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Chapter 1 

Introduction

In statistical pattern recognition the reject option has been introduced to safeguard against

excessive misclassifications, thus improving classification reliability. It consists in withholding to

automatically classify an input pattern if a wrong classification is more likely than a correct one.

Rejected patterns must then be handled in a different way, for instance they can be classified by

a human operator, or by using a more complex classifier as proposed by Pudil et al (1992).

Obviously, rejects have a cost, as well as misclassifications, due to their exceptional handling.

This means that the reject option is useful in applications for which a misclassification is more

costly than a reject. An example is the classification of medical images. Moreover, also patterns

that would have been correctly classified can be rejected. Therefore a suitable trade-off between

misclassifications and rejects depends on their relative costs. In the framework of the minimum

risk theory, the optimal classification rule with reject option was defined by Chow (1957; 1970).

In the simplest case in which the costs of misclassifications and of rejects do not depend on the

classes, Chow’s rule consists in rejecting an input pattern if the maximum of its a posteriori

probabilities is lower than a predefined threshold, whose value depends on the classification

costs. The maximum of the a posteriori probabilities can therefore be considered as the measure

of classification reliability. This means that the optimality of Chow’s rule, analogously to Bayes

rule for classification without reject option, relies on the exact knowledge of the a posteriori

probabilities. However it is well-known that in real applications the a posteriori probabilities are

usually unknown, and can only be approximated by some kinds of classifiers, like neural

networks.

From the above discussion it is evident that Chow’s rule does not allow to reach the optimal

error-reject trade-off when applied on estimates of the a posteriori probabilities. Moreover, some

classifiers, like support vector machines, do not even provide approximations of the a posteriori

probabilities. In this case the classification reliability must be estimated on the basis of the

specific classifier used. However, as pointed out by Hansen et al. (1997) and by De Stefano et al.

(2000), little attention was devoted in the literature to the problem of characterising the error-

reject trade-off achievable by a real classifier, and of defining rejection rules targeted to specific

classifiers. For classifiers which provide approximations of the a posteriori probabilities, Chow’s

rule is commonly used despite its non-optimality. Some works proposed different rejection rules

for neural network classifiers (Le Cun et al., 1990; Cordella et al., 1995; De Stefano et al., 2000),

and for multiple classifier systems (Foggia et al., 1999; Sansone et al., 2001). These rules are

based on evaluating the classification reliability by using not only the highest value of the

estimated a posteriori probabilities (as in Chow’s rule), but also the other values. However the

effectiveness of these rules with respect to Chow’s rule was not theoretically proven. Also for

classifiers which do not provide approximations of the a posteriori probabilities, the rejection
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rules proposed in the literature are based on simple heuristics rather than theoretical bases. A

quite surprising example are support vector machine (SVM) classifiers. This new kind of classifier

has been recently introduced by V. Vapnik on the basis of the statistical learning theory (Vapnik,

1998), and exhibited interesting advantages over traditional classifiers. However the theoretical

derivation of SVMs did not take into account the reject option. Moreover, few works in the

literature considered the problem of introducing the reject option in SVMs. Only a simple heuristic

rule is available at present, based on applying a reject threshold on the output of a trained SVM.

In this thesis we address the two main topics discussed above. We consider first the problem

of the error-reject trade-off achievable by classifiers which provide approximations of the a

posteriori probabilities (Chapters 4 and 5). In particular, in Chapter 4 we analyse the effects of

estimation errors on the performance of Chow’s rule. On the basis of this analysis, we propose a

new rejection rule based on a different reject threshold for each class. We formally prove that this

rule allows to achieve a better error-reject trade-off than Chow’s rule, in presence of estimation

errors on the a posteriori probabilities. In Chapter 5 we analyse how the effects of the estimation

errors on the error-reject trade-off can be reduced by classifier combination. We focus on simple

and widely used combining rules based on linearly combining classifiers in output space, namely,

simple and weighted average. To this aim, we extend a theoretical framework proposed by Tumer

and Ghosh (1999) for the simple average combining rule without reject option. Then, in Chapter 6

we address the problem of introducing the reject option in SVMs. As pointed out above, Chow’s

rule is not applicable to SVMs, since they do not provide approximations of the a posteriori

probabilities. We propose a method for introducing the reject option, based on the approach

followed by Vapnik to derive SVMs from statistical learning theory (Vapnik, 1998). In Chapter 7

we present experiments aimed at evaluating the effectiveness of the methods proposed in

Chapters 4 and 6.
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Chapter 2 

Classification with reject option in statistical pattern recognition

In this Chapter we present the problem of classification with reject option in statistical pattern

recognition. We first focus on the theoretical setting of this problem in the framework of the

minimum risk theory. This leads to the definition of the optimal classification rule with reject

option. We then discuss the implementation of the reject option in real classifiers.

2.1 The reject option in the framework of the minimum risk theory

In statistical pattern recognition a pattern is represented by a d-dimensional feature vector x =

(x1, x2, ..., xd)  D  d, where D is the feature space. Patterns are assumed to be random

observations, independent and identically distributed according to a probability density function

p(x). In a supervised classification problem, each pattern belongs to one of c predefined classes

1, 2, ..., c, according to a conditional probability function P( |x), which is called a posteriori

probability. The goal of a classifier is to construct a decision rule f(x) to assign any given input

pattern x to one of the c classes. The decision rule f(x) subdivides the feature space D in c disjoint

subsets D1, ..., Dc, named decision regions, so that input patterns belonging to the i-th subset are

assigned to the i-th class. The decision rule is constructed according to a given performance

criterion, which depends on the particular application. In the framework of the minimum risk

theory, the performance criterion is defined by means of a loss function L(x, ,f(x)), which

represents the loss due to classifying a given pattern x, belonging to class , using the decision

rule f(x). The goal is to construct a decision rule which minimises the expected value of the loss

with respect to x and  (expected risk):

      
R f x( )( ) = L x, i , x( )( )p x, i( )dx

D
i=1

c

 .

Usually loss functions do not depend on the particular pattern x, but only on its true class and

on the class it is assigned to by f(x). They are therefore defined by constants L( i, j), i, j = 1, ..., c,

which represent the loss incurred in deciding j when the true class is i. In this case, the decision

rule which minimises the expected risk is the well known Bayes rule (Duda et al., 2001), which

consists in assigning a pattern x to the class i, i = 1, ..., c, for which the conditional risk

      
R i | xx( ) = L j , i( )P j | xx( )

j=1

c

(1)

is minimum. The simplest loss function represents the case in which the costs of misclassifications

and correct classifications do not depend on the classes:

      
L x, , f x( )( ) =

wC , if f = ,

wE , if f .

 
 
 

  
(2)
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Obviously, wC < wE. If wC = 0, and wE = 1, the expected risk R(f(x)) is equal to the probability of

misclassifying a pattern (error probability), which can be written as

      

P error( ) = P j | xx( )p x( )
j=1
j i

c

dx
Dii=1

c

= P x| j( )p j( )
j= 1
j i

c

dx
Dii=1

c

 . (3)

Obviously, the probability of correct classification is P(correct) = 1 - P(error), and can be

expressed as:

      
P correct( ) = P i| xx( )p x( )dx

Dii=1

c

 . (4)

In this case the Bayes rule consists in assigning a pattern x to the class i having the maximum a

posteriori probability (MAP rule):

      
P i| xx( ) = max

j= 1,… ,c
P j | xx( )  . (5)

The error probability achieved by Bayes rule is named Bayes error. It is by definition the lower

bound of the error probability achievable in a pattern recognition problem, for a given feature set.

To achieve a lower expected risk, or a lower error probability, than the ones given by Bayes

rule, the so-called reject option must be used. The reject option consists in avoiding to

automatically classifying patterns for which the classification is not sufficiently reliable. Rejected

patterns must then be handled with a different procedure, for instance they can be manually

classified. Obviously, rejects have a cost, as well as misclassifications, due to their exceptional

handling. This implies that the reject option is useful only if the cost of rejects is lower than the

cost of misclassifications. Moreover, it is not possible to turn all misclassifications into rejects,

but also patterns that would have been correctly classified could be rejected (Chow, 1970).

Therefore, when using the reject option, a suitable trade-off between errors and rejects must be

found, depending on their relative costs. For instance, as pointed out by Cordella et al. (1995), in

medical applications the cost of a misclassification could be very expensive, making a high reject

rate acceptable to keep the misclassification rate as low as possible. Instead, in OCR

applications in which the resulting text has to be successively edited by hand, a high

misclassification rate can be acceptable. For instance, a practical scheme of a pattern recognition

system with reject option was proposed by Pudil et al. (1992), for cases in which the rejection is

not acceptable as a final result. They proposed a multistage classifier in which patterns rejected

at any stage, but the highest one, are processed by the next stage. In this scheme, each stage

utilises more informative, but more costly, measurements. This can be the case of a medical

diagnosis application. At the final stage a decision is taken in any case, so eventually no rejects

remain.

Classification with reject option has been formalised under the framework of the minimum risk

theory by Chow (1957). The decision of a classifier to reject a pattern x can be represented by

introducing a fictious class 0 which rejected patterns are assigned to. Accordingly, a classifier

with reject option subdivides the feature space D into c + 1 disjoint subsets D0, D1, ..., Dc, where

D0 denotes the reject region. The loss function (2) can be modified to take into account the cost of
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rejects, by introducing costants L( i, 0), i = 1, ..., c, which represent the cost of rejecting a pattern

belonging to class i. The classification rule which achieves the optimal error-reject trade-off is

the one which minimises the expected risk. Chow (1957) proved that this rule consists in

assigning a pattern x to the class i, i = 0, ..., c, for which the conditional risk (1) is minimum.

Note that Chow’s rule is the analogous of Bayes rule for classification with reject option. The

simplest loss function in classification with reject option (the analogous to (2)) is:

      

L x, , f x( )( ) =

wC , if f = ,

wR , if f = 0 ,

wE , if f , f 0 ,

 

 
 

 
 

(6)

where wR denotes the cost of a reject. Obviously, wC < wR < wE. The corresponding expected risk

can be written as

wCP(correct) + wRP(reject) + wEP(error) , (7)

where P(reject) denotes the probability that a pattern is rejected, and can be expressed as

      
P reject( ) = p x( )dx

D0

 . (8)

In this case Chow’s rule consists in assigning a pattern x to the class i having the maximum a

posteriori probability, if it is higher than a reject threshold T:

      
max

j
P j| xx( ) = P i | xx( ) T  , (9)

where

  
T =

wE wR

wE wC

 . (10)

The patten x is rejected if P( i|x) < T (Chow, 1970). Obviously 0  T  1. Note that, since the

minimum value of the maximum a posteriori probability is 1/c, for 0  T  1/c no pattern is

rejected.

Using Chow’s rule, the error probability (3) and the reject probability (8) can be viewed as

functions of the threshold T, and can be denoted respectively as E(T) and R(T). Chow (1970)

proved that E(T) is an increasing function of T, while R(T) is a decreasing function of T. Since

they are both monotonic functions, the error-reject trade-off of a classifier can be described by the

functional relation between E and R, for varying values of T. This relation can be given in

differential form:

    

dE

dR
= T 1 0 . (11)

This means that E and R describe a curve whose intial slope is -1 (for T = 0), while the final slope

is 0 (for T = 1). From Eq. (11) it follows that:

    

d2E

dR2
=

dT

dR
0 ,

that is, the optimal error-reject curve is always convex. In particular, when R = 0, E is equal to

Bayes error. Furthermore, E decreases to 0 as R increases from 0 to 1. The behaviour of the

optimal error-reject curve is shown in Fig. 1. As said above, the optimal value of the reject
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threshold T, and terefore of E and R, depend on the classification costs (10). Chow (1970) also

proved that the optimal error-reject curve represents the minimum achievable error probability for

any value of the reject probability, and vice-versa. This can be viewed as an alternative definition

of optimal error-reject trade-off, when the loss function (6) is considered.

E

R

dE/dR=-1

10

Fig. 1. The optimal error-reject curve.

From the above discussion, it is easy to see that in statistical pattern recognition the optimality of

a classification rule relies on the exact knowledge of the a posteriori probabilities for the task at

hand. However, in practical applications all the probability functions are usually unknown

(Fukunaga, 1990). This implies that it is not possible to design an optimal classifier. In particular,

this means that a real classifier will always achieve a greater error probability than Bayes error.

Furthemore, both Bayes error and the actual error probability achieved by a real classifier are

unknown, since they depend on the unknown probability functions (see Eq. (3)). Analogously, in

classification with reject option, a real classifier can not achieve the optimal error-reject trade-off,

and both the optimal and the actual error-reject curves are unknown. In this context, the reject

option can not guarantee a lower error probability than Bayes error. Nonetheless, it is still useful

to safeguard against excessive misclassifications, as pointed out by Chow (1970) and Pudil et al.

(1992).

2.2 Class-selective rejection and distance rejection

The theoretical setting of classification with reject option described above is based on decision

rules which either reject a pattern, or assign it to one of the predefined classes, with the aim of

optimising the trade-off between errors and rejects. A different kind of decision rule, the so-called

class-selective rejection, was considered by Ha (1997). Instead of simply rejecting a pattern which

can not be reliably assigned to one of the c predefined classes, the pattern can be assigned to a

non-empty subset of classes which most likely it belongs to. In this view, the pattern is rejected

from the remaining classes. A class-selective decision rule f(x) subdivides the feature space D in

2c-1 decision regions, each one associated to one of the possible 2c-1 non-empty subsets of the c

classes. In this context, the optimality criterion was defined by Ha as the best trade-off between

the error probability and the average number of selected classes. The loss function was defined as

L(x, ,f(x)) = Lm(x, ,f(x)) + Ln(f(x)), where Lm denotes the loss due to assigning a pattern belonging
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to class  to the subset of classes given by f(x), and Ln denotes the loss due to having to deal with

the number of these classes. Denoting with Dj, j  {1,…, 2c-1}, the subset given by f(x), the two

parts of the loss function were defined as follows:

      

Lm x, , f x( )( ) =
0, if D j ,

wE , if D j ,

 
 
 

  

Lm x, , f x( )( ) = wn D j ,

where |Dj| denotes the cardinality of the set Dj. The corresponding expected risk is:

  wEP error( ) + wnn  ,

where P(error) is the probability that a pattern does not belong to any of the classes given by (x),

and   n  denotes the average number of classes which a pattern is assigned to. Ha proved that the

optimal decison rule with class-selective rejection consists in assigning a pattern x to all classes

whose posterior probability exceeds a reject threshold t = wn/wE. If the maximum a posteriori

probability is lower than t, the pattern x has to be assigned only to the corresponding class.

Horiuchi (1998) defined a different optimality criterion for class-selective rejection. The aim

was to avoid cases in which the minimum distance between the a posteriori probabilities of

selected and rejected classes is lower than the maximum distance between the a posteriori

probabilities of selected classes. The optimality criterion was defined as the best trade-off

between the number of selected classes and the maximum distance between the a posteriori

probability of selected classes. The corresponding optimal decision rule consists in selecting all

the classes for which the minimum distance between their a posteriori probabilities is lower than

a threshold s, with 0  s  1.

Dubuisson (1990) and Dubuisson and Masson (1993) proposed a rejection rule to deal with

incomplete knowledge about classes. For instance, in applications like diagnostic problems the

number of classes can be not known a priori, or it can be not possible to obtain training patterns

from some classes. In these cases it could be desirable to reject patterns of unknown classes

instead of assigning them to one of the known classes. Dubuisson argues that Chow’s rule is not

suitable to this kind of applications, since it can only solve uncertainty problems. The uncertainty

arises when a pattern can be assigned to more than one of the known classes, but can not be

reliably assigned to only one of them. For this reason the reject option dealt with by Chow’s rule

is called ambiguity rejection. To deal with the problem of incomplete knowledge about classes,

Chow’s rule was extended by rejecting also patterns which lie “far” from known classes. More

precisely, a pattern x is distance-rejected if p(x) < Cd, where p(x) is the probability density

function of the feature vector, with respect only to known classes, and Cd is the so-called distance

reject threshold. This was called distance rejection, to distinguish it from ambiguity rejection. A

modified version of this rule was proposed by Muzzolini et al. (1998). They used a different

distance reject threshold for each class-conditional probability density function p(x| i), to

balance the probability of distance rejection for patterns of different classes. We point out that,

unlike Chow’s rule and the class-selective rejection rule, the above distance rejection rules are not

based on the definition of an optimality criterion.
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In the rest of this work we will only consider the reject option as defined in paragraph 2.1.

2.3 Evaluation of classification reliability in real classifiers

Even if in practical applications the a posteriori probabilities are unknown, every type of

classifier allows to evaluate a measure of the degree of certainty of the classification, as pointed

out by Hansen et al. (1997). Rejection rules used in real classifiers are mainly based on obtaining

an estimate of the a posteriori probabilities, to which Chow’s rule is usually applied, despite its

non-optimality. In this paragraph we review how the reject option is implemented in well-known

classifiers.

Several classifiers provide approximations of the a posteriori probabilities in statistical sense.

This justify the use of Chow’s rule to implement the reject option, as far as the estimates are close

to the true a posteriori probabilities (this point will be discussed in more detail in Chapters 4 and

5). For instance, under certain hypotheses, parametric classifiers approximate the class-

conditional probability densities p(x| ) (Fukunaga, 1990). Estimates of the a posteriori

probabilities can then be obtained using the well-known Bayes

formula      P | xx( ) = p x|( )P( )/ p x( ) , where p(x) is obtained as 
      

p x| i( )P i( )
i=1

c

, and the class

priors P( i) are usually estimated as the fraction of training patterns belonging to each class. Also

non-parametric classifiers like the k nearest neighbours (k-NN) classifier and neural networks,

which are universal approximators, provide approximations of the a posteriori probabilities. For

the k-NN classifier, let be ki the number of patterns belonging to class i, among the k nearest

neighbours of a pattern x to be classified. It has been proven that, under certain hypotheses, the

value of P( i|x) is approximated by ki/k (Bishop, 1995; Duda et. al., 2001). For neural networks,

consider a c-class problem, and a multi-layer perceptron neural network with c output neurons

whose activation values are in the range [0,1]. If the network is trained with the back-propagation

algorithm, it has been shown that their outputs approximate the a posteriori probabilities in a

mean square sense (Richard and Lippmann, 1991; Ruck et al., 1990).

In multiple classifier systems, estimates of the a posteriori probabilities are provided by

combining rules based on Bayesian formalism (Xu et al, 1992; Huang and Suen, 1995), and on

Dempster-Shafer evidence theory (Xu et al., 1992). More precisely, these rules provide a so-called

belief value for each class. Beliefs are estimates of the probability that an input pattern belongs to

a given class, given the class labels provided by each individual classifier. The corresponding

classification rules with reject option are analogous to Chow’s rule, since beliefs are treated as

estimates of the a posteriori probabilities.

Some classifiers provide output values which can not be considered probability estimates, for

instance because they are not in the range [0,1]. Whenever possible, to implement the reject option

estimates of the a posteriori probabilities are computed. An example are distance classifiers,

whose outputs are the distances di, i = 1, ..., c of an input pattern from class centres. An input

pattern is assigned to the class corresponding to the minimum di. In this case the probability that
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a pattern belongs to any class can be intuitively related to the values of di, assuming that the

higher is the distance of a pattern from a class centre, the lower is the probability that the pattern

belongs to that class. Accordingly, a simple estimate of the a posteriori probabilities can be

computed as 

      

P i| xx( ) =
1/ di

1/ dii=1

c
 (Xu et al, 1992), and Chow’s rule can be applied to these

estimates to implement the reject option. Another example are Support Vector Machines (SVMs),

a pattern recognition technique recently introduced by Vapnik (1998). Basically, SVMs are two-

class classifiers based on finding a linear class boundary (separating hyperplane) in a new feature

space of higher dimension than the original one. The output of a SVM is the distance of the input

pattern from the separating hyperplane. This value is not in the range [0,1] and has no

relationship with the a posteriori probabilities. Nonetheless, it can be used as an indication of

classification reliability, with the reasonable assumption that the higher the distance of a pattern

from the class boundary, the more its classification can be considered reliable. A reject threshold

can then be applied directly to the output of a SVM (Mukerjee et al., 1998). Methods for

estimating the a posteriori probabilities from the output of SVMs have also been recently

proposed, mainly aimed at introducing the reject option through Chow’s rule (Kwok, 1999;

Madevska-Bogdanova and Nikolic, 2000).

In some cases it is not possible to obtain meaningful estimates of the a posteriori probabilities,

and only one measure of classification reliability associated to the winning class can be

computed. For instance, this is the case of combining rules based on majority voting and weighted

voting. For these rules the classification reliability can only be evaluated as the ratio between the

number of votes received by the winning class, and the total amount of available votes. The reject

option can only be implemented by applying a reject threshold on this measure (Xu et al., 1992;

Battiti and Colla, 1994).

2.4 Rejection rules proposed in the literature

As said above, Chow’s rule is commonly used for classifiers whose outputs approximate the a

posteriori probabilities, or if meaningful estimates of the a posteriori probabilities can be

obtained. Since Chow’s rule is not optimal when it is not applied to the exact values of the a

posteriori probabilities, alternative rejection rules have been proposed in the literature. Most of

these rules are targeted to neural classifiers. Basically, these rules evaluate classification reliability

using other parameters besides the value of the highest estimated a posteriori probability.

In a work on neural handwritten digit recognition, Le Cun et al. (1990) evaluated the

classification reliability using three parameters. They considered the value of the most-active

output unit 
      
oi x( ) = max

k=1,…,c
ok x( ) , the value of the second most-active unit 

      
oj x( ) = max

k i
ok x( ) , and the

difference between these activity levels oi(x)-oj(x). They applied three different reject thresholds

on these parameters. An input pattern x was accepted and assigned to class i under three
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conditions: the value of oi(x) should by larger than a given threshold t1 (analogously to Chow’s

rule), the value of oj(x) should be smaller than a given threshold t2, and the difference oi(x) - oj(x)

should be larger than a given threshold td. A similar rule, based only on the parameters oi(x) and

oi(x)-oj(x), was used by Battiti and Colla (1994) in experiments on neural networks combination.

This last rule was used also by Cordella et al. (1995). In particular, they proposed a method to

evaluate the two reject thresholds, based on maximising a performance function which takes into

account the error and reject rates.

A specific rejection rule for binary classifiers was proposed by Tortorella (2000). He

considered two-class classifiers which provide only one output value o(x) in the range [0,1]. This

is usually the case of neural networks, whose architecture for two-class problems contains one

only output neuron. Denoting the two classes 1 and 2 respectively as positive and negative, two

classification schemes without reject option can be used. A general scheme consists in assigning

an input pattern x to class 1 or to class 2, depending on whether o(x)  t or o(x) < t, where t is a

given threshold. If the output o(x) is considered an estimate of the a posteriori probability of class

1, the MAP rule is implemented by using a threshold value t = 0.5. The rejection rule proposed

by Tortorella is based on extending the former classification scheme, using two reject thresholds.

An input pattern x is assigned to class 1 if o(x) > t1, to class 2 if o(x) < t2, while it is rejected if

t2  o(x)  t1. Obviously t2  t1.

Methods for evaluating a single reliability parameter from the outputs of a classifier were also

proposed. Foggia et al. (1999) and Sansone et al. (2001) considered multiple classifier systems

based on the Bayesian combining rule, which provides estimates of the a posteriori probabilities.

Denoting with 1 the maximum of the estimated a posteriori probabilities, and with 2 the second

highest value, the two values a = 1 and b = 1 - 2/ 1 were used as indications of two typical

situations which lead to unreliable classifications. The first situation is a diffuse disagreement

between the individual classifiers, which can result in low values of the estimated a posteriori

probablility of the winning class 1. The second situation arises when individual classifiers part

into groups, each agreeing on a different class. This would result in similar values of 1 and 2,

and therefore in low values of b. Note that the values of 1 and 2 correspond to the parameter

used in rejection rules for neural networks described above. Foggia et al. (1999) proposed to

compute a unique reliability parameter   [0,1] by combining the values of a and b using a

suitable combining operator, so that higher values of  correspond to more reliable classifications.

For instance, three possible choices are  = min{ a, b},  = max{ a, b},  = ( a + b)/2. The

rejection rule used is analogous to Chow’s rule: an input pattern x is assigned to the class for

which the estimated a posteriori probability is maximum, if the corresponding (x) is higher than

a given reject threshold, otherwise the pattern is rejected. A similar method was proposed by De

Stefano et al. (2000) for neural classifiers.

An approach based on computing a unique reliability parameter was also proposed by

Vasconcelos et al. (1993) for neural networks, but in this case the reliability parameter was

computed from the network inputs. This method consists in modifying the architecture of a multi-

layer perceptron neural network, by introducing one guard unit for each class. Each guard unit is
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fully connected with the input layer, and provides an additional network output to be used at the

decision stage. The neural network is trained with the standard back-propagation algorithm,

except for the guard units. The weight vector of each guard unit is computed as the mean of the

feature vectors of training patterns belonging to the corresponding class. A pattern is then

rejected if the output of the guard unit corresponding to the winning class is lower than a given

threshold.

Note that all the above approaches are implicitely or esplicitely motivated by non-optimality

of Chow’s rule when applied to estimates of the a posteriori probabilities. However, the

effectiveness of the proposed rejection rules over Chow’s rule was not theoretically proven.

A different approach to the design of a classifier with reject option was proposed by Mizutani

(1998). He pointed out that usually the classifier parameters and the parameters of the rejection

rule (i.e., the reject thresholds) are set separately. In particular, the classifier parameters are set

during the training phase without taking into account the reject option. Mizutani proposed a new

training algorithm capable to setting both the classifier parameters and the parameters of the

rejection rule, with the aim of simultaneously minimising the misclassification and reject rates. In

particular, he considered classification rules based on discriminant functions with continuous

values, and rejection rules based on reliability parameters evaluated from these values (like the

rules described above). The proposed learning algorithm performed a minimisation of a weighted

sum of misclassification and reject rates (analogous to the expected risk), evaluated as a function

of the classifier parameters and of the reject thresholds.
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Chapter 3 

State of the art on open problems in classification with reject option

In this Chapter we point out two open problems in classification with reject option, and review

the related state of the art. The first problem is the characterisation of the error-reject trade-off

achievable by real classifiers, with respect to the optimal trade-off, both for individual classifiers

and for multiple classifier systems. The second one consists in the introduction of the reject

option in support vector machines. These problems will be the subject of the next Chapters.

3.1 The error-reject trade-off achievable by real classifiers

De Stefano et al. (2000) pointed out that the problem of classification with reject option has been

tackled only occasionally in the literature. A more specific issue was previously raised by Hansen

et al. (1997). They pointed out that little attention had been devoted in the literature to the

problem of characterising the error-reject trade-off achievable by neural network classifiers. They

gave a first contribution to this topic, by analysing the qualitative behaviour of the error-reject

curve achievable by real classifiers, under the hypothesis of effectively binary classification

problems. This analysis considered both individual classifiers and multiple classifier systems

based on majority voting. However, besides their work, the above claim by Hansen et al. (1997) is

still valid, and can be extended to every type of classifier. Indeed, no work in the literature

analysed from a theoretical viewpoint the difference between the error-reject trade-off achievable

by a real classifier and the optimal error-reject trade-off. In particular, for classifiers which

provide approximations of the a posteriori probabilities, no work analysed how the estimation

errors affect the performance of Chow’s rule. Nonetheless, Chow’s rule is commonly used despite

its non-optimality. Note that a quantitative analysis of the effects of estimation errors on

classifier performance was given by Tumer and Ghosh (1996a; 1996b). However, their analysis

was limited to the case of classification without reject option.

Let us consider the rejection rules proposed in the literature, which were reviewed in

paragraph 2.4. As already pointed out, these rules are motivated (often implicitely) by the fact

that Chow’s rule is not optimal when it is not applied on the exact values of the a posteriori

probabilities. However, the effectiveness of these rules, compared to Chow’s rule, was not proven

from the theoretical point of view. Accordingly, these can be considered heuristic rules. Basically,

most of these rules evaluate classification reliability as a function of the two highest estimated a

posteriori probabilities. Hansen et al. (1997) suggested a justification for the use of other

parameters, besides the maximum a posteriori probability, to evaluate classification reliability.

They argued that using more parameters can provide independent measures of classification

reliability in presence of estimation errors on the a posteriori probabilities, while it would be
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obviously redundant if the a posteriori probabilities were exactly known. However, this was not

theoretically proven.

A lack of theoretical analysis about the error-reject trade-off is to be pointed out also for

multiple classifier systems (MCSs). MCSs are a pattern recognition technique which received

increasing attention since the early work by Hansen and Salamon (1990), and are still a research

topic of great interest (Kittler and Roli, 2000; 2001). MCSs are based on combining the outputs of

an ensemble of individual classifiers. The rationale is that, if the ensemble of classifiers and the

combining rule are properly designed, an MCS can exhibit better performances with respect to the

individual classifiers. In the literature of MCSs several theoretical works analysed the hypotheses

under which particular combining rules can improve the performances of the individual

classifiers, and quantitatively evaluated the improvements. For instance, Lam and Suen (1997)

analysed the majority-voting rule and explained some important aspects of its behaviour and

performances. Tumer and Ghosh (1996a; 1999) developed a theoretical framework to quantify

the performance improvements due to linearly combining classifiers in output space by simple

averaging. They considered classifiers whose outputs approximate the a posteriori probabilities.

In particular, their theoretical framework allows to understand the effects of estimation errors on

the performance of individual classifiers and of a linear combination of classifiers. However,

these works considered only classification without reject option. No theoretical work analysed

the improvement of the error-reject trade-off due to combining classifiers. Only experimental

works showed that combining individual classifiers can improve their error-reject trade-off, for

instance Giacinto et al. (2000), Perrone and Cooper (1993), Lam and Suen (1995), Battiti and

Colla (1994).

3.2 Reject option in support vector machines

Support vector machines (SVMs) are a technique recently introduced by V. Vapnik and co-

workers (Vapnik, 1998), which encompasses problems like regression estimation, density

estimation, and pattern recognition. It is based on Statistical Learning Theory, which was

developed by Vapnik since the early 1960’s. In the field of pattern recognition, SVMs exhibit

significant advantages over traditional classifiers from the algorithmic point of view. SVMs have

also proven to be effective in several applications, such as hand-written character recognition and

image recognition (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000).

Basically, a SVM is a two-class classifier based on the following idea. The original feature

space D is projected into a new feature space D’ having a higher dimension. In D’ a linear

decision surface (separating hyperplane) w x’ + b is constructed, trying to maximise the

separation (margin) between the two classes. From statistical learning theory, it turns out that

maximising the margin improves the generalisation capability of a classifier (Vapnik, 1998). For a

given input pattern x, a SVM provides the output f(x) = w x’ + b, where x’ is the projection of x

on D’. Denoting the class labels with {+1, -1}, the class label provided by a SVM is sign(f(x)).
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Note that f(x) is a real number in the range (- ,+ ), and its absolute value is proportional to the

distance between x’ and the separating hyperplane. This value has no relationship with the a

posteriori probabilities of the input pattern. Surprinsingly, despite the strong theoretical

foundations of SVMs, and their successful application in several pattern recognition applications,

the introduction of the reject option in the framework of statistical learning theory was not

considered in the literature. Up to now, only heuristic rules were proposed.

A straightforward way to evaluate the classification reliability of a SVM is to consider the

distance of an input pattern from the separating hyperplane as a certainty measure. Intuitively,

the higher the distance of a pattern from the class boundary, the more its classification can be

considered reliable. This approach was chosen by Mukherjee et al. (1998) for a problem of cancer

classification. They observed that for patterns near to the separating hyperplane the classifier

may not be confident enough of the class labels. Therefore they proposed to reject patterns whose

distance from the separating hyperplane was below a given threshold value. This value was

computed by introducing confidence levels based on SVMs output, estimated from training data.

Methods for estimating the a posteriori probabilities from the output of a SVM were also

proposed. Hastie and Tibshirani (1996) defined a general classification strategy for multiclass

problems, based on subdividing them into two-class problems, and on combining the resulting

estimates of the a posteriori probabilities. Note that SVMs are two-class classifiers, and only

heuristic extensions to multiclass problems have been proposed (for instance, in Vapnik (1998)).

To apply their method to SVMs, Hastie and Tibshirani proposed to fit gaussians with equal

variance to the class-conditional densities p(f(x)| ), where f(x) is the SVM output. The

corresponding estimate of the a posteriori probability P( |x) is a sigmoid whose slope depends

on the variance of the gaussians. Platt (1999a) proposed a similar method, based on directly

fitting a sigmoid after the output of a SVM:

      

P = +1| xx( ) =
1

1+ exp Af x( )+ B( )
 .

The parameters A and B were evaluated using maximum likelyhood estimation from training

data. Madevska-Bogdanova and Nikolic (2000) proposed to use a diffrent sigmoid to fit the

output of a SVM:

      

P = +1| xx( ) =
1

1+ exp k dx + dsv( )( )
=

1

1+ exp k
1 f x( )

w

 

 
 

 

 
 

 

 
 

 

 
 

 ,

where dsv denotes the margin of the separating hyperplane, and dx denotes the absolute distance

between the input pattern x and the hyperplane. The rationale is that, with the above choice,

patterns inside the margin are given an estimated a posteriori probability less than 0.5. A more

theoretically founded approach to estimate the a posteriori probabilities was proposed by Kwok

(1999). He applied to SVMs the so-called evidence framework, which is a Bayesian framework

proposed by MacKay (1992). Under this framework, the parameters of any learning machine (the

weight vector w for SVMs), take a posterior distribution even after learning. They should then be
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handled by marginalisation, that is, by integrating them out from the conditional distribution. The

resultant marginalised output is called moderated output. By assuming a gaussian prior for the

parameter w, and a sigmoidal-like a posteriori probability distribution P( |x,w), Kwok (1999)

showed that training a SVM can be regarded as finding the maximum a posteriori estimate of w.

By integrating w out of P( |x,w) he obtained estimates of the a posteriori probability P( |x) as

a function of the output f(x). Note that the functional form of the estimated a posteriori

probabilities must be chosen a priori, and also in this case a sigmoidal function was proposed.

We point out that the estimates of the a posteriori probability P( |x) provided by all the

above methods are sigmoidal functions of the output f(x) of a SVM. All these estimates of P( |x)

are then monotonic functions of f(x). This means that applying Chow’s rule on such estimates of

P( |x) is equivalent to apply a reject threshold directly on the output f(x) of a SVM, as

proposed by Mukerjee et al. (1998). Therefore estimates of the a posteriori probabilities obtained

using the above methods do not provide a different way to implement the reject option.

Accordingly, we can say that at the state of the art the only rejection rule for SVMs is the

heuristic rule consisting in applying a reject threshold on the output f(x).
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Chapter 4 

A method for improving the error-reject trade-off of Chow’s rule

In Chapter 3 we pointed out that no work in the literature analysed the performance of Chow’s

rule in presence of estimation errors on the a posteriori probabilities. Moreover, the effectiveness

of alternative rejection rules proposed in the literature was not assessed from the theoretical

point of view. In this Chapter we extend a theoretical framework proposed by Tumer and Ghosh

(1996a; 1999), with the aim to analyse the effects of estimation errors on the error-reject trade-off

achievable by Chow’s rule. We then propose a new rejection rule, and prove that, in presence of

estimation errors on the a posteriori probabilities, it allows to achieve a better error-reject trade-

off than Chow’s rule.

4.1 The effects of estimation errors on classifier performance

Tumer and Ghosh (1996a; 1999) developed an analytical framework to quantify the performance

improvement due to combining classifiers in output space. They considered classifiers whose

outputs approximate the a posteriori probabilities, and quantified the increment of the error

probability over Bayes error, due to estimation errors. As already pointed out, their analysis was

focused on classification without reject option. In the following we extend this framework to

classification with reject option, with the aim to evaluate the error-reject trade-off achievable by

Chow’s rule in presence of estimation errors on the a posteriori probabilities.

The analytical framework by Tumer and Ghosh is based on the assumption that the decision

boundaries provided by a reasonably well trained classifier are close to Bayesian decision

boundaries. The effects of estimation errors on classifier performance can then be analysed

around the decision boundaries. The estimate of the a posteriori probability of the i-th class

provided by a classifier for a single-dimensional feature vector x can be expressed as:

    
ˆ p i x( ) = pi x( )+ i x( )  , (12)

where pi(x) is the true a posteriori probability and i(x) is the estimation error. The extension to

the multi-dimensional case was discussed in Tumer (1996). The optimum boundary between

classes i and j consists of points x* such that pi(x*) = pj(x*), where pi(x*) = maxk pk(x*), and pj(x*)

= maxk i pk(x*). The boundary xb obtained using the estimated a posteriori probabilities may vary

with respect to the optimal one, as shown in Fig. 2.
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Fig. 2. The optimal and estimated a posteriori probabilities of classes i and j are shown.

Denoting with b = xb-x* the offset between the two boundaries, the estimated one is characterised

by:

    
ˆ p i x *+b( ) = ˆ p j x*+b( )  . (13)

From Eqs. (12) and (13), one obtains:

    
pi x *+b( ) + i xb( ) = pj x *+b( ) + j xb( )  . (14)

The error probability achieved using the estimated a posteriori probabilities is obviously greater

than Bayes error. In Fig. 2 Bayes error is represented by lightly shaded regions, and the additional

error is represented as a darkly shaded area. The additional error probability, denoted with A(b),

is given by:

    
A b( )= pi x( ) pj x( )[ ]p x( )dx

x*

x*+b

 , (15)

where p(x) is the probability density function of the feature vector x. To compute the above

integral, a linear approximation of pk(x) around x* was suggested by Tumer and Ghosh:

    
pk x*+b( ) pk x*( ) + b  p k x *( )  . (16)

This approximation was justified by the fact that the a posteriori probabilities of the correct

classes can be considered monotonically increasing (or decreasing) within a suitable chosen region

about the optimum boundary. By substituting expression (16) in Eq. (15), it is possible to express

the added error A(b) as a function of the offset b. In turn, by making the same sostitution in Eq.

(14), the offset b can be expressed as a function of the estimation errors i(xb) and j(xb). This

allows to compute the expected value Eadd of the added error A(b) with respect to the estimation

errors. It turns out that Eadd can be expressed as a function of bias and variance of the estimation

errors, under the hypothesis that these quantities do not vary along the decision boundary

considered.

Let us now extend the above framework to classification with reject option. When using reject

option, the classifier performance is expressed by the value of the expected risk (7) (related to the

loss function (6)). The optimal value of the reject threshold in given by Eq. (11), for given values

of the classification costs. Our aim is to evaluate the increment of the expected risk due to
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applying Chow’s rule on estimated a posteriori probabilities. Let us consider the same problem of

Fig. 2, and any value of the reject threshold T, corresponding to given values of the classification

costs wC, wR, and wE. The corresponding optimal and estimated decision and rejection regions are

shown in Fig. 3.

T

x

    
√p xi ( )     

√p xj ( )
pi(x) pj(x)

x1 x2
Di DjD0

b1 b2

Fig. 3. The optimal and estimated decision and reject regions for classes i and j are shown.

The optimal boundaries between the decision regions of classes i and j, and the rejection region,

are respectively the points x1 and x2 such that pi(x1) = pj(x2) = T. As shown in Fig. 3, the estimated

boundaries differ from the optimal ones by offsets b1 and b2. From Fig. 3 it is easy to see that the

differences between the optimal and the estimated regions consist in the intervals [x1,x1+b1] and

[x2,x2+b2]. In particular, patterns belonging to the interval [x1,x1+b1] are accepted and (correctly)

assigned to class i instead of being rejected. Analogously, patterns belonging to the interval

[x2,x2+b2] are rejected instead of being accepted and assigned to class j. The expected risk

achieved using the estimated a posteriori probabilities is obviously greater than Bayes risk. Let us

denote with E the difference between the error probability achieved using the estimated a

posteriori probabilities and the true ones, and with R the difference between the reject

probabilities. From Eq. (7) it follows that the difference between the actual expected risk,

denoted with r, and Bayes risk, is:

r = (wR - wC) R + (wE - wC) E .

Since outside the intervals [x1,x1+b1] and [x2,x2+b2] the optimal and the estimated decision and

rejection regions coincide, the values of R and E can be computed only on these intervals. In

particular, the interval [x2,x2+b2] gives a positive contribution to R, since the corresponding

patterns are rejected instead of being classified. Analogously, the interval [x1,x1+b1] gives a

negative contribution to R. The value of R can then be expressed as follows:

    
R = p x( )dx

x2

x2+b2

p x( )dx
x1

x1+b1

 .

Analogously, the value of E can be expressed as:

    
E = 1 pi x( )[ ]p x( )dx

x1

x1+b1

1 pj x( )[ ]p x( )dx
x2

x2+b2

 .
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To compute the above integrals we make two approximations. We first approximate the values

of p(x) in the domains of integration [x1,x1+b1] and [x2,x2+b2], respectively with the constant terms

p(x1) and p(x2). The expression of R becomes:

R = p(x2)b2 - p(x1)b1 . (17)

We then make the same linear approximation (16) suggested by Tumer and Ghosh for pi(x) and

pj(x), respectively around x1 and x2:

    

pi x( ) pi x1( ) + x x1( )  p i x1( ) ,

pj x( ) pj x2( )+ x x2( )  p j x2( ) .
(18)

The expression of E becomes:

    
E = 2 2pi x1( ) b1  p i x1( )[ ]p x1( ) b1

2
2 2pj x2( ) b2  p j x2( )[ ]p x2( ) b2

2
 . (19)

We can now express the values of the offsets b1 and b2, and therefore of R and E, as functions

of the estimation errors. To this aim, note that the estimated posterior probabilities of classes i

and j are equal to the reject threshold T in points x1+b1 and x2+b2 (see Fig. 3). Using Eq. (12) this

can be written as follows:

pi(x1+b1) + i(x1+b1) = pj(x2+b2) + j(x2+b2) = T .

Applying the linear approximation (18) for pi(x) and pj(x), we obtain:

    
pi x1( ) + b1  p i x1( ) + i x1 + b1( ) = pj x2( )+ b2  p j x2( )+ j x2 + b2( ) = T  .

Since pi(x1) = pj(x2) = T (see Fig. 3), by subtracting T from the terms of the above expression, we

obtain:

    

b1 =
i x1 + b1( )

 p i x1( )
, b2 =

j x2 + b2( )
 p j x2( )

 .

By substituting the above expressions of b1 and b2 in Eqs. (17) and (19), and taking into account

that

    
pi x1( ) = pj x2( ) = T =

wE wR

wE wC

 ,

we finally obtain:

    
r = a i

2 x1 + b1( )+ b j
2 x2+ b2( )  , (20)

where a and b are constant terms:

    

a= wE wC( )
p x1( )

2  p i x1( )
, b= wE wC( )

p x2( )
2  p j x2( )

 . (21)

The value of the added risk r obtained above refers to specific values of the estimation errors.

Let us consider its expected value:

    
radd = E r{ } = aE i

2{ } + bE j
2{ }  .

Denoting the bias and the variance of the estimation error i respectively with i and 
    i

2 , we

obtain:
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radd = a

i

2 + i
2( ) + b

j

2 + j
2( )  . (22)

The above equation shows that, under the hypotheses made, the expected value of the added risk

of a classifier is proportional to the sum of bias squared and variance of the estimation errors.

We point out that the above expression is similar to the one obtained by Tumer and Ghosh for the

expected value of the added error of a classifier without reject option.

4.2 Class-related reject thresholds

4.2.1 The class-related reject thresholds rule

In the previous paragraph we derived an expression for the increment of the expected risk

achieved by Chow’s rule, with respect to Bayes risk, as a function of the estimation errors on the

a posteriori probabilities. This expression shows how the error-reject trade-off achievable by

Chow’s rule is affected by estimation errors, under certain assumptions. In the following we

propose a new rejection rule, and formally prove that it allows to obtain a better error-reject

trade-off than Chow’s rule (that is, a lower expected risk) in presence of estimation errors

(Fumera et al., 2000a).

To introduce our rejection rule, let us consider again the effects of estimation errors on the

class boundary of Fig. 3. Under the hypotheses made in paragraph 4.1, the boundaries of the

rejection region obtained by applying Chow’s rule on the estimated a posteriori probabilities are

slightly shifted with respect to the optimal boundaries x1 and x2. This means that patterns of

class j belonging to the interval [x2,x2+b2] are rejected, instead of being accepted, since their

estimated a posteriori probability is lower than the reject threshold T. Note that these patterns

could be accepted and correctly classified by using a lower value of T, despite the estimation

errors on their a posteriori probabilities. Analogously, patterns of class i belonging to the interval

[x1,x1+b1] are accepted instead of being rejected, since their estimated a posteriori probability is

higher than T. These patterns could be rejected by using a higher value of T. This suggests that the

effects of the estimation errors can be mitigated by using a different reject threshold for each

class. A careful analysis of Fig. 3 shows that applying two different reject thresholds allows to

achieve a better error-reject trade-off than the one achievable using Chow’s rule. Indeed, the two

different reject thresholds shown in Fig. 4 provide the optimal decision boundaries, and therefore

a better error-reject trade-off than Chow’s rule when applied on the estimated a posteriori

probabilities.
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Fig. 4. Two different reject thresholds on the estimated a posteriori probabilities of classes i and j.

Let us now formally define this rejection rule, which we call class-related reject thresholds (CRT)

rule. The CRT rule consists in assigning a pattern x to the class i exhibiting the maximum

(estimated) a posteriori probability, if it is higher than the corresponding class-related reject

threshold Ti:

      
max
j= 1,…,c

ˆ P j| xx( ) = ˆ P i | xx( ) Ti  . (23)

The pattern is otherwise rejected. Obviously Ti [0,1], i = 1,…, c. In the following paragraph we

formally prove that the CRT rule allows to achieve a better error-reject trade-off than Chow’s rule

in presence of estimation errors on the a posteriori probabilities.

Note that the use of a different reject threshold for each class was previously proposed by

Yau and Manry (1992) as a heuristic rule for different purposes. They pointed out that Chow’s

rule minimises the overall error probability, for any given reject probability. This means that if the

different classes exhibit different a priori probabilities P( i), the class-conditional error and reject

probabilities P(error| i) and P(reject| i) may significantly differ. Using different reject thresholds

for each class was then proposed to equalise these probabilities.

4.2.2 Proof

For our proof we use the definition of optimal error-reject trade-off given at the end of paragraph

2.1. The optimal error-reject trade off consists in minimising the expected risk (7) (when using the

loss function (6)), and is equivalent to maximising the probability of correct classification for any

value of the reject probability. This implies that a rejection rule provides a better error-reject

trade-off than another rule, if it allows to achieve a higher or equal probability of correct

classification for any value of the reject probability. Therefore we will compare the probability of

correct classification achieved by the CRT and Chow’s rules, for equal values of the reject

probability. We will show that, for any value of the reject probability, values of the CRTs always

exist such that the corresponding probability of correct classification is greater, or at least equal

to the one achieved by Chow’s rule.

Note first that the CRT rule can always achieve the same probability of correct classification

than Chow’s rule, in the trivial case in which the CRTs are all equal to Chow’s threshold T, that is
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Ti = T, i = 1, ..., c. We have therefore to prove that there exist conditions under which the CRT

rule can provide a probability of correct classification strictly greater than that of Chow’s rule.

Let us first provide some basic definitions. We will denote values related to the CRT rule with

the apex CRT, and values related to Chow’s rule with the apex T. Without reject option, the

decision regions are defined using Bayes rule (5) on the estimated a posteriori probabilities. The

decision regions can be expressed as:

        
Di = x:max

k=1,K,c

ˆ P k| xx( ) = ˆ P i | xx( ){ }, i = 1,K,c .

It is easy to see that using the CRT rule (23) and Chow’s rule (9), the corresponding rejection

regions can be expressed as the union of disjoint subsets D0i of the decision regions Di:

        

D0i
CRT = x Di ,

ˆ P i| xx( ) < Ti{ }, i = 1,K,c,

D0i

T = x Di ,
ˆ P i| xx( ) < T{ }, i = 1,K,c.

The rejection regions are then 
      D0

CRT = Ui=1
c D0i

CRT , and 
      D0

T = Ui=1
c D0i

T . It is also easy to see that the

following relations hold:

if Ti < T,     D0i
CRT D0i

T  ,

if Ti > T,     D0i
CRT D0i

T  , (24)

if Ti = T,     D0i
CRT = D0i

T  .

It follows that, when using the reject option, the decision regions can be expressed as

    Di
CRT = Di D0i

CRT  and     Di
T = Di D0i

T , i = 1, ..., c. Note that the reject probabilities RCRT and RT can be

viewed as functions of the corresponding reject thresholds Ti, i = 1, ..., c, and T.

Consider now any value of the reject threshold T used in Chow’s rule, and the corresponding

value of the reject probability RT. Let us assume that the probability density function of the

feature vector p(x) and the a posteriori probability P( |x) are continuous and differentiable

functions. This implies that RCRT and RT are continuous and differentiable functions of the reject

thresholds. Moreover, this implies that infinite sets of CRTs {T1,…,Tc} exist, such that the

corresponding reject probability RCRT equals RT, besides the trivial case Ti = T, i = 1, ..., c. To

explain this point, consider that the reject probabilities RCRT and RT are obviously non-decreasing

functions of the corresponding reject thresholds Ti, i = 1, ..., c, and T. Since they are continuous

and differentiable functions, this can be written as:

    

dRT

dT
0,

RCRT

Ti

0 i = 1,…,c.

Given a value of T, and the corresponding value of RT, consider a set of CRTs such that Ti = T, i =

1, ..., c. Obviously RCRT = RT. From the above assumption, it is easy to see that by increasing the

value of at least one of the above CRTs, and decreasing the value of at least another one, it is

possible to find infinite sets of CRTs values such that the equation RCRT = RT still holds. In other

words, given a value of RT, the equation RCRT = RT has infinite solutions. Since RCRT/ Ti  0, for
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each solution at least one of the CRTs must be greater than T, and at least one must be lower than

T.

Let us now present the main assumption of this proof. Consider the boundaries of the

rejection region obtained using Chow’s rule. These boundaries are the sets of points belonging to

regions Di for which 
      
ˆ P i| xx( ) = T, xx Di , i = 1,…,c. We hypothesise that two non-empty

subsets of regions Di exist, such that in a neighbourhood of the corresponding boundaries the

estimation errors are strictly positive or strictly negative. Formally, we are assuming that two

disjoint and non-empty subsets P, Q  {D1,…,Dc} exist, such that the following relations hold:

      

i x( ) > i > 0, for any x Di Q, such that T ˆ P i| xx( ) T + i ,

i x( ) < i < 0, for any x Di P, such that T + i
ˆ P i | xx( ) T .

(25)

Let us explain further the above relations. The terms i are constant values, and the expressions

      T
ˆ P i| xx( ) T + i  and       T + i

ˆ P i| xx( ) T  define the neighbourhoods of the boundaries of the

reject region.

Under the hypothesis that p(x) and P( |x) are continuous and differentiable functions, we

showed that infinite sets of CRTs {T1,…,Tc} exist, such that the corresponding reject probability

RCRT equals RT. According to Eq. (8), the equality between RCRT and RT can be written as:

      

p(xx)dx
D0i

CRTi=1

c

p(xx)dx
D0i

Ti=1

c

= 0 , (26)

where the two summands represent respectively RCRT and RT. Let us write the CRTs values as

T+ T1,…,T+ Tc, where T1,…, Tc are constant values for each given set. Among these sets, let us

consider a set {T+ T1,…,T+ Tc} satisfying the following relations:

0 < Ti < i, if Di  Q ,

i < Ti < 0, if Di  P , (27)

where the terms i are the ones defined in (25).

Let us now compare the probability of correct classification of the CRT rule, using the above

set of CRTs values, with that of Chow’s rule. We denote these probabilities with CCRT and CT.

According to Eq. (4), the difference CCRT - CT can be written as:

      

CCRT CT = P i | xx( )p x( )dx
Di D0i

CRT

P i | xx( )p x( )dx
Di D0i

T

 

 

 
 

 

 

 
 i=1

c

 . (28)

Note that for Di P, we have Ti<0 (see Eq. (27)), and then     D0i
CRT D0i

T  (from Eq. (24)).

Accordingly, the corresponding term of the sum in Eq. (28) can be rewritten as:

      

P i| xx( )p x( )dx
D0i

T D0i
CRT

 .

Analogously, if i  Q, we have Ti > 0, and consequently     D0i
T D0i

CRT . The corresponding term of

the sum in Eq. (28) can be rewritten as:

      

P i | xx( )p x( )dx
D0i

CRT D0i
T

 .
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It is straightforward that, if Ti = 0, then     D0i
T = D0i

CRT , and the corresponding term in Eq. (28) is

null. Therefore, using Eq. (12), Eq. (28) can be rewritten as:

      

CCRT CT = ˆ P i| xx( ) i x( )[ ]p(xx)dx
D0i

T D0i
CRTDi P

ˆ P i | xx( ) i x( )[ ]p(xx)dx
D0i

CRT D0i
TDi Q

 .

By substituting 
      
ˆ P i| xx( )  with T+ Ti, and using inequalities (25) and (27), we obtain that the

following inequality holds true:

      

CCRT CT > T + Ti i x( )[ ]p(xx)dx
D0i

T D0i
CRTD i P

T + Ti i x( )[ ]p(xx)dx
D0i

CRT D0i
TDi Q

=

= T p(xx)dx
D0i

T D0i
CRTD i P

p(xx)dx
D0i

CRT D0i
TD i Q

 

 

 
 

 

 

 
 
+

+ Ti i x( )[ ]p(xx)dx
D0i

T D0i
CRTD i P

Ti i x( )[ ]p(xx)dx
D0i

CRT D0i
TD i Q

.

(29)

In the above equation, the term 

      

p(xx)dx
D0i

T D0i
CRTDi P

p(xx)dx
D0i

CRT D0i
TD i Q

 

 

 
 

 

 

 
 
 is equal to the difference

between RCRT and RT, and is then null (see Eq. (26)). Therefore, inequality (29) can be rewritten as:

      

CCRT CT > Ti i x( )[ ]p(xx)dx
D0i

T D0i
CRTD i P

Ti i x( )[ ]p(xx)dx
D0i

CRT D0i
TD i Q

 . (30)

Finally, from inequalities (27) it turns out that the terms [ Ti - i(x)] in Eq. (30) are positive for Di

 P, and negative for Di  Q. The right hand side of Eq. (30) is therefore positive. It follows that

CCRT - CT > 0 .

This proves that, under the above hypothesis, the CRT rule allows to achieve a greater probability

of correct classification than Chow’s rule, for the same value of reject probability.

4.2.3 Discussion

In the previous paragraph we showed that the CRT rule allows to obtain a better error-reject

trade-off than Chow’s rule, when applied to estimates of the a posteriori probabilities. More

precisely, we showed that, for any value of P(reject), a set of CRTs values always exists such that

the corresponding P(correct) is higher or at least equal to that of Chow’s rule. Since the same

P(correct) of Chow’s rule can always be obtained by trivially using CRTs values equal to Chow’s

threshold, we provided a sufficient condition under which the CRT rule achieves a strictly greater

P(correct).

Let us first discuss the above condition. It concerns the estimation errors on the a posteriori

probabilities, in a neighbourhood of the boundary of the rejection region of each class. It states

that there must exist at least one class for which, in such neighbourhood, the estimation errors are

strictly positive, and at least one class for which the estimation errors are strictly negative. It is

easy to understand the meaning of this condition, by looking again at the example of Fig. 3.

Patterns for which the estimation errors are strictly positive exhibit values of the estimated a

posteriori probabilities higher than the true ones. Therefore, for a given value of the reject

threshold, some of these patterns are accepted instead of being rejected. A higher value of the
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reject threshold would allow to reject them. This is the case of patterns of class i belonging to the

interval [x1,x1+b1] (see Figs. 3 and 4). Accordingly, note that in the above proof classes for which

the estimation errors are strictly positive have CRTs values higher than Chow’s threshold.

Analogously, some of the patterns for which the estimation errors are strictly negative are rejected

instead of being accepted. A lower value of the reject threshold would allow to accept them, as

happens in Figs. 3 and 4 for patterns of class j belonging to the interval [x2,x2+b2]. In the above

proof, the CRTs values of classes with negative estimation errors are lower than Chow’s

threshold.

Let us now discuss two issues which are left open by the above proof. While the above proof

shows that the CRT rule provides a better error-reject trade-off than Chow’s rule, it does not

allow to quantify the achievable performance improvements. Moreover, it does not allow to

compute the CRT values which provide such improvements. These issues are clearly related to the

practical usefulness of the CRT rule. Concerning the performance improvements, let us consider

again the simple example of Fig. 4. In this case the CRT rule provides the maximum achievable

improvement over Chow’s rule, since it allows to obtain the optimal decision and reject regions.

This means that the corresponding average improvement, in terms of the expected risk, is equal to

the added risk of Chow’s rule. As shown in paragraph 4.1, the added risk is proportional to the

squared bias and to the variance of the estimation errors (see Eq. (22)). Obviously, in more

complex problems the CRT rule will not be able to provide the optimal decision and reject

regions. Nonetheless, we argue that also in the general case the achievable performance

improvements still depend on the “amplitude” of the estimation errors, which can be

characterised in terms of bias and variance. Consider now the second issue mentioned above,

that is, how to find CRTs values which provide a higher P(correct) than Chow’s rule, for a given

value of P(reject). In practical applications the CRTs values must be estimated from validation

data. This obviously applies as well to the threshold of Chow’s rule. However, while Chow’s rule

always require to estimate only one parameter, the number of parameters to estimate in the CRT

rule is equal to the number of classes. This means that for the CRT rule the estimation process

could be critical in applications having a high number of classes. Besides the number of

parameters, the estimation process could be critical even if there was one only set of CRTs values

which provides a higher P(correct) than Chow’s rule, for any given value of P(reject). However, this

does not seem the case, at least from the theoretical viewpoint. Indeed, it is easy to see that if the

probability distributions of the problem at hand are continuous and differentiable functions, then

infinite sets of CRTs values exist, which provide a higher P(correct) than Chow’s rule. This can be

shown as follows. Using the same notation of the previous paragraph, suppose that there exist a

set of CRTs values for which CCRT > CT, and RCRT = RT, for a given value of RT. As shown in the

above proof, under the above assumption CCRT and RCRT are continous functions of the CRTs

values. This implies that there exist a neighbourhood of the considered CRTs values, containing

infinite CRTs values for which the relations CCRT > CT and RCRT = RT still hold.
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In the following paragraph the problem of CRTs evaluation is discussed in more detail, and an

algorithm for estimating the CRTs values is proposed. An experimental investigation of both

issues discussed here will be given in Chapter 7.

4.3 Estimating the values of class-related reject thresholds

The optimal values of the CRTs can be defined as the ones which maximise the probability of

correct classification, for a given value of the reject probability. Note that maximising P(correct) is

equivalent to maximising the classification accuracy, defined as 
    

A =
P correct( )

1 P reject( )
. The accuracy

and the reject probabilities can be viewed as functions of the CRTs values. Let us denote them

with A(T1,…,Tc) and R(T1,…,Tc). The optimal CRTs values are then the solution of the following

problem, where R denotes a given value of the reject probability:

    

maximise A T1,…,Tc( ) ,

subject to R T1,…,Tc( ) = R .
(31)

In practical applications the functions A(T1,…,Tc) and R(T1,…,Tc) are not known in analytical

form, and can only be estimated from validation data. Estimates of the optimal CRTs values

could then be obtained by solving the above problem, using the estimated values of accuracy and

reject probability. However, note that the estimates of A(T1,…,Tc) and R(T1,…,Tc) obtained from a

finite data set are discrete-valued functions of continuous variables. Standard optimisation

techniques do not fit well this characteristic. On the other hand, it is difficult to approximate

A(T1,…,Tc) and R(T1,…,Tc) using continuous functions. For this reasons, we developed a specific

algorithm for solving problem (31) (Fumera et al., 2000b).

Note first that R(T1,…,Tc) is a non-decreasing function of the CRTs values. Indeed, increasing

the value of any of the CRTs can only increase the fraction of rejected patterns. Our algorithm is

based on the experimental behaviour of A(T1,…,Tc), which is very similar to that of R(T1,…,TN).

Indeed we experimentally observed that A(T1,…,Tc) is almost always a non-decreasing function of

the CRTs values. Our algorithm exploits this characteristic by searching for the maximum of

A(T1,…,Tc) by iteratively increasing the values of the CRTs, until R(T1,…,Tc) is lower than the given

value R. The initial CRTs values can be chosen among the ones providing a null reject rate, for

instance Ti = 0. To limit the complexity of the algorithm, only one of the CRTs is increased at each

iteration. The increment is a multiple of a given discretisation step T. The CRT to increase is

chosen as the one whose increment provides the maximum value of A(T1,…,Tc) in a neighbourhood

of the current CRTs values. The neighbourhood is defined as the set of CRTs values obtained by

incrementing each one of the CRTs, one at a time, by an amount k T, for all k between -K and K,

where K is a predefined value. If no CRTs values are found for which A(T1,…,Tc) is greater than its

current value, and R(T1,…,Tc)  R, the current CRTs values are returned as the solution. To

mitigate the problem of local minima, the multistart technique can be used. In this case the initial

CRTs values can be random values such that R(T1,…,Tc) < R.
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Chapter 5 

The error-reject trade-off of linearly combined multiple classifiers

In Chapter 4 we considered classifiers whose outputs provide approximations of the a posteriori

probabilities, and analysed the effects of estimation errors on their error-reject trade-off. In this

Chapter we consider again the same kind of classifiers, and show how their error-reject trade-off

can be improved by classifier combination. As pointed out in Chapter 3, in the literature no

theoretical work investigated the improvements of the error-reject trade-off achievable by

combining classifiers. To this aim, we focus on a simple and widely used combining rule, based on

the weighted average of classifiers in output space.

Our analysis is still based on the theoretical framework developed by Tumer and Ghosh,

which was described in Chapter 4. We remind that this framework was originally developed for

analysing the performance improvement achievable using the simple averaging combining rule, for

classification without reject option. We already extended this framework to classification with

reject option in Chapter 4. In this Chapter we further extend it to the weighted averaging

combining rule (Fumera and Roli, 2001; Fumera et al., 2001).

5.1 Analysis of the error-reject trade-off

In Chapter 4 we evaluated the expected value of the added risk of an individual classifier, under

the hypothesis that its decision boundaries are close to the optimal boundaries. Following the

same approach, we now evaluate the expected value of the added risk of an ensemble of N

classifiers, combined by weighted averaging in output space. The same notation introduced n

Chapter 4 is used here. In the following we denote the quantities related to the k-th classifier with

the superscript k.

The outputs of the combiner can be considered themselves estimates of the a posteriori

probabilities, and can be expressed as follows:

    
ˆ p i

ave x( ) = wk ˆ p i
k x( )

k=1

N

= wk pi x( ) + i
k x( )( )

k=1

N

= pi x( ) +  i x( )  ,

where the wj’s are the coefficients of the linear combination, and

    
 i x( ) = wk i

k x( )
k=1

N

(32)

is the estimation error of the combiner. In the following we consider normalised values of the

coefficients:

    
wk

k=1

N

= 1, wk 0, k = 1,…,N  . (33)
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With reference to Fig. 3, we denote the offsets between the optimal and the estimated decision

boundaries with b1
ave and b2

ave. By proceeding as described in Chapter 4, the following expression

can be derived for the added risk of a linear combination of classifiers:

    
r ave = a  i

2 x1+ b1
ave( ) + b  j

2 x2+ b2
ave( )  ,

where a and b are the same constant terms given in Eq. (21). Note that the above expression is

analogous to the one obtained for the added risk of an individual classifier (Eq. (20)). The

expected value of rave is:

    
radd

ave = E r ave{ } = aE  i
2{ } + bE  j

2{ }  . (34)

From the above expression it is easy to see that the value of   radd
ave  depends on bias and variance of

the estimation errors, and on the correlation between them. Therefore, some assumptions about

these parameters must be made to compute the value of   radd
ave , and to compare it with radd. In the

following paragraphs we analyse four cases, corresponding to different assumptions about bias

and correlation. Using the same notation introduced in Chapter 4, the bias and the variance of

the estimation errors on the i-th class are denoted respectively with i and 
    i

2 .

5.1.1 Unbiased and uncorrelated estimation errors

We first consider the simplest case of unbiased and uncorrelated estimation errors. We assume

therefore i = j = 0. The expected value of the added risk of an individual classifier can be

obtained from Eq. (22):

    
radd = a

i

2 + b
j

2  .

For a linear combination of classifiers, from Eqs. (34) and (32) we obtain:

    

radd

ave = a
 i

2 + b
 j

2 = a wk

2

i
k

2

k=1

N

+ b wk

2

j
k

2

k=1

N

=

= wk
2radd

k

k=1

N

.

(35)

The above expression shows that   radd
ave  can be expressed as a linear combination of the expected

value of the added risk   radd
k  of each individual classifier. It is easy to see that the weights which

minimise   radd
ave  are the following:

    
wk =

1

radd
m

m=1

N 

 
 

 

 
 

1

1

radd
k

 . (36)

This means that, in the simplest case of unbiased and uncorrelated estimation errors, the optimal

weights are inversely proportional to the added risk of each individual classifier. Accordingly, we

can say that weighted averaging is required to compensate for different classifier performances.

Instead, if all classifiers exhibit the same performances, from Eq. (36) it is easy to see that the

optimal weights are wk = 1/N, that is, simple averaging is the optimal combining rule. In this case,

from Eq. (35) we obtain that simple averaging reduces the difference between the expected value

of the added risk and Bayes risk by a factor N:
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rave

add =
1

N
radd . (37)

Let us now evaluate the maximum achievable improvement of the error-reject trade-off with

respect to the best individual classifier, in the general case. The value of   radd
ave  corresponding to the

optimal weights (36) is:

    
radd

ave =
1

radd
k

k=1

N 

 
 

 

 
 

1

 .

From this equation the following inequalities can be derived:

    

1

N
min

k
radd

k rave
add min

k
radd

k  .

This means first that weighted averaging always allows to achieve a better error-reject trade-off

than the one of each individual classifier. Moreover, the difference between the expected value of

the added risk and Bayes risk can be reduced up to a factor N with respect to the best individual

classifier. According to Eq. (37), the maximum improvement can be achieved by combining

classifiers exhibiting equal average performances.

Let us now consider what happens when using simple averaging for classifiers which do not

exhibit the same performances. In this case from Eq. (36) we obtain:

    
radd

ave =
1

N

1

N
radd

k

k=1

N 

 
 

 

 
  .

This means that in the general case simple averaging allows to improve by a factor N only the

average value of the performances of the individual classifiers.

The main result of the above analysis is that, at least for the simplest case of unbiased and

uncorrelated estimation errors, simple averaging is the optimal combining rule if the individual

classifiers exhibit equal average performances. Weighted averaging allows instead to compensate

for different classifier performances. We point out that this result formalises some conclusions

drawn in the literature, for example by Tumer and Ghosh (1999), and generalises them to the case

of classification with reject option.

5.1.2 Biased and uncorrelated estimation errors

Let us now consider biased estimation errors, that is, i, j  0. The expected value of the added

risk of an individual classifier was given in Eq. (22):

    
radd = a

i

2 + i
2( ) + b

j

2 + j
2( )  . (38)

Let us denote with    i  the bias of 
  

 i x( )  (see Eq. (32)): 
    

 i = wk i
k

k=1

N

. For a linear combination of

classifiers, from Eq. (34) we obtain:
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radd

ave = a
 i

2 +  i( )
2 

  
 

  
+ b

 j

2 +  j( )
2 

  
 

  
=

= a wk
2

i
k

2 + i
k( )

2 

  
 

  k=1

N

+ 2a wmwn i
m

i
n

m<n

+ b wk
2

j
k

2 + j
k( )

2 

  
 

  k=1

N

+ 2b wmwn j
m

j
n

m<n

=

= wk

2radd

k

k=1

N

+ 2 wmwn a i

m

i

n + b j

m

j

n( )
m<n

.

In this case the optimal values of the weights wk do not depend only on the performances of the

individual classifiers, but also on the bias of the estimation errors. It can be shown that the

optimal values of the weights, that is the values which minimise   radd
ave , can be obtained as the

solution of a system of N linear equations (we remind the constraints (33) on the weights values).

This system can be easily solved if the estimation errors of each individual classifier exhibit the

same bias and the same variance. Note that this implies that the performances of the individual

classifiers are equal. In this case we obtain wk = 1/N, that is, simple averaging is the best

combining rule. The corresponding expected value of the added risk is:

    
radd

ave =
1

N
a

i

2 + b
j

2( )+ a i
2 + b j

2( )  .

This means that for biased estimation errors simple averaging reduces by a factor N the

component of radd which depends on the variance of the estimation errors (see Eq. (38)). The

component depending on the bias does not change.

In the general case in which the estimation errors of individual classifiers exhibit different

values of bias and variance, different weights are required in order to achieve the minimum of

  radd
ave .

5.1.3 Unbiased and correlated estimation errors

For an individual classifier the value of radd is the same of the uncorrelated case:

    
radd = a

i

2 + b
j

2  .

Taking into account the correlation between the estimation errors of different classifiers, for a

linear combination of classifiers we obtain:

    

radd

ave = a
 i

2 + b
 j

2 =

= a wk
2

i
k

2

k=1

N

+ b wk
2

j
k

2

k=1

N

+ 2a wmwn cov i
m, i

n{ }
m<n

+ 2b wmwn cov j
m, j

n{ }
m<n

=

= wk

2radd

k

k=1

N

+ 2 wmwn a i

mn

i
m

i
n + b j

mn

j
m

j
n( )

m<n

.

In the above expression, the terms 
    
cov i

m, i
n{ }  and   i

mn denote respectively the covariance and

the correlation coefficient between the estimation errors of classifiers m and n on the i-th class.

This expression is similar to the one obtained for the biased uncorrelated case in the previous

paragraph. It shows that the optimal values of the weights wk depend also on the correlation

between the estimation errors of individual classifiers, besides their performances. The weights

which minimise   radd
ave  can be easily computed only if the estimation errors of each individual
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classifier exhibit the same variance, and the same value of the correlation coefficient, that is

    i
mn = i , m,n. Under this hypothesis, the optimal weights correspond again to simple

averaging, that is, wk = 1/N. The value of   radd
ave  is:

    
radd

ave =
1

N
a

i

2 + b
j

2( )+
N 1

N
a i i

2 + b j j

2( )  .

The above expression can be simplified by assuming that the correlation coefficients of classes i

and j are equal, that is i = j = . We obtain:

    
radd

ave =
1+ N 1( )

N
radd .

This expression points out the effects of the correlation between estimation errors. It shows that if

the estimation errors of the individual classifiers are positively correlated, that is,  > 0, simple

averaging improves the error-reject trade-off by a factor lower than N. An improvement by a

factor equal to N is achieved if the estimation errors are uncorrelated (  = 0): this is the case

analysed in paragraph 5.1.2. Finally, if the estimation errors are negatively correlated (  < 0),

simple averaging improves the error-reject trade-off by a factor greater than N. We point out that

this result formalises the advantage of negative correlation for the linear combination of

classifiers. Other authors hypothesised that classifier combination can benefit from negative

correlation between individual calssifiers. Some experimental results reported in the literature, for

instance by Kuncheva and Duin (2000) for the majority rule, were in agreement with this

assumption.

5.1.4 Biased and correlated estimation errors

The expected value of the added risk of an individual classifier is the same of the uncorrelated

case:

    
radd = a

i

2 + i
2( ) + b

j

2 + j
2( )  .

For a linear combination of classifiers we obtain:

    

radd

ave = a
 i

2 +  i( )
2 

  
 

  
+ b

 j

2 +  j( )
2 

  
 

  
=

= wk

2radd

k

k=1

N

+ 2 wmwn a i

mn

i
m

i
n + i

m

i

n( )+ b j

mn

j
m

j
n + j

m

j

n( ) 

  
 

  m<n

.

This expression generalises the ones obtained for unbiased and for uncorrelated errors. Also in

this case it turns out that if the estimation errors of the individual classifiers exhibit the same

bias, variance, and correlation, then the optimal weights are wk = 1/N. Under the same

hypothesis about the correlation coefficients made in the previous paragraph ( i = j = ), we

obtain:
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This expression, like the ones found in the previous paragraphs, shows that in the general case

simple averaging reduces only the component of rave depending on the variance of the estimation

errors, by the same factor of the unbiased case. The component depending on the bias does not

change. The same considerations made in the previous paragraph about positive and negative

correlation apply here.

5.2 Discussion

The above analysis shows how linearly combining classifiers in output space can improve their

error-reject trade-off. In particular, it points out the conditions under which simple averging or

weighted averaging are required in order to optimise the error-reject trade-off of the combiner. The

main result of the above analysis is that simple averaging is the optimal combining rule for

classifiers whose estimation errors on the a posteriori probabilities exhibit equal values of bias,

variance, and correlation. Note that this implies that the individual classifiers exhibit equal

average performances. We can define these as balanced classifiers. Instead, weighted averaging

provides the best error-reject trade-off for ensembles of imbalanced classifiers. As already

pointed out in paragraph 5.1.1, reserchers agree that simple combining rules (like simple

averaging) are best suited for problems where the individual classifiers have comparable average

performances (Tumer and Ghosh, 1999). The results of our analysis formalise this conclusion, and

extend it to classification with reject option. However, we point out that the definition of

imbalanced classifiers given above is still a qualitative one. Further work is needed to obtain a

quantitative definition of classifier imbalancing, which should be strongly related to the

performance improvement achievable by weighted averaging over simple averaging. Such a

definition would be useful in practical applications to decide if, for a given ensemble of

classifiers, it is worth using weighted averaging. Note indeed that obtaining good estimates of the

optimal weights could be difficult, besides than computationally expensive (Tumer and Ghosh,

1999). Moreover, experimental results reported in the literature, for instance by Ueda (2000),

showed a quite small difference between the performances of simple and weighted averaging.
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Chapter 6 

A method for introducing the reject option in support vector machines

In this Chapter we propose a method to introduce the reject option in SVMs. Currently, the reject

option in SVMs is implemented by using a heuristic rule, as pointed out in Chapter 3. In our

opinion this is in contrast with the strong theoretical foundations of SVMs. In paragraph 6.1 we

summarise the main results of statistical learning theory. In paragraph 6.2 we describe the

theoretical derivation of SVMs. In paragraph 6.3 we show how the reject option can be

introduced using the same theoretical derivation. This would allow to obtain the reject region,

together with the decision regions, as a result of training a SVM. We then propose a formulation

of the problem of training a SVM with reject option. Finally, in paragraph 6.4 we show how a

simple and efficient algorithm proposed in the literature for standard SVMs can be modified to

fit the characteristics of this problem.

6.1 Overview of statistical learning theory

Statistical learning theory was developed by V. Vapnik since the early 1960’s (Vapnik, 1998).

This theory deals with the general problem of function estimation from a collection of data, and

encompasses problems such as pattern recognition, regression estimation, and density estimation.

In the following we focus on the pattern recognition problem, whose setting is analogous to that of

the minimum risk theory, which was presented in Chapter 2.

A classifier is viewed as a learning machine which can implement a set of decision functions

f(x, ),   , whose output is a class label. The parameter  denotes one particular decision

function of the set. For instance, if the classifier is a neural network of given structure, then 

represents one particular set of connection weights. The problem is that of choosing from the

given set of functions the one, denoted as f(x, 0), which minimises the expected value R( ) of a

loss function L(x, ,f(x, )):

      
R( ) = L x, i , f x,( )( )p x, i( )dx

i=1

c

 .

The probability function p(x, ) = p(x)P( |x) is assumed to be unknown, and therefore R( ) itself

is unknown. The decision function can only be chosen on the basis of l training samples:

(x1,
1), (x2,

2), ..., (x l,
l) ,

which are assumed to be drawn randomly and independently from the (unknown) joint

probability density function p( ,x).

The induction principle usually used in pattern recognition is called empirical risk minimisation

(ERM principle). It consists in choosing the function which minimises an approximation of R( )

constructed on the basis of the training set, called empirical risk:
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Remp

( ) =
1

l
L i , f xi ,( )( )

i=1

l

 .

Using the simplest loss function:

      

L x, ,( ) =
0, if f x,( ) = ,

1, if f x,( ) ,

 
 
 

  
(39)

the actual expected risk R( ) is equal to the error probability, and the empirical risk Remp( ) is the

misclassification rate on the training set. The function (39) is named indicator function, since it

takes only the two values zero and one.

The analysis of the condition of consistency of the ERM principle leads to two main

theoretical results. First, it turns out that the conditions of consistency are related to the concept

of capacity, or VC dimension (Vapnik-Chervonenkis dimension) of a learning machine. The VC

dimension of a classifier is a measure of its complexity, that is, of the capability of fitting a given

training set with its decision rules f(x, ). In particular the VC dimension depends on the set f(x, )

and on the loss function used. For indicator functions (39), the VC dimension is defined as the

maximum number h of vectors (x1,
1), (x2,

2), ... , (xh,
h) which can be separated in all 2h possible

ways (shattered) using the set of functions L(x, , ). If for any n there exists a set of n vectors that

can be shattered by the set, then the VC dimension is equal to infinity. Note that any indicator

function separates a set of vectors into two subsets: the subset of vectors for which the function

takes value zero, and the subset for which it takes value one.

The second of the main theoretical results of statistical learning theory is the definition of an

upper bound for the expected risk achieved by any function f(x, ), which depends on the VC

dimension. Using bounded loss functions 0  L(x, , )  B, the following inequality holds true for

any function f(x, ), with probability at least 1 - :

    
R( ) Remp

( ) +
B

2
1+ 1+

4Remp
( )

B

 

 
 

 

 
  , (40)

where

    
= 4

h ln
2l

h
+ 1

 

 
 

 

 
 ln

l
 ,

and h denotes the VC dimension of the set of decision functions. Note that for indicator loss

functions, B = 1. The above inequality states that the actual risk achieved using any function

f(x, ) is upper bounded by the sum of the empirical risk achieved by f(x, ), and of a term

depending on the VC dimension h of the set of functions. It turns out that when the ratio l/h is

large, the second summand on the right hand side becomes small. The actual risk R( ) is then

close to the value of the empirical risk Remp( ). This means that, if the size of the training set is

large enough with respect to the VC dimension of the classifier used, minimising the empirical risk

guarantees to minimise the actual risk, that is, to achieve a good generalisation capability.

Instead, if l/h is small, a small Remp( ) does not guarantee a small value of R( ). Therefore the
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ERM principle is suitable only for dealing with large sample size, with respect to the VC

dimension of the chosen classifier. Note that for “large” values of l/h Vapnik means l/h > 20.

Inequality (40) shows that the ERM principle does not guarantee to minimise the actual risk.

This result leads to the definition of a new induction principle, which is called the principle of

structural risk minimisation (SRM). Basically, this principle is based on controlling the

generalisation ability of a learning machine by reaching a trade-off between its complexity and the

empirical risk, that is, the performance achievable on training data. Indeed, to obtain a small value

of the upper bound on the actual risk R( ), the two terms in the right-hand side of inequality (40)

should be simultaneously minimised. However, these two goals are conflicting, since decreasing

the VC dimension means decreasing the complexity of the classifier, and this can result in higher

values of the empirical risk, that is, a lower performance on training data. Therefore a trade-off

must be found between the performance achievable on the training set and the VC dimension of

the classifier. The SRM principle is based on defining a structure on the set S of loss functions

L(x, , ), so that S is composed of nested subsets

S1  S2  ...  Sn ...

having finite VC dimension hk. Since the above structure is composed by nested subsets, from the

definition of VC dimension it follows that:

h1  h2  ...  hn ... .

For the same reason, denoting with Remp( k) the minimum value of the empirical risk achievable

using functions of Sk, it turns out that:

Remp( 1)  Remp( 2)  ...  Remp( n) ...

This means that lower values of the VC dimension correspond to higher values of the achievable

empirical risk, as pointed out above. In terms of the right-hand side of inequality (40), this means

that for decreasing values of the first term (the empirical risk), the second term (which depends

on the VC dimension) increases. Therefore the SRM principle suggests to choose, for a given

training set, the subset Sk and the particular function k from Sk for which the upper bound (40) is

minimum.

The practical application of the SRM principle leads to the definition of support vector

machines, which is described in the following paragraph.

6.2 Theoretical derivation of support vector machines

6.2.1 The optimal separating hyperplane

The application of the SRM principle to the problem of pattern recognition was studied by

Vapnik for the simplest case of a two-class problem with indicator loss function (39). Note that

the reject option was not considered. Vapnik considered also the simplest type of classifier,

consisting of a set of linear decision functions:

f(x, ) = sign(w x + b), x, w  d, b   , (41)
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where the parameter  denotes the pair (w, b), and the class labels are {+1,-1}. Vapnik showed

that the VC dimension of the set of all linear decision functions in a feature space of dimension d

is d+1. To apply the SRM principle, a structure on the corresponding set of indicator loss

functions must be defined. That is, subsets of the set (41) of linear decision functions having a VC

dimension lower than d+1 must be found. This can be achieved by exploiting a result related to

the concept of margin of a hyperplane.

Given a set X = (x1,..., xl) of l vectors in Rd, the margin  of an hyperplane w x + b is defined as

the minimum distance between the vectors of X and the hyperplane:

      
= min

xi X

w xi + b

w
 . (42)

Let R be the radius of the smallest sphere containing X. Vapnik showed that the VC dimension h

of the set of hyperplanes which separate the set X with margin at least , is bounded by the

inequality

    

h min
R2

2

 

 
 
 

 

 
 
 
,d

 

 
 

 

 
 + 1 , (43)

where   a  denotes the integer part of a.

This result can be exploited to apply the SRM princilpe in the case of a linearly separable

training set X, by considering the set of hyperplanes which separate X without errors (that is,

with a null empirical risk). These are called separating hyperlpanes. A structure S on the set of

separating hyperplanes can indeed be constructed exploiting inequality (43). The subsets Sk

consist of the set of separating hyperplanes which subdivide the training set X with minimum

margin k such that:

    

k
2 >

R2

k+ 1
, k = 1,…,d 1,

k

2 > 0, k= d.

(44)

From inequality (43), it turns out that the VC dimensions hk of subsets Sk has the following upper

bound:

hk  k + 1 .

Note that the number of subsets Sk can be lower than d, depending on the maximum margin

between patterns of different classes of X. Since all the members of the subsets Sk have a null

empirical risk, applying the SRM principle means choosing one of the separating hyperplanes

which belong to the subset with minimum upper bound on the VC dimension (40). This can be

achieved without computing the margin values of inequalities (44), by simply finding the

separating hyperplane with maximum margin. This hyperplane obviously belongs to the subset

with minimum upper bound on the VC dimension, and is called optimal separating hyperplane

(OSH).

Vapnik showed that finding the OSH is appealing from the algorithmic point of view, for two

main reasons. First, he showed that the OSH is unique. Secondly, he showed that the OSH can be

found by solving a simple optimisation problem, for which efficient techniques from optimisation
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theory can be used. Indeed any separating hyperplane w x+b satisfies the constraints yi(w xi + b)

 0, i = 1, ... , l, where yi = {+1,-1} is the class label of the training pattern xi. The margin of the

hyperplane is given by Eq. (42). By rescaling the equation of the hyperplane so that

      
min

i
w xi + b= 1, the above conditions become yi(w xi + b)  1, i = 1, ... , l, while the margin

becomes 
    

= 1/ ww . This allows to express the OSH as the solution of a quadratic programme,

that is, an optimisation problem with quadratic objective function and linear constraints:

        

minimise
1

2
w

2

,

subject to   yi w xi + b( ) 1, i = 1,K,l .
(45)

In optimisation theory, problem (45) is called primal problem. Vapnik showed that the main

properties of the OSH can be emphasised by solving the dual problem associated to (45). The

solution of the primal problem coincides with the saddle point of the corresponding Lagrange

function:

      
L w,b,( ) =

1

2
w

2

i yi w xi + b( ) 1[ ]
i=1

l

 ,

where i  0 are the Lagrange multipliers. To find the saddle point, the Lagrange function must be

minimised over the primal variables w and b, and maximised over the i. By imposing

stationarity with respect to w and b:

      

L w,b,( )
w

= w yi i xi

i=1

l

= 0,

L w,b,( )
b

= yi i
i=1

l

= 0,

(46)

and substituting the relations obtained in the Lagrange function, it turns out that the saddle point

of the Lagrange function is the solution of the following problem:

        

maximise i

i=1

l 1

2
yiyj i j xi x j( )

i ,j=1

l

,

subject to    i 0, i = 1,K,l ,

                   yi i

i=1

l

= 0.

(47)

This is the dual problem, and the Lagrange multipliers i are called dual variables. From

optimisation theory it follows that necessary and sufficient conditions for values of w, b and i to

be solutions of the primal (45) and dual (47) problems are the so-called Karush-Kuhn-Tucker

(KKT) conditions:

      i yi w xi + b( ) 1[ ]= 0, i = 1,…,l  .

Given the i which solve the dual problem (47), from Eq. (46) it follows that the value of w which

solve the primal problem is:

      
w = yi i xi

i=1

l

 . (48)
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This means that the weight vector of the OSH can be expressed as a linear combination of the

training points. Furthermore, from the KKT conditions it turns out that the only non-zero i

correspond to the points xi for which yi(w xi + b) = 1. It is easy to see that these are the closest

points to the OSH: indeed their distance from the OSH corresponds to the margin 
    
1/ ww . The

OSH can then be expressed as a linear combination of the training points closest to it. These

points are therefore called support vectors. The value of b can be obtained from the KKT condition

associated to any of the support vectors (for which i  0), by solving the corresponding equation

yi(w xi + b) = 1. The equation of the OSH can then be rewritten as:

    
yi i xi x( )+ b

i SV

 ,

where SV denotes the set of support vectors. The example of Fig. 5 shows the OSH and the

support vectors for a problem with a two-dimensional feature vector.

    

1
w

Fig. 5. The optimal separating hyperplane for the two classes of circles and traingles is shown as a solid
line. The dashed lines represent the margin. The support vectors are shown as filled circles and triangles.

6.2.2 The optimal separating hyperplane for the non-separable case

The OSH as defined above is of no practical use, since it is based on the assumption that the

training set is linearly separable. This condition does not hold in many practical applications,

and in any case it can be difficult to verify if it holds. Note that for a non-linearly separable

training set the constraints of problem (45) can not simultaneously hold true, and therefore this

problem has no solution. To generalise the concept of OSH to the non-separable case Vapnik

proposed to introduce non-negative variables 1,…, l, to allow the constraints to be violated:

yi(w xi + b)  1- i (Cortes and Vapnik, 1995). The objective function of problem (45) was

consequently modified to 
      

1

2
w

2

+ C i

i=1

l

, where C is a given positive value. As pointed out by



Chapter 6.   A method for introducing the reject option in support vector machines

39

Vapnik (1998), the summand in the new objective function is an upper bound for the number of

training errors. The primal problem for the non-linearly separable case is then the following:

      

minimise
1

2
w

2

+ C i

i=1

l

,

subject to yi w xi + b( ) 1 i , i = 1,…,l ,

i 0, i = 1,…,l .

(49)

The corresponding dual problem is similar to the one of the linearly separable case (47). The only

difference is one additional constraint on the dual variables:

      

maximise i

i=1

l 1

2
yi yj i j xi x j( )

i ,j=1

l

,

subject to0 i C , i = 1,…,l ,

                   yi i

i=1

l

= 0.

(50)

The KKT conditions are now:

      

i yi w xi + b( ) 1+ i[ ], i = 1,…,l ,

i i C( ) = 0, i = 1,…,l .
(51)

The value of w is given also in this case by Eq. (48). The support vectors are again defined as the

points x i corresponding to non-zero i. Pontil and Verri (1998) pointed out that from the KKT

conditions it follows that the support vectors consist of all points misclassified by the OSH, and

of the ones correctly classified whose distance from the OSH is less than the margin 
    
1/ ww . For

training points correctly classified which lie outside the margin (that is, their distance from the

OSH is greater than 
    
1/ ww ), it turns out that i = 0. For the other points, the term i is

proportional to the amount by which they fail to reach a margin at least equal to 
    
1/ ww  from the

correct side of the OSH. In particular, for misclassified points i  1 (this explains why the

summand on the objective function of problem (49) is an upper bound for the number of training

errors). Pontil and Verri (1998) pointed out that this objective function represents a trade-off

between the margin 
    
1/ ww  and the number of training errors. It was also shown that minimising

this objective function can be viewed as minimising an upper bound on the actual error

probability, analogous to the upper bound on the actual risk (40) (Cristianini and Shawe-Taylor,

2000). An example of the generalised OSH is shown in Fig. 6.
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1
w

ξ

Fig. 6. The optimal separating hyperplane for a non-linearly separable training set. The support vectors
are shown as filled circles and triangles (in black the margin vectors, in gray the other ones). The slack
variables for non-margin support vectors (shown in grey) are also shown.

6.2.3 Support Vector Machines

The complexity of many real pattern recognition problems requires non-linear decision functions.

However the results described in the previous paragraph are valid only for linear decision

functions. Nonetheless, Vapnik (1998) showed that the technique of the OSH can be easily

applied to the case of non-linear decision functions. Basically, the idea is to map the original

feature space D into a high-dimensional space D’ through a non-linear mapping chosen a priori,

and to construct the OSH in D’. The decision surface in D corresponding to the OSH in D’ is then

non-linear. There is still a problem: finding the OSH in high-dimensional spaces can be

computationally infeasible. However, this problem is overcomed thanks to fact that the

expressions of the dual problem (50) and of the weight vector w (48) depend only on the inner

product between vectors of D’. It is then possible to avoid computing explicitely the mapping

from D to D’ exploiting the fact that there exist functions K(x,y), x, y  D, which represent the

inner product between the images of x, y in D’. These functions are characterised by the Mercer

theorem (Vapnik, 1998). This theorem states that any continuous symmetric function K(x,y) in

L2(C), x, y  D  Rd, satisfying

      
K x,yy( )g x( )g y( )dxdy

CC
0 g L2 C( )  ,

represents the inner product (x) (y) in a feature space D’ defined by an unknown mapping  (C

being a compact subset of d). This means that the dual problem can be solved in D’ simply

substituting K(xi,xj) to the inner products (x i xj). The expression of the separating surface in D,

corresponding to the OSH in D’, becomes then:



Chapter 6.   A method for introducing the reject option in support vector machines

41

      
yi iK xi ,xx( )

i=1

l

+ b . (52)

Therefore one can choose the desired form of the decision surface (52) among the functions which

satisfy Mercer conditions, and solve the dual problem using the values K(xi,xj). Functions which

satisfy Mercer conditions are called kernel functions. Well-known kernels are polynomials of degree

n:

      
K x,xxi( ) = x xi + 1( )

n

 ,

and radial basis kernels:

      
K x,xxi( ) = exp x xi

2 
 

 
 
 .

The classifier based on the concept of OSH and on kernel functions is called support vector

machine.

6.2.4 Algorithms for training support vector machines

Training a SVM consists in choosing a kernel function and the value of the parameter C, and

solving the optimisation problem:

      

maximise i

i=1

l 1

2
yi yj i jK xi x j( )

i ,j=1

l

,

subject to0 i C , i = 1,…,l ,

                   yi i

i=1

l

= 0,

which consists in maximising a concave quadratic form under linear constraints. This problem has

several interesting properties. Since the dual objective function is concave, it has no local maxima,

and therefore its solution is unique. The solution is sparse, since the only non-zero i are the ones

corresponding to the support vectors, which are tipically a small subset of the training patterns.

Moreover, the implicit mapping into high-dimensional feature spaces makes the complexity of

this problem independent on the dimensionality of the feature space. In principle, standard

optimisation techniques could be used to solve this problem. However, these techniques require

the entire kernel matrix K(xi,xj) to be stored in memory. This is infeasbile for training sets of more

than few hundred patterns, since the kernel matrix requires a memory space which grows

quadratically with the size of the training set. For this reason several specific techniques have

been developed for training SVMs (Cristianini and Shawe-Taylor, 2000). These techniques are

mainly based on two heuristics, known as chunking and decomposition, which avoid to store the

entire kernel matrix in memory, while exploiting the characteristics of the dual problem described

above. In particular, the decomposition technique is based on optimising the dual objective

function by iteratively acting on only a fixed size subset of the dual variables i, while keeping

constant the others. A natural stopping criterion for these optimisation algorithms are the KKT

conditions, since they are necessary and sufficient to characterise the solution of the primal and

dual problems (Cristianini and Shawe-Taylor, 2000).
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A simple and efficient algorithm is the Sequential Minimal Optimisation (SMO) algorithm

(Platt, 1999b). It uses the decomposition method, by acting on the minimum number of variables

at each iteration. Due to the constraint 
    

yi ii=1

l

= 0, the minimum number of variables is two. The

reason of this choice is that the resulting optimisation problem can be solved analytically.

Basically, SMO iteratively chooses a pair of dual variables i, j using a heuristic, and

analytically finds the maximum of the dual objective function with respect to these variables, by

keeping constant the other ones. The maximum is found under the constraints of the dual problem

0  i, j  C, and 
    

yi ii=1

l

= 0. This strategy guarantees that the current values of the dual

variables are always a feasible solution of the dual problem. In this case the KKT conditions (51)

are necessary and sufficient to characterise the solution of the primal and dual problems. These

conditions are therefore used as a stopping criterion for the algorithm. Taking into account that

the dual function is concave, the above strategy also guarantees the convergence of the algorithm

if a proper selection of the pairs i, j is made at each iteration.

To speed up the convergence, two heuristics are used to choose the pairs i, j. The first

variable of the pair is chosen in the outer loop of the algorithm, among the variables which violate

the KKT conditions. The second variable is chosen using the second heuristic. If at least one pair

of variables is updated in the outer loop, the next outer loop is made only on the non-bound

variables, that is, on the ones such that 0 < i < C. This is another heuristic, which aims to

increase the chances to find KKT violations. The outer loop is repeated until no variable violates

the KKT conditions (the last outer loop is always a complete loop). In this case the algorithm

terminates (as explained above, the KKT conditions are used as stopping criterion). The second

heuristic consists in choosing the second variable j of the pair so that their updating causes a

large change, which should result in a large increase of the dual objective function. If this choice

does not provide a significant change, SMO looks first for each non-bound j, and then through

the entire training set.

The maximum of the dual objective function with respect to two variables i and j can be

found analytically as follows. Note first that the constraint 
    

yi ii=1

l

= 0 implies that i and j

must lie on the line of equation

    
yi i + yj j = constant= yi i

old + yj j
old  .

This allows to find the new value of just one variable, say i, and use it to find the new value of

j from the above equation. The other constraint 0  i, j  C, together with the one above,

implies the following constraint for i:

U < i < V , (53)

where 
    
U = max 0, i

old
j
old{ }, 

    
V = min C ,C j

old + i
old{ } , if yi  yj, and 

    
U = max 0, i

old + j
old C{ } ,

    V = min C , i
old + i

old{ } , if yi = yj (Platt, 1999b). The unconstrained maximum of the dual objective

function with respect to i is achieved by first computing:
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i
unc = i

old +

yi kykK xk ,xx j( )
k=1

l

yj kykK xk ,xxi( )
k=1

l

+ yi

 

 
 

 

 
 

K xi ,xxi( )+ K xj ,xx j( ) 2k xi ,xx j( )
 , (54)

and then, taking into account constraint (53):

    

i =

V, if i

unc > V ,

i
unc, if U i

unc V ,

U , if i
unc <U .

 

 
 

 
 

Note that to find a good variable j with few computation in the second heuristic, SMO chooses

the j for which the absolute value of the term between round brackets at the numerator of Eq.

(54) is maximum. Note also that to evaluate the KKT conditions in the outer loop, the value of b

should be known in advance. SMO uses a value obtained by imposing the KKT conditions for the

two dual variables which are modified at each iteration. It was shown that this value converges

to the optimal value of b as the values of the objective function converges to its maximum. A

basic scheme of SMO is given below.

alpha[]: vector of dual variables

main routine
  initialise alpha array to zero
  initialise b to zero
  numChanged = 0
  examineAll = 1
  while (numChanged > 0 || examineAll == 1)
  {
    numChanged = 0
    if (examineAll)
      loop i over all training examples
        numChanged += examineExample(i)
    else
      loop over examples whose alpha is not 0 and not C
        numChanged += examineExample(i)
    if (examineAll == 1)
      examineAll = 0
    else if (numChanged == 0)
      examineAll = 1
  }

procedure examineExample(i)
  if example i violates the KKT conditions
  {
    if (number of non-zero and non-C alpha > 1)
    {
      j = result of second choice heuristic
      if takeStep(i,j)
        return 1
    }
    loop j over non-zero and non-C alpha, starting at a random point
      if takeStep(i,j)
        return 1
    loop j over all training examples, starting at a random point
      if takeStep(i,j)
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        return 1
  }
  return 0
endprocedure

procedure takeStep(i,j)
  if (i == j) return 0
  compute the value of alpha[i] which maximises the dual objective function,
    with respect to alpha[i] and alpha[j], under the dual constraints
  if the change of alpha[i] and alpha[j] is below a predefined tolerance,
    return 0
  update alpha[i] and alpha[j]
  update the threshold b
  return 1
endprocedure

6.3 Introducing the reject option in support vector machines

6.3.1 Problem formulation

In Chapter 3 we showed that the reject option in SVMs is currently implemented using a heuristic

rule. Indeed, as shown in paragraph 6.2, the SVMs have been derived from statistical learning

theory without taking into account the reject option. However, we point out that the reject option

can be introduced using the same theoretical derivation. To this aim, consider again inequality

(40), which represents an upper bound for the expected risk of a given classifier. This inequality

involves the empirical risk and the VC dimension. Both these terms depend on the loss function

L(x, , ). Note that the definitions of empirical risk and of VC dimension, as well as inequality

(40), hold for any bounded function L(x, , ) (Vapnik, 1998; 1999). This means that they also

hold for loss functions like the ones described in Chapter 2, in the case of classification with

reject option. Therefore the SRM principle, which is based on inequality (40), can be applied also

for classification with reject option. The key point is to define a set of decision functions f(x, )

whose output can be also the reject decision, besides one of the class labels. In the following we

propose a generalisation of the concept of optimal separating hyperplane to classification with

reject option.

Following Vapnik’s approach to the derivation of the OSH, which has been described in

paragraph 6.2, we consider a two-class problem, and the simplest loss function. As pointed out

in Chapter 2, in classification with reject option the simplest loss function is:

      

L x, ,( ) =

0, if f x,( ) = ,

wR , if f x,( ) = 0,

1, if f x,( ) and f x,( ) 0,

 

 
  

 
 
 

 (55)

where 0  wR  1, and the output of f(x, ) corresponding to the reject region is denoted with 0.

Now a set of decision functions f(x, ) must be chosen. Vapnik focused on the simplest ones,

namely, linear decision functions. In our case, the simplest way to deal with the reject decision
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using linear functions is to consider pairs of parallel hyperplanes, such that patterns lying between

them are rejected. Formally, let us write the expressions of a pair of parallel hyperplanes as:

      w x + b± , ww d , b, , 0 , (56)

where  repersents the parameters w, b,  (see Fig. 7).

w⋅x + b

w⋅x + b - ε

w⋅x + b + ε
w

Fig. 7. Two parallel hyperplanes w x + b ±  are shown. The reject region is bounded by the two
hyperplanes.

By denoting the class labels with y  {+1,-1}, the decision function is the following:

f(x, ) =+1, if w x + b   ,

f(x, ) =-1, if w x + b  -  , (57)

f(x, ) = 0, if -  < w x + b <  .

At this point, following again Vapnik’s approach, to apply the SRM principle it would be first

necessary to compute the VC dimension h of the set of loss functions (55) defined on decision

functions (57). Then, subsets of the decison functions (57) should be found, having a VC

dimension less than h. This should lead to the definition of a problem, perhaps similar to (49),

whose solution is a pair of hyperplanes (56) which we could call Optimal Separating Hyperplanes

with Rejection (OSHR). Note that the solution of this problem should depend on the parameter wR

of the loss function (i.e., the cost of a rejection). However these steps are beyond the scope of this

work. Therefore we proceed by making a working hypothesis. Our hypothesis is that, for the set

of loss functions (55) with decision functions (57), the VC dimension depends again on the

margin of the pair of hyperplanes w x+b ± , defined as 
    
1/ ww . We also assume that the rejection

region must always lie inside the margin. The trade-off between the VC dimension and the

empirical risk can then be expressed through a functional similar to the one introduced by Vapnik

for the non-linearly separable case (49). The OSHR is therefore solution of the follwing problem:
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minimise
1

2
w

2

+ C h i ,( )
i=1

l

,

subject toyi w xi + b( ) 1 i i = 1,...,l ,

i 0 i = 1,...,l ,

0 1,

(58)

where C is a given positive constant. The function h( i, ) must be an approximation of the

classification cost of the i-th training pattern, according to the loss function (55). It must therefore

depend on the amplitude of the rejection region, defined by . We point out that, for the same

reason, h( i, ) must depend also on the parameter wR. Note that the constraint 0    1 enforces

the rejection region to be inside the margin.

The problem is now to find a function h( i, ) so that the summand in the objective function of

problem (58) is a suitable approximation of the empirical risk, that is, of the error-reject trade-

off, according to the loss function (57). It would be desirable to deal with a convex function, since

this would lead to a simpler optimisation problem from the computational viewpoint, as pointed

out in Sect. 6.2. Let us consider the original definition of the OSH for the non-linearly separable

case defined by Vapnik, (1998). The OSH was originally defined as the solution of the following

problem:

      

minimise h i( )
i=1

l

,

subject toyi w xi + b( ) 1 i , i = 1,..., l ,

i 0, i = 1,...,l ,

w
2

A2 ,

where A is a predefined constant. To minimise the number of training errors, the function h( i)

was defined as h( i)=0 if i=0, and h( i)=1 if i>0. Note that this definition implies that correctly

classified patterns which lie inside the margin, characterised by 0 < i < 1, are considered as

misclassified patterns, since the corresponding value of h( i) is 1. However, since the above

problem is NP-complete, Vapnik proposed to approximate it by using the function h( i) = i (note

that the i are constrained to be non-negative).

Proceeding by analogy, taking into account the decision rule (57) and the constraints of

problem (58), in our case the function h( i, ) should be the following:

h( i, ) = 0, if i = 0 ,

h( i, ) = wC, if 0 < i  1-  ,

h( i, ) = wR, if 1-  < i  1+  ,

h( i, ) = 1, if i > 1+  , (59)

where wC is a constant value such that 0 < wC < wR. The role of wC is to avoid that patterns

correctly classified which lie outside the rejection region but inside the margin, are given a null

cost. This is analogous to what happens in Vapnik’s formulation, as explained above. The

behaviour of function (59) is shown in Fig. 8.
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ξi

0

wC

wR

1

1 - ε 1 + ε

h(ξi,ε)

Fig. 8. Behaviour of the function h( i, ), representing the error-reject trade-off.

Unfortunately, a convex function is not suitable to approximate function (59). An approximation

which does not lead to a trivial solution of problem (58), and is relatively simple from the

computational viewpoint, can be the following:

    
h i ,( ) =

1

10
i
2+ 2wC

1

1+ e i

1

2

 

 
 

 

 
 +

wR wC

1+ e i 1+( ) +
1 wR

1+ e i 1( )  .

To obtain a good approximation of function (59), a suitable value for the parameter  can be 100.

The behaviour of this function, for  = 100, wC = 0.1, and  = 0.5, is shown in Fig. 9. Note that

using this function the constraints i  0 are not necessary. In the following we consider wC = 0.1.

This implies that the cost of a rejection is 0.1  wR  1.

ξi

0

wC

wR

1

1 - ε 1 + ε

h(ξi,ε)

-wC

Fig. 9. Approximation of the function of Fig. 8, obtained using sigmoidal functions.

6.3.2 Primal and dual problems

Using the above formulation, the OSHR is the solution of the following (primal) problem:

      

minimise
1

2
w

2

+ C
1

10 i

2 + 2wC

1

1+ e i

1

2

 

 
 

 

 
 +

wR wC

1+ e i 1+( )
+

1 wR

1+ e i 1( )

 

 
 
 

 

 
 
 i=1

l

,

subject toyi w xi + b( ) 1 i , i = 1,..., l ,

0 1.

The associated Lagrange function is:
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L w,b, i , ; i( ) =

1

2
w

2

+ C h i ,( )
i=1

l

i yi w xi + b( ) 1+ i[ ]
i=1

l

 .

We chose not to include the constraints 0    1 in the Lagrange function. They must therefore be

taken into account when minimising the Lagrange function with respect to the primal variables

(Bazaraa, 1992). This choice is convenient from the algorithmic point of view, as explained

below. With respect to the primal variables, the Lagrange function is the sum of a convex function

of w and b, and a non-convex function of i and :

      
L w,b, i , ; i( ) = L1 w,b; i( ) + L2 i , ; i( )  ,

where

      
L1 w,b; i( ) =

1

2
w

2

i yi w xi + b( ) 1[ ]
i=1

l

 ,

    

L2 i , ; i( ) = C
1

10
i
2 i

C
i

 

 
 

 

 
 + 2wC

1

1+ e i

1

2

 

 
 

 

 
 +

wR wC

1+ e i 1+( ) +
1 wR

1+ e i 1( )

 

 
 
 

 

 
 
 i=1

l

 . (60)

The minimum of L can therefore be found as the sum of the minima of L1 and L2, which can be

computed independently. We remind that the minimum of L2 must be found under the constraints

0    1. Since L1 is convex, its minimum can be found by imposing stationarity:

      

L1 w,b; i( )
w

= w i yixi

i=1

l

= 0, ww = i yixi

i=1

l

,

L1 w,b; i( )
b

= i yi
i=1

l

= 0.

(61)

Note that these are the same relations found for standard SVMs (46). The minimum of L2 can not

be found analytically, due to the complexity of this function. The behaviour of any of the terms of

the summand in L2 is shown in Fig. 10, for the same values of the parameters as in Fig. 9:  = 100,

wC = 0.1, and  = 0.5.

ξi

1 - ε 1 + ε

L2(ξi,ε)

0

wC

wR

1

-wC

Fig. 10. Behaviour of any term of the summand in function L2( i, ).
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The problem of minimising L2 can be simplified by exploiting the fact that, for a fixed value of ,

each term of the summation depends only on the corresponding i. In the next paragraph we

describe a method to minimise L2. It is now easy to see that the dual problem associated to

problem (58) is the following:

      

maximise 1,K, l( ) ,

subject to yi i

i=1

l

= 0,

i 0, i = 1,K,l ,

(62)

where

        

1,K, l( ) = i

i=1

l 1

2
yiyj i j xi x j( )

j= 1

l

i=1

l

+

+C min
i ,0 1

1

10 i

2 i

C i

 

 
 

 

 
 + 2wC

1

1+ e i

1

2

 

 
 

 

 
 +

wR wC

1+ e i 1+( )
+

1 wR

1+ e i 1( )

 

 
 
 

 

 
 
 i=1

l

.

(63)

Problem (62) is very similar to the standard formulation of the dual problem for SVMs (50). In

particular, Eq. (61) shows that the weight vector of the pair of parallel hyperplanes is a linear

combination of training points, as for standard SVMs. Therefore training points whose

corresponding dual variable is zero can be called support vectors. Note also that in problem (62)

the training points appear only in the form of inner products: this allows to deal with non-linear

decision surfaces as standard SVMs. However, the main drawback of problem (62) is that the

dual objective function ( 1,…, l) is not known in analytical form. It can only be evaluated for

given values of 1,…, l by first solving the constrained minimisation problem in (63). Moreover,

the KKT conditions are not necessary and sufficient to characterise the solution of the primal and

dual problems. The only property of problem (62) which can be exploited is the fact that the dual

objective function is concave, like the Lagrangian dual objective function of any optimisation

problem with continuous primal objective function (Bazaraa, 1992). In the following paragraph

we propose an algorithm for solving the dual problem (62).

6.4 An algorithm for finding the OSHR

To train a SVM with reject option by solving problem (62) it is possible to use an algorithm

similar to the SMO algorithm, which was described in paragraph 6.2.4. Problem (62) is reported

below.

        

maximise i

i=1

l 1

2
yi yj i j xi x j( )

j= 1

l

i=1

l

+

+ C min
i ,0 1

1

10 i

2 i

C i

 

 
 

 

 
 + 2wC

1

1+ e i

1

2

 

 
 

 

 
 +

wR wC

1+ e i 1+( )
+

1 wR

1+ e i 1( )

 

 
 
 

 

 
 
 i=1

l

,

subject to yi i

i=1

l

= 0,

i 0, i = 1,K,l .

(64)
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As already pointed out, the main drawbacks of this optimisation problem are that the dual

objective function ( 1,…, l) is not known in analytical form, and the KKT conditions are not

necessary and sufficient to characterise its solution. In the following we show how the SMO

algorithm can be modified to deal with problem (64). We first show how the dual objective

function can be evaluated, for given values of 1,…, l, by solving the constrained minimisation

problem in (64). We then show how to find the maximum of the dual objective function with

respect to a given pair of variables i, j. We finally tackle the problem of finding a heuristic to

choose a suitable pair of variables i, j at each step of the algorithm, and of finding a stopping

criteria.

6.4.1 Evaluation of the dual objective function

The dual objective function ( 1,…, l) can be evaluated by first solving the following constrained

minimisation problem:

    

minimise C
1

10
i

2 i

C
i

 

 
 

 

 
 + 2wC

1

1+ e i

1

2

 

 
 

 

 
 +

wR wC

1+ e i 1+( )
+

1 wR

1+ e i 1( )

 

 
 
 

 

 
 
 i=1

l

,

subject to0 1.

Let us denote the terms of the above summation with h( i, ). In paragraph 6.3.2 we pointed out

that the above minimisation problem can be solved by exploiting the fact that, for a fixed value of

, each term h( i, ) is independent from the other ones. The minimum of the summation can then

be found as the sum of the minimum of each h( i, ). To find the minimum of h( i, ) for a fixed

value of , we propose to approximate the three sigmoidal functions of its objective function with

step functions (formally, this is achieved for   + ). Denoting a step function as follows:

    
I x0

x( ) =
0, if x x0 ,

1, if x > x0 ,

 
 
 

  

the above optimisation problem becomes:

    

minimise C
1

10
i

2 i

C
i

 

 
 

 

 
 + 2wC I 0 i( )

1

2

 

 
 

 

 
 + wR wC( )I 1 i( )+ 1 wR( )I 1+ i( )

 

 
 
 

 

 
 
 i=1

l

,

subject to0 1.

(65)

Let us denote the i-th term of the above summation with h’( i, ). Consider now a fixed value of ,

in the interval [0,1]. The function h’( i, ) is the sum of a convex parabola (0.1 i
2 - ( i/C) i), and

of three step functions. It is easy to see that the minimum of h’( i, ) can only be achieved at one of

the discontinuity points of the step functions, or at the minimum of the parabola. The

corresponding values of i are respectively: i=0, i = 1- , i = 1+ , i=5 i/C. Furthermore, for

varying values of , the minimum of h’( i, ) is either constant (if it is achieved at i=0 or at

i=5 i/C), or moves along the parabola (if it is achieved at i = 1-  or at i = 1+ ). For any h’( i, )

it is then possible to subdivide the interval [0,1] of  values into a finite number ni+1 of adjacent

intervals, such that the analytical expression of the minimum of h’( i, ) in each interval is either a

constant or a polynomial of degree two (which is function of ). Reminding that 0    1, let us

denote the extremes of the sequence of intervals related to h’( i, ) as:
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I

i
= i ,0, i1, i2,…, i,ni

, i ,ni +1{ }  ,

where

    i ,0 = 0< i 1< i2 < …< i ,ni
< 1= i ,ni +1 .

The minimum of h’( i, ) in the k-th interval can then be written as:

    
min

i , ik < i ,k + 1

 h i ,( ) = aik
2 + bik + cik , k = 0,…, ni  . (66)

Obviously, if the minimum is a constant term, then aik = bik = 0. The coefficients aik, bik and cik can

be obtained as a function of the parameters of h’( i, ), that is, i/C, wC and wR (see (65)). For any

value of , the minimum of the summation of the h’( i, ) is equal to the sum of the minimum of

each h’( i, ). Consider now the finite sequence of intervals, denoted with I , obtained by

superimposing the sequences of each h’( i, ). More precisely, the extremes of I  are:

      
I = I

i

i=1

l

U  .

From what said above, it follows that in any interval of the sequence I  the expression of the

minimum of the summation of the h’( i, ) is a constant term or a polynomial of degree two. These

expressions can be obtained as the sum of the corresponding terms (66). The global minimum of

the objective function of problem (65) can then be analytically obtained by analysing the sequence

of such expressions for the intervals I . Note that this also allows to compute the values of  and

of the i‘s which solve problem (65).

We point out that evaluating the dual objective function of problem (64) clearly requires a

more time-consuming computation than the one needed for the training problem of standard

SVMs.

6.4.2 Maximising the dual objective function with respect to a pair of dual variables

Let us now consider the problem of finding the maximum of ( 1,…, l) with respect to a pair of

dual variables i, j. We remind that in our case the constraints are i, j  0, and 
    

yi ii=1

l

= 0.

The second constraint implies that 
    
yi i + yj j = constan. We denote with c this constant term,

related to the current values of the dual variables:

  
c= yi i

old + yj j
old . (67)

Consider first the case yi = yj. It is easy to see that the above constraints cause the two variables

to lie on a diagonal line segment, as shown in Fig. 11(a).
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αi

αj

yiαi + yjαj = c

|c|

|c|

0

αi

αj

yiαi + yjαj = c

|c|

0
yi = yj yi ≠ yj

(a) (b)
Fig. 11. Constraints on the pair of dual variables i, j.

The corresponding constraints are:

    
0 i c, if yi = yj  .

Due to constraint (67), the dual objective function can be expressed only as a function of one of

the two variables. Since it is a concave function, its maximum on the diagonal line segment can be

found by using the golden section method (Bazaraa, 1992). Consider now the case yi  yj. It is

easy to see that constraint (67) cause now the two variables to lie on a diagonal half-line, as

shown in Fig. 11(b). The corresponding constraint is:

    

i c, if yi yj , andyic 0,

i 0, if yi yj , andyic< 0.

In this case to apply the golden section method it is first necessary to find a segment of the half

line which contains the maximum of ( 1,…, l). To this aim, it is possible to exploit an upper

bound of ( 1,…, l). This function can indeed be expressed as a sum of two terms 1 and 2:

        

1 1,K, l( ) = i

i=1

l 1

2
yi yj i j xi x j( )

j= 1

l

i=1

l

,

2 1,K, l( ) = min
i ,0 1

C
1

10 i

2 i

C i

 

 
 

 

 
 + 2wC

1

1+ e i

1

2

 

 
 

 

 
 +

wR wC

1+ e i 1+( )
+

1 wR

1+ e i 1( )

 

 
 
 

 

 
 
 i=1

l

.

The first term 1 is known in analytical form, while the second term 2 does not. Note that 2

coincides with the minimum of function L2 (60). By using the approximations described above for

L2, it can be shown that 2 is upper bounded by the term 0.8C l. Therefore, the dual objective

function has the following upper bound, which can be computed in analytical form:

      1,K, l( ) 1 1,K, l( )+ 0.8C l  . (68)

It is now easy to see that the maximum of ( 1,…, l) lies in the line segment whose extremes are

the vertex of the half-line of Fig. 11(b), and the point of the half-line for which the value of the

upper bound (68) equals the value of ( 1,…, l) in the vertex of the half-line. Denoting with * the

value of ( 1,…, l) in the vertex of the half-line, the second extreme can then be found by solving

the equation ( 1,…, l) + 0.8C l = *. Note that this is a simple quadratic equation. The golden
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section method can then be applied to this line segment to find the maximum of the dual objective

function with respect to i and j.

6.4.3 Selection heuristics and stopping criterion

Let us now turn our attention to the problems of choosing a suitable pair of variables at each step

of the algorithm, and of finding a proper stopping criteria. As pointed out above, these problems

are complicated by the fact that the KKT conditions are not necessary and sufficient to

characterise the optimal solutions of the primal and dual problems. For problem (64) only

necessary conditions can be given. Consider first the approximation described in paragraph 6.4.1

for evaluating the dual objective function by solving problem (65). Let us denote the

corresponding value of i, at the solution of problem (65), as    i . We showed that    i  can only

assume one of the four values in {0, 1- , 1+ , 5 i/C}. In particular, it can be shown that, if

    i /C < 2/5, then    i  = 0. This implies that the corresponding primal constraint becomes yi(w xi

+ b)  1. That is, the training point xi must be correctly classified, and must lie outside the margin.

Therefore, a necessary condition for the solution of the primal and dual problems is the following:

      
yi w xi + b( ) 1, if i

C
<

2

5
 . (69)

Checking if this condition holds is quite easy, since it does not require to compute the value of the

corresponding    i . Since condition (69) is only a necessary condition for characterising the optimal

solutions of the primal and dual problems, it can not be used as stopping criterion. Nevertheless,

it can be used as a heuristic for choosing the first dual variable i in the outer loop of the

algorithm. In particular, in the outer loop training points satisfying condition (69) can be ignored.

If the value of the corresponding dual variable were not the optimal one (we remind that

condition (69) it is necessary but not sufficient), it could nevertheless be changed since this

variable can be chosen by the second heuristic in the inner loop. After an outer loop in which at

least one pair of dual variables has been updated, the next outer loop can be restricted only to

non-zero variables, analogously to SMO. The last outer loop of the algorithm should always be a

complete loop.

Note that checking condition (69) requires to estimate the value of b. Analogously to SMO, the

value of b can be updated at each iteration by imposing that the primal constraints hold for the

pair of dual variables i, j which have been updated during the last step. In the general case the

primal constraints are:

      
yi w xi + b( ) 1  i , if i

C

2

5
 , (70)

where the    i  can be obtained as explained in paragraph 6.4.1. If    i  = 0, the above condition

implies that the training point xi must be correctly classified, and must lie outside the margin, as

for condition (69). If    i  = 1- , condition (70) implies that the corresponding pattern is correctly

classified, and lies inside the margin but outside the rejection region. If    i  = 1+ , condition (70)
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implies that the corresponding pattern is rejected. Finally, if    i  = 5 i/C, it implies that the

corresponding pattern is misclassified (if 5 i/C > 1+ ), or is rejected (if 1-  < 5 i/C < 1+ ). By

imposing that the primal constraints hold for the pair i, j:

      

yi w xi + b( ) 1  i ,

yj w x j + b( ) 1  j ,
(71)

four cases can occur. The value of b can then be updated as follows.

if b  bi and b  bj, or b  bi and b  bj, then set b as (bi + bj)/2;

if b  bi and b  bj, with bi  bj, then set b as (bi + bj)/2;

if b  bi and b  bj, with bi  bj, then set b as (bi + bj)/2;

otherwise keep the previous value of b.

We denoted with bi and bj the constant terms obtained from inequalities (71).

The second dual variable j can be chosen as in SMO, such that updating on the pair i, j

causes the largest change in both variables, which should result in a large increase of the dual

objective function ( 1,…, l). (Note that, due to the linear constraint (67), both variables always

change by the same amount.) To avoid computing the exact value of ( 1,…, l) (this would

require to solve problem (65)), only the term 1( 1,…, l) can be maximised. Note that 1( 1,…, l)

coincides with the objective function of the standard SVMs dual formulation (50). The

unconstrained maximum of 1( 1,…, l) can then be found as shown in paragraph 6.2.4 for the

SMO algorithm:

      
i
unc = i

old +

yi kykK xk ,xx j( )
k=1

l

yj kykK xk ,xxi( )
k=1

l

+ yi

 

 
 

 

 
 

K xi ,xxi( )+ K xj ,xx j( ) 2k xi ,xx j( )
 .

The j for which   i
unc

i
old  is maximum is chosen. The exact value of i which maximises the

dual objective function can then be computed as explained in paragraph 6.4.2. The corresponding

value of j can be found from the constraint 
  
yi i + yj j = c. If this choice did not provide a

significant change   i i
old , it would be possible to trying first each non-zero j, and, if

necessary, all the other j’s, as in SMO. However this would require too much computation, due

to the complexity of finding the value of i which maximises the dual objective function.

Therefore we chose to try at most one other j, that is, the one which provides the second highest

change   i
unc

i
old .

Finding a proper stopping criterion is the more difficult point. Monitoring the growth of the

dual objective function is an unreliable criterion (Cristianini and Shawe-Taylor, 2000). Moreover,

it is not possible to monitor the decrease of the feasibility gap (that is, the difference between the

primal and dual objective functions): since the primal objective function is not convex, the gap

does not vanishes at the solution (Bazaraa, 1992). Obviously the algorithm must stop if no pair

of dual variables causing an increment of the objective dual function has been found in a complete

outer loop. This criterion can be inefficient, since the convergence of the dual objective function
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could be very slow near the solution. Nevertheless, we used this criterion for preliminary

experiments, whose results are reported in Chapter 7. Further work is needed to find necessary

and sufficient conditions to characterise the solution of problem (62), to be used as a more

efficient stopping criterion.

6.4.4 Pseudocode of the algorithm

In the following we report the pseudocode of the algorithm described above. At this level of

detail, the only differences with respect to SMO are the heuristics for choosing a pair of dual

variables at each iteration, and the stopping criterion.

alpha[]: vector of dual variables
w: weight vector of the hyperplanes
x[]: training point matrix
eps: a predefined tolerance level

main routine
  initialise alpha array to zero
  initialise b to zero
  numChanged = 0
  examineAll = 1
  while (numChanged > 0 || examineAll == 1)
  {
    numChanged = 0
    if (examineAll)
      loop i over all training examples
        numChanged += examineExample(i)
    else
      loop over examples whose alpha is not 0
        numChanged += examineExample(i)
    if (examineAll == 1)
      examineAll = 0
    else if (numChanged == 0)
      examineAll = 1
  }

procedure examineExample(i)
  if (alpha[i]/C  sqrt(2)/5-eps or y[i]*(w x[i]+b)  1+eps)
  {
    j = first result of second choice heuristic
    if takeStep(i,j)
      return 1
    j = second result of second choice heuristic
    if takeStep(i,j)
      return 1
  }
  return 0
endprocedure

procedure takeStep(i,j)
  if (i == j) return 0
  compute the value of alpha[i] which maximises the dual objective function,
    with respect to alpha[i] and alpha[j], under the dual constraints
  if the change of alpha[i] and alpha[j] is below a predefined tolerance,
    return 0



Chapter 6.   A method for introducing the reject option in support vector machines

56

  update alpha[i] and alpha[j]
  update the threshold b
  return 1
endprocedure

6.5 Discussion

The main purpose of this Chapter was to show how the reject option can be introduced in SVMs

by following a theoretical derivation from statistical learning theory, analogous to Vapnik’s

derivation of standard SVMs. This leaded to the definition of a set of decision functions whose

outputs include the reject decision. Unlike usual training algorithms, this implies that the reject

region must be defined during the training phase, together with the decision regions. (Note that

this approach is analogous to the one proposed by Mizutani (1998) for other types of classifiers.)

Following Vapnik’s approach, we considered as the simplest set of decision functions with reject

option the set of pairs of parallel hyperplanes. Since computing the VC dimension of this set of

functions was beyond the scope of this work, we made a working hypothesis about it. We then

proposed an approximation of the empirical risk, which takes into account the error-reject trade-

off. This allowed us to formulate the problem of training a SVM with reject option as an

optimisation problem analogous to that of standard SVMs. Finally, we proposed an algorithm for

solving this problem, derived from one of the algorithms for training standard SVMs.

Let us now compare our approach for designing a SVM with reject option with the rejection

rule described in Chapter 3. We remind that this rule consists in rejecting patterns whose distance

from the optimal separating hyperplane is less than a predefined threshold. We point out that

also this approach leads to a rejection region delimited by a pair of parallel hyperplanes, in the

feature space induced by the chosen kernel. However, the two approaches differ in the way the

rejection region is obtained. Using the rejection rule described in Chapter 3, the two parallel

hyperplanes delimiting the reject region are constrained to be parallel to the OSH, and equidistant

from it, for any value of the reject rate. From a theoretical viewpoint, this approach is suitable for

problems in which the contours of the optimal reject region (in the feature space induced by the

chosen kernel) are pairs of hyperplanes which are always parallel and equidistant from the class

boundary at a null reject probability (being the class boundary itself an hyperplane). We remind

that, for a two-class problem, the class boundary at a null reject rate is defined by

P( 1|x)=P( 2|x), while the contours of the optimal rejection region are defined by P( i|x)=T, for

1/2 < T  1. For instance, it is easy to see that the optimal rejection region for a problem with two

classes having gaussian distribution exhibits the above characteristics. Using our approach

instead, the orientation and position of the parallel hyperplanes delimiting the reject region

(besides their reciprocal distance) depend on the value of the cost parameter wR. The orientation

and position can therefore change for different values of wR (that is, for different values of the

reject rate). This means that our approach for obtaining the rejection region is more flexible, and is

suitable also for problems in which the orientation and position of the contours of the optimal
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reject region change for different values of T (provided that they are always parallel

hyperplanes). As an example of such a problem we devised the following probability

distribution:

      

P 1| xx( ) =

2
arctg

x
2

x1

, if x2 x1 ,

2
arctg

1 x1

1 x2

, if x2 < x1 ,

 

 

 
 

 

 
 

where x1 and x2 are the components of a two-dimensional feature vector, taking on values in the

unit square [0,1] [0,1]. It is easy to see that the optimal class boundary at a null reject

probability is the diagonal line segment of the unit square, shown in Fig. 12 as a solid line. The

contours of the rejection region, defined by P( i|x)=T, for 1/2< T  1, are pairs of parallel

straight lines radiating symmetrically outwards from the origin (0;0) and from the point (1;1).

These contours are shown as dashed lines in Fig. 12. It is evident that the orientation of these

contours varies for different values of the reject threshold T, or, equivalently, of the reject

probability. In this case the rejection rule based on a threshold on the distance from the OSH can

not provide the optimal reject region, for any value of the reject rate, even if the OSH coincided

with the optimal class boundary. The optimal rejection region can instead be always obtained by

using our approach.

0

1

1

x2

x1

Fig. 12. The optimal class boundary (solid line) and the boundaries of the optimal rejection region
(dashed lines), for the a posteriori probability distribution described above.

In the general case in which the optimal rejection region is not delimited by a pair of parallel

hyperplanes, the greater flexibility of our approach allows in principle to better approximate it.

A drawback of our approach is its computational complexity. Indeed the optimisation

problem resulting from our approach is intrinsically more complex than the one of standard

SVMs, since the dual objective function is not available in analytical form. Moreover, our

approach requires to train a different classifier for any value of the cost parameter wR. The

approach described in Chapter 3 requires instead to train one only classifier (a standard SVM
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without rejection). Only the value of the reject threshold must then be computed for a given value

of the cost parameter wR. This problem will be further discussed in Chapter 7, where preliminary

experimental results are reported.

We conclude by pointing out two possible developments of the approach presented in this

Chapter. First, we remind that the formulation of the optimisation problem proposed in

paragraph 6.3.1 is based on an assumption about the VC dimension of the set of pair of parallel

hyperplanes. A more exact evaluation of the VC dimension could lead to a different formulation

of the primal problem, perhaps simpler than the one proposed in paragraph 6.3.1. Secondly, it

would be important to find necessary and sufficient conditions to characterise the solution of the

primal and dual problems. Such conditions could be exploited as heuristics for speeding up the

convergence of the algorithm, and as an efficient stopping criterion.
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Chapter 7 

Experiments

In this Chapter we present experiments related to the topics discussed in Chapters 4 and 6. The

data sets used for the experiments are described in paragraph 7.1. In paragraph 7.2 we present

experiments aimed at evaluating the performance of the CRT rejection rule, which was described

in Chapter 4. In paragraph 7.3 we present preliminary results obtained using the technique

proposed in Chapter 6 for introducing the reject option in support vector machines.

7.1 Data sets

7.1.1 The Feltwell data set

This data set consists of a set of multisensor remote-sensing images related to an agricultural area

near the village of Feltwell (U.K.) (Serpico and Roli, 1995). The scene was acquired using an ATM

scanner and a SAR sensor. From a section of 250 350 pixels of the image, the five numerically

most representative classes were considered (see Table 1). Agricultural fields were then randomly

subdivided into three disjoint sets: a training set of 5,124 pixels, a validation set of 582 pixels,

and a test set of 5,238 pixels. Each pixel was characterised by fifteen features containing the

brightness values in six optical bands and in nine radar channels. Table 1 shows the composition

of the data set.

Classes Training patterns Validation patterns Test patterns

Sugar beets 1,488 204 1,839

Stubble 1,070 137 1,234

Bare soil 341 56 499

Potatoes 1,411 88 796

Carrots 814 97 870

Total 5,124 582 5,238

Table 1. Composition of the Feltwell data set.

7.1.2 The Phoneme data set

This data set was taken from the University of California at Irvine machine learning database

repository (http://www.ics.uci.edu/~mlearn/MLRepository.html). It was in use in

the European ESPRIT 5516 project ROARS (Alinat, 1993), whose aim was the development and

the implementation of a real time analytical system for French and Spanish phoneme recognition.
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This data set consists of 5,404 patterns representing nasal and oral vowels (3,818 and 1,586

patterns respectively). Each pattern is characterised by five features, corresponding to the

normalised amplitudes of the five first harmonics.

7.1.3 The Letter data set

This data set belongs to the UCI repository, as the Phoneme data set. It consists of 20,000 raster

scan images of the 26 capital letters in the English alphabet, based on 20 different fonts. Each

image was converted into 16 primitive numerical attributes (statistical moments and edge counts)

which were then scaled to fit into a range of integer values from 0 through 15. The number of

patterns of each class is reported in Table 2.

789 A 766 B 736 C 805 D 768 E 775 F 773 G

734 H 755 I 747 J 739 K 761 L 792 M 783 N

753 O 803 P 783 Q 758 R 748 S 796 T 813 U

764 V 752 W 787 X 786 Y 734 Z

Table 2. Composition of the Letter data set.

7.2 Experiments on the CRT rejection rule

In Chapter 4 we formally proved that the CRT rule provides a better error-reject trade-off than

Chow’s rule, in presence of estimation errors on the a posteriori probabilities. In terms of the

accuracy-rejection (A-R) curve, this means that the CRT rule can achieve a higher or equal

accuracy than Chow’s rule, for any value of the reject probability. Two main problems remained

open, namely: quantitatively evaluating the performance improvement achievable by the CRT rule

over Chow’s rule, and obtaining a reliable estimate of the optimal CRTs values. These problems

were tackled in the experiments presented below.

The experiments were conducted on the three data sets described above. For the purpose of

our experiments, we included the 582 validation patterns of the Feltwell data set on the test set.

The test pattern were therefore 5,820. For the Phoneme data set we randomly subdivided the

5,404 patterns into a training set and a test set of 2,707 patterns each, by keeping the original

proportion between the two classes. The same was made for the Letter data set: half of the

patterns of each class were randomly selected as training patterns, and the remaining were used

as test patterns. Besides these data set, we used also an artificial data set, which is described in

detail in the next paragraph.

For the Feltwell, Phoneme and Letter data sets, we used multi-layer perceptron (MLP) neural

network classifiers with one hidden layer, trained with the back-propagation algorithm. The

number of input and output units was always equal to the number of features and classes,

respectively. For the Feltwell data set we used fifteen hidden neurons, and made 10 epochs

during the classifiers training. For the phoneme data set the hidden layer contained thirty-six
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neurons, and 400 epochs were made during the training. Fifteen hidden neurons were used for the

Letter data set, and 200 epochs were made. The value of the learning rate was 0.01 for the three

data sets. On the artificial data set no classifier was trained: the estimation errors on the a

posteriori probabilities were instead simulated by generating random values, as explained in the

next paragraph.

In order to investigate the above issues, three groups of experiments were made. The first

group of experiments was aimed at evaluating the ideal performance of the CRT rule. To this aim,

we computed the optimal CRTs values on the test set by exhaustive search, and compared the

performances of the CRT and Chow’s rules on the test set. The goal of the second group of

experiments was to assess how the performance of the CRT rule is affected when the CRTs

values are computed from a validation set. We considered again the ideal case, and computed

the optimal CRTs values by exhaustive search on a validation set. The performances of the CRT

and Chow’s rules were again compared on the test set. The third group of experiments was aimed

at evaluating the performance achievable by the CRT rule in a real setting in which the CRTs

values must be estimated from the validation set. To this aim we used the simple algorithm

described in paragraph 4.3.

In all experiments, the CRTs values were computed by maximising the classification accuracy

(on the test set or on the validation set), for given values of the reject rates ranging from 0 to 30%.

The reject threshold of Chow’s rule was simply computed as the one which provided the desired

reject rate. For each data set (except for the artificial one), ten different validation sets were

randomly extracted from the original training set, by keeping the proportion between the different

classes, and without replacement (that is, each of the original training patterns can appear at

most once on each validation set). The remaining patterns were used for training ten different

MLPs. All results are reported in terms of the average accuracy-reject (A-R) curve on the test set.

7.2.1 Results on the artificial data set

The first and the second group of experiments were first carried out using an artificial data set, in

order to compare the ideal performances of the CRT and Chow’s rules for given values of the

amplitude of the estimation errors. We considered a two-class problem with a two-dimensional

feature vector x. The two classes had equal priors P( 1) = P( 2) = 1/2, had a gaussian

distribution with mean vectors respectively (-1.3;0) and (1.3;0), and the same covariance matrix

  

1 0

0 1

 

 
 
 

 

 
 
 
. We generated a data set of one thousand patterns according to such probability

distributions. We then simulated the effects of estimation errors on the a posteriori probability of

each pattern, by adding random error values to the exact probability values. The error values

were generated according to a gaussian distribution with zero mean. We considered five different

values of the standard deviation, ranging from 0.1 to 0.5, with a step of 0.1.
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Fig. 13 shows the A-R curves on the entire data set, obtained using CRTs values found by

exahustive search on the entire data set (first group of experiments). A discretisation step of

0.001 was used.
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Fig. 13. A-R curves on the artificial data set, for five different values of the standard deviation of the
estimation errors on the a posteriori probabilities.

In the above experiments the CRT rule provided always a better error-reject trade-off than

Chow’s rule. However, a quite small improvement can be observed. The maximum difference in

accuracy, for equal values of the reject rate, was about 1%. Such difference was achieved only for

large values of the estimation errors (standard deviation equal to 0.4 and 0.5), and only for small

range of values of the reject rate. In particular, for small estimation errors (standard deviation

equal to 0.1), the largest difference in accuracy was achieved for values of the reject rate lower

than 10%. For larger estimation errors instead (standard deviation from 0.2 to 0.4), the difference

in accuracy was significant for values of the reject rate greater than 20%. Only for the largest

estimation errors the difference in accuracy was about constant over all values of the reject rate.

From these results it seems that the advantage of the CRT rule over Chow’s rule weakly depends

on the amplitude of estimation errors on the a posteriori probabilities. A possible explanation of

these fact is that in these experiments the estimation errors were generated according to a zero-

mean probability density function. We showed in Chapter 4 that using different reject threshold



Chapter 7.   Experiments

63

can be useful when the estimation errors are uniformly positive or negative around the boundaries

of the rejection region. Intuitively, this condition could be more likely to occur when the

probability density function of the estimation errors has a non-zero mean (that is, for biased

estimation errors).

For the second group of experiments, we randomly extracted from the original data set the

25% of the patterns, and used them as validation set. The remaining patterns were used as test

set. The CRTs values were computed by exhaustive search on the validation set, for the five

values of the standard deviation of the estimation errors. The value of the discretisation step was

again 0.001. Such CRTs values were then applied on the test set. In Fig. 14 we compare the A-R

curves obtained on the validation set and on the test set.
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Fig. 14. A-R curves on the validation set (on the left) and on the test set (on the right), for five different
values of the standard deviation of the estimation errors on the a posteriori probabilities.

The performance improvement of the CRT rule over Chow’s rule on the validation set are slightly

greater than the ones obtained on the entire data set (see Fig. 13). In this case the validation set

should be considered quite representative of the test set, since it was randomly extracted from

the original data set. However, the optimal CRTs values computed on the validation set did not

improve the performance of Chow’s rule on the test set. The performances of the two rules on the

test set were quite similar. In particular, in two cases Chow’s rule outperformed the CRT rule.

This happened for values of the standard deviation of the estimation errors equal to 0.2 and 0.5,

and for values of the reject rate greater than 10% and 18% respectively. These results seem to

mean that it could be difficult to obtain good CRTs values from a validation set, at least if the

maximum achievable advantage of the CRTs rule over Chow’s rule is not large.

Let us now consider the last issue mentioned in paragraph 4.2.3, that is, whether there exists

only one set of CRTs values which provides a greater classification accuracy than Chow’s rule,

for any given value of the reject rate. In paragraph 4.2.3 we answered this question from a

mathematical viewpoint. We proved that, under the assumption that the probability density

functions of the features are continuous with their first derivatives, infinite values of the CRTs

can exist, which provide a higher accuracy than Chow’s rule. From the practical viewpoint, we

consider here the case where the CRTs are computed as discrete values. For instance, this is the

case of the algorithm presented in paragraph 4.3. It is easy to see that this could decrease the

chances of finding good CRTs values, even if they are in principle infinite, particularly if no

exhaustive search is made. To investigate this point, we computed by exhaustive search the

number of sets of CRTs values which provide a greater classification accuracy than Chow’s rule,

on the entire data set, for values of the reject rate between 0 and 30%. We used a discretisation

step of 0.001 as above. Note that, since the number of classes was two, the total number of sets

of CRTs values to be considered would be 10012. In practice, since values of the reject thresholds

lower than 0.5 provide a null reject rate (for a two-class problem), the maximum number of sets

of CRTs values to be considered was 5012. The average number of CRTs sets over the considered

values of the reject rate are reported in Table 3, for the five different values of the standard

deviation of the estimation errors. Table 3 shows that a significant number of sets of CRTs values

provide a greater accuracy than Chow’s rule. This is particularly interesting because the maximum

difference between the accuracy achievable with the two rules was quite small, as shown in Fig.
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13. The only exception was the case of estimation errors of lowest amplitude, as one could

expect. Note however that the number of sets of CRTs was not monotonically increasing with the

amplitude of the estimation errors.

Standard deviation 0.1 0.2 0.3 0.4 0.5

No. of sets of CRTs values 71 215 181 217 153

Table 3. Average number of sets of CRTs values which provided a higher accuracy than that of Chow’s
rule, for the same value of the reject rate. Values of the reject rate ranging from 0 to 30% were considered.
The value of the discretisation step was 0.001.

7.2.2 Results on Feltwell and Phoneme data set

In this paragraph we present the results of the three groups of experiments on the Feltwell and

Phoneme data set. The Feltwell data set can be considered particularly significant for testing the

CRT rule, for two reasons. First, it consists of five classes. This means that five parameters must

be evaluated for the CRT rule, while Chow’s rule always requires to evaluate one only parameter.

Secondly, the training set and the test set of the Feltwell data set are really independent, as in

most practical application, since they consists of pixels belonging to different parts of the remote-

sensing image. These characteristics could make it critical to obtaining reliable estimates of the

CRTs values from a validation set.

The average A-R curves on the test set obtained by computing on the CRTs values by

exhaustive search on the same test set (first group of experiments) are shown in Fig. 15. In this

case we used a discretisation step equal to 0.01, due to the large number of patterns of the test

sets, and on the number of classes of the Feltwell data set.
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Fig. 15. Average test set A-R curves for Feltwell and Phoneme data sets, for the first group of
experiments.

Fig. 15 shows that for the Feltwell data set the CRT rule provides a significantly better error-reject

trade-off than Chow’s rule. The difference in accuracy is quite constant over all values of the

reject rate. The average difference is slightly greater than 1%, and reaches about 1.5% for values

of the reject rate between 10% and 20%. The performances of the two rules on the Phoneme data

set were instead very similar. A slight improvement was achieved by the CRT rule for values of

the rejct rate greater than 20%.
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For the second group of experiments we evaluated the performances of the two rules by

computing the threshold values on a validation set. In order to analyse also the effects of the

validation set size, we made these experiments with two different validation set sizes: we

considered validation sets containing the 20% and the 50% of the patterns of the original training

set. In this case the discretisation step used for computing the CRTs values by exahustive search

on the validation set was 0.001, due to the lower number of patterns with respect to the first

group of experiments. The average A-R curves on the test set are shown in Fig. 16.
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Fig. 16. Average test set A-R curves for Feltwell and Phoneme data sets. The CRTs values were computed
from a validation set extracted from the original training set.

In this case, for the Feltwell data set the CRTs values computed from the validation set did not

allow to outperform Chow’rule on the test set. As one can expect, the performance of the CRT

rule was more affected when the CRTs values were computed on the smaller validation set.

However, the performances achieved using the two validation sets were quite similar. On the

Phoneme data set instead, the two rules performed similarly, as when computing the optimal

CRTs values from the test set.

To better analyse the effects of the representativeness of the validation set with respect to the

test set, we repeated the second group of experiments by extracting the validation set from the

test set. Note that in this case we obtained ten different test sets, consisting of the patterns of the

original test set which were not used as validation set. Ten different MLPs were trained on the

original training set, which was not modified in these experiments. The corresponding A-R curves,

reported in Fig. 17, are therefore the average curves with respect to the ten different test sets.
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Fig. 17. Average test set A-R curves for the Feltwell and Phoneme data sets. The CRTs values were
computed from a validation set extracted from the test set.

In this case it is interesting to note that on the Feltwell data set the CRT rule allowed to achieve a

similar performance improvement over Chow’s rule, as the one obtained by computing the

optimal CRTs values on the test set. Moreover, there was no difference between the two different

validation set sizes. An analogous result was obtained on the Phoneme data set, for which the

performances of the CRT rule was similar to that of Chow’s rule, as when computing the optimal

CRTs values on the test set. This result is better than the one obtained for the artificial data set. It

shows that it is possible to obtain reliable estimates of the optimal CRTs values from a validation

set, if it is really representative of the test set. Moreover, this seems not to depend on the number

of CRTs values to compute (that is, on the number of classes).

At this point, it was interesting to verify if the CRTs values can be estimated by avoiding an

exhaustive search. This problem was tackled in the third group of experiments. In this case we

repeated the second group of experiments described above, by computing the CRTs values using

the algorithm described in paragraph 4.3. We used a discretisation step of 0.001, and a value of

the parameter K equal to 200 (we remind that K is the number of threshold values considered at

each iteration). For each value of the desired reject rate, the algorithm was run for twenty times,

starting from random initial values of the CRTs. The results are reported in Figs. 18 and 19.
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Fig. 18. Average A-R curves on the test set, for CRTs values estimated with the algorithm of paragraph
4.3 on a validation set extracted from the training set.
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Fig. 19. Average A-R curves on the test set, for CRTs values estimated with the algorithm of paragraph
4.3 on the validation set extracted from the test set.

Let us compare the A-R curves of Figs. 18 and 19 with the corresponding curves of Figs. 16 and

17 respectively. It is possible to see that the behaviour of the CRT rule obtained by computing the

CRTs values using our simple algorithm and by exhaustive search were very similar. This means

that the problem of finding the CRTs values which maximise the classification accuracy, for a

given value of the reject rate, can be reliably solved by using a simple algorithm which avoids an

exhaustive search.

7.2.3 Results on Letter data set

In this paragraph we present results obtained for the first and second group of experiments on a

large collection of two-class problems. The aim was to provide more significant conclusions about

the CRT rule, from a statistical viewpoint. To this aim, we took every pair of classes of the Letter

data set to be a two-class problem. In particular we considered only the non-linearly separable

problems, since they are the most significant for testing the performance of a rejection rule. Of the
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325 two-class problems, 193 were found to be non-linearly separable by Basu and Ho (1999). We

present here the results for 42 of these problems.

From the first group of experiments (by computing the optimal CRTs values on the test set, by

exhaustive search), it turned out that the maximum difference in accuracy between the CRT and

Chow’s rules, on the test set, reached for some problems 4%. The average difference in accuracy

over all values of the reject rate, for any problem, was at least 1%. An example of the average test

set A-R curves are reported in Fig. 20 for two two-class problems.

In the second group of experiments we computed the CRTs values from a validation set

extracted from the original training set, by exhaustive search. We considered sizes of the

validation set equal to 20% and 50% of the original training set. The results were quite interesting.

First, we found that the average A-R curves on the test set always outperformed Chow’s rule.

More precisely, for 29 problems out of the 42 considered, the difference in accuracy on the test set

between the CRTs and Chow’s rules was lower than 1%. In the remaining 13 cases the difference

in accuracy was between 1% and 2%. In Fig. 21 we reported the average A-R curves on the test

set, obtained by computing the CRTs values from the validation set, for the same problems of Fig.

20. In particular, the first problem (classes B-K) is one example of cases in which the difference

between the two rules was below 1%, while the other problem (classes D-O) is one example of

cases in which the difference was between 1% and 2%. From these examples it is possible to see

that the CRT rule uniformly outperformed Chow’s rule on the test set, even if the CRTs values

were computed from a relatively small validation set. By comparing the results of the first and

second group of experiments, it turns out that even when the ideal advantage of the CRT rule

over Chow’s rule was quite low, estimating the CRTs values from a validation set did not affect

considerably such advantage.
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Fig. 20. Average test set A-R curves for problems B-K and D-O, for CRTs values computed on the test
set.
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Fig. 21. Average test set A-R curves for problems B-K and D-O, for CRTs values computed on the
validation set.

7.2.4 Conclusions

The results of the experimental analysis reported above allow to give a first answer to the two

issues raised at the end of Chapter 4. Let us first consider the ideal improvement of the error-

reject trade-off achievable by the CRT rule over Chow’s rule. The first group of experiments on

real data sets (Feltwell, Phoneme and Letter) showed an achievable improvement of classification

accuracy up to 4% with respect to Chow’s rule. In particular, the largest improvements were

observed on some problem obtained from the Letter data set. On Feltwell data set the maximum

improvement was about 1.5%, while on Phoneme data set no significant improvement was

observed. Let us now consider the problem of obtaining reliable estimates of the optimal CRTs

values. The second group of experiments showed that good CRTs values could be obtained from

a validation set, provided that it is really representative of the problem at hand. This was

pointed out in particular by experiments on Feltwell data set, where the ideal advantage of the

CRT rule over Chow’s rule was not large. In this case, good CRTs values were found only from a

validation set extracted from the test set. Finally, the third group of experiments clearly pointed

out that the CRTs values which maximise the classification accuracy on a given set of patterns

can be reliably found without making an exhaustive search, by using a simple algorithm as the one

described in Chapter 4.

From this experimental analysis we can conclude that the CRT rule can be useful for problems

for which even accuracy improvements of 1% are significant, provided that a validation set

representative of the problem at hand is available.
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7.3 Experiments on the reject option in support vector machines

In this paragraph we present preliminary experimental results obtained by using the approach

proposed in Chapter 6 to design SVMs with reject option. The aim of our experiments was to

compare the error-reject trade-off achievable by our method with the one achievable by using the

methods described in Chapter 3. To this aim, we considered a large collection of problems as in

the experiments described above. Since SVMs are basically two-class classifiers, we used for

these experiments the same non-linearly separable two-class problems obtained from the Letter

data set, described in paragraph 7.2.3.

7.3.1 Setting of the experiments

As pointed out in Chapter 3, the rejection techniques proposed in the literature for SVMs are all

equivalent to the follwing technique. A pattern x is rejected if its distance from the optimal

separating hyperplane (OSH) is below a predefined threshold. The OSH is found by training a

standard SVM without reject option. Since the output f(x) of a SVM is proportional to the

distance of the input pattern x from the OSH (in the feature space induced by the chosen kernel),

this rejection rule can be restated as follows. A pattern x is rejected if:

|f(x)| < D ,

where D denotes the reject threshold. Otherwise the pattern is classified according to sign(f(x)),

as without reject option.

To implement this method, we trained SVMs by using the software SVMlight implemented by

Joachims (1999). This software is available at http://svmlight.joachims.org. For our

experiments we used a simple linear kernel: this means that the OSH was constructed on the

original feature space. The value of the regularisation parameter C was set automatically by

SVMlight. Using a trained SVM, the values of the reject threshold were computed by minimising the

expected risk (7) estimated from the training set, for different values of the classification costs.

Note that minimising the expression of the expected risk (7) is equivalent to minimise the

expression

P(reject) + W P(error) ,

where 
  
W =

wE wC

wR wC

. Since wC < wR < wE, it follows that the cost parameter W belongs to the

interval [1,+ ). Therefore the different points of the A-R curve (corresponding to different values

of the reject threshold) were obtained by minimising the above expression for different values of

W. The values of the reject thresholds were then used to classify the test set. Note that we

computed the values of the reject thresholds on the training set, instead of using a validation set.

The reason of this choice is explained below.

To implement our method, we used the training algorithm described in paragraph 6.4. We

remind that our method consists in training a SVM-like classifier. The result of the training phase

is not a separating hyperplane, but a pair of parallel hyperplanes which define the boundaries of

the rejection region (in the feature space induced by the chosen kernel). This means that the
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rejection region is obtained as a result of the training phase. The reason for which the reject

threshold of the previous method was computed on the training set, instead of on a validation

set, was to allow a correct comparison between the two methods. Let us call the classifier

obtained using our method SVM-reject classifier. Training a SVM-reject classifier requires to

choose, besides the kernel and the value of C, also the cost parameter wR. As explained in

Chapter 6, this parameter defines the cost of a rejection, relative to a misclassification cost equal

to 1. To find a suitable value of C, we trained several SVM-reject classifiers on ten data set, for

different values of C. We found that good values of the classification accuracy on the training set

were achieved for a value of C equal to 0.1. This value was then used for all the experiments. The

A-R curves for each data set were found by training a SVM-reject classifier for different values of

the cost parameter wR. More precisely, for each value of wR we obtained from the training phase a

pair of parallel hyperplanes. These hyperplanes were then used to classify the test set, according

to the classification rule (57). Obvioulsy we used a linear kernel also for the SVM-reject classifier.

7.3.2 Results

In the following we present the A-R curves obtained on the test set for the first 29 two-class

problems considered from the Letter data set, for values of the reject rate ranging from 0 to 30%.

We denoted with SVM-reject the A-R curves obtained using our method, and with SVM-light the

ones obtained using standard SVMs (trained with the SVMlight software). The results can be

subdivided into two groups. For some problems the A-R curves obtained using the two methods

intersect for one or more values of the reject rate. The difference in classification accuracy, for

equal values of the reject rate, does not exceed 3%. In this cases it is not possible to say which of

the two methods is best. This happens for 9 out of 29 of the considered problems, as shown in

Fig. 22. Curiously, our method provides often a greater classification accuracy at a null reject rate.

Let us now consider the other 20 problems. The corresponding test set A-R curves are shown in

Fig. 23. For these problems our method provided a significant improvement of the accuracy-reject

trade-off with respect to standard SVMs. The classification accuracy obtained by using our

method were indeed greater than the one obtained with standard SVMs, for all values of the

reject rate. The difference in accuracy was often between 2% and 4%. In two cases (for problems

T-Y and X-Z), even accuracy improvements of about 7% were observed.

Note that the A-R curves obtained by using our method exhibited non-monotonic behaviour

for some values of the reject rate. A possible explanation is that, for the corresponding values of

the cost parameter wR, the algorithm described in Chapter 6 allowed to find only a sub-optimal

solution of the optimisation problem.
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Fig. 22. Test set A-R curves for nine two-class problems for which neither of the two classification rules
with reject option outperformed the other one.
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Fig. 23. Test set A-R curves for twenty two-class problems for which our method outperformed the
rejection rule for standard SVMs proposed in the literature.

The above preliminary results show that our method can allow to effectively improve the

accuracy-reject trade-off achievable by standard SVMs. As pointed out at the end of Chapter 6,

both methods define the boundaries of the rejection region as a pair of parallel hyperplanes.

However, our method does not constrain them to be always parallel to a given hyperplane, nor

equidistant from it. The orientation and the position of the hyperplanes can instead vary for

different values of the reject rate. The above results seem to prove that this greater flexibility can

be exploited to improve the classification accuracy at any given reject rate.

We conclude by discussing the issues related to the complexity of the training algorithm we

proposed to implement our method. As already pointed out, our algorithm does not guarantee to

quickly converge to the optimal solution of the optimisation problem proposed in Chapter 6 to

train SVMs with reject option. Indeed, the heuristics for choosing the pair of variables to update

at each iteration and the stopping criterion, were based on conditions which are not necessary

and sufficient to characterise the solution of that optimisation problem. In our experiments, we

observed that the average training time required by our algorithm was greater of about one order

of magnitude with respect to SVMlight. In particular, on problems obtained from the Letter data

set, with training sets of about 400 patterns, our algorithm took less than five minutes, which was

still an acceptable time. On the basis of the above results, we can say that it is worth devoting

further work to obtain a simpler formulation of the optimisation problem proposed in Chapter 6,

or to find a more efficient algorithm to solve that problem.
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Chapter 8 

Conclusions

The reject option is necessary in pattern recognition applications which require a high

classification reliability. While the theoretical issues related to classification with reject option

have been investigated in the literature since the works by Chow (1957; 1970), its practical

implementation still presents remarkably open problems. In this thesis we focused on two open

issues. The first one is related with the non-optimality of Chow’s rule for classifiers which

provide approximations of the a posteriori probabilities. The second one concerns the definition

of a suitable rejection rule for classifiers which do not even provide approximations of the a

posteriori probability, in particular for support vector machine classifiers. We proposed methods

for implementing the reject option on these two kinds of classifiers, based on a theoretical

analysis of the related problems.

Concerning the first issue, we pointed out that no work in the literature analysed how the

estimation errors on the a posteriori probabilities affect the performance of Chow’s rule.

Therefore, the effectiveness of alternative rejection rules proposed in the literature was not

theoretically proven. In this thesis we showed how the effects of the estimation errors can be

reduced by using a rejection rule based on different reject thresholds for each class (CRT rule). In

particular, we formally proved that the CRT rule provides a better error-reject trade-off than

Chow’s rule. A quantitative evaluation of the effectiveness of the CRT rule over Chow’s rule was

provided through experiments on real pattern recognitions problems. The results pointed out that

on some applications the CRT rule can provide significant improvements of the classification

accuracy with respect to Chow’s rule. This means that, in principle, if good estimates of the

optimal CRTs values could be obtained, using the CRT rule would always be preferable than

using Chow’s rule. Indeed, in the worst case in which the achievable improvement was negligible,

the performance of the CRT rule would be equal to that of Chow’s rule. As one can expect, we

found that obtaining good estimates of the CRTs values relies on the availability of a validation

set representative of the problem at hand. From a practical viewpoint one should also consider

the computational cost required to find the optimal CRTs values relative to a given validation set.

An exhaustive search can indeed be infeasible in problems with many classes. However, from our

experiments it turned out that simple algorithms of negligible computational cost allow to obtain

the same results achievable by an exhaustive search. Therefore, the main requirement for

effectively exploiting the potential advantages of the CRT rule over Chow’s rule is the availability

of a representative validation set.

We also provided a preliminary theoretical analysis of the error-reject trade-off in multiple

classifier systems, focusing on the simple average and weighted average combining rules. For these

rules, we analysed how the effects of the estimation errors on the error-reject trade-off can be

reduced by classifier combination. The main result was that simple averaging is the optimal linear
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combination rule for “balanced” classifier ensembles, that is, for ensemble of classifiers whose

estimation errors are identically distributed, with equal correlations. Note that this implies that

the individual classifiers also exhibit equal average performances. Weighted averaging is instead

required for imbalanced classifier ensembles. This result formalises some conclusions drawn in the

literature, and extends them to classification with reject option. Further work is needed to

formally define the concept of classifier imbalancing, so that it can be exploited to predict the

improvement of the error-reject trade-off achievable by weighted averaging over simple averaging.

The second issue addressed in this thesis is related to the introduction of the reject option in

classifiers which do not provide approximations of the a posteriori probabilities. In particular we

considered support vector machine classifiers (SVMs). We pointed out that, despite the strong

theoretical foundations of SVMs, the only rejection rule proposed in the literature is based on a

simple heuristic, and consists in applying a reject threshold on the output of a trained SVM. We

showed how SVM-like classifiers with reject option can be derived from statistical learning

theory, by following an approach analogous to that of Vapnik. We then proposed a formulation

of the training problem for such SVM-like classifiers with reject option, which consists in solving

an optimisation problem similar to that of standard SVMs. We also proposed an algorithm to

solve such an optimisation problem, based on one of the algorithms proposed in the literature for

SVMs. The peculiarity of our method is that the rejection region in the feature space is obtained

as a result of the training phase. This allows a greater flexibility in defining the rejection region,

with respect to the rejection rule proposed in the literature. Preliminary experimental results

showed that our method can allow to significantly improve the error-reject trade-off achievable

by this rule. The main drawback is the computational complexity of the optimisation problem on

which the training phase of a SVM-like classifier with reject option is based. A more efficient

algorithm than the one proposed is needed to make our method applicable to classification

problems with training sets of thousands of patterns or greater. Further work can also be devoted

to find a formulation of the training problem leading to an optimisation problem of lower

computational complexity.
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