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An Implicit Gain-Scheduling Controller for Cranes

Giorgio Corriga, Alessandro Giuajember, IEEE,and Giampaolo Usai

Abstract—To improve the efficiency of cargo handling with scaling as in [4], all these models can be reduced to a single
cranes it is necessary to control the crane trolley position so that time-invariant model that does not depend on the value of the
the swing of the hanging load is minimized. In this paper we rope length

consider a linear parameter-varying model of the crane, where he ti i lati b d deri |
the time-varying parameter is the length of the suspending rope.  11€ time scaling relation can be used to derive a contro

We consider the set of models given by frozen values of the law for the time-varying system that implements an implicit
rope length and show how all these models can be reduced togain scheduling [1].

?r:ingle lt.irr]"e;"l“’?”:“t ’r‘:%de' “Sg‘? %S:J_itab'e ti’r‘:t? Isfa“”?-rme We have also studied the stability of the closed-loop system
| | | vV W . . .
timg-\?g?yin% s(i/:te?n t%it in$p|uesn?entc; a(ra\ irr?pﬁ‘cﬁogair? s?hed%ling? with gain s'chedullng. Recent WOI’kS.[7]—[9] present several
Using a Lyapunov-like theorem, it is also possible to find relative Methodologies that can be used to find upper bounds on the
upper bounds for the rate of change of the varying parameter rate of change of the varying parameter to ensure stability of
that ensure the stability of the time-varying system. a given parameter-varying system. These methodologies give
Index Terms— Adaptive control, asymptotic stability, gain Sufficient conditions that are usually very conservative, in the
scheduling, linear-quadratic control, mechanical cranes, sense that they often require rates of change of the varying
time-varying systems, vibration control. parameter so small as to be practically meaningless. These
upper bounds, in fact, depend heavily on the procedure used
to determine them and are usually far from the real bounds
I. INTRODUCTION of the system.
HE NEED for faster cargo handling, in particular in HOWever, one classic methodology—reported in [8] and
loading and unloading container ships whose service tirR@S€d on a Lyapunov-like theorem—could be applied in the
is to be minimized, requires the control of the crane motigiPPlication case we consider to ensure the stability of the time-
so that its dynamic performance is optimized. varying system for the nominal rate of change of the rope
A planar operation cycle can be divided into three fundaength.
mental motions: the hoisting of the load from a given point, AN important issue that warrant comments regards the
its transfer with a usually constant trolley speed, the lowerirRjactical implementation of the methodology we describe. Our
at the end of the transfer. The problem is that of reducing tR@Proach requires that the mass of the load be known to
swing of the load while moving it to the desired position ageconstruct the position of the center of gravity. This is a
fast as possible. realistic assumption in many applications, such as the handling
Several authors have considered control optimization ted-ship containers, in which the information on the physical
niques to be applied either to the complete cycle or to one @fitial and final) position and on the weight of each container
the motions that compose it. Auernig and Troger [2] and Hipp& known before the loading/unloading operation is started.
[3] have used minimal time control techniques; Sakawa ardne trolley position, the load position, the rope angle and the
Shindo [6] have used optimal control to minimize load swingope length can be easily measured by appropriate sensors as
Since the swing of the load depends on the acceleration of tliecussed in [5], [10], and [11], while the rate of change of the
trolley, minimizing the cycle time and minimizing the loadtrolley position and of the load angle can be reconstructed by
swing are partially conflicting requirements. an observer that can also be designed using a gain-scheduling
In this paper we consider an approach that is based on thehnique as we will discuss in a future work. Thus the
minimization of the load swing and uses a linear parametguesition of the center of gravity and its derivative (that we
varying model of the crane to implement a gain-schedulingave assumed as state variables) can also be easily computed.
controller. The varying parameter is the length of the rope There exist many industrial applications in which the value
that sustains the load. We consider a cycle in which the loaflthe load mass is not known before hand. However, in several
can be hoisted or lowered while being transferred. of these applications the mass of the load is much smaller than
We consider the set of frozen models given by differeithe mass of the trolley. In this case, we may simply neglect
constant values of the rope length. Using a suitable tinige mass of the load and make the position of the center of
gravity coincide with the trolley position. This is a particular
Manuscript received October 10, 1995; revised May 19, 1997. Reco@ase of our approach in which we take; = 0, and the
mended by Associate Editor, H. P. Geering. , , _simulations we have performed (not reported here) showed
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y X7 rope equal to the weight of the load) choosing the following
7 > state variables:
7]
/
2 mr —»f z1(t) =x(t),  x2(t) = zc(t)
7 . .
2 @) 0O z3(t) =d,(t), wa(t) = dc(t) 1)
2 and denoting
/] 0.5
Z X
g ¢ wn = (L) = (Lt me) @)
; mTL
/ . . . .
7 we get the following state variable equation (see the Appendix
2 for a derivation):
7 .
2 Ty = Awwy + By f (3)
4 X with
7 rz(t) 0 010
. | za(t) 0 0 0 1|
Fig. 1. Model of the crane. Ty = a(t) | A = —w2 0 0 0l
_ _ L4 (t) 0 0 0 0
Furthermore, if necessary, a strain gauge may well be used - 0 q
during each crane operation to measure the load weight on-line 0
[10], [11].
This paper is structured as follows. Section Il presents B, = 1
the time-varying model of the crane and discusses the time mr
scaling that can be used to reduce the set of frozen models 1
to a single time-invariant model. Section Il shows how a Ly +my,

simple gain-scheduling control scheme can be derived to.

imorove the dvnamic performance of the crane and how itThe subscriptt has been introduced to recall that the
P y P variables are functions of time. The model given by (3) is

is possible to study the stability of the closed-loop syster{?me varying because, is a function of L(#)
. . .

Section IV presents an application example for a container : ; . .
. . . If we consider a given constant value of, i.e., if we
crane. The results of numerical simulations show that the pro-_ .
. . consider the system (3) for a frozen value bf we can
posed approach gives acceptable performance while ensur'gﬁsider the following transformation:
the stability of the system. The derivation of the S|mpl|f|e8 9 '

equations for the crane is reported in the Appendix. T = wyt. 4

This transformation defines a time scaling that enables us

. _ _ to rewrite (1) as
We will consider a planar crane, whose model is shown in

Il. TIME-VARYING MODEL AND TIME SCALING

Fig. 1. The following notation is used: z1(t) =z (t) =z (1) =21(7)

mr,mr, Mass of the trolley and the load, 72(t)=zc(t)=xc(7)=r2(7)
respectively. Cday(t)  dr(r(t)  dzy(r)

L Length of the suspending rope. ws(t)=— = T =ws(7)

Tr,TL Displacement of the trolley and that _daxc(t)  dxc(r(t)  dzco(r)
of the load with respect to (wrt) a w4(t)= k- g Omw =weza(7). ()
fixed coordinate system, respectively. according to (5), variables:c: and z, can be taken as

ve = (mrar+ functions of ¢+ or 7, while their derivatives are changed by

mrpxr)/(mp +mr) Displacement of the center of gravityihe time scaling. We can write (5) as

of the overall system wrt a fixed

coordinate system. ry = N, (6)
© Angle between the suspending rope

: = “T'Wwhere
and the vertical taken as positive in

the clockwise direction (see figure). 1.0 0 0 a1(r)
Ty =TT — TL N= 0 10 0 N S za(7) . @)
= Lsinp Load displacement wrt the vertical; 00 w 0 a3(T)
f Control force applied to the trolley; 00 0 w 4(T)
g Gravitation constant. According to (5) we may also write
If the load is heavy enough, it is possible to consider the @, = wNi, ®)

suspending rope as a rigid rod. Under the assumptions reported
in the Appendix (namely, small angles and force applied by thehere i is the derivative ofz, wrt 7.
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Using (6) and (8), it is possible to rewrite the system (3) as The feedback laws (16) and (17) lead to closed-loop systems
whose characteristic matrices are

T; = Arxr + Bru, (9) — —
A-,— == A-,— - B-,—K-,— At == At - Bth. (19)
with . .
Equations (10), (13), and (14), written for the open-loop
0 010 systems, still hold for the corresponding closed-loop systems.
A =W INTIAN = 0 001 (10) The poles of the closed-loop systemtiniepend on the value
-1 000 of L, and thus onu;, but they have the same damping factor
0 0 00 for all values of L.
0 Using (4), (6), and (12), the cost functional (15) can also
0 be rewritten for the frozen system tnas
B, =w,N'Bmr=| 1 |; <u - ﬂ) (11) co
' ' mr J= / <a:tTN_1QTN_la:t + fiz f2>wt dt.  (20)
1 0 wymz
f 1+p Thus we can say that the feedback law (17) is optimal for the
Ur = ——. (12) frozen system (3) if the following weight matrices are chosen:
wymr
R
_ -1 -1, . _ i
The representation given by (9) is time invariant and does Qe=NTQ-N 7w Iy = wdm?.’ (21)
not depend on the frozen value bfin (3). It is also possible
to express the relationships between the eigenvalues and IIl. GAIN SCHEDULING AND STABILITY

eigenvectors of the matriced; and A.. Let A; (A;) be the

diagonal matrix of the eigenvalues df(A.); then from (10) Let now L(t) be a time-varying parameter (we always

assumel(t) # 0; L(t) = 0). Then (17) and (18) can be used

we obtain to implement a time-varying control feedback law that can be
Ay = WA, (13) Seenasan “implicit” gain scheduling. In fact, in (18) bath
and N~ are functions ofL(t). Since the frozen system (3)
while between the eigenvector matricBsand V- with frozen control law (17) is optimal wrt the weights given
by (21), then all eigenvalues of, have negative real part for
Vi=NV; (14) all frozen values ofL(#). This, however, is not sufficient to

) . ) ) . . ensure the stability of the time-varying system.
holds, i.e., given a matrix of eigenctor$ for A itis possible  New theoretical results recently discussed in the literature
to compute one of the possible matrices of eigencigréor 7] [9] consider the case of gain scheduling control systems
At and give some upper bounds for the rate of change of a time-
‘Note thatA, = diag(0,0,;1,—71), and from (13)A¢ = yarying parameter in order to ensure stability. In our case these
diag(0,0, jwr, —jwy), i.e., the frozen system (3) has an Unpethods could be applied to find an upper bound |foft))|
damped oscillation of angular frequeney. Thus we can also gych that for nominal values di(t) the time-varying closed-
say that the variable defined by (4) is the time measuredoop system is certainly stable. These methods can only give
using as unitsl/w, = T;/27, whereT; is the period of the giicient conditions and in the case at hand have been shown
undamped oscillation of system (3). to be too conservative, in the sense that they give upper bounds
An optimal regulator can be used to control system (9o small to be of practical interest as discussed in the next
minimizing the linear quadratic cost functional section.
00 Enhanced stability bounds have been achieved using a clas-
J = / (2L Qrx; +ulRyuy) dr (15) sic procedure based on the following Lyapunov-like theorem
0 reported by Shamma in [8].
where@, = QT > 0 and R, = RY >0 are suitable weight ~Theorem 3.1:Given the time-varying system
matrices. The resulting control law has the form #(t) = A(B)a(t) (22)

ur = —Krar (16) where A(t) is bounded and globally Lipschitz continuous, let

i . there exist matrice’(t) and QQ(¢), symmetric and positive
where K. is a constant matrix and does not depend on ”Eﬁ'efinite such that ®) Q). sy P

value of L.
The above equation can be transformed, using (6) and (12)
into a corresponding law for the frozen system (3) that gives

1) P(¢) is continuously differentiable for al > 0;
2) there exist constants,, oy, andaz > 0 such that for all
t>0

f(t) - _Ktxt (17) &3] S Ulnin{P(t)} S Ulnax{P(t)} S 2
where Amin{ Q(t) — P(1)} 2 as; (23)
K; = mpw?K, N~', ag 3 POA®)+ AT P(t) = =Q(t) (vt > 0);
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Fig. 2. Eigenvalues of the matrid; for different values ofL. . . .
Fig. 3. Plot of Anin {Q(L) — (dP/dL)L} for different values of the

parameterL.
where oy, (respectivelyonax) denotes the smaller (respec-

tively, larger) singular value and,, denotes the smaller here # denotes the complex conjugate transpose. Thus, the

eigenvalue. N ) ) corresponding matrix)(¢) satisfying the equation in Theorem
Under these conditions, the linear system of (22) is expg-1 part 3) will be

nentially stable. . h—n
Q) = QL) = —Vi(As + A )V,

It is also possible to compute analytically the matﬁh(@).
The above described approach was applied to a contaipeg

crane whose model is shown in Fig. 1. The values of the 1 1 ]
parameters areny = 6 - 10% kg, my, = 42.5 - 10® kg. These N~1 = diag <0, 0, o5 o.s)L
values are taken from [3] and are those of a container crane 29(1+ L) 291 +p)L)
at the port of Kobe, Japan. Then it follows that:

We assume the length of the suspending rope td®: € ) . —H — —H. dP)\ .
[L111in7LnlaX]7 where Liyin = 2 m and Lmax = 10 m. In P(t) = N_IVTV"' N_l +N_1VTV7' N_l = <E)L
nominal operating conditiond.| < 1 m/s.

IV. SIMULATION RESULTS

The weights of the performance index (15) are Fig. 3 shows the plot of,;, {Q(L) — (dP/dL)L} versus
. L for different values ofL. According to the Theorem 3.1,
16 -05 0 O . . .
—05 02 0 0 the upper bound ofl| is the value corresponding to the first
Qr = 0 o o0 ol R, =40. curve that, agl| is increased, goes to negative values. As can
0 0 0 0 be seen from the figure, this happens fore= 1.2 m/s, hence

. _ it can be concluded that the time-varying system with system
These values were obtained by a trial-and-error procedurgatrix A, is stable if| | < 1.2 m/s. Since in normal operating
The corresponding control feedback matrix is conditions|L| < 1 m/s, this result ensures the stability of the
. . time-varying system.
K- =[0.2611 0.0707 0.5760 1.2821]. Figs. 2 and 3 warrant comment. Fig. 2 shows that.as
Fig. 2 shows the locus of the eigenvalues of the matjx increased the frozen systems with system mattixalways

as L changes betweeh,;;, and L, . have eigenvalues with negative real part and closer to the
To study the stability of the time-varying system witimaginary axis. This suggests that increasingnay lead the
system matrix4,, we have tried several approaches. time-varying system toward instability.

First of all we tried to apply the results of [7, Lemmas On the contrary, from Fig. 3 it can be seen that stability
3.5 and 3.6], and thenatrix exponential methods described is difficult to prove for small values of.. In fact it is well
by Shamma [8, p. 53]. However, these methods gave ugrown that when gain scheduling is used the stability of frozen
per bounds onl. too restrictive and practically meaninglessSystems ensures the stability of time-varying system for very
stability was ensured fo|rL| < 2-107° mis. slow relative changes of the varying parameter. In the case at
Then we tried to apply Theorem 3.1. In particular, et hand, for a giverL|, the relative rate of change df will be
and V. be the eigenvalue and eigenvector matriceszar. higher for small values of.. This also shows that although
Then, using the transpose of (10), it is possible to show th4¢ have considered < L,,.x = 10 m, these stability results
A, = w, A, andV, = N1V, are eigenvalue and eigenvectof!SC hold for higher values ak.,..

matrices fothT. We then choose the matriR(¢) in Theorem The resul_ts OT two simulations computed with SIMULINK
3.1 as are shown in Figs. 4 and 5.

o In Fig. 4, the variables ,(t), z(t), z1.(t), 7 (t), and f(t)
PHy=V,V, =NV, V. N! are plotted for rope length changing frabg,ax t0 Ly, With



CORRIGA et al: IMPLICIT GAIN-SCHEDULING CONTROLLER 19

[m] [m]
2 .

/
/
B p /
d 3F /’ xc

0 5 10 15 t[s] 20 0 5 10 15 tfs] 20

- NIV S

0 5 10 15 tls] 20 0 5 10 15 tis] 20

x 104 [N] x 104 [N]

e —

|

R TN SRR T e N
=T I N Y

5 10 15  ¢[s] 20

<

0 5 10 15 tisl 20

Fig. 4. Simulation results for a lifting movement with,(0) = 1.5 m, Fig. 5. Simulation results for a lowering movement with (0) = 0.3 m,
zo(0) = =5 m. zc(0) = =5 m.

a constant speefl = —0.5 m/s and initial stater,(0) = 1.5 gnsyre the stability of the crane studied in the application

m, andz¢(0) = -5 m. example during nominal operating conditions
In Fig. 5, the variables:,(¢), zc(t), z1.(t), zr(t), and f(t) P g P g '

are plotted for rope length changing fraly,;, t0 L. With

a constant speed = 0.5 m/s and initial stater.(0) = 0.3 APPENDIX
m, andz¢(0) = =5 m. The dynamics of the system in Fig. 1 are described by the
following equations (obtained by the translational equilibrium
V. CONCLUSIONS of the two masses):
Several control methodologies for improving the efficiency mrir =f — Fsing

and reducing the time of cargo handling with cranes have

- . rp =Fsi
been presented in literature. In this paper, we developed an MLEL Sy

approach that aims to reduce the load swing while the load is mrjp =mrg — F'cosg (24)
S|mul_tane0u_sly h0|st_ed (or lowered) and transfered. __ whereF is the force in the direction of the rope

Using a time scaling, the control problem for the original
linear time-varying system has been reduced to the optimal zp =x7 — Lsing (25)

control of a linear time-invariant system. The time scaling ) . ) L
relation has been used to derive a control law for the originl the displacement of the load in the horizontal direction wrt

system that takes the form of an implicit gain scheduling. (© @ fixed coordinate system

_We a_lso studie_d the s_tability of the time—varying s_ystem yr = Lcos (26)
with gain scheduling. Using a Lyapunov-like theorem it was
possible to find upper bounds for the rate of change of tiethe displacement of the load in the vertical direction wrt to
varying parameter (the length of the suspending rope) ttaffixed coodinate system.
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With the coordinate trasformationsc = (mrzzr +  [9] J. S. Shamma and M. Athans, “Guaranteed properties of gain scheduled
mLﬂfL)/(mL + mT) and T, = Lsing = zp — xz, the g(;ntgc;lgfogéizeairggellrameter-varying plant#\itomatica vol. 27, no. 3,
first two equations of (24) can be rewritten as [10] J. Virkkunen and A. Marttinen, “Computer control of a loading bridge,”

L oo in Proc. IEE Int. Conf. Contr.Oxford, U.K., 1988, pp. 484-488.
F(g, L)/ 1 1 f [11] J. Virkkunen, A. Marttinen, K. Rintanen, R. Salminen, and J. Seitsonen,
Ty L m + m Ty = m “Computer control of over-head and gantry cranes,Pioc. IFAC 11th
T T T f World Congr.,Tallin, Estonia, 1990, pp. 401-405.
fo=—"—— (27)
my +mpg
where the rope forcd’ (¢, I_:) is a function ofg : (¢, ¢, ) Giorgio Corriga received the Laurea degree in

mining engineering from the University of Cagliari,
Italy, in 1961.

He joined the lIstituto di Elettrotecnica of the
University of Cagliari in 1961 as Assistant Professor
of Electrotechnics. He became Assistant Professor
of Automatic Control in 1971, Associate Professor
in 1982, and Full Professor in 1987. He teaches
the course of Automatic Control in the industrial
engineering curriculum. He is currently Professor
and Director of the Automatic Control Group in the
Department of Electrical and Electronic Engineering of the University of

andL: (L, L, L) as can be determined by twice differentiating
(26) and substituting into the third equation of (24):

mL(f/ cos ¢ — 2L¢sin g — L2 cos ¢ — L sin ©)
=mrg — Fcosp. (28)

Linearizing around the equilibrium poigg*: (¢ = 0,4 =
0,¢ = 0) is equivalent to setting

sing =¢, cosp=1(¢sing=20 Cagliari, Italy. His current research interests include modeling and control
.2 . of open-channel networks, modeling and control of forestal systems, and
9 =0, ¢gsinp=0 vibration control of mechanical systems such as suspension systems for road
. . vehicles, train pantographs, and cranes.
and assuming'_,(t) =0 (28) yieldsF(@’*7 L(t) = ()) =mrg, Prof. Corriga has been chairman of several sessions in international con-

afarences on control and industrial electronics. He has been a reviewer for

i.e., the force along the rope is equal to the weight of the lo . .
international ]0LII’I"Ia|S on water management systems.

Substituting this value of" into (27) we obtain the linearized

model
m m

jfs; + w@; = i Alessandro Giua(S'90-M’92) received the Laurea

myL mr degree in electric engineering at the University

. f of Cagliari, Italy, in 1988. He was awarded the
to=—"""". (29) M.S. and Ph.D. degrees in computer and systems

mrp +mL engineering from Rensselaer Polytechnic Institute,

Troy, NY, in 1990 and 1992, respectively.
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