 dB. 

The fast-fading effect is simulated by adding some signals with different amplitudes and 

frequencies, distributed in a Doppler frequency range [20]. The rate is proportional to the 

frequency carrier ( )cf  and to the speed of the mobile receiver ( )RV . For instance, for 

MHz900=cf  and hKmVR /100= , the maximum Doppler frequency is about 90 Hz. Fig. 4. 

shows the corresponding Ptolemy-based implementation used in the simulations. 

 

Phase 

Shift 

Phase 

Shift 

Gain Coeff. 

Gain Coeff. 

 

 
Fig.4 Fast-fading simulator scheme 

 

4.4.2 Quadrature scheme transmitter/receiver 

The scheme in Fig. 5 implements for each dilation im  the following operation: 

[ ] ( )ntLnq
mm

n

n

−∑ 2mod ψ , (18) 

where [ ]nq  is a complex number representing the position of the corresponding symbol in the 

constellation. 

The sum of four dilations will produce the signal to be transmitted over the channel. 

We implemented the receiver by means of matched filters and samplers. The inphase and 

quadrature components are quantized separately and following added. Fig 6 and 7 show the 

decoding procedures. 
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Fig. 5 Quadrature fractal modulation transmitter scheme (number of dilation N=4) 
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Fig. 6. Quadrature receiver scheme. 

 

 

C->R 
 

Cplx2Real 

Quantizer 

Quantizer 

 
Fig. 7. Decision block for quadrature transmission 

 

4.5 Performance analysis 

In order to compare the performance of different modulation schemes, there is a need of 

exploiting a method not dependent to the bit-rate, received power and noise at the front 

receiver. Accordingly, often one refers to the energy per bit- noise ratio 0/ NEb . 

The signal transmitted over the channel is composed by wave with different energy, therefore 

to make consistent comparison, in our experimentation we collected the performance relevant 

to the simulated transmission schemes in terms of bit error rate at varying noise spectral 

power density 0N . 
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In order to analyze the performance of the quadrature scheme, we simulated a classic 16-

QAM modulation system. Tests have been accomplished by fixing the energy per bit bE  and 

varying 0N . We used as test sequence to be transmitted the binary pattern 

1101001101001001, corresponding to the four position (1,3), (-3,3), (-1, -3), (1, -1) in the 

constellation. The used mean energy per bit has been set to 2.5 W/Hz. Accordingly, in the 

dilation m0 for example a noise spectral power density of 0.01 W/Hz yields to a 2
cσ  of about 

24 dB. 

The "fast-fading" channel has been simulated by adding at the front receiver two identical 

signals attenuated to 1/10 respect to the original power. Furthermore, these signals have been 

translated at frequency and phase of 75 Hz and 25 degrees, and 50 Hz and 35 degrees, 

respectively. 

We present the performance results for all the different wavelet families previously 

mentioned: we dedicated special attention to the Daubechies's wavelets, extensively 

investigated in previous works [4][5][2][1], presenting the corresponding results in separate 

graphics at varying order. The results obtained with this wavelets family are presented in Figs. 

8-11 for the different dilations that are compared with the QAM error rate. It can be observed 

that better results have been obtained increasing the resolution order. In particular, it results 

that the Daubechies wavelets allow to obtain significant performance improvement at the 

highest dilation compared to the standard QAM. In fact, the latter provides a bit-error rate 

more than 18 times higher respect to all the family order. At lower resolutions, the fractal 

modulation performance decreased achieving results comparable with that of the QAM in the 

case of the 3m  dilation. 

A similar behavior has been found even for the other wavelet families, whose results are 

depicted in Figs. 12-15. Except the Coifman's wavelet families, that showed their relevant 

sensitivity to the fading-effect, all other considered families achieved good results. 
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Fig. 8. Daubechies wavelet performance at 0m  dilation. 
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Fig. 9. Daubechies wavelet performance at 1m  dilation. 
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Fig. 10. Daubechies wavelet performance at 2m  dilation. 
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Fig. 11. Daubechies wavelet performance at 3m  dilation. 
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Fig. 12. Beylkin, Coifman and Vaidyanathan wavelet performance at 0m  dilation. 
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Fig. 13. Beylkin, Coifman and Vaidyanathan  wavelet performance at 1m  dilation. 
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Fig. 14. Beylkin, Coifman and Vaidyanathan  wavelet performance at 2m  dilation. 
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Fig. 15. Beylkin, Coifman and Vaidyanathan wavelet performance at 3m  dilation. 

 

 

 

4.6 Conclusion 

In this paper we investigated the problem of transmitting digital data over a fast-fading 

affected AWGN channel, by means of a fractal modulation system. We performed 

experiments using different wavelet families and we tested the effectiveness of the system for 

different orders.  
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We implemented a 16 level quadrature scheme and we compared it with a classic QAM 

system. Tests showed as the fractal implementation outperform of the latter in terms of 

achieved bit error rate and that that Beylkin's and Daubechies's wavelet of order 8, 18 and 20 

represent the more reliable and efficient waves in terms of error robustness and bandwidth. 

By the light of the achieved results, further developments of the algorithm could concern a 

comparison between the proposed scheme and an OFDM transmission system for 

broadcasting applications. 
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Appendix A 

SOME WAVELET FILTERS 

A.1 Haar filters 

The simplest wavelet filters have been found by Haar in 1910 [1]. These filters are of length 2 

and the low-pass filter is an averaging operator, while the high-pass is a difference operator. 

So, the two filters have the following expression: 

 ( )








=
2

1

2

1
nh    (A.1) 
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ng    (A.2) 

and derive from the following scaling function and wavelet: 
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A.2 Daubechies filters 

Daubechies’ family of wavelets is built in order to produce maximally flat filters [2]. The 

design procedure consists of finding orthogonal low-pass filters with a large number of zeros 

(that is, maximum flatness) at ω=π. In the particular case of two zeros, this construction leads 

to the 2D  filter, that is a length-4 orthogonal filter. The length-2 Daubechies filter coincides 

with the Haar filter. 

Daubechies has calculated sets of orthonormal compactly supported wavelets and has proved 

that there is no closed formula, apart from Haar wavelets, for this kind of wavelets. 

Since the wavelet and scaling functions are quadrature mirror filters and their dilation and 

translation can span two complement spaces, a trigonometric polynomial ( )fm0  can be 

defined [3] in order to satisfy the following conditions: 

 
( ) ( ) 1

2

0

2

0 =++ πfmfm
   (A.5) 
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 ( ) 100 =m    (A.6) 

The scaling function φ  and the corresponding wavelet ψ  can be then defined by the 

following: 
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Daubechies proposed the following trigonometric polynomial: 
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 (A.9) 

where R  is an odd polynomial, chosen so that the right hand side of the equation becomes 

positive. 

Daubechies introduced also other wavelets with more vanishing moments for both the scaling 

function and the wavelet. Thus, they should satisfy also the following conditions: 

 ( ) 1=∫ dxxφ    (A.10) 

 ( ) 0=∫ dxxx
lφ  for 1...21 −= L,l   (A.11) 

 ( ) 0=∫ dxxx
lψ  for 1...21 −= L,l   (A.12) 

These new constraints mean that the inner product of the scaling function with a smooth 

function f only depends on ( )kf j2  and its derivatives of order greater or equal to L . 

Imposing these vanishing moments forces symmetry to ( )xφ  as well. The wavelets derived 

from these criteria are called “Coiflets of order L ”, as Coifman requested these filters for 

some signal processing applications [4]. 

The coefficients of the 4-length filter are reported in table A.1. 

n h(n) 

0 0.48296 

1 0.83652 

2 0.22414 

3 -0.12941 

 
Table A.1 Coefficients of 4-length Daubechies filter (D4) 

 

A.3 Lemariè-Battle filters 

Lemariè [5] and Battle [6] studied a class of multiresolution approximation of ( )RL2  

constructed starting from polynomial splines of order 12 +p .  

Let 1V  be the vectorial space of all continuous and derivable functions in ( )RL2  that coincide 

for p  times with polynomials of order 12 +p  into each interval [ ]1+k,k , for each Zk ∈ . A 

multiresolution approximation of ( )RL2  is composed by 1V  and by all j2
V obtained by 1V  

through causality properties (see 3. in 1.2.1). 
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Lemariè has shown that the scaling function associated with this multiresolution 

approximation can be written in the following way: 

 

∑
=

n

n
)(ˆ

2
)(

1

ωω
ωφ    (A.13) 

with pn 22 +=  and the function ∑n
)(ω  defined as: 
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An explicit expression of ∑n
)(ω  can be obtained from the calculation of the derivative of 

order 2−n  of the following expression: 
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For theorem 1.2, the function )(ωφ̂  is related to the transfer function ( )ωH  of a QMF filter 

by the following: 

 )()()2( ωφωωφ ˆˆ ⋅= H    (A.16) 

And for the (A.13) it holds: 
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The Fourier transform of the corresponding orthonormal wavelet can be obtained from the 

(1.22) of theorem 1.3: 
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The wavelet defined by (A.18) is a function that decreases in an exponential manner. 

The choice of 1=p  and then of 4=n  corresponds to a multiresolution approximation built 

starting from cubic splines. 

The function ∑8
)(ω  can be expressed in the following way: 
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with 
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and 
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For such multiresolution approximation the Fourier transforms of the scaling function and of 

the corresponding orthonormal wavelet can be derived from the (A.13) and (A.18) with 

4=n . 

The transfer function of the filter ( )ωH  is given by the (A.17) and the one of the mirror filter 

( )ωG  by the (1.22).  

The filter ( )nh  is symmetrical with respect to the origin. The first 25 coefficients of the 

impulsive response of the filter are reported in table A.2. 

 
n h(n) 

±12 0.000 

±11 -0.002 

±10 -0.003 

±9 0.006 

±8 0.006 

±7 -0.013 

±6 -0.012 

±5 0.030 

±4 0.023 

±3 -0.078 

±2 -0.035 

±1 0.307 

0 0.542 

 
Table A.2 Coefficients of length-25 Lemarié-Battle filter  
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Appendix B 

STATISTICAL PROPERTIES OF THE WAVELET TRANSFORM 

The statistical distribution of wavelet coefficients at a fixed resolution and orientation is a 

symmetric distribution with a nearly zero mean and small variance (figure B.1). 

This distribution is often modeled as a Laplacian distribution, but it falls off really more 

rapidly, and it is better approximated by the generalized Gaussian distribution [7]: 
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where k
j2

σ  is the standard deviation of the subband distribution at orientation K  and 

resolution j2  and Γ(⋅) is the Gamma function. 

This formula contains the Gaussian and the Laplacian PDF as special cases: 

- for 2
2

=k
jr  it is the Gaussian PDF; 

- for 1
2

=k
jr  it is the Laplacian PDF. 
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Figure B.1 
Approximations of the statistical distribution of wavelet coefficients 

 

Some data regarding the distribution of the wavelet coefficients of the images used in (2.2.4) 

and in (5.4.2) are reported in the following. All original images are composed by 512x512 

pixels and quantized with 256 gray levels. 
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Image Orientation Maximum value Minimum value Mean value Variance 

   Resolution j=-1   

 Horizontal 46.977 -49.433 0.026 14.473 

 Vertical 53.846 -55.426 -0.026 16.095 

 Diagonal 25.112 -24.503 -0.001 3.043 

   Resolution j=-2   

 Horizontal 59.087 -43.655 -0.007 30.870 

Agave Vertical 57.265 -55.168 0.032 28.427 

 Diagonal 29.198 -35.783 0.009 11.643 

   Resolution j=-3   

 Horizontal 64.468 -44.537 -0.021 50.081 

 Vertical 44.074 -42.388 0.088 33.202 

 Diagonal 37.789 -36.058 0.037 17.607 

   Resolution j=-1   

 Horizontal 11.746 -8.262 0.002 1.050 

 Vertical 44.363 -54.093 -0.002 6.271 

 Diagonal 6.231 -3.953 0.001 0.295 

   Resolution j=-2   

 Horizontal 39.200 -40.917 0.018 16.243 

Airplane Vertical 41.899 -47.995 0.001 24.189 

 Diagonal 15.257 -14.367 0.002 2.827 

   Resolution j=-3   

 Horizontal 58.900 -55.204 0.027 54.335 

 Vertical 45.378 -49.223 0.107 58.040 

 Diagonal 25.259 -22.646 0.027 13.679 

   Resolution j=-1   

 Horizontal 23.365 -21.617 0.002 12.612 

 Vertical 46.708 -49.384 -0.005 35.583 

 Diagonal 15.953 -14.458 -0.004 6.304 

   Resolution j=-2   

 Horizontal 37.391 -34.196 -0.018 44.683 

Baboon Vertical 49.000 -46.803 -0.083 54.912 

 Diagonal 23.911 -39.020 -0.019 16.963 

   Resolution j=-3   

 Horizontal 40.381 -38.972 -0.108 47.675 

 Vertical 41.075 -41.771 -0.037 54.621 

 Diagonal 27.476 -34.579 -0.009 25.669 

   Resolution j=-1   

 Horizontal 67.672 -61.027 -0.000 41.679 

 Vertical 78.366 -70.164 0.026 38.523 

 Diagonal 30.885 -30.527 -0.000 4.006 

   Resolution j=-2   

 Horizontal 70.156 -81.172 0.014 52.523 

Carmen Vertical 62.198 -101.056 -0.092 42.684 

 Diagonal 41.935 -41.031 -0.024 14.223 

   Resolution j=-3   

 Horizontal 82.395 -70.729 0.033 111.376 

 Vertical 74.758 -68.106 -0.064 100.582 

 Diagonal 48.886 -39.041 -0.050 40.080 
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   Resolution j=-1   

 Horizontal 53.957 -45.495 -0.003 10.314 

 Vertical 60.520 -68.022 -0.041 15.941 

 Diagonal 41.274 -41.060 0.003 4.563 

   Resolution j=-2   

 Horizontal 47.924 -53.713 -0.0045 20.272 

Cat Vertical 52.418 -55.870 0.070 24.044 

 Diagonal 40.257 -25.781 0.033 7.717 

   Resolution j=-3   

 Horizontal 47.862 -68.457 -0.006 41.098 

 Vertical 50.724 -56.765 0.118 52.834 

 Diagonal 44.543 -33.540 0.018 16.917 

   Resolution j=-1   

 Horizontal 20.788 -24.561 0.003 3.625 

 Vertical 34.932 -34.234 0.031 10.663 

 Diagonal 13.415 -13.694 0.001 2.345 

   Resolution j=-2   

 Horizontal 51.086 -38.512 0.000 10.290 

Lena Vertical 69.465 -65.162 0.025 26.210 

 Diagonal 24.427 -29.562 0.015 6.970 

   Resolution j=-3   

 Horizontal 37.329 -32.903 -0.009 17.239 

 Vertical 41.591 -41.315 -0.100 52.683 

 Diagonal 26.947 -29.629 -0.034 16.324 

   Resolution j=-1   

 Horizontal 75.575 -60.380 -0.014 32.560 

 Vertical 94.231 -78.869 -0.024 47.285 

 Diagonal 80.298 -85.806 -0.002 17.193 

   Resolution j=-2   

 Horizontal 71.393 -58.058 -0.046 44.073 

Masquerad

e 

Vertical 91.993 -63.802 0.008 63.595 

 Diagonal 34.432 -34.028 -0.014 20.063 

   Resolution j=-3   

 Horizontal 49.614 -54.072 0.055 64.650 

 Vertical 52.685 -73.564 -0.243 91.682 

 Diagonal 31.134 -31.237 0.018 27.035 

   Resolution j=-1   

 Horizontal 49.911 -46.912 0.022 15.224 

 Vertical 51.322 -56.583 -0.003 20.051 

 Diagonal 24.364 -25.812 -0.003 2.096 

   Resolution j=-2   

 Horizontal 67.136 -60.309 -0.036 18.781 

Model Vertical 43.262 -46.637 0.031 26.261 

 Diagonal 26.636 -29.915 -0.019 5.433 

   Resolution j=-3   

 Horizontal 44.426 -40.109 -0.120 30.509 

 Vertical 47.578 -52.157 -0.003 50.070 

 Diagonal 30.913 -25.789 0.029 12.632 
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   Resolution j=-1   

 Horizontal 36.705 -42.713 0.001 2.636 

 Vertical 46.311 -39.925 -0.021 6.099 

 Diagonal 20.895 -15.738 0.002 1.937 

   Resolution j=-2   

 Horizontal 27.341 -23.143 0.022 7.735 

Peppers Vertical 34.695 -39.420 0.040 14.329 

 Diagonal 16.979 -38.834 -0.006 1.884 

   Resolution j=-3   

 Horizontal 47.368 -41.769 0.028 27.218 

 Vertical 36.480 -48.707 -0.145 39.237 

 Diagonal 26.009 -24.779 -0.019 6.924 

   Resolution j=-1   

 Horizontal 28.780 -23.527 0.006 3.284 

 Vertical 35.931 -47.363 0.014 8.174 

 Diagonal 22.113 -21.304 0.002 2.661 

   Resolution j=-2   

 Horizontal 22.868 -32.275 -0.011 4.815 

Tiffany Vertical 39.879 -46.565 -0.031 12.868 

 Diagonal 21.837 -15.930 0.003 3.449 

   Resolution j=-3   

 Horizontal 30.636 -31.758 0.029 9.803 

 Vertical 34.533 -45.096 -0.018 15.485 

 Diagonal 14.149 -18.241 -0.031 5.109 

   Resolution j=-1   

 Horizontal 22.977 -21.865 0.002 13.130 

 Vertical 45.752 -49.898 -0.001 36.078 

 Diagonal 15.424 -15.223 -0.006 6.739 

   Resolution j=-2   

Residual Horizontal 37.566 -33.719 0.009 45.190 

Baboon Vertical 48.196 -47.061 -0.098 55.517 

 Diagonal 24.855 -39.242 -0.015 17.242 

   Resolution j=-3   

 Horizontal 39.857 -36.675 -0.011 60.309 

 Vertical 47.983 -46.052 0.069 73.102 

 Diagonal 28.332 -35.476 -0.063 25.977 

   Resolution j=-1   

 Horizontal 20.139 -23.153 0.001 4.141 

 Vertical 35.959 -34.041 0.051 11.192 

 Diagonal 13.229 -13.022 -0.002 2.768 

   Resolution j=-2   

Residual Horizontal 51.059 -38.230 -0.004 10.680 

Lena Vertical 69.089 -65.152 0.004 26.568 

 Diagonal 24.260 -28.489 0.018 7.174 

   Resolution j=-3   

 Horizontal 38.360 -38.513 0.020 26.456 

 Vertical 51.180 -49.385 0.003 68.278 

 Diagonal 27.755 -31.451 -0.018 17.722 
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   Resolution j=-1   

 Horizontal 75.868 -60.560 -0.019 32.650 

 Vertical 94.068 -78.492 -0.024 47.304 

 Diagonal 80.452 -86.051 -0.002 17.208 

   Resolution j=-2   

Residual Horizontal 71.290 -58.372 -0.062 44.620 

Masquerade Vertical 91.424 -64.221 0.006 63.711 

 Diagonal 35.030 -33.967 -0.014 20.051 

   Resolution j=-3   

 Horizontal 61.259 -56.766 -0.008 89.203 

 Vertical 55.678 -77.320 -0.254 116.173 

 Diagonal 34.021 -35.067 0.019 28.115 
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