
Supervisor Synthesis for Discrete Event Systems under Partial

Observation and Arbitrary Forbidden State Speci�cations

Yu Ru, Maria Paola Cabasino, Alessandro Giua, Christoforos N. Hadjicostis ∗

Abstract

In this paper, we consider the forbidden state problem in discrete event systems modeled

by partially observed and partially controlled Petri nets. Assuming that the reverse net of the

uncontrollable subnet of the Petri net is structurally bounded, we compute a set of weakly

forbidden markings from which forbidden markings can be reached by �ring a sequence

of uncontrollable/unobservable transitions. We then use reduced consistent markings to

represent the set of consistent markings for Petri nets with structurally bounded unobservable

subnets. We determine the control policy by checking if the �ring of a certain controllable

transition will lead to a subsequent reduced consistent marking that belongs to the set of

weakly forbidden markings; if so, we disable the corresponding controllable transition. This

approach is shown to be minimally restrictive in the sense that it only disables behavior that

can potentially lead to a forbidden marking. The setting in this paper generalizes previous

work by studying supervisory control for partially observed and partially controlled Petri

nets with a general labeling function and a �nite number of arbitrary forbidden states. In

contrast, most previous work focuses on either labeling functions that assign a unique label to

each observable transition or forbidden states that are represented using linear inequalities.

More importantly, we demonstrate that, in general, the separation between observation and

control (as considered in previous work) may not hold in our setting.

Published as:

Y. Ru, M.P. Cabasino, A. Giua, C.N. Hadjicostis, "Supervisor Synthesis for Discrete Event

Systems under Partial Observation and Arbitrary Forbidden State Speci�cations," Discrete Event

Dynamic Systems, 2012. DOI: 10.1007/s10626-012-0152-0. The original publication is available

at www.springerlink.com.

∗Y. Ru is with the Dept. of Mechanical and Aerospace Eng. Univ. of California, San Diego, CA, USA. E-
mail:yuru2@ucsd.edu. M.P. Cabasino and A. Giua are with the Dept. of Electrical and Electronic Eng. Univ.

of Cagliari, Piazza D'Armi, 09123 Cagliari, Italy. E-mail:{cabasino,giua}@diee.unica.it. C.N. Hadjicostis is

with the Dept. of Electrical and Computer Eng. at the Univ. of Cyprus and at the Univ. of Illinois at Urbana-

Champaign.E-mail:chadjic@ucy.ac.cy
This work was supported in part by the United States National Science Foundation (NSF), under NSF CNS

Award 0834409. The research leading to these results has also received funding from the European Commission

(EC) International Curriculum Option on Hybrid Control for Complex, Distributed and Heterogeneous Embedded

Systems (http://www.piaggio.ccii.unipi.it/ICO/), and the European Commission Seventh Framework Programme

(FP7/2007-2013) under grant agreements INFSO-ICT-223844 and PIRG02-GA-2007-224877. Any opinions, �nd-

ings, and conclusions or recommendations expressed in this publication are those of the authors and do not

necessarily re�ect the views of NSF or EC.

1

1 Introduction

1.1 Overview

A discrete event system (DES) is a dynamic system that evolves in accordance with the abrupt

occurrence of events, at possibly unknown and irregular intervals [29]. Such systems arise in a

variety of contexts, including manufacturing, robotics, vehicular tra�c, and computer systems,

as well as communication networks.

In many DESs, there may exist system states that are undesirable (e.g., a deadlock state from

which there are no further state transitions, or a state that is reached through faulty state

transitions). When certain activity in the system can be enabled/disabled, the problem of

devising a control strategy via enabling/disabling transitions in order to avoid forbidden states

is called the forbidden state problem. In this paper we study the forbidden state problem in which

an arbitrary �nite set of forbidden states needs to be avoided. The underlying system is modeled

as a partially observed and partially controlled Petri net with a general labeling function, where

transitions can be uncontrollable and/or unobservable and the net is not necessarily bounded.

The problem is challenging in that (i) the set of forbidden states can be an arbitrary �nite set

that is not necessarily described by a set of linear constraints; (ii) possible system states following

sensor observations are not necessarily unique, due to unobservable transitions and/or observable

transitions that share the same label; and (iii) there can be interleaving of uncontrollable and

unobservable transitions.

Given an arbitrary �nite set of forbidden markings, we �rst compute (o�ine) the set of weakly

forbidden markings (refer to De�nition 5.1) which e�ectively allows us to deal with uncontrol-

lable/unobservable transitions and to check the existence of a maximally permissive control policy

(this is de�ned in Section 3). Then, we use reduced consistent markings (refer to De�nition 4.2)

to represent consistent markings (namely, the set of all possible system states at the current

epoch), and the control policy is determined by checking whether a controllable transition will

lead to a subsequent reduced consistent marking that belongs to the set of weakly forbidden

markings.

1.2 Literature Review

The forbidden state problem was �rst introduced by Ramadge and Wonham in [28] in the context

of �nite automata. Later, this problem was also studied in the Petri net framework. When the

set of forbidden states can be represented by linear inequalities (this is possible, for example,

when the constraint relates to resource limitations in manufacturing systems), many applicable

methods have been devised (e.g., [14, 37, 26, 6, 35, 13, 4, 21]). Though this assumption is not

always viable, there is only a limited number of supervisor synthesis methods that address more

general � possibly arbitrary � forbidden state speci�cations directly (e.g., [19, 33, 2, 31]). Most

of these earlier approaches exhibit some limitations: for example, the plant is restricted to cyclic

controlled marked graphs in [19] and to bounded Petri nets in [33, 2, 31] or the uncontrollable

2

subnet is a backward con�ict free choice net [4]. Another category of methods dealing with arbi-

trary forbidden state speci�cations (e.g., the work in [10, 9, 38, 25]) uses a two stage procedure,

in which arbitrary forbidden state speci�cations are �rst transformed into linear inequality con-

straints and then handled using existing approaches for such linear constraints. The approaches

in [10, 9] only deal with safe Petri nets (i.e., 1-bounded Petri nets; refer to Section 2.1 for its

de�nition). Later on, non-safe Petri nets are considered in [38]; due to the necessity of enu-

merating states that are not forbidden (called authorized states in [38]), its applicability is still

limited to bounded Petri nets. In [25], general procedures for transforming forbidden states into

(a potentially large number of) linear constraints are proposed along with methods to simplify

such linear constraints. In Example 5.6, it is shown that such simpli�cation methods might not

be e�ective for certain speci�cations.

Besides the arbitrary forbidden state speci�cation, another challenge is that of partial ob-

servation. In the framework of Petri nets, the partial observation issue has been addressed

in [39, 15, 1, 30]. In [15, 1, 30], the �ring of each observable transition generates a unique label

and the �rings of unobservable transitions go unrecorded, whereas [39] considers the more general

case where multiple observable transitions are allowed to share the same label.

The setting considered in [39] is similar to the setting in this paper with two key di�erences: i)

a transition is control-enabled only when all control places that are connected to this transition

have one token, and as a result, ii) a maximally permissive control policy as de�ned in [39] is

nondeterministic in general. The approach followed in [39] uses a reduced state estimate set

for control calculation (this set is equivalent to the set E of minimal cardinality as explained in

Section 4); however, the characterization and update of the reduced state estimate set are not

resolved. In addition, the supervisor is synthesized based on path predicates with a restrictive

assumption1 on the set of forbidden states. Furthermore, the computational complexity of the

supervisor synthesis is not characterized. Finally, a survey of the main contributions appeared

in the literature on the implementation of supervisory control techniques has been presented in

[3].

The control policy proposed in this paper is based on a limited lookahead strategy. This strategy

has been used in the context of �nite state machines (e.g., the work in [7, 8, 24]). In [7, 8, 24],

di�erent lookahead strategies have been proposed to synthesize a supervisor which can ensure a

set of legal behaviors (described as a language). In [18], a supervisor modi�cation algorithm is

proposed to modify an optimal full-observation supervisor to operate under partial observation,

and the algorithm can be carried out on-line with linear computational complexity. However, all

of the above mentioned approaches are based on the observation-control separate architecture

(refer to Fig. 3(a)), which may not be applicable to the setting considered in this paper (this is

explained in more detail in Section 3).

The contributions of this paper include the following: i) partially observed and partially con-

trolled Petri nets with general labeling functions are used in supervisor synthesis; in contrast

to previous work in [15, 1, 30], the separation between observation and control (in the sense

1More speci�cally, this assumption requires the so-called precedence path input condition; for details, refer to

De�nition 4 and Theorem 3 in [39].

3

of [1]) does not necessarily hold in this more general setting (refer to Section 3 for details); ii)

reduced consistent markings are introduced not only to represent consistent markings but also

to synthesize supervisors; iii) a detailed analysis of the computational complexity of the super-

visor synthesis algorithm is provided, which is polynomial in the length of the observation and

could be exponential in the Petri net size (such as the number of places and/or the number of

transitions) in the worst case.

The paper is organized as follows. Section 2 presents basic de�nitions of Petri nets and introduces

partially observed and partially controlled Petri nets. In Section 3, we formulate the supervisor

synthesis problem with partial observation and an arbitrary �nite set of forbidden states. In

Section 4, we propose the concept of reduced consistent markings to represent the set of consistent

markings given a sequence of observed labels and a sequence of control values. The supervisor

synthesis method is presented in Section 5 and is demonstrated with a simple subway track

system in Section 6. Conclusions are provided in Section 7.

2 Preliminaries

2.1 Basic Concepts of Petri Nets

In this subsection we recall notation and basic concepts about Petri nets. For more details, refer

to [27].

De�nition 2.1 A Petri net structure is a 4-tuple N = (P, T, F,W) where P = {p1, p2, ..., pn} is

a �nite set of n places; T = {t1, t2, ..., tm} is a �nite set of m transitions; F ⊆ (P ×T)∪ (T ×P)

is a set of arcs; W : F → {1, 2, 3, ...} is a weight function; P ∩ T = ∅ and P ∪ T ̸= ∅.

A marking is a function M : P → N that assigns to each place a nonnegative integer number

of tokens, where N denotes the set of nonnegative integers; M(p) denotes the number of tokens

in place p. Pictorially, places are represented by circles, transitions by bars and tokens by black

dots, as shown in Fig. 1(a). A Petri net G = ⟨N,M0⟩ is a Petri net structure N with an initial

marking M0.

The set of all input (or output) places of a transition t ∈ T is de�ned as2 •t = {p ∈ P | W (p, t) >

0} (or t• = {p ∈ P | W (t, p) > 0}). A transition t is said to be a source transition if •t = ∅.
Similarly, the set of all input (or output) transitions of a place p ∈ P is de�ned as •p = {t ∈
T | W (t, p) > 0} (or p• = {t ∈ T | W (p, t) > 0}). For example, for the Petri net in Fig. 1(a), we

have p•1 = {t1}, •p4 = {t3, t5}, t•3 = {p4}, and •t5 = {p2}. A Petri net structure is acyclic if it

has no directed circuits (e.g., the nets in Fig. 2).

A transition t is state-enabled at marking M if each input place p ∈ •t is marked with at least

W (p, t) tokens; this is denoted by M [t⟩. The �ring of state-enabled transition t removes W (p, t)

tokens from each input place p ∈ •t and adds W (t, p′) tokens to each output place p′ ∈ t•,

2If W (p, t) or W (t, p) is not de�ned for a speci�c place p and transition t, it is taken to be 0.

4

resulting in a marking M ′; this is denoted by M [t⟩M ′. In this paper, we assume that at most

one transition can �re at any instant; in other words, no concurrency is allowed. A k-length �ring

sequence S = ts1ts2 · · · tsk , tsi ∈ T , is enabled at marking M if M [ts1⟩M1[ts2⟩M2 · · · [tsk⟩M ′; this

is denoted by M [S⟩M ′. Marking M ′ can also be written as

M ′ = M +Dσ, (1)

where (i) D is the n×m incidence matrix of N satisfying D(i, j) = −W (pi, tj) +W (tj , pi), and

(ii) σ is the m × 1 �ring vector of S with its ith entry being the number of times transition ti
appears in S.

A marking M is reachable in ⟨N,M0⟩ if there exists a �ring sequence S such that M0[S⟩M .

The set of all markings reachable from M0 de�nes the reachability set of ⟨N,M0⟩ and is denoted

by R(N,M0). A Petri net ⟨N,M0⟩ is K-bounded (or simply, bounded) if there exists a positive

constant integer K such that ∀M ∈ R(N,M0), ∀p ∈ P , M(p) ≤ K. A Petri net is safe if

it is 1-bounded. A Petri net is structurally bounded if it is bounded for any initial marking.

Equivalently, a Petri net is structurally bounded if and only if there exists an n-dimensional

column vector y with strictly positive integer entries such that yTD ≤ 0Tm, where yT denotes

the transpose of y, 0m denotes an m-dimensional column vector with all entries being 0, and the

inequality is taken elementwise (see Theorem 29 in [27]). A structurally bounded Petri net is said

to be deadlock structurally bounded if there exists an n-dimensional column vector y with strictly

positive integer entries such that yTD < 0Tm [32]. Acyclic Petri nets without source transitions

have been shown to be deadlock structurally bounded [32].

2.2 Partially Observed and Partially Controlled Petri Nets

In this paper, we consider Petri nets in which state transitions are partially observed and/or

partially controlled.

De�nition 2.2 A partially observed and partially controlled Petri net Q is a 4-tuple (N,To, Tc,M0),

where

p1 p2

p4 p3

t1

t2

t3

t4
t5 2

(a) A simple Petri net.

p1 p2

p4 p3

t1

t2

t3

t4

t5

2

(a)

(b)

(a)

(ε)

(ε)

(b) The net in (a) with observation

labels and control inputs.

Figure 1: A partially observed and partially controlled Petri net.

5

• N = (P, T, F,W) is a Petri net structure with n places and m transitions;

• To ⊆ T , is the nonempty set of observable transitions;

• Tc ⊆ T , is the nonempty set of controllable transitions;

• M0 is the initial state.

Remark 2.3 If To is empty, then there is no observation from the system; if Tc is empty, then

there is no way to control the system. Therefore, we require both To and Tc to be nonempty. �

In a partially observed and partially controlled Petri net, the set of transitions T is partitioned

in two distinct ways3:

• T = To ⊎ Tuo: To (or Tuo) consists of all observable (or unobservable) transitions;

• T = Tc ⊎ Tuc: Tc (or Tuc) consists of all controllable (or uncontrollable) transitions.

The partitioning of T into observable and unobservable transitions indicates what transitions can

generate observation outputs. Unobservable transitions are transitions that cannot be directly

observed given current sensor availability (no sensors exist for such transitions). On the other

hand, an observable transition t can have a sensor to monitor its �ring, but this sensor might be

shared with other observable transitions. The association between sensors and transitions can

be captured by a labeling function L : T → Σ ∪ {ε}, which assigns a label to each transition,

and satis�es4 L(t) ∈ Σ for any t ∈ To and L(t) = ε for any t ∈ Tuo. Here, Σ is the set of labels

and ε is the empty label. We denote the set of transitions that are associated with any label

e ∈ Σ as Te := {t ∈ T | L(t) = e}. Without loss of generality, we assume that L is onto Σ so

that Te ̸= ∅ for any e ∈ Σ. If |TL(t)| = 1 (i.e., the label associated with transition t is unique to

that transition) for any t ∈ To and L(t) = ε for any t ∈ Tuo, the mapping L is called a natural

projection.5 An example of a partially observed and partially controlled Petri net can be found

in Fig. 1(b), and is discussed in detail in Example 2.10.

Given a �ring sequence S = ts1ts2 · · · tsk , the corresponding observation sequence is

ω = L(S) := L(ts1)L(ts2) · · ·L(tsk),

i.e., a string in Σ∗ (the set of all possible strings generated from the alphabet Σ). Note that the

empty label ε does not appear in a nonempty observation sequence and, therefore, the occurrence

of unobservable transitions in an execution of a Petri net goes unrecorded. Therefore, due to

the possible presence of unobservable transitions in the �ring sequence S = ts1ts2 · · · tsk , the
observation sequence L(S) could have any length between 0 and k.

Now we introduce the de�nition of the set of consistent markings [5].

3For sets A, B, and C, A = B ⊎ C means A = B ∪ C and B ∩ C = ∅.
4If there is no sensor for an observable transition t, one could enlarge Tuo as Tuo∪{t} to satisfy the requirements

in the de�nition of a labeling function.
5The term �natural projection" is widely used in the context of automata, refer to [36] for details.

6

De�nition 2.4 Given a partially observed and partially controlled Petri net Q with labeling

function L and an observed sequence of labels ω, the set of consistent markings is

C(ω) = {M ∈ Nn | ∃S ∈ T ∗ : M0[S⟩M and L(S) = ω} .

An observed sequence of labels ω = e1e2 · · · ek is equivalent to a sequence of subsets of observable
transitions Te1Te2 · · ·Tek with the interpretation that only one transition in Tei should occur at

time epoch i and any sequence of unobservable transitions might occur between two consecutive

time epochs, before time epoch 1, or after time epoch k. More generally, we de�ne markings

consistent with a sequence of subsets of observable transitions ϕ = T1 · · ·Ti · · ·Tk as follows,

where Ti ⊆ To for i = 1, ..., k.

De�nition 2.5 Given a partially observed and partially controlled Petri net Q and a sequence

of subsets of observable transitions ϕ = T1 · · ·Ti · · ·Tk, where Ti ⊆ To for i = 1, ..., k, the set of

consistent markings is

C(ϕ) ={M ∈ Nn | ∃S = S1
uots1 · · ·Si

uotsi · · ·Sk
uotskS

k+1
uo :

M0[S⟩M,Si
uo ∈ T ∗

uo for i = 1, ..., k + 1, and tsi ∈ Ti

for i = 1, ..., k} .

With this de�nition, we have C(e1e2 · · · ek) = C(Te1Te2 · · ·Tek). The introduction of C(ϕ) enables
us to deal with the interleaving between observation and control in a cleaner way (for details,

refer to Section 4).

The partitioning of T into controllable and uncontrollable transitions indicates what transitions

can be in�uenced by an external supervisor. Uncontrollable transitions are transitions that can-

not be disabled by a supervisor. For example, state transitions in chemical reactions are usually

uncontrollable; similarly, actuator failures can also be modeled by uncontrollable transitions.

A controllable transition can be disabled by an external supervisor even if it is state-enabled.

We take the set of possible control actions to be all subsets of Tc. More formally, we de�ne the

control set as

U = {u | u ⊆ Tc},

where u is called a control value. A controllable transition t is said to be control-disabled (or

control-enabled) if t ∈ u (or t /∈ u). If a transition t is state-enabled and is not control-disabled, it

is enabled and can �re following the state equation (1). By de�nition, uncontrollable transitions

are always control-enabled.

To handle unobservable transitions, we need the concept of the unobservable subnet.

De�nition 2.6 Given a partially observed and partially controlled Petri net Q, we de�ne the

unobservable subnet as a net NTuo = (Puo, Tuo, Fuo,Wuo), where Puo = {p ∈ P | ∃t ∈ Tuo : p ∈
•t∪ t•}, Fuo is the restriction of F to (Puo ×Tuo)∪ (Tuo ×Puo), and Wuo is the restriction of W

to Fuo.

7

p2

p4 p3

t2

t3

(a) Unobservable subnet of the

net in Fig. 1(b).

p1 p2

p4 p3

t1

t2

t3

(b) Uncontrollable subnet of

the net in Fig. 1(b).

p1 p2

p4 p3

t1

t2

t3

(c) Reverse net of the uncon-

trollable subnet of the net in

Fig. 1(b).

Figure 2: Illustration of the unobservable subnet, the uncontrollable subnet, and the reverse net

of the uncontrollable subnet of the Petri net in Fig. 1(b).

Remark 2.7 In the de�nition of unobservable subnets, we use Puo (a subset of P) instead of P

due to the necessity of applying Lemma 7.1 (which is stated in the Appendix) to the analysis of

computational complexity. �

To handle uncontrollable transitions, we need the concepts of the uncontrollable subnet and the

reverse net [12].

De�nition 2.8 Given a partially observed and partially controlled Petri net Q, we de�ne the

uncontrollable subnet as a net NTuc = (P, Tuc, Fuc,Wuc), where Fuc is the restriction of F to

(P × Tuc) ∪ (Tuc × P), and Wuc is the restriction of W to Fuc.

De�nition 2.9 Given a Petri net structure N = (P, T, F,W), N ′ = (P, T, F ′,W ′) is said to be

its reverse net if F ′ = {(x, y)|(y, x) ∈ F}, and W ′(x, y) = W (y, x) for any (x, y) ∈ F ′.

Note that if the incidence matrix for N is D, then the incidence matrix for its reverse net N ′ is

−D.

Example 2.10 Consider the partially observed and partially controlled Petri net Q in Fig. 1(b).

In this Petri net, the labeling function L is given as L(t1) = L(t5) = a, L(t4) = b, and L(t2) =

L(t3) = ε, which implies that To = {t1, t4, t5} and Tuo = {t2, t3}. Furthermore, we can only

disable transitions t4 and t5, which implies that Tc = {t4, t5} and Tuc = {t1, t2, t3}. Note that

controllable transitions are indicated by attached empty triangles in the �gure. The unobservable

subnet of the net in Fig. 1(b) is shown in Fig. 2(a), its uncontrollable subnet in Fig. 2(b), and

the reverse net of its uncontrollable subnet in Fig. 2(c). �

3 Problem Formulation

In the forbidden state problem we consider, the system is modeled by a partially observed and

partially controlled Petri net Q with labeling function L, and the goal is to synthesize a control

policy such that the system is guaranteed to avoid entrance to any state within a given �nite set

8

of forbidden states denoted by MF . In most of previous work (e.g., [14, 37, 26, 6, 35, 13, 21]),

the set of states that are not forbidden (called admissible states) is represented by a set of

linear constraints, called generalized mutual exclusion constraints (GMEC). A GMEC is a linear

constraint that limits the weighted sum of tokens in a subset of places of a given Petri net. Each

GMEC is a couple (w, k), where w : P → Z is an n × 1 weight vector and k ∈ Z, and de�nes

admissible states as M(w, k) = {M ∈ Nn | wT ·M ≤ k}. We discuss such constraints in more

detail in Example 5.6.

To solve the forbidden state problem, we assume that the Petri net Q satis�es the following

assumptions:

• A1 Tuo ⊆ Tuc (or equivalently, Tc ⊆ To);

• A2 the unobservable subnet is structurally bounded;

• A3 the reverse net of the uncontrollable subnet is structurally bounded;

• A4 the set of forbidden markings MF has �nite cardinality.

The assumption that Tuo ⊆ Tuc (or equivalently Tc ⊆ To) is quite common (e.g., the work

in [39, 1, 30], and implicitly in [15]) because even if one disables a controllable but unobservable

transition t, it is possible that the transition t might have occurred before the control action. As

we will see later, Assumption A2 guarantees that the set of consistent markings can be tracked

(with a �nite representation), while Assumptions A3 and A4 ensure that the existence of a

control policy can be checked.

The trivial control policy in which all controllable transitions are always disabled can guarantee

the avoidance of any forbidden state as long as this is possible (refer to Section 5.1, which discusses

the conditions for the existence of a supervisory control policy); however, this policy might be

too restrictive. To impose an optimality criterion, we introduce the concept of a maximally

permissive control policy. At time epoch k, and assuming we have observed the sequence of

labels ω = e1e2...ek and have applied the sequence of control values π = u1u2...uk, we de�ne a

control policy as a function f(ω, π) ⊆ Tc. Note that the control sequence u1u2...uk has the same

length as the sequence of labels e1e2...ek, where ui could be ∅ for 1 ≤ i ≤ k. A control policy f

is maximally permissive if the cardinality of f(ω, π) is minimal for any ω and any π. Therefore,

our goal at any given time epoch k is to disable the minimal number of controllable transitions.

Note that a similar optimality criterion has been used in [39, 34].

When the labeling function is the natural projection, the observer can be designed solely based

on the output of the plant and the observer's output is used in supervisor synthesis, as shown

in6 Fig. 3(a); this is referred to as the separation between observation and control in [1]. This

supervisory control structure is valid because any previously disabled controllable transition

cannot appear as the current observed transition. However, in the partially observed and partially

controlled Petri net (with a general labeling function) we consider here, the observer must be

6Fig. 3(a) is essentially Fig. 1 in [1], which is redrawn here for comparison.

9

Plant

Observer

Supervisor

(a) Observation-control sepa-

rate architecture used in [15, 1,

30].

Plant

Observer

Supervisor

ukuk+1

ek

(b) Observation-control nonseparate

architecture used in this paper.

Figure 3: Supervisory control architectures.

designed based on not only the current output of the plant but also based on the previous

control action, as shown in Fig. 3(b). For example, if ek is the current observed label and uk is

the previous control value, then Tek \ uk captures the set of observable transitions that might

have generated the label ek. Since uk ∩ Tek is not necessarily empty in general, we need to

consider both the sequence of observations and the sequence of control actions (up to the current

epoch) in order to obtain (a more accurate estimate of the set of possible states and then use it

to obtain) a maximally permissive policy.

Example 3.1 Consider again the Petri net in Fig. 1(b). Suppose the control action u1 is {t5}
at the initial state M0 = (1 2 0 0)T , i.e., t5 is control-disabled before we observe the next label. If

we next observe the label a, then the only possible explanation is the �ring of transition t1 (even

though t5 is also associated with the label a) because of the previous control action u which disabled

t5. Therefore, when computing all possible current states, previous control actions should be taken

into account (in addition to the current observed label). In turn, calculation of the next control

action will depend on the observed labels and previous control actions (because the determination

of the next control action depends on the set of all possible current states if state feedback based

policies are considered). This shows that observation and control are not necessarily separable in

our setting. In contrast, if each of the transitions t1 and t5 is assigned a unique label, then we will

only observe the label corresponding to t1 after the control action {t5}. In this case, observation

and control can be separated. �

4 Interleaving Between Observation and Control

To determine the control value at the current epoch given a sequence of observed labels and

a sequence of previous control values, we need to �rst obtain an accurate estimate of possible

current states, ideally developing a compact and easily computable representation of such state

estimates.

Assume for now that there exists a maximally permissive control policy (for details regarding

10

how to check the existence of such a policy, refer to the discussion in Section 5.1). The calculation

of a control action is triggered by an observed label e ∈ Σ, except at the initial state M0. At

the very beginning when there is no observation (the observation sequence is ω = ε), the system

could be in any state within the set

D0 = {M ∈ Nn | ∃S ∈ T ∗
uo : M0[S⟩M}

due to the possible occurrence of an unobservable �ring sequence. To determine if a controllable

transition t ∈ Tc should be disabled, we need to check if there exists a marking in the set

D0t = {M ′ ∈ Nn | ∃M ∈ D0,∃S ∈ T ∗
uo : M [tS⟩M ′}

that is a weakly forbidden marking (i.e., a marking which can lead to forbidden markings via

the �ring of uncontrollable transition sequences; for the precise de�nition of weakly forbidden

markings, refer to De�nition 5.1). D0t can also be represented as

D0t = {M ∈ Nn | ∃S1
uo, S

2
uo ∈ T ∗

uo : M0[S
1
uotS

2
uo⟩M}.

Based on D0t, we can determine the control action u1. Assume that u1 has been applied and

next we observe the label e1 (now the observation sequence is ω = e1 and the control sequence is

π = u1). Before observing e1, only an unobservable �ring sequence S1
uo ∈ T ∗

uo can �re. Because

of Assumption A1, S1
uo is also an uncontrollable �ring sequence and the control action u1 has no

e�ect on S1
uo. Therefore, the control action u1 can only possibly a�ect the controllable transitions

that might have generated the observed label e1. In other words, since a transition t satisfying

L(t) = e1 might be control disabled (i.e., t ∈ u1), only the �ring of transitions in Te1 \ u1 can

possibly generate label e1. Now the system could be in any state in the set of markings

D1 ={M ′ ∈ Nn | ∃M ∈ D0,∃t ∈ Te1 \ u1,∃S2
uo ∈ T ∗

uo :

M [tS2
uo⟩M ′} = {M ′ ∈ Nn | ∃S1

uo, S
2
uo ∈ T ∗

uo,

∃t ∈ Te1 \ u1 : M0[S
1
uotS

2
uo⟩M ′} .

This procedure can be repeated by �rst calculating the control action u2 based on D1 (or,

equivalently, based on e1 and u1, as shown in Fig. 3(b)), and by then updating the set of all

possible states upon the subsequently observed label e2. In general, we could de�ne the set of

markings that are consistent with the sequence of observed labels ω and the sequence of control

values π as described below.

De�nition 4.1 Given a partially observed and partially controlled Petri net Q with labeling

function L, a sequence of observed labels ω = e1e2 · · · ek (or, equivalently, a sequence of subsets

of observable transitions ϕ = Te1Te2 · · ·Tek) and a sequence of control values π = u1u2 · · ·uk,
C(ω, π) (or equivalently, C(ϕ, π)), the set of markings consistent with ω (or equivalently, ϕ) and

π, is de�ned as

C(ω, π) = {M ∈ Nn | ∃S = S1
uot

1
o · · ·Si

uot
i
o · · ·Sk

uot
k
oS

k+1
uo

such that Si
uo ∈ T ∗

uo for i = 1, ..., k + 1, tio ∈
Tei \ ui for i = 1, ..., k, and M0[S⟩M} .

11

If ω and π are both empty, then

C(ε, λ) = {M ∈ Nn | ∃S1
uo ∈ T ∗

uo : M0[S
1
uo⟩M} ,

where λ denotes an empty sequence of control values π.

It can be veri�ed that D0 = C(ε, λ) = C(ν, λ), D1 = C(e1, u1), and D0t = C({t}, ∅), where ν

denotes an empty sequence of subsets of observable transitions ϕ. The calculation of C(ω, π) (or
C(ϕ, π)) is important not only for updating the set of consistent markings but also for calculating

the control actions.

Now we establish that C(ω, π) is identical to C(ϕ′) (refer to De�nition 2.5) for a sequence of subsets

of observable transitions ϕ′ which is determined by ω and π. By de�nition, C(ε, λ) = C(ν). After
applying u1 and observing e1, only the �ring of transition t ∈ Te1 \ u1 can possibly generate

label e1 as argued previously. We can use the sequence of observed labels ω = e1e2...ek and

the sequence of control values π = u1u2...uk, and apply the above argument repeatedly k times

to construct an equivalent new sequence of subsets of observable transitions ϕ′ = T1T2 · · ·Tk

where Ti = Tei \ ui for i = 1, 2, ..., k. Therefore, C(ω, π) is equal to C(ϕ′). This way, control

actions can only potentially a�ect the observed labels, and the construction of the new sequence

of subsets of observable transitions guarantees that all control-disabled transitions are excluded

in the calculation of consistent markings.

One simple approach for calculating C(ϕ′) is to enumerate all these markings. Since C(ϕ′) ⊆ C(ω)
and (under Assumption A2 given in Section 3) |C(ω)| increases at most polynomially in the

length of the observation sequence ω [32], C(ϕ′) can also be calculated with complexity that is

polynomial in the length |ϕ′| of the sequence ϕ′ (note that |ϕ′| is equal to |ω|, i.e., the length of

ω). However, only a subset E ⊆ C(ϕ′) is necessary to represent C(ϕ′) as

{M ′ ∈ Nn | ∃M ∈ E ,∃S ∈ T ∗
uo : M [S⟩M ′} (2)

(in other words, any marking M ′ in C(ϕ′) can be reached from some marking M in E by a �ring

sequence of unobservable transitions), and the representation of C(ϕ′) using E is su�cient for

determining the control action based on the idea of weakly forbidden markings (to be introduced

in De�nition 5.1). It can be shown that there could be many sets that can serve as E . Ideally,
one would like to get a set E of minimal cardinality and/or with minimal computational e�ort.

Under the assumption that the unobservable subnet is acyclic, one candidate for E is the set of

markings called7 basis markings. Under certain assumptions (e.g., Petri nets that are marked

graphs [1], or Petri nets whose unobservable subnets are acyclic and backward con�ict-free [17]),

the basis marking is unique. However, in general, there could be multiple basis markings, and the

procedure for calculating basis markings in [5] could be involved. Instead, we propose another

candidate for E , called the set of reduced consistent markings.

7Given a partially observed and partially controlled Petri net Q with labeling function L, and a sequence ω of

observed transition labels, a basis marking Mb in [5] is a marking reached from the initial marking M0 by �ring

ω and all those unobservable transitions that are strictly necessary to enable ω. Note that in [5], the labeling

function used is the natural projection. The de�nition can be extended to a partially observed and partially

controlled Petri net Q with a sequence of subsets of observable transitions ϕ.

12

De�nition 4.2 Given a partially observed and partially controlled Petri net Q with a sequence

of subsets of observable transitions ϕ = T1 · · ·Ti · · ·Tk, where Ti ⊆ To for i = 1, ..., k, the set of

reduced consistent markings is de�ned as

Cr(ϕ) = {M ∈ Nn | ∃S = S1
uots1 · · ·Si

uotsi · · ·Sk
uotsk :

M0[S⟩M,Si
uo ∈ T ∗

uo for i = 1, ..., k, and tsi ∈ Ti

for i = 1, ..., k}

if ϕ ̸= ν, and Cr(ν) = {M0} otherwise.

In other words, reduced consistent markings are consistent markings that can be reached by a

�ring sequence whose last transition is observable. The set of consistent markings C(ϕ) can be

represented using reduced consistent markings as {M ∈ Nn | ∃M ′ ∈ Cr(ϕ),∃S ∈ T ∗
uo : M

′[S⟩M}.

Remark 4.3 The name �reduced consistent marking" is given based on the fact that a reduced

consistent marking must be a consistent marking while a consistent marking is not necessarily a

reduced consistent marking. In other words, the set of reduced consistent markings is a subset of

the set of consistent markings for the same sequence of subsets of observable transitions. �

Now we consider the calculation of Cr(ϕT ′) given Cr(ϕ) for an arbitrary sequence of subsets

of observable transitions ϕ. First we recall the de�nition of the unobservable reach from a

marking M [11]. Given a partially observed and partially controlled Petri net Q, UR(M), the

unobservable reach from a marking M , is {M ′ ∈ Nn | ∃S ∈ T ∗
uo : M [S⟩M ′}.

Algorithm 4.4 [Update of Reduced Consistent Markings]

Input: A partially observed and partially controlled Petri net Q with Cr(ϕ) (a set of reduced

markings consistent with ϕ), and a new subset of observable transitions T ′.

Output: Cr(ϕT ′).

1. C(ϕ) =
∪

M∈Cr(ϕ) UR(M).

2. Let Cr(ϕT ′) = ∅.

3. For any M ∈ C(ϕ)

For any t such that t ∈ T ′ and M [t⟩

Compute M ′ = M +D(:, t).

Set Cr(ϕT ′) = Cr(ϕT ′) ∪ {M ′}.

4. Output Cr(ϕT ′).

Remark 4.5 Based on the de�nition of basis markings [5] (as recalled in Footnote 7), a basis

marking is also a reduced consistent marking while a reduced consistent marking is not necessarily

a basis marking, as shown in the following example. �

13

M0 M1t2

t3

t5

t2

t2

M2

M5M4

M3

t3
t3

t1 t1 t1 t1 t1 t1

M7 M6 M8 M9 M10 M11 M12
t2 t2

t3
t2

M13

t3

t2 t3

t2

M14

t2

M15t3t3 M16t3

{t1, t5}

ν

Figure 4: Markings that are consistent with ϕ = ν and ϕ = T ′ = {t1, t5} for the net in Fig. 1(b);

solid lines with arrows represent observable transitions while dashed lines with arrows represent

unobservable transitions.

Example 4.6 For the net in Fig. 1(b), we consider two sequences of subsets of observable tran-

sitions starting from M0, namely, ν and T ′ = {t1, t5}. The various system trajectories are shown

in Fig. 4. If ϕ = ν, the set of consistent markings is

C(ϕ) = {M0,M1,M2,M3,M4,M5} ,

whereM1 = (1 1 1 0)T , M2 = (1 0 2 0)T , M3 = (1 1 0 1)T , M4 = (1 0 1 1)T , andM5 = (1 0 0 2)T .

However, M0 is both the only basis marking and the only reduced consistent marking. If ϕ = T ′,

there are 11 consistent markings M6,M7, ...,M16, among which M6,M7,M8,M9,M10,M11,M12

are reduced consistent markings, and M6,M7 are basis markings. These markings are M6 =

(0 3 0 0)T , M7 = (1 0 0 1)T , M8 = (0 2 1 0)T , M9 = (0 1 2 0)T , M10 = (0 2 0 1)T ,

M11 = (0 1 1 1)T , M12 = (0 1 0 2)T , M13 = (0 0 3 0)T , M14 = (0 0 2 1)T , M15 = (0 0 1 2)T ,

and M16 = (0 0 0 3)T . �

5 Supervisor Synthesis

In the previous section, we used reduced markings that are consistent with the constructed

sequence ϕ′ to represent the set of all possible markings that are consistent with the observation

sequence ω and the control sequence π. In this section, we consider how to determine a control

value to avoid an arbitrary set of forbidden states using the set of reduced consistent markings.

5.1 Existence of Maximally Permissive Supervisor

Besides forbidden states, we also need to prevent the current state from reaching certain states

that are not explicitly forbidden. These are states from which one can reach forbidden states by

a �ring sequence consisting of uncontrollable and/or unobservable transitions. Once a system

enters such states, we cannot control the system in a way that guarantees that forbidden states

are avoided. We call such markings weakly forbidden markings.

14

De�nition 5.1 Given a partially observed and partially controlled Petri net Q with a set of

forbidden markings MF , the set of weakly forbidden markings W (MF) with respect to MF , is

given by

{M ∈ Nn | ∃M ′ ∈ MF ,∃S ∈ (Tuc ∪ Tuo)
∗ : M [S⟩M ′} ,

which reduces under Assumption A1 (namely, Tuo ⊆ Tuc) to

W (MF) = {M ∈ Nn | ∃M ′ ∈ MF ,∃S ∈ T ∗
uc : M [S⟩M ′} .

This simpli�cation leads to the notion of weakly forbidden markings used in [19]. The set of

weakly forbidden markings W (MF) can be computed using the following proposition (c.f. [33]).

Proposition 5.2 Given a partially observed and partially controlled Petri net Q with a set of

forbidden markings MF , the set of weakly forbidden markings is given by

W (MF) =
∪

M∈MF

R(N ′
Tuc

,M),

where N ′
Tuc

is the reverse net of the uncontrollable subnet NTuc .

Following Proposition 5.2, we can obtain W (MF) by computing all markings reachable from MF

in the reverse net of the uncontrollable subnet. The computation of W (MF) may be compli-

cated as W (MF) is not necessarily �nite and its computation essentially involves reachability

analysis (computational complexity issues are discussed in the Appendix). However, under As-

sumptions A3 and A4 made in Section 3, the set of weakly forbidden markings is �nite, because

the number of forbidden markings is �nite and N ′
Tuc

is structurally bounded. More speci�cally,

because N ′
Tuc

is structurally bounded, |R(N ′
Tuc

,M)| is �nite for any M in MF ; thus, |W (MF)|
is also �nite as the number of forbidden markings |MF | is �nite.

The existence of a maximally permissive supervisor can be determined by checking whether

M0 /∈ W (MF), which can be directly deduced from Theorem 2 in [20]. More speci�cally, if

M0 /∈ W (MF), then the control policy that disables all controllable transitions can avoid all

forbidden states, which implies that there exists a maximally permissive control policy. Note

that this condition is also necessary. That is to say, if M0 ∈ W (MF), there is no control policy

which can guarantee that the system will not reach a forbidden state.

Example 5.3 For the net in Fig. 1(b), suppose there is only one forbidden state (1 0 0 1)T . By

applying Proposition 5.2 based on the reverse net in Fig. 2(c), we obtain W (MF) = {(1 0 0 1)T ,

(1 0 1 0)T , (1 1 0 0)T , (2 0 0 0)T }. As M0 is not in W (MF), there exists a maximally permissive

control policy. �

5.2 Determination of Control Policy

In this subsection, we determine the maximally permissive supervisor using reduced consistent

markings.

15

The basic idea is the following. Given the sequence of observed labels ω seen so far and the

sequence of control values π applied so far, we generate the set of reduced consistent markings

using the constructed sequence ϕ′. We then compute the set of subsequent reduced consistent

markings Cr(ϕ′{t}) for each controllable transition t, and we disable t if at least one of the

subsequent reduced consistent markings is in the set of weakly forbidden markings. Once a new

label is observed, we update the set of reduced consistent markings based on this label and the

current control value, and then determine the next control action. Note that at the initial state

M0, both ω and π are empty, which implies that we �rst compute the control value u1, then

observe the label e1, so that ω becomes e1 and π becomes u1. The procedure is then repeated

as discussed above. The complete two-stage algorithm is given below.

Algorithm 5.4 [Supervisor Synthesis]

Input: A partially observed and partially controlled Petri net Q with labeling function L satisfying

Assumptions A1, A2, and A3, a �nite set of forbidden markings MF satisfying Assumption A4,

and a streaming sequence of observed labels ω.

Output: A sequence of control values corresponding to ω.

Stage 1: O�ine Checking of Supervisor Existence

1) Compute the set of weakly forbidden markings W (MF) using the reverse net of the uncontrol-

lable subnet.

2) Check if M0 ∈ W (MF). If M0 /∈ W (MF), the supervisor exists; else, exit.

Stage 2: Online Determination of Control Policy

1) Let ω = ε, ϕ′ = ν and Cr(ϕ′) = {M0}.

2) Let u = ∅.

For every t ∈ Tc, compute Cr(ϕ′{t}) based on Cr(ϕ′) using

Algorithm 4.4. If ∃M ∈ Cr(ϕ′{t}) such that M ∈ W (MF)

then u = u ∪ {t}.

3) Output the control value u at the current epoch.

4) Wait until a new label e is observed.

5) De�ne T ′ such that T ′ = Te \ u and compute Cr(ϕ′T ′) based on Cr(ϕ′) using Algorithm 4.4;

let ω = ωe and ϕ′ = ϕ′T ′.

6) Goto Step 2 of Stage 2.

At Step 2 in Stage 2, we determine the control value at the current epoch by examining for

each controllable transition whether it generates a subsequent reduced consistent marking that

16

is weakly forbidden. We show the correctness of the algorithm by proving the following two facts:

1) ∀t ∈ T \ u, the �ring of t will not drive the system from a legal state to any forbidden

state. There are two possibilities: t ∈ Tuc or t ∈ Tc \ u. i) if t ∈ Tuc, then the �ring of

t will not drive the system to any forbidden state due to a) the existence of a maximally

permissive control if ω is ε, and b) the previous control action if ω ̸= ε. ii) t ∈ Tc \ u:

suppose there exists a marking M consistent with ϕ′{t} (namely M ∈ C(ϕ′{t})) such

that M ∈ W (MF); then, there exists a reduced consistent marking M ′ ∈ Cr(ϕ′{t}), from
which M is reached by �ring a sequence of unobservable transitions (it is also a sequence of

uncontrollable transitions as Tuo ⊆ Tuc), such that M ′ is in W (MF) based on the de�nition

of W (MF). Therefore, t should have been disabled according to Step 2 in Stage 2, which

is a contradiction.

2) ∀t ∈ u given at Step 3 in Stage 2, the �ring of t can in fact result in a forbidden state

because there exists a marking M , which is consistent with ϕ′{t} (actually it is a reduced

consistent marking) and is inW (MF), i.e., it can uncontrollably reach a forbidden marking.

The above two facts also establish that the control policy is maximally permissive.

As argued in the Appendix, the online computational complexity is polynomial in k which is the

length of the observed sequence of labels. This could be very helpful because given a partially

observed and partially controlled Petri net only the observed sequence changes with time. On

the other hand, the computational complexity is exponential in the number of places in the

given Petri net. The exponential dependency could impose challenges in practical applications

for Petri nets of large size. In Appendix D, we discuss these issues in more detail and also present

speci�c scenarios in which our approach could potentially be applicable to large-scale systems.

In addition, we also provide implementation details on Algorithm 5.4 in the Appendix.

Example 5.5 Consider the setting in Example 5.3. As the maximally permissive control pol-

icy exists, we try in this example to determine the control policy based on observations and

previous control actions. When ω = ε, ϕ′ = ν and Cr(ϕ′) = {M0}. For t4, Cr(ϕ′{t4}) =

{(2 1 0 0)T , (2 0 1 0)T , (2 0 0 1)T }; as none of the markings in C(ϕ′{t4}) is in W (MF), u

remains empty. For t5, Cr(ϕ′{t5}) = Cr({t5}) = {M7} where M7 is given in Example 4.6. As

M7 is in W (MF), u becomes {t5}. Therefore, the control action given ω = ε is u = {t5}.

Suppose next we observe the label a, so that ω = a. As the previous control action was u = {t5},
we de�ne T ′ such that T ′ = Ta\u = {t1} and Cr(ϕ′T ′) = Cr(T ′) = {M6,M8,M9,M10,M11,M12},
where M6,M8, ...,M12 are given in Example 4.6. Now ω becomes a and ϕ′ becomes T ′ (this is

consistent with the discussion in Example 3.1). By repeating the above procedure, we can calculate

control actions as additional labels are observed. �

Now we discuss whether previous approaches on transforming forbidden states into generalized

mutual exclusion constraints can be applied to Example 5.3 or not.

Example 5.6 Consider the setting in Example 5.3. There is only one forbidden state (1 0 0 1)T ,

17

which can be described as

M(p1) = 1 ∧M(p2) = 0 ∧M(p3) = 0 ∧M(p4) = 1 (3)

where ∧ denotes conjunction (namely, logical �and"). Then states that are not forbidden can be

described as

M(p1) ≤ 0 ∨M(p1) ≥ 2 ∨M(p2) ≥ 1 ∨M(p3) ≥ 1 ∨M(p4) ≤ 0 ∨M(p4) ≥ 2 (4)

by taking the complement of Eq. (3) (a general procedure is given in Lemma 1 in [25]), where ∨
denotes disjunction (namely, logical �or"). There are quite a few techniques proposed in [25] to

simplify a disjunction of linear constraints (for example, the results in Theorems 4, 5, and 9);

however, none of those techniques is immediately applicable to the constraint in Eq. (4). Though

a conjunction of linear constraints is easy to handle (for example, using the place invariant based

approach in [26]), a disjunction of linear constraints is much more di�cult especially when there

are uncontrollable and unobservable transitions [23].

A di�erent approach is proposed in [38] to represent forbidden states in non-safe Petri nets as

linear constraints (more speci�cally, the procedure given in Algorithm 1 of [38]). The basic idea

is to represent forbidden states as w1M(p1) + w2M(p2) + w3M(p3) + w4M(p4) > k, and states

that are not forbidden (called authorized states in [38]) as w1M(p1) + w2M(p2) + w3M(p3) +

w4M(p4) ≤ k for our speci�c example. Note that in our example the number of authorized states

is �nite but in general there could be an in�nite number of authorized states. Since (1 0 0 1)T is

forbidden and (3 0 0 0)T , (0 0 0 3)T are authorized, we have the following constraints regarding

w1, w2, w3, w4, k:

w1 + w4 > k

3w1 ≤ k

3w4 ≤ k . (5)

It can be veri�ed that there is no feasible solution to the set of inequalities in Eq. (5). In other

words, it is impossible to represent the forbidden state as a single linear constraint as required by

the approach in [38]. �

5.3 Extension to Petri Nets with Control Labels

In Section 2.2, we implicitly assumed that every controllable transition can be disabled separately

from any other controllable transition. However, there could be constraints on the disabling of

controllable transitions. More speci�cally, consider a scenario where a command actuator, if

used, simultaneously disables a subset of controllable transitions. This could be the case, for

example, in a 4-way intersection with a tra�c light only showing red or green; a car can turn

right, left or go straight if the light is green, and the car must stop otherwise. This scenario

can be modeled using the Petri net in Fig. 5: transition t1 (or t2, t3, respectively) models that

the car turns left (or goes straight, turns right, respectively); place pi models the number of

cars in a certain location, e.g., p1 models the number of cars that will enter the intersection, p2

18

p1

p2 p4p3

t1 t2 t3

γ γ γ

Figure 5: Simple Petri net with a shared control label.

models the number of cars that have turned left (and thus left the intersection), and so forth.

All transitions are assigned the same control label γ, which models the action of the tra�c

light. If γ is disabled, then no car can move; otherwise, cars can turn right, left, or go straight.

In general, we could de�ne the control labels as a mapping Γ : Tc 7→ Σc in which Σc is the

set of control labels and Γ(t) ∈ Σc for t ∈ Tc (similar to an observation label, a control label

can be associated with multiple controllable transitions). Then the control set is of the form

U = {u | u ⊆ Σc}. Note that this generalization imposes no changes to the de�nitions of control

policy and maximally permissive control policy that we used earlier. However, a minor change

is needed in Algorithm 5.4: at Step 3 in Stage 2, we output the control value8

u′ = {γ ∈ Σc | ∃t ∈ u : γ = Γ(t)}

instead of u. Following the reasoning described after Algorithm 5.4, it can be veri�ed that the

resulting control policy is also maximally permissive for this more general scenario.

Remark 5.7 The use of control labels has appeared in previous work. For example, in [36], dif-

ferent state transitions are allowed to be assigned the same label and some labels are controllable.

Another example is the work in [19], in which some control place can control multiple controllable

transitions. �

6 Practical example

In this section, we consider a simpli�ed subway track system as shown in Fig. 6. The system

consists of two tracks with a shared station that has only one track. Train 1 runs on Track 1 and

Train 2 runs on Track 2; both trains run in the counterclockwise direction. The Petri net model

of the track system is shown in Fig. 7. Transition t1 (or t6) corresponds to the event that Train

1 (or 2) is entering within a certain range of the station (this is for safety reasons). Transition

t2 (or t5) corresponds to the event that Train 1 (or 2) is entering the shared track in the station.

Transition t3 (or t4) represents the event that Train 1 (or 2) is leaving the shared track. Place

8Note that in order to disable a control label γ ∈ Σc, we only need to �nd one transition t satisfying Γ(t) = γ

such that transition t should be disabled. We could take advantage of this and not check whether we should

disable other transitions t′ such that Γ(t′) = γ in order to avoid unnecessary computation.

19

pi for i = 1, 2, 3 (or i = 4, 5, 6) represents the state of Train 1 (or 2) in di�erent regions of the

track; for example, place p3 represents that Train 1 is in the shared track. Initially, Train 1 is

out of the shared track and is not within a certain range of the station either, whereas Train 2

is within a certain range of the station but has not entered the shared track yet. The objective

is to avoid train collisions.

Suppose that the operator of Train 1 (or 2) reports a symbol a1 (or a2) if Train 1 (or 2) is within

a certain range of the shared station and it can stop the train if necessary. Also suppose there

is a range sensor which can detect if a train is leaving the shared station (and reports symbol

b) but cannot distinguish one train from the other one. Correspondingly, we have the labeling

function L as L(t1) = a1, L(t2) = L(t5) = ε, L(t3) = L(t4) = b and L(t6) = a2. Transitions

t1 and t6 are the only controllable transitions. Therefore, To = {t1, t3, t4, t6} and Tc = {t1, t6}.
Given the initial state M0 = (1 0 0 0 1 0)T , we need to design a control policy to avoid the

forbidden state (0 0 1 1 0 0)T , which corresponds to the situation that both trains are on the

shared track. By applying Proposition 5.2, we get the set of weakly forbidden markings as

W (MF) = {(0 0 1 1 0 0)T , (0 1 0 1 0 0)T , (0 0 1 0 1 0)T , (0 1 0 0 1 0)T }. Since M0 is not in

W (MF), there exists a supervisor which can enforce the speci�cation.

Before any observed label becomes available, we need to calculate u1. Since M0 is the only

reduced consistent marking, we check if t1 or t6 need to be disabled. By applying Step 2 in

Stage 2 of Algorithm 5.4, we get u1 = {t1}. If we next observe the label b, transition t4 must

have occurred since t3 cannot occur due to the disabled transition t1. Now M = (1 0 0 0 0 1)T

is the only (reduced) consistent marking. Similarly, we can get the control action u2 = ∅. We

can repeat the above procedure, and calculate control actions as additional labels are observed.

For this speci�c example, there is no deadlock when applying the synthesized control policy. This

can be proved by contradiction: suppose the system reaches deadlock due to the control policy;

then it can be veri�ed that the only possibility is that the current state is M = (1 0 0 0 0 1)T

and the control is u = {t1, t6}. However, at state M , the calculated control action is u = ∅ as

shown earlier. Therefore, the system will never go to deadlock. Note that the no concurrency

assumption is key to guaranteeing no deadlock for this example; if concurrency is allowed (i.e.,

t1 and t6 can �re at the same time), u = ∅ can lead to weakly forbidden states. Even though we

can determine the nonexistence of deadlock for this speci�c (small scale) system, in general it

is a very challenging problem since it could involve exploring all reachable states. One practical

approach could be the following: i) once a deadlock state is reached, it is added into the set

of forbidden states MF ; ii) the set of weakly forbidden states is recalculated; iii) the system is

reset to the initial state and then Algorithm 5.4 is applied. The procedure can be repeated until

there is no new deadlock state, or the system needs to be redesigned with additional sensors if

no supervisor exists.

Remark 6.1 In large railway networks, there could be parallel tracks (from one station to an-

other) in which there is no sensor or a very limited number of sensors available. For example,

for a network that has A parallel tracks, B segments in each track, and no sensor available for

each track (the Petri net model is shown in Fig. 8(a)), after observing the label a, there is only

one reduced consistent marking in which places p11, p21, ..., pA1 are all marked with one token;

20

Track 1

Track 2

Shared station

Figure 6: Sketch of two subway tracks with a shared station.

entering

leaving

p1

p2

p3

p4

p5

p6

t1 (a1)

t2 (ε)

t3 (b)

t4 (b)

t5 (ε)

t6 (a2)

Figure 7: Petri net model of the subway track system in Fig. 6.

in contrast, there are AB consistent markings.9 In general, there could be partial synchroniza-

tion (one example is shown in Fig. 8(b)); in this case, we still have a single reduced consistent

marking while the number of consistent markings is still exponential in the number of parallel

tracks. Therefore, the use of reduced consistent markings (instead of consistent markings) can

be advantageous in supervisor synthesis. Note that such structures also appear in other settings,

such as multiple routes in computer/communication/transportation networks. �

7 Conclusions

In this paper, we consider the arbitrary forbidden state problem in DESs modeled by partially

observed and partially controlled Petri nets. Note that the given Petri net can be unbounded,

which allows us to deal with in�nite state spaces. Under the assumption that Tuo ⊆ Tuc and

certain conditions on the unobservable subnet and the uncontrollable subnet, we show that

reduced consistent markings can be used not only to represent the set of consistent markings

but also to determine the control policy. We also propose an online algorithm to determine the

control policy based on the sequence of observed labels and the sequence of previous control

actions, and discuss the extension of our approach to Petri nets with control labels. Note that if

9If one of the consistent markings is a forbidden marking, in the worst case there could be AB weakly forbidden

markings. However, since weakly forbidden markings are calculated only once and o�ine, the online computational

complexity is not a�ected because the checking of whether a reduced consistent marking is weakly forbidden

involves linear complexity in the number of places (this is also shown in Appendix C).

21

(ε) (ε) (ε)

(ε) (ε) (ε)

(ε) (ε) (ε)

(a)

p11

(b)

p12 p1B

p21 p22 p2B

pA1 pA2 pAB

(a) Parallel tracks.

(ε) (ε)

(ε)
(ε)

(ε)

(ε) (ε) (ε)

(a)

p11

(b)

p12 p1B

p21 p22 p2B

pA1 pA2 pAB

(b) Parallel tracks with synchronization.

Figure 8: Reduced consistent markings versus consistent markings.

Assumption A2 is violated, it could be possible that for a certain observation sequence ω, the set

of consistent markings is in�nite (which could lead to computational problems); if AssumptionA3

is violated, it could be possible that the set of weakly forbidden markings is in�nite even though

the set of forbidden markings is �nite. We believe that these two assumptions allow us to consider

very general scenarios in terms of an arbitrary observation sequence ω and an arbitrary �nite set

of forbidden states.

There are several interesting future directions. First, it is worth �nding the smallest set E to

represent the set of consistent markings because it could signi�cantly reduce the complexity

of calculating control actions. Bounding the number of markings in E (or reduced consistent

markings) directly is an interesting problem by iteself. Second, due to the exponential depen-

dency of the complexity functions on Petri net size in Appendix C, we would like to explore

special structures in large-scale systems along with speci�c sensor con�gurations that make our

approach applicable, and further develop software tools for practical applications. One example

is the large-scale railway system as studied in [16]. Third, we would like to incorporate the

deadlock-free constraint in our problem formulation, and investigate the applicability of other

existing deadlock resolution approaches (e.g., the work in [22]).

22

Appendix: Complexity Analysis of Algorithm 5.4

A. Lemmas

Before discussing the computational complexity of Algorithm 5.4, we �rst introduce some nota-

tion.

Given a partially observed and partially controlled Petri net Q, the unobservable subnet is de-

noted by NTuo , and has nuo = |Puo| places and muo = |Tuo| transitions. Under Assumption A2,

the unobservable subnet is structurally bounded or, equivalently, there exists an nuo-dimensional

column vector y1 with positive integer entries, such that yT1 Duo ≤ 0Tmuo
, where Duo is obtained

from D by keeping rows that correspond to places in Puo and columns that correspond to unob-

servable transitions in Tuo. Similarly, the uncontrollable subnet is denoted by NTuc , and has n

places and muc = |Tuc| transitions. Under Assumption A3, the reverse net of NTuc is structurally

bounded or, equivalently, there exists an n-dimensional column vector y2 with positive integer

entries, such that yT2 (−Duc) ≤ 0Tmuc
, where Duc is obtained from D by keeping columns that

correspond to uncontrollable transitions in Tuc.

The following lemma (refer to Theorem 2 in [32]) gives an upper bound on the number of markings

consistent with an observation sequence ω in a partially observed and partially controlled Petri

net Q with labeling function L and a structurally bounded unobservable subnet.

Lemma 7.1 Consider a partially observed and partially controlled Petri net Q with labeling

function L and a structurally bounded unobservable subnet NTuo. If the observation sequence ω

has length k, then the number of consistent markings is upper bounded by

(1 + a1 + a2k)
n−nuo(1 + c1 + c2k)

nuo ,

where10 a1 = maxp∈P\Puo
M0(p), a2 = maxp∈P\Puo,t∈To

D(p, t), c1 = yT1 M
uo
0 , and c2 is the

maximal entry of yT1 D
uo
o (note that Muo

0 is the restriction of M0 to places in Puo, and Duo
o is

the submatrix of the incidence matrix D that has rows that correspond to the places in Puo and

columns that correspond to the transitions in To).

In Lemma 1, a1, a2, c1, c2 are constants which depend on the initial state M0 and the incidence

matrix D, and thus the number of markings consistent with a k-length observation sequence is

O(kn). Also, in the derivation of the above bound, one obtains that for each place p ∈ Puo and

any M ∈ C(ω), 0 ≤ M(p) ≤ c1 + c2k.

B. Reachability Analysis

Both Step 1 of Algorithm 4.4 and Proposition 5.2 involve reachability analysis: in Step 1 of

Algorithm 4.4, one needs to calculate all markings that are reachable from a reduced consistent

10If Puo = P , both a1 and a2 can be taken to be 0. If Tuo = ∅, then the value of yuo, c1 and c2 are not de�ned;

as the value of yuo is not important in this case, we can take both c1 and c2 to be 0.

23

State Mark #neighbors Index … Index

Element of an array Linked list

Figure 9: Data structure used for reachability analysis.

marking M by a sequence of unobservable transitions, while in Proposition 5.2, one needs to

calculate all markings that are reachable from a forbidden marking M by a sequence of un-

controllable transitions in the reverse net of the uncontrollable subnet. In general, one could

formulate the following reachability problem: given a K-bounded Petri net G = ⟨N,M0⟩ with
n places and m transitions, calculate all markings reachable from M0. To solve the problem

e�ciently, we propose a method based on a data array DA of dimension Bn, where B = K + 1.

Each element of the array is shown in Fig. 9. Before we explain the array in detail, we �rst recall

the following injective transformation function as de�ned in [33].

De�nition 7.2 Given a K-bounded Petri net G, the transformation function Γ : R(G) → N0 is

de�ned as,

Γ(M) = M(p1) +M(p2)B +M(p3)B
2 + · · ·+M(pn)B

n−1

where B = K + 1, M ∈ R(N,M0).

Given a marking M , the value Γ(M) can be calculated via the following recursion

S1 = M(pn)

S2 = B × S1 +M(pn−1)

...

Sk = B × Sk−1 +M(pn+1−k)

...

Sn = B × Sn−1 +M(p1)

and Γ(M) = Sn. It can be veri�ed that the complexity of this recursion is 2(n− 1) in terms of

the number of additions and multiplications.

For any marking M ∈ R(N,M0), we �rst calculate Γ(M) and use Γ(M) as the index for M in

the array DA. In the element with index Γ(M), the �eld �State" (in Fig. 9) stores the state M ,

the �eld �Mark" is binary and is initialized to be 0, the �eld �#neighbors" is equal to

|{M ′ ∈ Nn | ∃t ∈ T : M [t⟩M ′}| ,

and the pointer �eld points to a linked list representing the set

{Γ(M ′) | ∃t ∈ T : M [t⟩M ′} .

Intuitively, the element corresponding to marking M includes necessary information of all one-

step reachable markings. Because the Petri net is K-bounded and B = K + 1, the array is large

enough to store all possible reachable markings for the Petri net. Based on this data array, we

propose the following reachability algorithm.

24

Algorithm 7.3 [Calculation of Reachable Markings]

Input: A K-bounded Petri net G = ⟨N,M0⟩ with n places and m transitions.

Output: A representation of all reachable markings.

1. Initialize the data array DA for Bn markings, where B = K + 1. DA(Γ(M)), the element

corresponding to M in the array, has the structure shown in Fig. 9, and is initialized with �state"

being M , �Mark" being 0, �#neighbors" being |{M ′ ∈ Nn | ∃t ∈ T : M [t⟩M ′}|, and the pointer

�eld pointing to a linked list representing the set {Γ(M ′) | ∃t ∈ T : M [t⟩M ′}.

2. Initialize Q to the set11 {Γ(M0)}.

3. While Q ̸= ∅

Pick one element s in Q

Change the �eld �Mark" in the element DA(s) to be 1.

For any s′ in the linked list pointed by the pointer in DA(s)

If the �Mark" �eld of DA(s′) is 0, add s′ to the set Q.

Remove s from the set Q.

4. The states corresponding to the elements of the array with the �eld �Mark" being 1 form the

set of all reachable markings.

We �rst explain the algorithm before analyzing its complexity. In Step 1, we build the data

array, a process that involves the calculation of all possible one-step state transitions in the Petri

net. In Steps 2 and 3, we mark all reachable states starting from M0 by traversing the data

array. The algorithm must stop because the number of reachable states is bounded. In Step 4,

we obtain a representation of all reachable markings using the data array.

We now analyze the computational complexity of the algorithm. In Step 1, we build the array

for any marking M among Bn possible markings and the complexity is

Bn × (2(n− 1) +m× (n+ n+ 2(n− 1))) ,

where the �rst 2(n − 1) is the complexity of calculating Γ(M), m refers to the number of

transitions, the �rst n in m× (n+n+2(n−1)) refers to the number of comparisons to determine

if transition t (among m transitions) is enabled or not, the second n in m× (n+ n+ 2(n− 1))

refers to the number of additions to calculate the next state M ′ if transition t is enabled, and the

last 2(n− 1) refers to the calculation of Γ(M ′). The complexity of Step 1 is roughly O(nmBn).

The complexity of Steps 2 and 3 is roughly O(mBn) because any state can be marked to be 1 at

most once and can reach at most m other states. In summary, the complexity of Algorithm 7.3

is O(nmBn), where B = K + 1.

11In practical implementations, one could use a �rst in �rst out queue to represent the set Q.

25

C. Complexity of Algorithm 5.4

Now we examine the computational complexity of Algorithm 5.4.

Stage 1: O�ine Checking of Supervisor Existence

In Step 1, we calculate the set of weakly forbidden markings W (MF) following Proposition 5.2.

For any marking M ′ reachable from some M ∈ MF , there exists a �ring vector σ such that

M ′ = M + (−Duc)σ . (6)

Since N ′
Tuc

is structurally bounded, there exists a vector y2 such that yT2 (−Duc) ≤ 0Tmuo
. If we

left-multiply by yT2 on both sides of Eq. (6), we get

yT2 M
′ = yT2 M + yT2 (−Duc)σ ≤ yT2 M

Therefore, for any place p, 0 ≤ M ′(p) ≤ yT2 M
′ ≤ yT2 M . To apply Algorithm 7.3, we could choose

K to be yT2 M . Therefore, the set of markings reachable from M in the reverse net of the un-

controllable subnet can be calculated with complexity O(nmuc(y
T
2 M +1)n) using Algorithm 7.3.

One straightforward way to calculate all weakly forbidden markings is to apply Algorithm 7.3

|MF | times and the complexity is ∑
M∈MF

O(nmuc(y
T
2 M + 1)n)

which can be relaxed as

O(|MF |nmuc(max
M∈MF

yT2 M + 1)n) .

However, there is a more e�cient implementation. We choose K as

max
M∈MF

yT2 M

and change Step 2 of Algorithm 7.3 as follows: let Q be {Γ(M) | M ∈ MF }. Then the output

of the changed algorithm is the set of weakly forbidden markings. The complexity is

O(nmuc(max
M∈MF

yT2 M + 1)n) .

In Step 2, we check if M0 ∈ W (MF). With the data array, the checking can be done by �rst

calculating Γ(M0) and then checking if the �eld �Mark" of the element with index Γ(M0) is 1

or 0: if the �eld �Mark" is 1, then M0 ∈ W (MF); otherwise, M0 /∈ W (MF). The complexity is

O(n) because accessing an array can be done in constant time; the complexity is essentially the

complexity of calculating Γ(M0).

Stage 2: Online Determination of Control Policy

26

The bulk of the online computation is due to Step 2 and Step 5 in Stage 2 of Algorithm 5.4. If

ϕ′ is of length k − 1, then Cr(ϕ′) ⊆ C(ϕ′) ⊆ C(ω) and |Cr(ϕ′)| ≤ |C(ω)| = O((k − 1)n). Similarly,

|Cr(ϕ′T ′)| ≤ O(kn).

Before analyzing Step 2, we �rst analyze the complexity of updating the set of reduced consistent

markings using Algorithm 4.4. Given Cr(ϕ′), we want to compute Cr(ϕ′T ′). For any M ∈ Cr(ϕ′),

we �rst need to calculate the set of markings reachable from M in the unobservable subnet,12

which will give us C(ϕ′). Recall the bound on the number of tokens that each place p ∈ Puo can

have for any M ′ ∈ C(ω) in Appendix A, namely 0 ≤ M ′(p) ≤ c1+ c2k, where c1 and c2 are given

in Lemma 7.1. Therefore, the set of markings reachable from anyM ∈ Cr(ϕ′) in the unobservable

subnet can be calculated with complexity O(nuomuo(c1 + c2k + 1)nuo) using the more e�cient

version of Algorithm 7.3 for a set of initial states. After computing C(ϕ′), we compute Cr(ϕ′T ′)

using the procedure in Algorithm 4.4. The complexity is

O(|C(ϕ′)| × |T ′| × (n+ n+ n|Cr(ϕ′T ′)|)),

where the �rst n corresponds to checking if the transition is enabled or not, the second n corre-

sponds to the calculation of the next marking M ′, and the last term corresponds to checking if

M ′ has appeared in Cr(ϕ′T ′) using linear search. The complexity is roughly O(nmk2n). Putting

these results together, we have that the complexity of updating reduced consistent markings is

UpdateComplexity = O(nmk2n) .

As only the update of reduced consistent markings is involved in Step 5, this complexity is also

the complexity of Step 5. In Step 2, the complexity can be expressed as

|Tc| × (UpdateComplexity + |Cr(ϕ′T ′)|n) ,

where the last n refers to the complexity of checking if a reduced consistent marking is weakly

forbidden. The complexity in Step 2 is roughly O(nm2k2n+nmkn) = O(nm2k2n). In summary,

the complexity of one iteration from k− 1 to k is O(nm2k2n). If we start with the empty string,

the cumulative complexity of the online computation up to an observation sequence of length k

is O(nm2k2n+1). Note that the online computational complexity is polynomial in the length k

of the observed sequence of labels, and exponential in the number of places n.

Remark 7.4 Note that there exist Petri nets such that the number of reduced consistent markings

(and basis markings) can increase exponentially in the Petri net size. One example is given

in Fig. 10. In this speci�c Petri net, there are 2n places and 2n transitions. The n source

transitions that are labeled a are observable while the other n transitions are unobservable. If

the observation is a sequence aaa · · · a of length k, then any reduced consistent marking satis�es∑n
i=1M(p1i) = k and M(p2i) = 0 for i = 1, 2, ..., n. It can be veri�ed that the number of

reduced consistent markings is
(
k+n−1
n−1

)
, where

(
k
r

)
= k!

r!(k−r)! is the binomial coe�cient �k choose

12Note that, in De�nition 2.6, Puo ⊆ P . Therefore, strictly speaking, calculating the unobservable reach from

marking M is not exactly the same as calculating all reachable markings from M in the unobservable subnet.

However, for any place p ∈ P \ Puo, the number of tokens does not change in the calculation of the unobservable

reach.

27

(ε)

(ε)

(ε)

(a)

(a)

(a)

p11

p12

p1n

p21

p22

p2n

Figure 10: Example for reduced consistent markings.

r". Therefore, the number of reduced consistent markings is O(kn−1), which is exponential in

the number of places. It can also be veri�ed that any reduced consistent marking for this Petri

net is also a basis marking based on the de�nition in Footnote 7, and that the set of reduced

consistent markings is a set E of minimum cardinality. This example shows that, in general, the

complexity is exponential in Petri net size, and this appears to be unavoidable even when using

the smallest set of markings that can represent the set of consistent markings, as in Eq. (2). In

the next subsection, we will discuss di�erent special types of Petri nets in which the exponential

dependency could potentially be alleviated. �

D. Alleviation of Exponential Dependency on Petri Net Size

In general, the complexity of the online computation is exponential in n, the number of places

in the given Petri net. However, if we impose further assumptions, this exponential dependency

could be alleviated. For example, if the unobservable subnet is acyclic and backward con�ict free

and if the labeling function is the natural projection, then the basis marking is unique as shown

in [17]. Another example is that if the Petri net model is a marked graph and if the labeling

function is the natural projection, then there exists a unique marking which serves as the set

E of minimum cardinality [1]. If we use such a unique marking instead of reduced consistent

markings for supervisor synthesis, then the complexity function could be a linear function of k.

For certain Petri nets with large n, but small nuo (recall that nuo is the cardinality of Puo as

de�ned in De�nition 2.6) and small number of transitions m, the algorithm could be useful under

slightly stronger assumptions: speci�cally, if the unobservable subnet is deadlock structurally

bounded (which is stronger than Assumption A2), the number of markings consistent with ω

of length k is O(kj(l−1)+muo), where j is the number of nondeterministic labels (i.e., nonempty

labels that can be associated with more than one transition), and l is the maximum number of

transitions that can be associated with a nondeterministic label [32]. With this bound, we can

show that the online computational complexity becomes O(nuomuok
nuo+1+nm2k2(j(l−1)+muo)+1)

following the same reasoning as before (note that the exponent 2(j(l− 1) +muo) + 1 is O(m2)).

The values of muo, nuo, j and l are critical in determining the complexity of the algorithm.

28

Notice that for any given positive constant integer C satisfying13

1 ≤ C ≤ ⌊2m
3

+ 1⌋ ,

there exist labeling functions that can make the exponents inO(nuomuok
nuo+1+nm2k2(j(l−1)+muo)+1)

less than or equal to C. More speci�cally, we can construct a labeling function in the following

way:

• There is a nonempty label for any transition t ∈ T ; in other words, muo = nuo = 0 so that

nuo + 1 is 1 and 2(j(l − 1) +muo) + 1 is 2j(l − 1) + 1.

• If we choose j(l − 1) ≤ ⌊C−1
2 ⌋, then 2(j(l − 1) + muo) + 1 = 2j(l − 1) + 1 ≤ C and

nuo + 1 = 1 ≤ C. Note that ⌊C−1
2 ⌋ is a nonnegative integer.

• To guarantee j(l− 1) ≤ ⌊C−1
2 ⌋, we can �rst factorize14 ⌊C−1

2 ⌋ to be C1 ×C2 where C1 and

C2 are both nonnegative integers, and then set

j = C1, and l = C2 + 1 .

If ⌊C−1
2 ⌋ = 0, we set C1 = C2 = 0.

• If j = 0 (i.e., there is no nondeterministic label), then we can construct labeling function

L(t) = t for any t ∈ T . If j ≥ 1, l must be larger than 1 since C2 > 0 (note that if C2 = 0,

j = C1 must be zero). Given j and l, there could be multiple labeling functions which

result in the same j and l. We can construct a speci�c one by associating t1, t2, ..., tl with

label e1, associating tl+2i−1, tl+2i with label e1+i for i = 1, ..., j− 1, and associating ti with

label ti for i = l + 2j − 1, ...,m. Note that l+2j−1 = C2+1+2C1−1 ≤ C−1
2 +2C−1

2 ≤ m.

For example, if C is chosen to be 3, then we can set j to be 1 and l to be 2. The labeling function

constructed according to the above procedure is L(t1) = L(t2) = e1 and L(ti) = ti for i = 3, ...,m.

More generally, we could construct a labeling function as L(ti) = L(tj) = e1 for some i, j ∈
{1, 2, ...,m}, and L(tk) = ek for k ∈ {1, 2, ...,m} \ {i, j}. The implication of the above analysis is

that for Petri nets with large n and large m, there exist sensor con�gurations (namely, labeling

functions) that allow the application of our approach with prescribed computational complexity.

The above construction of sensor con�gurations assumes that there is no unobservable transition.

If we do allow unobservable transitions, we can perform the same analysis except that C cannot

be made as small as 1 (instead, C will be lower bounded by one plus the number of unobservable

transitions).

13The �oor function ⌊x⌋ is the largest integer which is smaller than or equal to x.
14Note that in general the factorization of ⌊C−1

2
⌋ into a pair of factors is not unique. If ⌊C−1

2
⌋ ≥ 1, it can

always be factorized as 1 × ⌊C−1
2

⌋. Every pair of factors can generate a class of labeling functions in the sense

that these labeling functions share the same parameters j and l.

29

References

[1] Z. Achour, N. Rezg, and Xiaolan Xie. Supervisory control of partially observable marked

graphs. IEEE Transactions on Automatic Control, 49:2007�2011, November 2004.

[2] Z. Achour, N. Rezg, and Xiaolan Xie. On the existence of Petri net controller for discrete

event systems under partial observation. In Proc. of the 16th IFAC World Congress 2005,

July 2005.

[3] F. Basile and P. Chiacchio. On the implementation of supervised control of discrete event

systems. IEEE Trans. on Control Systems Technology, 15(4):725 �739, July 2007.

[4] F. Basile, P. Chiacchio, and C. Carbone. Feedback control logic for backward con�ict free

choice nets. IEEE Trans. on Automatic Control, 52(3):387�400, March 2007.

[5] M.P. Cabasino, A. Giua, M. Pocci, and C. Seatzu. Discrete event diagnosis using la-

beled Petri nets. An application to manufacturing systems. Control Engineering Practice,

19(9):989�1001, September 2011.

[6] H. Chen. Control synthesis of Petri nets based on S-decreases. Discrete Event Dynamic

Systems: Theory and Applications, 10:233�249, 2000.

[7] S.-L. Chung, S. Lafortune, and F. Lin. Limited lookahead policies in supervisory control of

discrete event systems. IEEE Transactions on Automatic Control, 37:1921�1935, 1992.

[8] S.-L. Chung, S. Lafortune, and F. Lin. Supervisory control using variable lookahead policies.

Discrete Event Dynamic Systems: Theory and Applications, 4:237�268, 1994.

[9] A. Dideban, M. Zareiee, and H. Alla. Controller synthesis with very simpli�ed linear con-

straints in PN model. In 2nd IFAC workshop on Dependable Control of Discrete Systems,

pages 265�270, Bari, Italy, 2009.

[10] Abbas Didebana and Hassane Alla. Reduction of constraints for controller synthesis based

on safe Petri nets. Automatica, 44:1697�1706, July 2008.

[11] S. Genc and S. Lafortune. Distributed diagnosis of place-bordered Petri nets. IEEE Trans-

actions on Automation Science and Engineering, 4:206�219, April 2007.

[12] H. J. Genrich and E. Stankiewicz-Wiechno. A dictionary of some basic notions of net theory.

Lecture Notes in Computer Science, Vol. 84: Net Theory and Applications, pages 519�535,

1980.

[13] A. Gha�ari, N. Rezg, and Xiaolan Xie. Design of a live and maximally permissive Petri

net controller using the theory of regions. IEEE Transactions on Robotics and Automation,

19:137�142, February 2003.

[14] A. Giua, F. DiCesare, and M. Silva. Generalized mutual exclusion constraints on nets

with uncontrollable transitions. In Proc. of the IEEE Int. Conf. on Systems, Man and

Cybernetics, pages 974�979, October 1992.

30

[15] A. Giua and C. Seatzu. Observability of place/transition nets. IEEE Transactions on

Automatic Control, 47:1424�1437, September 2002.

[16] A. Giua and C. Seatzu. Modeling and supervisory control of railway networks using Petri

nets. IEEE Transactions on Automation Science and Engineering, 5:431�445, July 2008.

[17] A. Giua, C. Seatzu, and D. Corona. Marking estimation of Petri nets with silent transitions.

IEEE Transactions on Automatic Control, 52:1695�1699, September 2007.

[18] M. Heymann and F. Lin. On-line control of partially observed discrete event systems.

Discrete Event Dynamic Systems: Theory and Applications, 4:221�236, 1994.

[19] L. E. Holloway and B. H. Krogh. Synthesis of feedback control logic for a class of controlled

Petri nets. IEEE Transactions on Automatic Control, 35:514�523, May 1990.

[20] L. E. Holloway, B. H. Krogh, and A. Giua. A survey of Petri net methods for controlled

discrete event systems. Discrete Event Dynamic Systems: Theory and Applications, 7:151�

190, 1997.

[21] Hesuan Hu, Mengchu Zhou, and Zhiwu Li. Algebraic synthesis of timed supervisor for

automated manufacturing systems using Petri nets. IEEE Transactions on Automation

Science and Engineering, 7(3):549�557, 2010.

[22] Hesun Hu, Mengchu Zhou, and Zhiwu Li. Supervisor optimization for deadlock resolution

in automated manufacturing systems with Petri nets. IEEE Transactions on Automation

Science and Engineering, 8(4):794�804, 2011.

[23] M. V. Iordache and P. J. Antsaklis. Petri net supervisors for disjunctive constraints. In

Proc. of American Control Conference, pages 4951�4956, 2007.

[24] R. Kumar, H. M. Cheung, and S. I. Marcus. Extension based limited lookahead supervision

of discrete event systems. Automatica, 34:1327�1344, November 1998.

[25] Jiliang Luo and K. Nonami. Approach for transforming linear constraints on Petri nets.

IEEE Transactions on Automatic Control, 56:2751�2765, December 2011.

[26] J. O. Moody and P. J. Antsaklis. Supervisory Control of Discrete Event Systems Using Petri

Nets. Kluwer Academic Publishers, Norwell, MA, 1998.

[27] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77:541�580, April 1989.

[28] P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete event systems.

SIAM J. Control and Optimization, 25:1202�1218, September 1987.

[29] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of

the IEEE, 77:81�98, January 1989.

31

[30] Y. Ru, M. P. Cabasino, A. Giua, and C. N. Hadjicostis. Supervisor synthesis for discrete

event systems with arbitrary forbidden state speci�cations. In Proc. of the 47th IEEE Conf.

on Decision and Control, pages 1048�1053, December 2008.

[31] Y. Ru and C. N. Hadjicostis. Fault-tolerant supervisory control of discrete event systems

modeled by bounded Petri nets. In Proc. of 2007 American Control Conference, pages

4945�4950, July 2007.

[32] Y. Ru and C. N. Hadjicostis. Bounds on the number of markings consistent with label

observations in Petri nets. IEEE Transactions on Automation Science and Engineering,

6:334�344, April 2009.

[33] Y. Ru, W. Wu, H. Su, and J. Chu. Supervisor synthesis for bounded Petri nets based on a

transformation function. In Proc. of 2004 American Control Conference, pages 4493�4498,

June 2004.

[34] G. Stremersch. Supervision of Petri Nets. Kluwer Academic Publishers, 2001.

[35] G. Stremersch and R. K. Boel. Structuring acyclic Petri nets for reachability analysis and

control. Discrete Event Dynamic Systems: Theory and Applications, 12:7�41, 2002.

[36] W. M. Wonham. Supervisory Control of Discrete-Event Systems. Toronto, Canada, 2009.

[37] E. Yamalidou, J. O. Moody, P. J. Antsaklis, and M. D. Lemmon. Feedback control of Petri

nets based on place invariants. Automatica, 32:15�28, January 1996.

[38] M. Zareiee, A. Dideban, and P. Nazemzadeh. From forbidden states to linear constraints.

In World Academy of Science, Engineering and Technology, pages 167�173, 2011.

[39] L. Zhang and L. E. Holloway. Forbidden state avoidance in controlled Petri nets under

partial observation. In Proc. of the 33rd Annual Allerton Conference on Communications,

Control, and Computing, pages 146�155, October 1995.

32

