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Abstract

In this paper we propose an approach to the diagnosis of Petri nets in a decentralized

setting that combines the decentralized scheme for automata presented by Debouk et al. with

the diagnosis approach for Petri nets based on the notion of basis markings and justi�cations

presented by some of the authors of this paper. The decentralized architecture that we use

is composed by a set of sites communicating their diagnosis information with a coordinator

that is responsible for detecting the occurrence of failures in the system. In particular, we

de�ne three protocols that di�er for the amount of information exchanged between the local

sites and the coordinator, and the rules adopted by the coordinator to compute the global

diagnosis states. Finally, we prove that, as in the case of automata, diagnosability is strictly

related to the presence of failure ambiguous strings.
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1 Introduction

In this paper we propose an approach to the diagnosis of Petri nets (PNs) in a decentralized

setting that combines the decentralized scheme for automata by Debouk et al. in [12] with the

diagnosis approach for PNs by Cabasino et al. in [7, 8]. A detailed comparison between the

approach presented in this paper and the approach by Debouk et al. is reported in the next

section.

Exploiting the classical decentralized diagnosis architecture, we assume that the system is mon-

itored by a set of sites. Each site knows the structure of the net and the initial marking but

observes the evolution of the system with its own mask, i.e., the set of observable transitions

may be di�erent for each site. Diagnosis is locally performed using the approach founded on

basis markings that we previously introduced in [7, 8]. The main feature of such an approach

is that of avoiding an exhaustive enumeration of the set of sequences that may have �red given

the actual observation. It is also based on the de�nition of four diagnosis states, each of which is

represented by an integer number from 0 to 3, depending on the degree of alarm. For instance, 3

is used to capture the fact that the fault has certainly occurred, whereas 0 captures the fact that

the fault has not occurred. Using its own observation, each site computes the diagnosis state

and, according to a given protocol, communicates it, eventually with some other information, to

the coordinator who calculates global diagnosis states. In particular, three di�erent protocols

are de�ned that di�er for the amount of information exchanged between the coordinator and the

local sites, and the local sites and the coordinator. In all cases an important property is proved,

namely that the coordinator never produces false alarms.

Finally, we introduce the de�nition of failure ambiguous strings and show that the absence of

such a kind of sequences is a su�cient condition for the diagnosability of a given net system

in a decentralized setting, regardless of the considered protocol. We also show that, for one of

these protocols, the absence of failure ambiguous strings is also a necessary condition for the

diagnosability in a decentralized setting.

The paper is organized as follows: in Section 2 a literature review is presented. In Section 3 some

preliminary notions on labeled PNs are recalled, while in Section 4 the problem of decentralized

diagnosis is introduced and discussed for PNs. Section 5 summarizes de�nitions and results on

centralized diagnosis for PNs. Sections 6 and 7 contain the main results on decentralized diag-

nosis of PNs and on decentralized diagnosability analysis. Finally Section 8 contains conclusive

remarks.

2 Literature review

In this paper we deal with the problem of decentralized fault diagnosis of discrete event systems

using PNs. Solving a problem of diagnosis in the discrete event systems framework means that

we associate with each observed string of events a diagnosis state, such as �normal� or �faulty� or

�uncertain�. In the literature a lot of contributions have been presented in the centralized setting
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[1, 7, 9, 11, 13, 14, 16, 17, 19, 20, 22].

Due to the intrinsically distributed nature of real systems, several distributed diagnosis tech-

niques, that take advantage of the natural decomposition of modular systems, have been studied

both in the automata [3, 10, 12, 23, 21, 24] and in the PNs setting [2, 15, 18].

In particular, focusing on PNs, in [2] Benveniste et al. solve a problem of alarm supervision

in telecommunication networks using an unfolding approach and restricting their attention to

safe PNs. In [15] Genc and Lafortune address the problem of detecting and isolating faults or

other signi�cant events in the behavior of a modular dynamic system that is modeled as a set

of interacting PN modules. Faults are modeled by unobservable events and the common places

capture coupling of various system components. The objective is to diagnose the occurrence of

fault events based on the sequence of observed events and on the structure of the respective PN

modules and their coupling by common places.

In [18] Jiroveanu and Boel propose an algorithm for the model based design of a distributed

protocol for fault detection and diagnosis for very large systems. The overall process is modeled

as di�erent time PN models that interact with each other via guarded transitions that become

enabled only when certain conditions are satis�ed. Di�erent local agents receive local observation

as well as messages from neighboring agents. Each agent estimates the state of the part of

the overall process for which it has a model and from which it observes events by reconciling

observations with model based predictions. The proposed algorithms use a limited information

exchange between agents and can quickly ascertain whether and where a fault occurred and

whether or not some components of the local processes have operated correctly. The algorithms

they derive allow each local agent to generate a preliminary diagnosis prior to any communication

and they show that after the communications among agents the diagnosis results are the same

as in the centralized case.

Both the problem formulation and the objectives considered in [2] are signi�cantly di�erent from

those in this paper. More strict analogies exist between our approach and the approaches of [15]

and [18]. However, also in this case there exists a main di�erence that can be summarized as

follows. In these works authors assume the PN is divided into di�erent sub-modules or sites:

each site is modeled by a di�erent subset of places and transitions and can interact with the

other sites via a restricted interface consisting of bordered places [15] or guard transitions [18].

On the contrary, in our approach each site has the perfect knowledge of the whole PN system

but observes the system with a di�erent observation mask and no special interfaces are required.

Thus since the problem statement is di�erent it is not appropriate to talk about advantages or

disadvantages of [18] and [15] with respect to (wrt) this paper. On the other hand, a comparison

can be done with the work of Debouk et al. in [12] with which this work is strongly connected.

Debouk et al. in [12] have presented a general approach for decentralized diagnosis modeled

as automata. They de�ne three protocols � that we call D3, D2, D1 � each one characterized

by a di�erent amount of information exchanged between coordinator and local sites (the info is

minimal for protocol D3 and maximal for protocol D1). Inspired by their work we consider a

similar setting using PNs. Protocol D3 is very similar to our Protocol 1 because both require
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that a local site communicates to the coordinator only when a fault is detected. On the contrary,

Protocols 2 and 3 are di�erent from Protocols D2 and D1 because the information that coor-

dinator and sites exchange is based on the structure of the PN. However, while in Protocol D1

each site communicates to the coordinator the corresponding state of its extended diagnoser and

its unobservable reach (then an exhaustive enumeration of the possible states) for each observed

event, in our Protocol 3 sites communicate to the coordinator only in some cases (when diagnosis

states 2 and 3 are reached) and the information exchanged is a set of vectors (set of j-vectors).

The contribution of this work is the application of a centralized diagnosis algorithm for PNs, that

we propose in [7], to a decentralized setting. This requires to de�ne the protocols on the basis

of basis markings and justi�cations, that are the key notions of our approach. The advantages

of our approach wrt the one of Debouk et al. is that we do not require the enumeration of the

state space and we can deal with systems having an in�nite state space. The disadvantage is

that our approach is based on some assumptions that limit the �eld of applicability.

3 Background on labeled Petri nets

A Petri net is a structure N = (P, T, Pre, Post), where P is the set of m places, T is the set of

n transitions, Pre : P ×T → N and Post : P ×T → N are the pre and post incidence functions

that specify the arcs. The function C = Post− Pre is called incidence matrix.

A marking is a vector M : P → N that assigns to each place a nonnegative integer number of

tokens; the marking of a place p is denoted M(p). A net system ⟨N,M0⟩ is a net N with initial

marking M0.

A transition t is enabled at M i� M ≥ Pre(·, t) and may �re yielding the marking M ′ =

M +C(·, t). The notation M [σ⟩ is used to denote that the sequence of transitions σ = t1 . . . tk is

enabled at M ; moreover we write M [σ⟩M ′ to denote the fact that the �ring of σ from M yields

to M ′. The set of all �nite sequences that are enabled at the initial marking M0 is denoted

L(N,M0), i.e., L(N,M0) = {σ ∈ T ∗ | M0[σ⟩}. Given a sequence σ ∈ T ∗ we write t ∈ σ to

denote that a transition t is contained in σ.

The set of all sequences that are enabled at the initial marking M0 is denoted L(N,M0). Given

a sequence σ ∈ T ⋆, we call π : T ⋆ → Nn the function that associates with σ a vector y ∈ Nn,

named �ring vector, such that y(t) = k if transition t is contained k times in σ. A �ring vector y

is said minimal if there does not exist another �ring vector y′ such that π(y′) � π(y), i.e., such

that each entry of y is less than or equal to the corresponding entry of y′ and there exists at

least one entry of y that is strictly less than the corresponding entry of y′.

A marking M is said to be reachable in ⟨N,M0⟩ i� there exists a sequence σ such that M0[σ⟩M .

The set of all markings reachable from M0 de�nes the reachability set of ⟨N,M0⟩ and is denoted

R(N,M0). Finally we de�ne PR(N,M0) the potentially reachable set, i.e., the set of all markings

M ∈ Nm for which there exists a vector y ∈ Nn that satis�es the state equation M = M0+C · y.
It holds that R(N,M0) ⊆ PR(N,M0).
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A PN having no directed cycles is called acyclic. For such nets if the vector y ∈ Nn satis�es the

inequality M0 + C · y ≥ 0, there exists a sequence σ �rable from M0 and such that the �ring

vector associated with σ is equal to y. This implies that for acyclic nets R(N,M0) = PR(N,M0).

A net system ⟨N,M0⟩ is said to be bounded if there exists a positive constant k such that for

all M ∈ R(N,M0), M(p) ≤ k. If such is not the case, namely if the number of tokens in one or

more places can grow inde�nitely, then the PN system is unbounded.

A labeling function L : T → L ∪ {ε} assigns to each transition a symbol from a given alphabet

L or the empty word ε. We de�ne L−1(w) = {σ ∈ L(N,M0) : L(σ) = w} the inverse operator

of L. The set of transitions sharing the same label e is denoted Te. Transitions whose label is

ε are called silent or unobservable and are denoted by the set Tu. The set To = T \ Tu is the

set of observable transitions, i.e., when an observable transition �res we observe its label. We

denote Cu (resp. Co) the restriction of the incidence matrix to Tu (resp. To). We de�ne the

projection over Tx, for x ∈ {u, o}, Px : T ∗ → T ∗
x as: (i) Px(ε) = ε; (ii) for all σ ∈ T ∗ and t ∈ T ,

Px(σt) = Px(σ)t if t ∈ Tx, and Px(σt) = Px(σ) otherwise. Given a language K ⊆ T ∗, we denote

K/σ the post-language of K after σ, i.e., K/σ = {σ′ ∈ T ∗ | σσ′ ∈ K}.

Finally, given a net N = (P, T, Pre, Post) and a subset T ′ ⊆ T of its transitions, we de�ne the

T ′-induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′), where Pre′ and Post′ are the

restrictions of Pre and Post to T ′, i.e., N ′ is the net obtained from N removing all transitions

in T \ T ′. We write that N ′ ≺T ′ N .

4 Problem statement

We model anomalous or faulty behavior using the set of unobservable transitions Tf ⊆ Tu. The

set Tf includes all fault transitions and is further partitioned into r di�erent sets T i
f , where

i ∈ F = {1, . . . , r}, that model di�erent fault classes. As in most of the literature on this topic,

we assume that the fault model is known, namely we know the net structure both of the fault-free

and of the faulty system. The transition set Treg = Tu \ Tf represents the set of unobservable,

but regular, transitions, i.e., those transitions to which a sensor is not associated but that do not

describe a fault occurrence. Let

L̄ : T → L ∪ {ε} (1)

be the labeling function associated with the centralized system, namely the system that is able

to observe all labels associated with transitions in To.

The problem of fault diagnosis can be seen as the problem of detecting the �ring of any (unob-

servable) fault transition in Tf , on the basis of the observed behavior, i.e., the sequence of labels

of observable transitions that have �red. In this work we explore the possibility of performing

diagnosis using a decentralized architecture as depicted in Fig. 1. The system is monitored by

a set K = {1, . . . , ν} of sites. Each site has a complete knowledge of the net structure and of

the initial marking, but observes the evolution of the system using its own observation mask.

Di�erent sites have di�erent observation masks. In particular, for each site j ∈ K, the set of
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Figure 1: The decentralized diagnosis architecture.

locally observable transitions is the set To,j ⊆ To. Any centrally observable transition is observed

by at least one site, i.e.,
∪

j∈K To,j = To. The set of locally unobservable transitions is de�ned as

Tu,j = T \ To,j . (2)

For all j ∈ K, Lj ⊆ L denotes the alphabet of the j-th site, i.e., the set of labels observable by

the j-th site, and

Lj(t) =

{
L̄(t) if t ∈ To,j

ε otherwise
(3)

is the labeling function associated with the j-th site. Finally, wj = Lj(σ) denotes the word of

events in Lj associated with the sequence σ by the j-th site.

As shown in Fig. 1, on the basis of its own observation wj = Lj(σ) (j ∈ K) each site performs a

local diagnosis. In particular, for each fault class i ∈ F it computes a di�erent diagnosis state

∆j,i (see the following De�nition 3) and depending on this, it exchanges information with a

coordinator C according to a given protocol. The coordinator fuses the information coming from

the di�erent sites according to the considered protocol and infers on the occurrence of faults.

More precisely, for each fault class i ∈ F it computes a diagnosis state ∆̄i.

In this paper we explore the decentralized architecture and investigate the issue of diagnosability

under the following assumptions.

• (A1) The Tu,j-induced subnet Nu,j is acyclic for any j ∈ K.

• (A2) The coordinator C knows which transitions can be observed by each site, i.e., it

knows the sets To,j for any j ∈ K.

• (A3) There is reliable communication between the local sites and the coordinator, i.e., all

messages sent from a local site are received by the coordinator, and viceversa, correctly

and in order.

• (A4) For each label e there exists at least one site that can observe all transitions whose

label is e.
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• (A5) Let w be a sequence of observable events generated by the PN, where such events

are centrally observable. Every site must have received the projection of w (on its local

alphabet) before any polling is performed by the coordinator.

Assumption A1, that is analogous to the classical hypothesis in the theory of automata where

no cycle of unobservable events can appear, allows us to: (a) study the reachability of the

unobservable subnet with the state equation; (b) give an easy algorithm for the computation

of the �ring vectors relative to justi�cations (see [7] for more details). Assumption A2 de�nes

which information the coordinator has and it is necessary for the polling strategy of Protocols 2

and 3. Assumption A3 assures that the messages sent among the coordinator and the sites are

not lost and are orderly received. Assumptions A4 and A5 are necessary for Protocols 2 and

3: assumption A4 guarantees the existence of a site that knows the exact number of times a

given observable event has occurred; assumption A5 guarantees that the information sent and

requested by the coordinator and by the local sites are relative to the same word w.

We de�ne Ψ(T ′) = {σt′ ∈ L(N,M0) : t
′ ∈ T ′}, i.e., the set of all �ring sequences in L(N,M0)

that end with a transition t′ ∈ T ′. We consider the following de�nition of diagnosability of PNs

inspired by the de�nition of diagnosability for (regular) languages introduced in [22].

De�nition 1 A labeled PN system ⟨N,M0⟩ having no deadlock after the occurrence of any tran-

sition tf ∈ T i
f , for i ∈ {1, . . . , r}, is diagnosable wrt the fault class T i

f if

∀σ′ ∈ Ψ(T i
f ), ∃K ∈ N, ∀σ′′ ∈ L(N,M0)/σ

′, (4)

|σ′′| ≥ K ⇒ ∀σ ∈ L−1(L(σ′σ′′)), ∃tf ∈ T i
f : tf ∈ σ

A labeled PN system ⟨N,M0⟩ is said to be diagnosable if it is diagnosable wrt all fault classes.

�

In words, given a �ring sequence σ′ that ends in a fault transition, let σ′′ be any su�ciently long

continuation of it, i.e., |σ′′| ≥ K, where K depends on σ′. A labeled PN system ⟨N,M0⟩ having
no deadlock after the occurrence of any transition tf ∈ T i

f , for i ∈ {1, . . . , r}, is diagnosable

wrt the fault class T i
f if any �ring sequence σ belonging to the language and having the same

observable projection of σ′σ′′ contains a fault transition in T i
f . This implies that along any

continuation σ′′ of σ′ the occurrence of a fault transition in T i
f can be detected in a �nite number

of transitions �rings (at most K).

5 Basic de�nitions and results on centralized diagnosis

In this section we brie�y recall the diagnosis procedure we de�ned in [7, 8] in the centralized

setting, that is used by the di�erent sites to perform diagnosis locally. As in the previous section,

T = To ∪ Tu where Tu = Treg ∪ Tf , and the observations coincide with the labels associated with

transitions in To. In particular, we �rst provide some preliminary de�nitions.
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• Let w = L(σ) be the word of events associated with the sequence σ. We de�ne S(w) =

{σ ∈ L(N,M0) | L(σ) = w} the set of sequences consistent with w ∈ L∗. In plain words,

given an observation w, S(w) is the set of sequences that may have �red.

• Given a word w ∈ L∗, let σo ∈ T ∗
o be a sequence of observable transitions such that

L(σo) = w. A basis marking Mb is a marking reached from M0 with the �ring of σo and of

all unobservable transitions whose �ring is strictly necessary to enable w. Such a sequence

σu of unobservable transitions interleaved with σo whose �ring enables σo and whose �ring

vector is minimal is called justi�cation. Since in general σo is not unique and more than

one σu may be associated with each σo, then the set of justi�cations of w is not a singleton.

• We denote
Ĵ (w) =

{ (σo, σu), σo ∈ T ∗
o , L(σo) = w, σu ∈ T ∗

u |
[∃σ ∈ S(w) : σo = Po(σ), σu = Pu(σ)] ∧
[̸ ∃σ′ ∈ S(w) : σo = Po(σ

′),

σ′
u = Pu(σ

′) ∧ π(σ′
u) � π(σu)]}

the set of pairs (sequence σo ∈ T ∗
o with L(σo) = w - corresponding justi�cation of w). Let

Ŷmin(M0, w) =

{(σo, y), σo ∈ T ∗
o ,L(σo) = w, y ∈ Nn |

∃(σo, σu) ∈ Ĵ (w) : π(σu) = y}

be the set of pairs (sequence σo ∈ T ∗
o with L(σo) = w, corresponding j-vector). In simple

words, Ĵ (w) is the set of pairs whose �rst element is the sequence σo ∈ T ∗
o labeled w and

whose second element is the �ring vector of the corresponding sequence of unobservable

transitions interleaved with σo whose �ring enables σo and whose �ring vector is minimal.

The �ring vectors of these sequences are called j-vectors. Finally, let us denote Y the set

of j-vectors for the observed word w.

Example 2 Let us consider the PN in Fig. 2, where the set of observable transitions is To =

{t1, t2, t3} and the set of unobservable transitions is Tu = {ε4, ε5, ε6, ε7, ε8}. The labeling function
is L(t1) = a and L(t2) = L(t3) = b.

Let w = ab be the observed word. The set of sequences consistent with the actual observation is

S(w) = {ε4t1t2, ε4t1ε6ε7ε8t3, ε4t1t2ε4, ε4t1t2ε5, ε4t1t2ε5ε6, ε4t1t2ε5ε6ε7, ε4t1t2ε5ε6ε7ε8, ε4t1ε6ε7ε8t3ε4, ε4t1ε6ε7ε8t3ε5,
ε4t1ε6ε7ε8t3ε5ε6, ε4t1ε6ε7ε8t3ε5ε6ε7, ε4t1ε6ε7ε8t3ε5ε6ε7ε8}. The set of pairs (sequence σo ∈ T ∗

o

with L(σo) = w - corresponding justi�cation of w) is Ĵ (w) = {(t1t2, σ1), (t1t3, σ2)} = {(t1t2, ε4), (t1t3, ε4ε6ε7ε8)}.
Note that, σ3 = ε4ε4, σ4 = ε4ε5, σ5 = ε4ε5ε6, σ6 = ε4ε5ε6ε7, σ7 = ε4ε5ε6ε7ε8, σ8 = ε4ε6ε7ε8ε4,

σ9 = ε4ε6ε7ε8ε5, σ10 = ε4ε6ε7ε8ε5ε6, σ11 = ε4ε6ε7ε8ε5ε6ε7 and σ12 = ε4ε6ε7ε8ε5ε6ε7ε8 are not
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Figure 2: The PN system considered in Examples 2 and 4.

justi�cations since their �ring vector is not minimal. As an example,

π(σ1) =
[

0 0 0 1 0 0 0 0
]T

�

t1 t2 t3 ε4 ε5 ε6 ε7 ε8

π(σ3) =
[

0 0 0 2 0 0 0 0
]T

.

t1 t2 t3 ε4 ε5 ε6 ε7 ε8

The set of pairs j-vectors (sequence σo ∈ T ∗
o with L(σo) = w, corresponding j-vector) is

Ŷmin(M0, w) = {(t1t2, [1 0 0 0 0]T ), (t1t3, [1 0 1 1 1]T )} and they all lead to the same basis

marking M0 = [2 0 0 0 0 0]T . �

Let us now recall the notions of diagnoser and diagnosis states.

De�nition 3 A diagnoser is a function ∆ : L∗ × {T 1
f , T

2
f , . . . , T

r
f } → {0, 1, 2, 3} that associates

with each observation w and each fault class T i
f , i = 1, . . . , r, a diagnosis state.

• ∆(w, T i
f ) = 0 if for all σ ∈ S(w) and for all tf ∈ T i

f it holds tf ̸∈ σ.

In such a case the i-th fault cannot have occurred, because none of the sequences consistent

with the observation contains fault transitions in T i
f .

• ∆(w, T i
f ) = 1 if:

1. there exist σ ∈ S(w) and tf ∈ T i
f such that tf ∈ σ but

2. for all (σo, σu) ∈ Ĵ (w) and for all tf ∈ T i
f it holds that tf ̸∈ σu.

In such a case a fault transition of the i-th class may have occurred but is not contained in

any justi�cation of w.

• ∆(w, T i
f ) = 2 if there exist (σo, σu), (σ

′
o, σ

′
u) ∈ Ĵ (w) such that

1. there exists tf ∈ T i
f such that tf ∈ σu;

2. for all tf ∈ T i
f , tf ̸∈ σ′

u.
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In such a case a fault transition in the i-th class is contained in at least one (but not in

all) justi�cation of w.

• ∆(w, T i
f ) = 3 if for all σ ∈ S(w) there exists tf ∈ T i

f such that tf ∈ σ.

In such a case the i-th fault must have occurred, because all �rable sequences consistent

with the observation contain at least one fault transition in the i-th class. �

Note that we associate a diagnosis state equal to 1 when the fault may have occurred but it is

not contained in any justi�cation of the considered word, while we associate a diagnosis state

equal to 2 when the fault is contained in at least one (but not all) justi�cation of the considered

word. A systematic procedure has been given in [7, 8] to compute the above diagnosis states

that is not recalled here for the sake of brevity.

Example 4 Let us consider again the PN in Fig. 2, where Tf = {ε5, ε7}. Let w = a. In such

a case it is ∆(w, Tf ) = 1. In fact, Ĵ (a) = {(t1, ε4)} but there exists σ = ε4t1ε6ε7ε8 ∈ S(a)
containing the fault ε7. Finally, let w = ab. In such a case it is ∆(w, Tf ) = 2. In fact, as shown

in Example 2, the justi�cations of ab are: σ1 = ε4, that does not contain fault transitions and

σ2 = ε4ε6ε7ε8 that contains ε7 ∈ Tf . �

6 Decentralized diagnosis

In this section we introduce three di�erent protocols to solve the decentralized diagnosis problem

introduced in Section 4 [4, 5]. In the following we denote ∆∗
i the diagnosis state relative to the

i-th fault class computed using the centralized approach with set of observable transitions To

summarized in the previous section, that is assumed as a target.

6.1 Diagnosis under Protocol 1

Protocol 1 is based on the following very simple rules illustrated in Algorithm 5.

Algorithm 5 [Algorithm for Protocol 1]

1. Each site j ∈ K:
1.a. sets wj = ε;

1.b. computes its diagnosis state ∆(wj , T
i
f ) for all i ∈ F .

2. The diagnosis state of the coordinator ∆̄i relative to

each T i
f , for all i ∈ F , is initially unde�ned.

3. Wait until a new transition t ∈ To �res.

4. Each site j ∈ K:
4.a. sets w′

j = wj and wj = w′
jLj(t);

4.b. computes its diagnosis state ∆j,i = ∆(wj , T
i
f )

for all i ∈ F .
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4.c. If ∆j,i = 3 and ∆j,i > ∆(w′
j , T

i
f ) for some i ∈ F ,

then transmits to the coordinator its diagnosis state.

5. If the coordinator receives a diagnosis state ∆j,i = 3

from any site j ∈ K, it sets ∆̄i = 3 (fault).

6. Go to step 3.

�

A decentralized diagnoser using Protocol 1 satis�es the following important property.

Proposition 6 Under assumptions A1 and A3 the coordinator based on Protocol 1 never pro-

duces false alarms, namely if ∆̄i = 3, then ∆∗
i = 3 as well.

Proof By assumption A3, if the coordinator diagnosis state is ∆̄i = 3, it means that there exists

at least one site j ∈ K such that ∆j,i = 3. Now, by eq. (2) it is Tu,j ⊇ Tu. As a consequence,

all the justi�cations that are admissible for the centralized diagnoser are also admissible for the

j-th site. However, there may exist other justi�cations that are admissible for the j-th site

while they are not admissible for the centralized diagnoser. This implies that if ∆j,i = 3 then

all the justi�cations computed by the j-th site contain fault transitions in T i
f , then for sure

any subset of such justi�cations (including the set of justi�cations computed by the centralized

diagnoser) contains fault transitions in T i
f , thus proving the statement. Note that assumption

A1 is necessary for the computation of the justi�cation (see [7]). �

It is important to note that it may happen that the centralized diagnosis state is ∆∗
i = 3, while

the coordinator under Protocol 1 is silent because the diagnosis state of all the sites are equal to

2 wrt fault class T i
f .

Example 7 Let us consider the PN system in Fig. 3 containing only one fault transition tf .

Assume that the diagnosis is performed according to Protocol 1 by two sites whose sets of

observable transitions are To,1 = {t1, t4, t5} and To,2 = {t2, t3, t5}, respectively. Thus, the sets of
observable labels (alphabets) are equal to L1 = {a, c} and L2 = {b, c}, respectively.

Assume that the sequence tf t3t4t
k
5 �res, where k is an arbitrary integer number.

A centralized diagnoser whose alphabet is L = {a, b, c} observes the word w = back that has a

unique justi�cation σu = tf . Thus its diagnosis state is set equal to 3.

The word observed by site 1 is w1 = ack to which correspond two di�erent justi�cations σ′
u,1 =

tf t3 and σ′′
u,1 = t2, one containing the fault and the other one not. Thus its diagnosis state is set

equal to 2.

Similarly, the word observed by site 2 is w2 = bck to which correspond two di�erent justi�cations,

one containing the fault and the other one not, namely, σ′
u,2 = tf t4 and σ′′

u,2 = t1. Thus its

diagnosis state is set equal to 2 as well.

According to Protocol 1 the two sites remain silent so the coordinator does not detect the fault.

�
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Figure 3: The PN system considered in Example 7.

Let us now discuss diagnosability. From Proposition 6 the following result obviously holds.

Corollary 8 If a system is diagnosable in the decentralized setting (regardless of the used pro-

tocol), then it is also diagnosable in the centralized setting. �

Clearly, the reverse of the implication does not hold. However, in the case of diagnosis performed

using Protocol 1 the following result can be proved. We address to Theorem 11 in Section 6.4 of

[12] for the proof of this result.

Proposition 9 The system is diagnosable wrt the decentralized approach based on Protocol 1 i�

for every fault class i ∈ F there exists at least one site j ∈ K such that the system is diagnosable

by the j-th site wrt that fault class.

6.2 Diagnosis under Protocol 2

Protocol 2 is a generalization of Protocol 1. It is still based on the idea that a site communicates

its diagnosis state if and only if it is equal to 3, otherwise it remains silent. However, in this

case it also transmits its set of j-vectors. On the basis of this information, the coordinator polls

a certain number of sites and makes a re�nement of the set of j-vectors. Such a re�nement is

then used by local sites to recompute their diagnosis states. This may lead to an improvement

of the quality of the diagnosis achieved by the coordinator.

To de�ne in a clear and concise way such a protocol, let us introduce some preliminary de�nitions.

• Let Ke = {k ∈ K | ∀t ∈ T : L(t) = e ⇒ t ∈ Tk,o} be the set of sites (by assumption A4 this

set is never empty) that are capable of observing all transitions labeled e.

• Given a site j and a set of j-vectors Yj ,

I(j, Yj) = {e ∈ L | ∃ y ∈ Yj ∧ ∃ t ∈ T \ To,j :

y(t) > 0 ∧ L(t) = e}

is the set of labels relative to transitions that appear in at least a j-vector of the j-th

module.

• Let |wk|e be the number of occurrences of label e in the observation wk.

12



• Given an observation wk from site k, a label e, and a j-vector y,

βk(wk, e, y) = |wk|e −
∑

t:L(t)=e

y(t)

is the di�erence between the number of times the site k has observed e and the number of

times a transition labeled e appears in y.

Based on the above de�nitions, we can summarize the main steps of the decentralized procedure

based on Protocol 2 with the following algorithm. The idea beyond the algorithm is that some

justi�cations of a site transmitted to the coordinator can be confuted with the knowledge of

the information of other sites. In particular, let consider the re�nement of Yj . If Yj contains a

j-vector that assumes a certain number of occurrences of e, but this number is not consistent

with the observation of a site that is capable of observing e, then such a justi�cation is certainly

unfeasible. Therefore, if βk(wk, e, y) < 0 for a certain label e and a certain j-vector y ∈ Yj ,

then y should be removed from Yj . In fact, this means that the justi�cation relative to the

j-vector y assumes a number of occurrences of e that is greater than the real number, that is

exactly known by the k-th site. On the contrary, if βk(wk, e, y) ≥ 0 it means that the j-vector

y is compatible with the observation of the k-th site. In particular, if βk(wk, e, y) = 0 it means

that the justi�cation contains the same number of occurrences of label e as those observed by

site k. If βk(wk, e, y) > 0 it means that the justi�cation relative to y does not contain all the

occurrences of e; thus the rest of transitions labeled e, up to the value |wk|e, have �red after

the justi�cation and the observation wj . Finally, in the formulation of the algorithm we assume

that a new transition cannot �re until the procedure of communication and polling among the

coordinator and the sites is ended.

Algorithm 10 [Algorithm for Protocol 2]

1. Each site j ∈ K:
1.a. sets wj = ε;

1.b. computes its diagnosis state ∆(wj , T
i
f ) for all i ∈ F .

2. The diagnosis state ∆̄i of the coordinator relative to

each T i
f , for all i ∈ F , is initially unde�ned.

3. Wait until a new transition t ∈ To �res.

4. Each site j ∈ K:
4.a. sets w′

j = wj and wj = w′
jLj(t);

4.b. computes its diagnosis state ∆j,i = ∆(wj , T
i
f )

for all i ∈ F .

4.c. If ∆j,i = 3 and ∆j,i > ∆(w′
j , T

i
f ) for some i ∈ F ,

then transmits to the coordinator its diagnosis state

and its set of j-vectors Yj .

5. Let K′ ⊆ K be the set of all sites that have transmitted

their diagnosis states to the coordinator in step 4.c.

For all i ∈ F the coordinator sets ∆̄i = 3 if at step 4.c

it has received a diagnosis state ∆j,i = 3

13



from some j ∈ K′.

6. Let W be a row vector having as many entries

as the number of labels in L̄ and let initially set Nan

each entry in W.

7. For each site j ∈ K′:

7.a. the coordinator computes I(j, Yj);
7.b. for each label e ∈ I(j, Yj)

7.b.i. If the entry of W corresponding to e is

equal to Nan, the coordinator polls one site

k ∈ Ke to know the value of |wk|e and stores

this number in the corresponding entry of W;

7.b.ii. If βk(wk, e, y) < 0 for a vector y ∈ Yj ,

then the coordinator removes the vector y

from the set of j-vectors Yj relative to the

j-th site.

7.b.iii. As a result of this process of re�nement,

the coordinator computes a new set Y ′
j that is

communicated to the j-th site.

7.b.iv. The j-th site recomputes its diagnosis states

according to the new set Y ′
j and if some of

them are equal to 3, communicates them to the

coordinator that sets the corresponding ∆̄i

equal to 3.

8. Go to step 3.

�

Note that the vector W ensures that for any label e ∈ I(j, Yj) no more than one polling is done

for a given sequence of transitions �ring.

The re�nement process on which Protocol 2 is based has in general positive e�ects on diagnosis

as shown by the following example.

Example 11 Let us consider the PN system in Fig. 4. Assume that there are two fault classes:

T 1
f = {tIf,1, tIIf,1}, T 2

f = {tf,2}.

Assume that the net is locally diagnosed by two sites whose sets of observable transitions are

To,1 = {t3, t4, t9} and To,2 = {t1, t2, t5, t6}, respectively. Assume that L1 = {a, c} and L2 = {b},
thus Ka = {1}, Kb = {2} and Kc = {1}.

If no transition �res we have σ = ε, thus w = ε. For the �rst site ∆1,1 = 1, relative to the �rst

fault class, ∆1,2 = 1, relative to the second fault class, because at initial marking the sequence

tIf,1t1tf,2 of unobservable transitions may have �red. On the other hand, ∆2,1 = 1 and ∆2,2 = 0,

because no sequence of unobservable transitions enabled at the initial marking contains the fault

transition tf,2. Thus no site communicates to the coordinator.
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Figure 4: The PN system considered in Example 11.

Now let σ = tIf,1t1, thus w = b. The �rst site has w1 = ε, while the second site has w2 = b. Then,

as at the previous step ∆1,1 = ∆1,2 = 1, while for the second site ∆2,1 = 3 and ∆2,2 = 1. Site 2

transmits ∆2,1 = 3 to the coordinator together with its set of j-vectors: Y2 = {y′2, y′′2}, where y′2
is the �ring vector relative to σ′

u,2 = tIf,1, while y′′2 is the �ring vector relative to σ′′
u,2 = t4t

II
f,1.

Since I(2, Y2) = {a} and Ka = {1}, the coordinator polls site 1 to know the number of symbols a

it has observed. Since |w1|a = 0, then β1(w1, a, y
′′
2) = 0−1 < 0. It means that j-vector y′′2 can be

confuted and removed from Y2. The re�ned set of j-vectors is Y ′
2 = {y′2} and it is communicated

to site 2. There is no change in the diagnosis state, however this re�nement will allow site 2 to

detect the fault of the second fault class at the next observation.

Finally let σ = tIf,1t1tf,2t2, thus w = bb. It is w1 = ε and w2 = bb. Then, again ∆1,1 = ∆1,2 = 1,

while for the second site ∆2,1 = 3 and ∆2,2 = 3. Site 2 transmits ∆2,1 = ∆2,2 = 3 to the

coordinator together with its set of j-vectors: Y2 = {y′′′2 }, where y′′′2 is the �ring vector relative

to σ′′′
u,2 = tIf,1tf,2. Since now I(2, Y2) = ∅ the coordinator does not start the polling procedure.

Note that, the �ring of one transition in T 1
f is detected using both Protocol 1 and Protocol 2.

However, if we use Protocol 1 the �ring of tf,2 is not detected because both sites are silent wrt

the second fault class. On the contrary, if we use Protocol 2 the �ring of tf,2 is detected thanks

to the re�ning procedure of the set of j-vectors through the polling of the coordinator.

�

Remark 12 Let us now discuss the e�ects of delays in Protocol 2.

Since events occur in an asynchronous way, i.e., we are not assuming that there is a global clock,

it can obviously happen that the value of |wk|e, i.e., the number of occurrences of label e in

the observation wk, which the coordinator requests from the polled sites, is a�ected by some

delay. As a result of this the coordinator may receive a value |wk|′e > |wk|e because during the

delay between the start of the polling and the arrival of the request to the kth polled site other

transitions labeled e may have �red. This implies that the the di�erence between the number

of times the site k has observed e and the number of times a transition labeled e appears in

y, namely βk(wk, e, y), may be greater than the correct one. In particular, it may occur that a

negative value of βk(wk, e, y) becomes null or even positive, thus certain j-vectors that should be

rejected, are considered as feasible. However such a delay may never cause a feasible j-vector to

be rejected. As an example let us consider Example 11 when w = b is observed. It could happen

that while site 2 communicates its diagnosis state to the coordinator, transitions tf,2t2t3 �re. In
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such a case when the coordinator polls site 1 to know how many a's it has observed, namely to

know |w1|a, site 1 answers |w1|a = 1, because its new observation is now w2 = a. Thus if no

delay occurs (as in the case considered in Example 11) β1(w1, a, y
′′
2) = 0 − 1 < 0 then we can

reject j-vector y′′2 and detect the occurrence of tf,2 at the next observation. If a delay occurs, it

may happen that the advantages of Protocol 2 are lost, but in any case no false alarm can occur.

In the considered example if the described delay is considered β1(w1, a, y
′′
2) = 1− 1 = 0 (because

w1 has changed).

Due to the absence of a global clock it may also happen that after the polling, the coordinator

transmits the re�ned set of j-vectors Y ′
j to site j, but in the meanwhile site j has observed

another event and has computed the diagnosis state on the basis of the old and not re�ned set

Yj . Also in this case such a delay may never cause false alarms, but only avoid the occurrence

of the re�nement that leads to a better estimation. To better understand, let us consider again

Example 11 when w = b is observed. It could happen that in the meanwhile that the coordinator

polls site 1, transitions tf,2t2 �re. In such a case site 2 computes its new set of j-vectors and its

new diagnosis state on the basis of Y2 = {y′2, y′′2}. Thus when the coordinator will communicate

to site 2 the re�ned set of j-vectors Y ′
2 = {y′2} it cannot use this information anymore. Even in

this case if a delay occurs, it may happen that the advantages of Protocol 2 are lost. �

The following propositions can be stated.

Proposition 13 Under assumptions A1 to A5 the coordinator based on Protocol 2 never pro-

duces false alarms, namely if ∆̄i = 3, then ∆∗
i = 3 as well.

Proof By Proposition 6 (where assumptions A1 and A3 must hold) we know that no false alarm

may occur when using Protocol 1. Now, by assumptions A2, A4 and A5 the e�ect of Protocol 2

is that of eventually reducing the cardinality of the sets of j-vectors relative to certain sites, wrt

those computed using Protocol 1. In fact, the coordinator knows which sites should be polled

(assumptions A2 and A3) to know the exact number of times a given observable event e has

occurred. This number, in turn, is an upper bound on the number of times that event e has

occurred in a feasible justi�cation (assumption A4). By de�nition such a reduction consists in

only removing those j-vectors that are certainly not feasible, because they are not consistent

with the observations of other sites. Finally, assumption A5 guarantees that all sites and the

coordinator are referring to the same word w. Thus Protocol 2 guarantees that no false alarm

may occur as well. �

Proposition 14 The sets of j-vectors obtained as the result of a re�nement carried out according

to the rules of Protocol 2, are not empty, i.e., Y ′
min(M0, wj) ̸= ∅ for all j ∈ K that perform a

re�nement of Ymin(M0, wj).

Proof The result follows from the fact that the set Ymin(M0, wj) certainly contains the j-vector

ȳ that corresponds to the word that has actually �red, plus eventually other vectors. Using the

rules of Protocol 2, some of these j-vectors may be confuted, but certainly vector ȳ will not,

therefore ȳ ∈ Y ′
min(M0, wj), thus proving the statement. �

Proposition 15 The system is diagnosable wrt the decentralized approach based on Protocol 2
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if for any fault class i ∈ F there exists at least one site j ∈ K such that the system is diagnosable

by the j-th site wrt that fault class.

Proof For simplicity, with no loss of generality, we assume that there is only one fault class.

If there exists one site j ∈ K such that the system is diagnosable by the j-th site, due to

Assumption A1, this means that the j-th site certainly reconstructs the occurrence of a fault in

a �nite number of steps. Therefore its diagnosis state becomes equal to 3 after a �nite number

of transitions �rings, as well as the diagnosis state of the coordinator. �

The above proposition only provides a su�cient condition for diagnosability. In fact, it may

happen that the system is locally not diagnosable by any site, while it is diagnosable in a

decentralized setting.

This is the case of the PN system in Example 11. In fact, both diagnosers of the systems

observing To,1 = {t3, t4, t9} and To,2 = {t1, t2, t5, t6} are not able to detect the occurrence of tf,2
if the sequence σ = tIf,1t1tf,2t2t3t

k
6 �res, where k is an arbitrary integer number. On the contrary,

as shown in Example 11, the decentralized diagnoser based on Protocol 2 detects the occurrence

of tf,2 after a sequence that is a pre�x of σ.

We also observe that, as in the case of Protocol 1, it may happen that the centralized diagnosis

state is ∆∗
i = 3 while the coordinator under Protocol 2 is silent. The following example clari�es

this.

Example 16 Let us consider the net system in Fig. 5, having a single fault transition tf . The

net is locally diagnosed by two sites whose sets of transitions are To,1 = {t1, t2, t3, t6} and

To,2 = {t4, t5, t6} and whose alphabets are equal to L1 = {a, c} and L2 = {b, c}, respectively.

Assume that the sequence σ = tf t1t4 �res, thus w1 = a and w2 = b.

The set of j-vectors relative to the �rst site is Ymin(M0, w1) = Y1 = {y′1, y′′1} where y′1 is the �ring
vector relative to the justi�cation σ′

u,1 = tf , while y′′1 is the �ring vector relative to σ′′
u,1 = ε.

The set of j-vectors relative to the second site is Ymin(M0, w2) = Y2 = {y′2, y′′2} where y′2 and y′′2
are relative respectively to justi�cations σ′

u,2 = tf t1 and σ′′
u,2 = t2t3. Hence both sites have a

diagnosis state equal to 2.

On the contrary, in a centralized setting, being L = {a, b, c} and consequently w = ab, the

diagnosis state is equal to 3 and the �ring of tf is detected. In fact the only justi�cation of w is

σu = tf . �

6.3 Diagnosis under Protocol 3

Protocol 3 di�ers from Protocol 2 for the fact that each site communicates its diagnosis state

and its set of j-vectors to the coordinator, not only when the diagnosis state is equal to 3, but

also when it is equal to 2.

Thus the main steps of the decentralized procedure based on Protocol 3 are the same as those
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Figure 5: The PN system considered in Example 16.

relative to Protocol 2 apart from the fact that in Step 5 of Algorithm 10 the sites in K′ are those

whose ∆j,i = {2, 3} rather than ∆j,i = 3.

As intuitive, a greater number of information exchanged leads to better diagnosis capability as

shown by the following example.

Example 17 Let us consider again the PN in Fig. 5 where Tu = Tf = {tf}. The net is

locally diagnosed by two sites whose sets of observable transitions are To,1 = {t1, t2, t3, t6} and

To,2 = {t4, t5, t6}, respectively. This implies that L1 = {a, c}, L2 = {b, c}, Ka = {1}, Kb = {2}
and Kc = {1, 2}. Let us assume that the sequence σ = tf t1t4 �res, thus w1 = a and w2 = b.

The set of j-vectors for the �rst site is Ymin(M0, w1) = Y1 = {y′1, y′′1}, where y′1 = 0⃗ and

y′′1 = π(tf ), while for the second site is Ymin(M0, w2) = Y2 = {y′2, y′′2}, where y′2 = π(tf t1) and

y′′2 = π(t2t3). Hence both sites have a diagnosis state equal to 2.

Both the sites communicate their diagnosis state and their set of j-vectors to the coordinator.

Now, I(1, Y1) = ∅ but I(2, Y2) = {a} and Ka = {1}. Thus the coordinator polls site 1 to

know the number of a labels it has observed. Since |w1|a = 1, then β1(w1, a, y
′
2) = 1− 1 = 0 and

β1(w1, a, y
′′
2) = 1−2 < 0. This means that the j-vector y′′2 = π(t2t3) can be confuted and removed

from Y2. The rede�ned set of j-vectors for site 2 is Y ′
min(M0, w2) = {y′2} and it is communicated

by the coordinator to site 2. Site 2 recomputes its diagnosis state that is now equal to 3. Thus

∆2 = 3 is communicated to the coordinator and consequently ∆̄ = 3 and the fault tf is detected.

�

The following important property can also be demonstrated in the case of Protocol 3.

Proposition 18 Under assumptions A1 to A5 the coordinator under Protocol 3 does not produce

any false alarm, namely if ∆̄i = 3, then ∆∗
i = 3 as well.

Proof It can be proved following the same arguments of Proposition 13. �

We conclude this section with a remark.

Clearly, several other protocols can be de�ned. The choice of the most appropriate protocol

corresponds to the determination of the best trade-o� between the amount of information ex-

changed and the diagnosis capabilities, that obviously depends on the particular application.

If we want a protocol that has the same performances of the centralized diagnoser we need to
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synchronize at each step and to ask all sites at each step to send all the consistent states to the

coordinator. Then the coordinator does an intersection of all consistent states of all sites and

obtains the same information that the centralized diagnoser has. Another possibility to obtain

the same performance of the centralized diagnoser is to increase the knowledge of the coordi-

nator: as an example if the coordinator knows the structure of the net and what the di�erent

sites can observe, each site can just send its own observation and the coordinator computes with

these information the set of consistent markings of each site and does the intersection; another

case is when the coordinator knows the unobservable reach of each site, each site can send the

set of basis markings and justi�cations at each step and the coordinator computes with these

information the set of consistent markings of each site and does the intersection.

7 Diagnosability and failure ambiguous strings

In this section we introduce the de�nition of failure ambiguous strings, and show the relationships

among them. We want to show that, regardless of the used protocol, when analyzing diagnos-

ability in a decentralized setting, the �rst important step is that of detecting the presence of

particular strings, called failure ambiguous strings.

Note that the notion of failure ambiguous strings has been �rstly introduced in [12] in the

setting of automata under the assumption of two sites. Here we extend such de�nition to PNs

and consider the general case of an arbitrary number ν of sites.

De�nition 19 Consider a net system ⟨N,M0⟩ monitored by a set K = {1, . . . , ν} of sites. Let

To,j ⊆ To be the set of locally observable transitions for site j ∈ K. Finally, let T i
f ⊆ Tf be the

i-th fault class, with i ∈ F .

A string σ ∈ T ∗ such that tf ∈ σ for at least one tf ∈ T i
f , is said to be failure ambiguous wrt the

above set of sites and wrt the fault class T i
f , if the following two conditions hold:

(a) L−1
j (Lj(σ)) ∩ (T \ T i

f )
∗ ̸= ∅ ∀j ∈ K;

(b) L̄−1(L̄(σ)) ∩ (T \ T i
f )

∗ = ∅,

where L̄ and Lj are de�ned as in (1) and (3), respectively.

�

In simple words, a sequence σ is failure ambiguous wrt to a set of sites and the ith fault class if

the following conditions are simultaneously veri�ed: 1) for all sites j ∈ K the word σ is uncertain,

i.e., produces an uncertain diagnosis state ∆j,i ∈ {1, 2}; and 2) the word σ is not uncertain for

the centralized system.

Example 20 Let us consider the PN system in Fig. 6 which is locally diagnosed by two sites

whose sets of transitions are To,1 = {t1, t3, t5, t6, t7} and To,2 = {t2, t3, t4, t5, t7}, and whose

alphabets are equal to L1 = {a, c} and L2 = {b, c}, respectively.
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Figure 6: Petri net system for Example 20.

The sequence σ = ε8t1t2t
q
3, with q ∈ N, is failure ambiguous wrt the sites 1 and 2 and wrt to

the unique fault class Tf = {ε8}. In fact, L1(σ) = {acq} and L−1
1 (L1(σ)) = {ε8t1t2tq3, t6t

q
7},

thus L−1
1 (L1(σ)) ∩ (T \ Tf )

∗ = {t6tq7}; L2(σ) = {bcq} and L−1
2 (L2(σ)) = {ε8t1t2tq3, t4t

q
5} thus

L−1
2 (L2(σ))∩(T \Tf )

∗ = {t4tq5}; and L̄(σ) = {abcq} and L̄−1(L̄(σ)) = {ε8t1t2tq3} thus L̄−1(L̄(σ))∩
(T \ T i

f )
∗ = ∅. �

In general cases, as it happens in the case of automata [12], the absence of failure ambiguous

strings of arbitrary length is only a su�cient condition for the diagnosability in a decentralized

setting. In fact, if protocols are de�ned so that local sites take advantage of the information

collected by the other sites (e.g., receiving certain information by the coordinator), the resulting

system may be diagnosable even in the presence of failure ambiguous strings. On the contrary,

if each site computes its diagnosis states receiving no information from the other sites and from

the coordinator, then the absence of failure ambiguous strings is also a necessary condition for

the decentralized diagnosability.

Using Protocol 1, where a site communicates to the coordinator its diagnosis state if and only

if it has detected the occurrence of a fault and no communication is allowed among sites, and

from the coordinator to the local sites, it is obvious that the absence of failure ambiguous strings

arbitrarily long after the fault is not only a su�cient condition for decentralized diagnosability,

but it is also necessary. On the contrary, if we use the more sophisticated protocols, as Protocol 2

and 3, it may occur that a system is diagnosable in a decentralized setting even in the presence

of failure ambiguous strings. This is due to the fact that the protocol is based on a confutation

procedure that allows the sites to take bene�t of the information sent by the other sites to the

coordinator.

Example 21 Let us consider the PN system in Fig. 7 where Tu = Tf = {ε10}. The net is

monitored by two sites whose set of observable transitions is respectively To,1 = {t1, t2, t3, t6, t9}
and To,2 = {t4, t5, t6, t7, t8}. This implies that L1 = {a, c}, L2 = {b, c}, Ka = {1},Kb = {2} and

Kc = {1, 2}.

It is easy to verify that all sequences of the form σ = ε10t1t4t
q
6 are failure ambiguous for any q ∈ N.

In fact, L1(σ) = {acq} and L−1
1 (L1(σ)) = {ε10t1t4tq6, t7t8t9t

q
6}, thus L−1

1 (L1(σ)) ∩ (T \ Tf )
∗ =

{t7t8t9tq6}; L2(σ) = {bcq} and L−1
2 (L2(σ)) = {ε10t1t4tq6, t2t3t5t

q
6} thus L−1

2 (L2(σ)) ∩ (T \ Tf )
∗ =
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Figure 7: The Petri net system considered in Example 21.

{t2t3t5tq6}; and L̄(σ) = {abcq} and L̄−1(L̄(σ)) = {ε10t1t4tq6} thus L̄−1(L̄(σ)) ∩ (T \ T i
f )

∗ = ∅.

Now, if the two local sites communicate with the coordinator according to Protocol 3, then both

of them initially compute a diagnosis state that is equal to 2 after the �ring of σ. However, when

the confutation procedure is applied, both of them reconstruct the �ring of ε10. In particular,

the �rst site observes w1 = acq, thus Ymin(M0, w1) = {π(ε10t4), π(t7t8)} and ∆1 = 2. Similarly,

the second site observes w2 = bcq thus Ymin(M0, w2) = {π(ε10t1), π(t2t3)} and ∆2 = 2 as

well. However, both π(t7t8) and π(t2t3) are confuted, thus the two diagnosis states become

∆1 = ∆2 = 3 and the fault is diagnosed.

Let us �nally observe that, since by inspection it can be veri�ed that the considered family of

sequences σ are the only failure ambiguous strings of arbitrary length, we can conclude that

the system is diagnosable using Protocol 3 even in the presence of failure ambiguous strings of

arbitrary length after the fault being the centralized system diagnosable. �

Obviously, regardless of the considered protocol, if a system is diagnosable in a centralized setting

wrt a given fault class, and has no failure ambiguous string of arbitrary length wrt that class, it

is also diagnosable in a decentralized setting. The following proposition formally proves this.

Proposition 22 Consider a net system ⟨N,M0⟩ monitored by a set K = {1, . . . , ν} of sites. Let

T i
f ⊆ Tf be the generic i-th fault class, with i ∈ F . Let us suppose that the net system ⟨N,M0⟩

is diagnosable in a centralized setting wrt T i
f .

If there do not exist failure ambiguous strings of arbitrary length for the considered set of sites

wrt to T i
f , then the system is also diagnosable in a decentralized setting using Protocol 1, 2 or 3

to perform decentralized diagnosis.

Proof By De�nition 19, if there do not exist failure ambiguous strings of arbitrary length wrt

a given fault class, it means that there do not exist strings of arbitrary length that can be

distinguished by the centralized diagnoser, but cannot be distinguished by all the local sites.

This implies that, for each string containing a fault there exists at least one site that detects the

fault. Thus if the system is diagnosable in a centralized setting, then it is also diagnosable in a

decentralized setting. �

In [6] we have presented a procedure to verify the absence of such kind of strings for both bounded

21



and unbounded PN systems.

8 Conclusions and future work

The contribution of this paper consists in the de�nition of three protocols for the decentralized

diagnosis of discrete event systems using labeled PNs. It is proved that all such protocols

prevent false alarms, while their diagnosability properties depend on the amount of information

exchanged with a central coordinator.

Several lines of investigations remain to be explored, including: (i) relaxation of some assump-

tions that characterize our decentralized diagnosis approach; (ii) characterization of the e�ects

that delays have on our procedure; (iii) consideration of the case where the coordinator always

produces a diagnosis state, that may also be an uncertain or a non faulty state: in such a case

appropriate protocols should be de�ned assuming information exchanges among the local sites

and the coordinator also in the case of local diagnosis states equal to 0 and 1.
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