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Abstract—To improve the efficiency of cargo handling with
cranes it is necessary to control the crane trolley position so that
the swing of the hanging load is minimized. In this paper we
consider a linear parameter-varying model of the crane, where
the time-varying parameter is the length of the suspending rope.
We consider the set of models given by frozen values of the
rope length and show how all these models can be reduced to
a single time-invariant model using a suitable time scaling. The
time scaling relation can be used to derive a control law for the
time-varying system that implements an implicit gain scheduling.
Using a Lyapunov-like theorem, it is also possible to find relative
upper bounds for the rate of change of the varying parameter
that ensure the stability of the time-varying system.

Index Terms— Adaptive control, asymptotic stability, gain
scheduling, linear-quadratic control, mechanical cranes,
time-varying systems, vibration control.

I. INTRODUCTION

T HE NEED for faster cargo handling, in particular in
loading and unloading container ships whose service time

is to be minimized, requires the control of the crane motion
so that its dynamic performance is optimized.

A planar operation cycle can be divided into three funda-
mental motions: the hoisting of the load from a given point,
its transfer with a usually constant trolley speed, the lowering
at the end of the transfer. The problem is that of reducing the
swing of the load while moving it to the desired position as
fast as possible.

Several authors have considered control optimization tech-
niques to be applied either to the complete cycle or to one of
the motions that compose it. Auernig and Troger [2] and Hippe
[3] have used minimal time control techniques; Sakawa and
Shindo [6] have used optimal control to minimize load swing.
Since the swing of the load depends on the acceleration of the
trolley, minimizing the cycle time and minimizing the load
swing are partially conflicting requirements.

In this paper we consider an approach that is based on the
minimization of the load swing and uses a linear parameter-
varying model of the crane to implement a gain-scheduling
controller. The varying parameter is the length of the rope
that sustains the load. We consider a cycle in which the load
can be hoisted or lowered while being transferred.

We consider the set of frozen models given by different
constant values of the rope length. Using a suitable time
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scaling as in [4], all these models can be reduced to a single
time-invariant model that does not depend on the value of the
rope length.

The time scaling relation can be used to derive a control
law for the time-varying system that implements an implicit
gain scheduling [1].

We have also studied the stability of the closed-loop system
with gain scheduling. Recent works [7]–[9] present several
methodologies that can be used to find upper bounds on the
rate of change of the varying parameter to ensure stability of
a given parameter-varying system. These methodologies give
sufficient conditions that are usually very conservative, in the
sense that they often require rates of change of the varying
parameter so small as to be practically meaningless. These
upper bounds, in fact, depend heavily on the procedure used
to determine them and are usually far from the real bounds
of the system.

However, one classic methodology—reported in [8] and
based on a Lyapunov-like theorem—could be applied in the
application case we consider to ensure the stability of the time-
varying system for the nominal rate of change of the rope
length.

An important issue that warrant comments regards the
practical implementation of the methodology we describe. Our
approach requires that the mass of the load be known to
reconstruct the position of the center of gravity. This is a
realistic assumption in many applications, such as the handling
of ship containers, in which the information on the physical
(initial and final) position and on the weight of each container
is known before the loading/unloading operation is started.
The trolley position, the load position, the rope angle and the
rope length can be easily measured by appropriate sensors as
discussed in [5], [10], and [11], while the rate of change of the
trolley position and of the load angle can be reconstructed by
an observer that can also be designed using a gain-scheduling
technique as we will discuss in a future work. Thus the
position of the center of gravity and its derivative (that we
have assumed as state variables) can also be easily computed.

There exist many industrial applications in which the value
of the load mass is not known before hand. However, in several
of these applications the mass of the load is much smaller than
the mass of the trolley. In this case, we may simply neglect
the mass of the load and make the position of the center of
gravity coincide with the trolley position. This is a particular
case of our approach in which we take and the
simulations we have performed (not reported here) showed
that the control methodology described in this paper gives
still good performances.
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Fig. 1. Model of the crane.

Furthermore, if necessary, a strain gauge may well be used
during each crane operation to measure the load weight on-line
[10], [11].

This paper is structured as follows. Section II presents
the time-varying model of the crane and discusses the time
scaling that can be used to reduce the set of frozen models
to a single time-invariant model. Section III shows how a
simple gain-scheduling control scheme can be derived to
improve the dynamic performance of the crane and how it
is possible to study the stability of the closed-loop system.
Section IV presents an application example for a container
crane. The results of numerical simulations show that the pro-
posed approach gives acceptable performance while ensuring
the stability of the system. The derivation of the simplified
equations for the crane is reported in the Appendix.

II. TIME-VARYING MODEL AND TIME SCALING

We will consider a planar crane, whose model is shown in
Fig. 1. The following notation is used:

Mass of the trolley and the load,
respectively.
Length of the suspending rope.
Displacement of the trolley and that
of the load with respect to (wrt) a
fixed coordinate system, respectively.

Displacement of the center of gravity
of the overall system wrt a fixed
coordinate system.
Angle between the suspending rope
and the vertical taken as positive in
the clockwise direction (see figure).

Load displacement wrt the vertical;
Control force applied to the trolley;
Gravitation constant.

If the load is heavy enough, it is possible to consider the
suspending rope as a rigid rod. Under the assumptions reported
in the Appendix (namely, small angles and force applied by the

rope equal to the weight of the load) choosing the following
state variables:

(1)

and denoting

(2)

we get the following state variable equation (see the Appendix
for a derivation):

(3)

with

The subscript has been introduced to recall that the
variables are functions of time. The model given by (3) is
time-varying because is a function of .

If we consider a given constant value of i.e., if we
consider the system (3) for a frozen value of we can
consider the following transformation:

(4)

This transformation defines a time scaling that enables us
to rewrite (1) as

(5)

According to (5), variables and can be taken as
functions of or while their derivatives are changed by
the time scaling. We can write (5) as

(6)

where

(7)

According to (5) we may also write

(8)

where is the derivative of wrt .
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Using (6) and (8), it is possible to rewrite the system (3) as

(9)

with

(10)

(11)

(12)

The representation given by (9) is time invariant and does
not depend on the frozen value ofin (3). It is also possible
to express the relationships between the eigenvalues and
eigenvectors of the matrices and . Let be the
diagonal matrix of the eigenvalues of then from (10)
we obtain

(13)

while between the eigenvector matricesand

(14)

holds, i.e., given a matrix of eigenctors for it is possible
to compute one of the possible matrices of eigenctorsfor

.
Note that and from (13)

i.e., the frozen system (3) has an un-
damped oscillation of angular frequency. Thus we can also
say that the variable defined by (4) is the time measured
using as units , where is the period of the
undamped oscillation of system (3).

An optimal regulator can be used to control system (9)
minimizing the linear quadratic cost functional

(15)

where and are suitable weight
matrices. The resulting control law has the form

(16)

where is a constant matrix and does not depend on the
value of .

The above equation can be transformed, using (6) and (12),
into a corresponding law for the frozen system (3) that gives

(17)

where

(18)

The feedback laws (16) and (17) lead to closed-loop systems
whose characteristic matrices are

(19)

Equations (10), (13), and (14), written for the open-loop
systems, still hold for the corresponding closed-loop systems.
The poles of the closed-loop system independ on the value
of , and thus on , but they have the same damping factor
for all values of .

Using (4), (6), and (12), the cost functional (15) can also
be rewritten for the frozen system inas

(20)

Thus we can say that the feedback law (17) is optimal for the
frozen system (3) if the following weight matrices are chosen:

(21)

III. GAIN SCHEDULING AND STABILITY

Let now be a time-varying parameter (we always
assume Then (17) and (18) can be used
to implement a time-varying control feedback law that can be
seen as an “implicit” gain scheduling. In fact, in (18) both
and are functions of . Since the frozen system (3)
with frozen control law (17) is optimal wrt the weights given
by (21), then all eigenvalues of have negative real part for
all frozen values of . This, however, is not sufficient to
ensure the stability of the time-varying system.

New theoretical results recently discussed in the literature
[7], [9] consider the case of gain scheduling control systems
and give some upper bounds for the rate of change of a time-
varying parameter in order to ensure stability. In our case these
methods could be applied to find an upper bound for
such that for nominal values of the time-varying closed-
loop system is certainly stable. These methods can only give
sufficient conditions and in the case at hand have been shown
to be too conservative, in the sense that they give upper bounds
too small to be of practical interest as discussed in the next
section.

Enhanced stability bounds have been achieved using a clas-
sic procedure based on the following Lyapunov-like theorem
reported by Shamma in [8].

Theorem 3.1:Given the time-varying system

(22)

where is bounded and globally Lipschitz continuous, let
there exist matrices and , symmetric and positive
definite, such that

1) is continuously differentiable for all ;
2) there exist constants and such that for all

(23)

3)
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Fig. 2. Eigenvalues of the matrixAt for different values ofL.

where (respectively, denotes the smaller (respec-
tively, larger) singular value and denotes the smaller
eigenvalue.

Under these conditions, the linear system of (22) is expo-
nentially stable.

IV. SIMULATION RESULTS

The above described approach was applied to a container
crane whose model is shown in Fig. 1. The values of the
parameters are: kg, kg. These
values are taken from [3] and are those of a container crane
at the port of Kobe, Japan.

We assume the length of the suspending rope to be:
where m and m. In

nominal operating conditions m/s.
The weights of the performance index (15) are

These values were obtained by a trial-and-error procedure.
The corresponding control feedback matrix is

Fig. 2 shows the locus of the eigenvalues of the matrix
as changes between and .

To study the stability of the time-varying system with
system matrix , we have tried several approaches.

First of all we tried to apply the results of [7, Lemmas
3.5 and 3.6], and thematrix exponential methodas described
by Shamma [8, p. 53]. However, these methods gave up-
per bounds on too restrictive and practically meaningless:
stability was ensured for m/s.

Then we tried to apply Theorem 3.1. In particular, let
and be the eigenvalue and eigenvector matrices for.
Then, using the transpose of (10), it is possible to show that

and are eigenvalue and eigenvector
matrices for . We then choose the matrix in Theorem
3.1 as

Fig. 3. Plot of �
min

fQ(L) � (dP=dL) _Lg for different values of the
parameter _L.

where denotes the complex conjugate transpose. Thus, the
corresponding matrix satisfying the equation in Theorem
3.1 part 3) will be

It is also possible to compute analytically the matrix .
Let

Then it follows that:

Fig. 3 shows the plot of versus
for different values of . According to the Theorem 3.1,

the upper bound on is the value corresponding to the first
curve that, as is increased, goes to negative values. As can
be seen from the figure, this happens for m/s, hence
it can be concluded that the time-varying system with system
matrix is stable if m/s. Since in normal operating
conditions m/s, this result ensures the stability of the
time-varying system.

Figs. 2 and 3 warrant comment. Fig. 2 shows that asis
increased the frozen systems with system matrixalways
have eigenvalues with negative real part and closer to the
imaginary axis. This suggests that increasingmay lead the
time-varying system toward instability.

On the contrary, from Fig. 3 it can be seen that stability
is difficult to prove for small values of . In fact it is well
known that when gain scheduling is used the stability of frozen
systems ensures the stability of time-varying system for very
slow relative changes of the varying parameter. In the case at
hand, for a given , the relative rate of change of will be
higher for small values of . This also shows that although
we have considered m, these stability results
also hold for higher values of .

The results of two simulations computed with SIMULINK
are shown in Figs. 4 and 5.

In Fig. 4, the variables and
are plotted for rope length changing from to with
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Fig. 4. Simulation results for a lifting movement withx'(0) = 1:5 m,
xC(0) = �5 m.

a constant speed m/s and initial state
m, and m.

In Fig. 5, the variables and
are plotted for rope length changing from to with
a constant speed m/s and initial state
m, and m.

V. CONCLUSIONS

Several control methodologies for improving the efficiency
and reducing the time of cargo handling with cranes have
been presented in literature. In this paper, we developed an
approach that aims to reduce the load swing while the load is
simultaneously hoisted (or lowered) and transfered.

Using a time scaling, the control problem for the original
linear time-varying system has been reduced to the optimal
control of a linear time-invariant system. The time scaling
relation has been used to derive a control law for the original
system that takes the form of an implicit gain scheduling.

We also studied the stability of the time-varying system
with gain scheduling. Using a Lyapunov-like theorem it was
possible to find upper bounds for the rate of change of the
varying parameter (the length of the suspending rope) that

Fig. 5. Simulation results for a lowering movement withx'(0) = 0:3 m,
xC(0) = �5 m.

ensure the stability of the crane studied in the application
example during nominal operating conditions.

APPENDIX

The dynamics of the system in Fig. 1 are described by the
following equations (obtained by the translational equilibrium
of the two masses):

(24)

where is the force in the direction of the rope

(25)

is the displacement of the load in the horizontal direction wrt
to a fixed coordinate system

(26)

is the displacement of the load in the vertical direction wrt to
a fixed coodinate system.
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With the coordinate trasformations
and the

first two equations of (24) can be rewritten as

(27)

where the rope force is a function of
and as can be determined by twice differentiating
(26) and substituting into the third equation of (24):

(28)

Linearizing around the equilibrium point
is equivalent to setting

and assuming (28) yields
i.e., the force along the rope is equal to the weight of the load.
Substituting this value of into (27) we obtain the linearized
model

(29)
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