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Abstract

This paper addresses the optimal control problem of timed continuous Petri nets under infinite

servers semantics. In particular, our goal is to find a control input optimizing a certain cost function that

permits the evolution from an initial marking (state) to a desired steady-state. The solution we propose

is based on a particular discrete-time representation of the controlled continuous Petri net system, as a

certain linear constrained system. An upper bound on the sample period is given in order to preserve

important information of the timed continuous net, in particular the positiveness of the markings. The

reachability space of the sampled system in relation to autonomous continuous Petri nets is also studied.

Based on the resulting linear constrained model, the optimal control problem is studied through Model

Predictive Control (MPC). Implicit and explicit procedures are presented together with a comparison

between the two schemes. Stability of the closed-loop system is also studied.
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I. INTRODUCTION

Petri Nets (PN) are discrete event models in which the distributed state is a vector of non-

negative integers. As any other model of concurrent systems, discrete PN may suffer from the

so-called state explosion problem. One way to tackle this difficulty consists in the relaxation of

the original integrality constraints, giving a fluid (i.e., continuous) approximation of the discrete

event dynamics [1], [2]. The continuous Petri net (contPN) model we consider in this paper,

has mainly been used in the manufacturing domain, see e.g. [3], even if some other interesting

applications have been presented dealing with biological systems, transportation systems [4] or

supply chains [5].

In this paper we consider timed contPN systems under infinite server semantics and subject

to external control actions: we assume that the only admissible control law consists in slowing

down the firing speed of transitions [2]. We first observe that such a system can be represented

by a particular hybrid model: a piecewise linear model with autonomous switches and with

constraints on the state and control input space [6]. Then, we prove that by a suitable change

of variables, it is also possible to further simplify the model into a linear one with inequality

constraints on the state and input space.

A steady state for such a system represents a stable operation point where the system can

work indefinitely: the existence and choice of an optimal steady state has been addressed in [6].

Here we assume such a steady state is given and our goal is to reach it from a given initial

marking, while optimizing a quadratic performance index.

The solution we propose is based on a discrete-time version of the above constrained linear

model, thus we need to be sure that the discretization does not produce spurious markings,

in particular negative markings. To this aim an upper bound on the sampling period is given.

Moreover, for the sampled timed contPN, some “equivalence results” regarding the reachability

space of sampled timed contPN and (autonomous) contPN are also presented. The results

obtained here, together with the ones in [6], ensure the equivalence conditions for the reachability

spaces of sampled and continuous time system.

Starting from the discrete-time linear model of the contPN we propose an optimal control

strategy based on Model Predictive Control (MPC) [7]. In particular, we investigate the possibility

of using both an implicit and an explicit [8] MPC control strategy.
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We also discuss some properties of the system controlled via MPC, such as feasibility and

asymptotic stability. We prove that for contPN systems feasibility is always guaranteed, while

asymptotic stability is not ensured. Different approaches are investigated in order to guarantee

this property. One of them consists in the introduction of an appropriate terminal constraint,

and in such a case asymptotic stability can be guaranteed under appropriate assumptions on the

initial state and on the moving horizon.

II. CONTINUOUS PETRI NETS

A. Untimed Continuous Petri nets

Definition 2.1: A contPN system is a pair 〈N ,m0〉, where N = 〈P, T, Pre,Post〉 is the net

structure (with set of places P , set of transitions T , pre and post incidence matrices Pre, Post :

P × T → N), and m0 : P → R≥0 is the initial marking (or distributed state).

The token load contained in place pi at marking m is denoted mi, and preset and postset of

a node X ∈ P ∪ T are denoted •X and X•, respectively.

A transition tj ∈ T is enabled at m iff ∀pi ∈ •tj,mi > 0, and its enabling degree is

enab(tj,m) = min
pi∈•tj

{
mi

Pre(pi,tj)

}
. An enabled transition t can fire in any real amount 0 ≤ α ≤

enab(t, m) leading to a new marking m′ = m + αC(·, t), where C = Post − Pre is the

incidence matrix (or the token flow matrix); this firing is denoted as m[t(α)〉m′ or m
t(α)−→m′.

If m is reachable from m0 through a sequence σ = tr1(α1)tr2(α2) . . . trk
(αk), then we can

write: m = m0 + C · σ, where σ : T → R≥0 is the firing count vector and expresses the

cumulative amount of firing per transition. This is called the fundamental equation.

The basic difference between classical discrete and continuous PN is that now the components

of the markings and firing count vectors are not restricted to take value in the set of natural

numbers but may take any non-negative real value.

Definition 2.2: Let 〈N ,m0〉 be a contPN system. A marking m ∈ R|P |≥0 is reachable if a finite

sequence σ = ta1(α1) · · · tak
(αk) exists, and m0

ta1(α1)−→ m1
ta2 (α2)−→ m2 · · · tak

(αk)−→ mk = m, where

tai
∈ T and αi ∈ R+. RSut(N ,m0) is the set of reachable markings.

A relaxation of this space can be considered allowing an infinite firing sequence [9].

Definition 2.3: Let 〈N , m0〉 be a contPN system. Then m is lim-reachable if a sequence of

reachable markings {mi}i≥1 exists such that m0
σ1−→m1

σ2−→ · · · σi−→mi · · · and lim
i→∞

mi = m.
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Fig. 1. ContPN system.

B. (Unforced) Timed Continuous Petri nets

Definition 2.4: A (deterministically) timed contPN system 〈N ,λ,m0〉 is a contPN system

〈N ,m0〉 together with a vector λ : T → R>0, where λj is the firing rate of transition tj .

Now, the fundamental equation depends on time: m(τ) = m0 + C · σ(τ), where σ(τ)

denotes the firing count vector in the interval [0, τ ]. Differentiating it with respect to time we

obtain: ṁ(τ) = C · σ̇(τ). The derivative of firing vector represents the flow of the timed model

f(τ) = σ̇(τ). Depending on how this flow is defined many firing semantics are possible. This

paper deals with infinite server semantics in which the flow of transition tj is given by:

fj = λj min
pi∈•tj

{
mi

Pre(pi, tj)

}
(1)

Because the flow of a transition depends on its enabling degree, which is based on the minimum

function, a timed contPN under infinite servers semantics is a piecewise linear system.

For example, in the system sketched in Fig. 1 the flow of t1 can be restricted by the marking

of p1 or p4 and the flow of t2 can be restricted by the marking of p2 or p4. Thus, the number

of embedded linear systems in this case is 4.

C. Controlled Timed Continuous Petri nets

We now consider net systems subject to external control actions, and assume that the only

admissible control law consists in slowing down the firing speed of transitions [2].
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Definition 2.5: The flow of the controlled timed contPN (ct-contPN) is denoted as w(τ) =

f(τ)− u(τ), with 0 ≤ u(τ) ≤ f(τ), where u(τ) represents the control input.

Therefore, the control input will be dynamically upper bounded by the flow of the correspond-

ing unforced system. Under these conditions, the overall behavior of the system is ruled by the

following system [6]: 



ṁ(τ) = C · (f(τ)− u(τ))

0 ≤ u(τ) ≤ f(τ)
(2)

This is a particular hybrid system: piecewise linear with autonomous switches and dynamic

(or state-based) constraints in the input.

In this paper we assume that all transitions are controllable, i.e., can be slowed down by

an external controlling agent. It may also be possible to extend the approach to deal with

uncontrollability of certain transitions. If transition tj cannot be controlled, then it is obvious

that the control input must be uj = 0 at every time instant.

III. CONSTRAINED LINEAR REPRESENTATIONS OF CONTROLLED SYSTEMS

A. A constrained linear representation of continuous Petri nets

The system in (2) is a piecewise linear system with a dynamical constraint on the control

input u that depends on the current value of the system state m [6]. For our control purposes,

in this section we provide an alternative expression that takes the form of a linear system with

dynamical inequalities constraints on the control input.

Proposition 3.1: [10] Any piecewise linear constrained model of the form (1)–(2) can be

rewritten, as a linear constrained model of the form:



ṁ(τ) = C ·w(τ)

G ·

 w(τ)

m(τ)


 ≤ 0

w(τ) ≥ 0

(3)

with G = [∆ − Γ], ∆ (q × |T |) and Γ (q × |P |), q =
∑

t∈T |•t|, (that is, they have as many

rows as there are ”pre” arcs in the net), and for any pre arc (pi, tj) the corresponding rows of

∆ and Γ are respectively the vectors
0 · · · 0 1︸ ︷︷ ︸

j

0 · · · 0



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and 
0 · · · 0

λj

Pre(pi, tj)︸ ︷︷ ︸
i

0 · · · 0


 .

The initial value of the state system is m(0) = m0 ≥ 0.

Proof: The equivalence of the dynamic equations is immediate if w(τ) = f(τ) − u(τ).

Concerning the constraints on the input, 0 ≤ u ≤ f can be rewritten as 0 ≤ w ≤ f . Replacing

f according to (1), ∀j = 1, · · · , |T | 0 ≤ wj ≤ λj minpi∈•tj
(

mi

Pre(pi,tj)

)
; but that is equivalent to

0 ≤ wj ≤ λj
mi

Pre(pi,tj)
(∀pi ∈ •tj). All these equations can be combined as 0 ≤ ∆ ·w ≤ Γ ·m.

B. On sampled (or discrete-time) continuous Petri nets models

Let us obtain a discrete-time representation of continuous-time contPN under infinite servers

semantics. Sampling should preserve the important information of the original model (for ex-

ample the positiveness of the markings). This is directly studied in the next section through

the equivalence of the reachability graph of the discrete-time model and the untimed model.

In [6] the reachability space equivalence between continuous-time model and untimed model

was studied and the equivalence was proved under the same conditions as in this case. Hence,

the results in [6], together with those presented in this paper, provide as immediate conclusion

that the reachability space of continuous-time and discrete-time are the same. In this section the

discretization is defined together with a bound for the sampling period.

Definition 3.2: Consider a ct-contPN as in eq. (3) and let Θ be a sampling period (τ = k ·Θ).

The discrete-time controlled contPN or dt-contPN 〈N , λ, m0, θ〉 can be written as follows:




m(k + 1) = m(k) + Θ ·C ·w(k)

G ·

 w(k)

m(k)


 ≤ 0

w(k) ≥ 0

(4)

The initial value of the state of this system is m(0) = m0 ≥ 0.

The reachability space of dt-contPN can be defined as follows.

Definition 3.3: We denote RSdt(N , m0, Θ) the set of markings m ∈ R≥0 such that there

exists a finite input sequence w = w(0) · · ·w(k) and m(0)
w(0)−→ m(1)

w(1)−→ m(2) · · · w(k−1)−→
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m(k) = m, where 0 ≤ w(j) ≤ f(j) ∀j, and f(j) is the flow of the unforced system at time

j ·Θ.

It is important to stress that, although the evolution of a sampled contPN occurs in discrete

steps, discrete time evolutions and untimed evolutions are not necessarily the same. As an

example, while an untimed net can be seen evolving sequentially, executing a single transition

firing at each step, a dt-contPN may evolve in concurrent steps where more than one transition

fires. We denote such a concurrent step as m[{ti1(α1), ti2(α2), . . . , tik(αk)}〉m′.

In unforced ct-contPN under infinite servers semantics, the positiveness of the marking is

ensured if the initial marking m0 is positive, because the flow of a transition goes to zero

whenever one of the input places is empty [2]. In a dt-contPN, this is not always true. For

example, let us consider the net in Fig. 1, with m0 = [0.1, 5.9, 1, 5.9]T , λ = 1T , Θ = 2. Assume

transitions t2 and t3 are stopped (w2(0) = w3(0) = 0), then m1(1) = m1(0) − 2 · Θ · w1(0) =

0.1− 4 · w1(0). But w1(0) is upper bounded by λ1

2
·m1(0) = 0.5 · 0.1 = 0.05. If the maximum

value is chosen, then m1(1) will be negative!!!

However, this can be avoided if the sampling period is small enough.

Proposition 3.4: Let 〈N , λ, m0, Θ〉 be a dt-contPN system with m0 ≥ 0 where the sampling

period Θ is such that:

∀ p ∈ P :
∑
tj∈p•

λjΘ < 1. (5)

Then the following statements hold.

1) Any marking reachable from m0 is non negative, i.e., RSdt(N ,m0, Θ) ⊆ Rm
≥0.

2) A place cannot be emptied with a finite sequence of firings, i.e., if m(p) > 0, then

∀ m′ ∈ RSdt(N ,m, Θ) it also holds m′(p) > 0.

Proof: Let us consider a place pi with pi
• = {t1, t2, · · · , tj} and mk(p) > 0.

Then mk+1(pi) = mk(pi) + ΘC(i, :)w(k) ≥ mk(pi) − Θ(λ1 + λ2 + · · · + λj)mk(pi) =

mk(pi)
(
1− ∑

tj∈pi
•
λjΘ

)
≥ 0. Moreover, mk+1(pi) is positive if mk(pi) is positive.

In the rest of the paper we will assume that all nets are sampled with a sampling period Θ

that satisfies (5).

Proposition 3.5: If m is reachable in a dt-contPN system 〈N ,λ,m0, Θ〉 with Θ verifying

(5), then m is reachable in the underlying untimed contPN system 〈N ,m0〉, i.e.

RSdt(N ,m0, Θ) ⊆ RSut(N ,m0).
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Proof: In dt-contPN, transitions can fire concurrently and in order to prove that a marking is

reached in the untimed contPN it is necessary to prove the existence of a sequence of transition

firings leading to the same marking. This sequence exists due the fact that (5) implies m(k)−
Pre ·Θ ·w(k) ≥ 0 at any marking m(k).

In general the converse of Prop. 3.5 is not true: in fact, the second item of Prop. 3.4 shows that

in a dt-contPN with Θ satisfying (5) it is never possible to empty a place (only at the limit, thus

timed contPN can be deadlocked only at the limit), while this may be possible in an untimed

net system. As an example, in the untimed net system in Fig. 1 from the marking shown it is

possible to fire t1(2)t1(0.5), thus emptying place p1. This marking is clearly not reachable on

the same net system if we associate to it a firing rate vector and choose Θ satisfying (5).

In the next section, two relaxations are studied: (1) considering in the untimed case only those

sequences that never empty a marked place or (2) allowing the lim-reachable markings of the

discrete-timed model. These relaxations are the same as in continuous-time case [6]. In fact we

will prove that under any of them, and with the sampling period as in (5), the reachability space

of the discrete-time and continuous-time models will be the same.

IV. REACHABILITY “EQUIVALENCE” BETWEEN SAMPLED AND CONTINUOUS MODELS

Let us now characterize the reachability set of dt-contPN, first looking to a sequence with

only one firing, then to more general sequences.

Lemma 4.1: Let 〈N ,λ,m0, Θ〉 be a dt-contPN system (with Θ satisfying (5)). Assume that

in the underlying untimed net system it is possible from m to fire the sequence m[tj(α)〉m′

and that for a certain δ > 1, for all p ∈ •tj it holds m′(p) ≥ m(p)/δ. Then marking m′ is

reachable from m with a finite sequence of length r =

⌈
δ

Θλj

⌉
.

Proof: Let us first prove by induction that the firing of tj with wj =
αλj

δ
can at least

be repeated r − 1 times in the discrete-time net, and that at any intermediate step, m(k) =(
k · Θλj

δ

)
·m′+

(
1− k · Θλj

δ

)
·m. Observe first that m′ = m+αC(·, j) =⇒ αC(·, j) = m′−m.

• (Basic step) Since tj(α) can be fired in the untimed net, and δ ≥ 1, for any pi ∈ •tj ,

λj
mi

P re(p,tj)
≥ λjα ≥ αλj

δ
= wj(0). So, this is fireable in the discrete timed net. The new

marking is m(1) = m+α· Θλj

δ
C(·, j) = m+

Θλj

δ
·(m′−m) =

(
Θλj

δ

)
·m′+

(
1− Θλj

δ

)
·m.

• (Inductive step) Assume it holds for k. Observe that for all pi ∈ •tj , since k ≤ δ
Θλj

,

λj
mi(k)

P re(p,tj)
≥ λj

mi

δP re(p,tj)
≥ αλj

δ
= wj(k). Moreover, m(k) + α · Θλj

δ
C(·, j) =

(
k · Θλj

δ

)
·
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m′+
(
1− k · Θλj

δ

)
·m+

Θλj

δ
· (m′−m) =

(
(k + 1) · Θλj

δ

)
·m′+

(
1− (k + 1) · Θλj

δ

)
·m.

Therefore, m(r−1) = (r−1)
Θλj

δ
m′+(1−(r−1)

Θλj

δ
)m. To reach m′ in one step we just have to

prove that wj(r−1) =
(
1− (r − 1)

Θλj

δ

)
α
Θ

can be fired. For all pi ∈ •tj , since r−1 < δ
Θλj

≤ r,

λj
mi(r−1)
P re(p,tj)

≥ λj
mi

δP re(p,tj)
≥ αλj

δ
≥ α

rΘ
≥ α

Θ
(1− r−1

r
) ≥ α

Θ
(1− (r − 1)

Θλj

δ
) = wj(r − 1), and so

this firing can be done.

Theorem 4.2: A marking m is reachable in a dt-contPN 〈N ,λ,m0, Θ〉 system (with Θ

satisfying (5)) iff it is reachable in the underlying untimed contPN system 〈N , m0〉 with a

sequence that never empties an already marked place.

Proof: A sequence m[ti1(α1)〉m1[ti2(α2)〉m2 · · · [tik(αk)}〉 mk = m′ never empties a

marked place if (∀j = 1, . . . , k), (∀p ∈ •tij) mj(p) > 0.

(If) Applying Lemma 4.1 to m1, m2, · · · , mk, m′ is reachable with a finite sequence.

(Only if) Assume there is a finite sequence that reaches m in the dt-contPN, then there exists

an equivalent firing sequence for the untimed net system, according to Prop. 3.5. It is also

immediate to observe that the non emptying condition holds because in the dt-contPN a place

cannot be emptied with a finite sequence, according to Prop. 3.4 part 2.

One may wonder what happens if a marking m is reachable in the untimed PN but there

exists no sequence satisfying the non emptying condition. It can be proved that the marking is

lim-reachable in the timed net, i.e., it is reachable with an infinite sequence of steps.

Theorem 4.3: [10] If a marking m is reachable in the untimed contPN system 〈N , m0〉,
then it is lim-rechable in a dt-contPN system 〈N , λ, m0, Θ〉 with Θ satisfying (5).

Sketch of the proof: It is immediate if the sequence to reach the marking is such that

Lemma 4.1 can be applied for each transition. Otherwise, the idea is to fire each transition in

the sequence, but in an amount small enough so that the lemma can be used, and repeat the

process. Moreover, the amount of firing of each transition can be defined in such a way that the

sum converges to its firing in the sequence. See [11] for a complete proof.

Putting together Prop. 3.5 and Th. 4.2 with Prop.14 in [6], the equivalence between continuous

and discrete time system is obtained.

Corollary 4.4: Let 〈N ,λ,m0〉 be a ct-contPN system and 〈N ,λ,m0, Θ〉 with Θ satisfy-

ing (5) its discrete time approximation, then RSct(N , λ, m0) = RSdt(N , λ, m0, Θ), where

RSct(N ,λ,m0) is the reachability space of the ct-contPN system.
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Proof: According to Th. 4.2, m ∈ RSdt(N , λ, m0, Θ) iff m is reachable in the untimed

system with a sequence that never empties an already marked place. According to Lemma 13

in [6], if m is reachable in untimed system with a sequence that never empties any place, then

this sequence can be fired in the ct-contPN system, so m ∈ RSct(N ,λ,m0). On the other hand,

if m ∈ RSct(N ,λ,m0) then the empty places at m are also empty at m0 because a marked

place cannot be emptied in the ct-contPN system. Taking the integral of the flow (see Prop. 14.1

in [6]), a firing sequence is obtained that does not empty an already marked place. Therefore,

m is reachable in the dt-contPN system.

V. OPTIMAL TRANSIENT CONTROL VIA MPC

Steady state optimal control of contPN was studied in [6] and if all transitions can be controlled

and the objective function is linear, the problem can be solved in polynomial time. The solution

is an optimal marking and an optimal control input in steady state. In this paper we assume

that the steady state condition (mf , wf ) is known and our problem is how to reach it (from a

given m0) in a finite time while optimizing a given performance index. The optimal control is

studied using Model Predictive Control (MPC) [7]. MPC algorithms use different cost functions

to obtain the control action. We consider the following standard quadratic form:

J(m(k), N) = (m(k + N)−mf )′ ·Z · (m(k + N)−mf ))+

N−1∑
j=0

[(m(k + j)−mf )′ ·Q · (m(k + j)−mf )+

+(w(k + j)−wf )
′ ·R · (w(k + j)−wf )] (6)

where Z, Q and R are positive definite matrices.

The constraints are derived from the dt-contPN definition, and at every step the new marking

should respect (4). Thus, at each step the following problem needs to be solved:

min J(m(k), N)

s.t. : m(k + j + 1) = m(k + j) + Θ ·C ·w(k + j),

j = 0, . . . , N − 1,

G ·

 w(k + j)

m(k + j)


 ≤ 0, j = 0, . . . , N − 1,

w(k + j) ≥ 0, j = 0, . . . , N − 1.

(7)
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We denote as implicit MPC the control law computed solving on-line the optimization problem

(7). An alternative to implicit MPC has been proposed in [8]. There the authors present a

technique to compute off-line an explicit solution of the MPC control problem, based on multi-

parametric linear programming (mp-LP) or quadratic programming (mp-QP). They split the

maximum controllable set (i.e., all states that are controllable) into polytopes described by linear

inequalities in which the control command is described as a piecewise affine function of the

state. Thus, the control law results in a state feedback control law.

We have applied MPC with the above two approaches in the case of dt-contPN. Numerical

examples are not reported here for the sake of brevity but can be found in [11]. In particular, in

[11] we provided a detailed comparison among the results obtained using implicit and explicit

MPC.

VI. PROPERTIES OF THE CLOSED-LOOP SYSTEM

A. Feasibility

In general, given an initial feasible state, there is no guarantee that the optimization problem

we need to solve at each time step will remain feasible at all future time steps k, as the system

might enter ”blind alleys” where no solution to the optimization problem exists [8]. In terms

of explicit MPC this translates into the fact that there is no guarantee that the resulting state

space partition includes all reachable states. However, thanks to the particular structure of the

constraints, in the case of contPN systems the following result can be proved.

Proposition 6.1: The optimization problem (7) is feasible for any m(k) ≥ 0.

Proof: The solution w(k + j) = 0 for j = 0, 1, . . . , N − 1 is feasible. In fact, G ·
[w′(k + j) m′(k + j)]′ = [∆− Γ] · [w′(k + j) m′(k + j)]′ = −Γ · m(k + j) ≤ 0 since

Γ is a matrix of non-negative numbers and m(k + j) = m(k) ≥ 0 for any j = 1, . . . , N − 1.

B. Asymptotic stability

The feasibility of (7) is obviously a desirable property but it does not ensure the convergence

of the optimal solution to the desired state, that is our main requirement. We investigate three

different approaches to improve convergence, that are well known in the literature [12], [13].

The first approach consists in assuming that w(k + j) = 0, ∀ j = N, · · · ,∞, and weighting

the distance from the final marking not only for j = 0, 1, · · · , N−1 but for any j = 0, 1, · · · ,∞.
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Obviously, such an approach can only be applied to asymptotically stable systems, that is not

the case here, since the dynamical matrix is the identity matrix.

The second approach consists in assuming that w(k + j) = Km(k + j), ∀ j = N, · · · ,∞,

and weighting the distance from the final marking not only for j = 0, 1, · · · , N − 1 but for

any j = 0, 1, · · · ,∞. In particular, matrix K is defined as in the unconstrained LQR problem

with weighting matrices Q and R. This is equivalent to an optimization problem of the form

(7), where Z in the performance index is Z = P , and P is the solution of the unconstrained

LQR. Using results from classical optimal control theory [14], we can guarantee convergence

only if the region defined by the set of feasible state + input vectors is bounded and contains

the final state + input in its interior. Therefore, such an approach does not apply to most control

problems within the framework of contPN, because the desired marking is often not positive

and/or the desired flow is set to its maximum allowable value. Note however that, if the final

state + input is an interior point, and the moving horizon N is sufficiently large, this approach

is surely the most convenient. In fact, it has the major advantage that the resulting strategy is

indeed the optimal infinite horizon constrained LQR policy [8].

The third approach we consider consists in forcing the marking at time k + N to belong to

the straight path m(k) — mf . This is equivalent to adding a terminal constraint of the form




m(k + N) = α ·mf + (1− α) ·m(k)

0 ≤ α ≤ 1
(8)

to the optimization problem (7), where α is a free variable. This is always admissible when

dealing with continuous Petri nets because the set of reachable markings is convex, thus if m(k)

and mf are reachable, then all markings in the straight path m(k)−−mf are reachable as well.

Note that this constraint makes necessary to solve a certain number of bilinear (rather than

linear) programming problems when using explicit MPC [8]. In particular, bilinear problems

have to be solved when computing the Chebychev centers of the polytopic regions, where both

the initial state and α are unknown. This approach was found to be satisfactory in several

numerical examples, even if we have been able to prove asymptotic stability only under certain

assumptions.

Proposition 6.2: Let us consider a contPN system. Let m0 and mf be the initial and final

markings, respectively, with m0 > 0 and mf reachable from m0. Assume that the system is
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controlled using MPC with a terminal constraint of the form (8) and prediction horizon N = 1.

Then the closed-loop system is asymptotically stable.

Proof: We prove the statement in three steps. We first prove that if m0 > 0 then α > 0

is feasible at any k ≥ 0. Then, we define a quadratic function that we prove to be a Lyapunov

function. Finally, we demonstrate that it is strictly decreasing.

— Observe that by item (2) of Prop. 3.4, if m0 > 0 then m(k) > 0 for any k ≥ 1. Since mf

is reachable from m0, then it is also reachable from any marking in the straight path mf —

m0 being the reachability space convex. So, there exists σ ≥ 0 such that mf = m(k) + C ·σ.

Replacing in eq. (8), m(k + 1) = α ·m(k) + α ·C · σ + (1− α) ·m(k) = m(k) + C · (α σ).

But being m(k) > 0, there always exists α > 0 such that α σ can be fired at m(k).

— Without loss of generality we assume that in eq. (7) it holds: (a) mf = 0; (b) C is full

rank. If mf 6= 0 we can always redefine the state in eq. (7) by translation; if C is not full rank

then the dimension of the state vector can be reduced until a full rank matrix is obtained.

Let V (m(k)) = m(k)T · Z · m(k) where Z is the weighting matrix in the performance

index (6). Obviously, V (m(k)) ≥ 0 for any m(k) 6= 0, since Z is positive definite. Moreover,

V (m(k + 1)) ≤ V (m(k)) for any k ≥ 0. Indeed, under the assumption that mf = 0, by

constraint (8) it holds m(k+1) = (1−α)·m(k). Thus, V (m(k+1)) = m(k+1)T ·Z ·m(k+1) =

(1− α)2 ·m(k)T ·Z ·m(k) = (1− α)2 · V (m(k)) ≤ V (m(k)).

— We now prove that ∀ k ≥ 0 the optimal solution of problem (7) leads to α > 0.

Let k be an arbitrary time instant. If α = 0 the performance index (6) is J ′ = m(k)T ·Q ·
m(k)+m(k)T ·Z ·m(k). If α > 0, and taking into account that m(k+1) = (1−α) ·m(k), the

performance index is J ′′ = m(k)T ·Q·m(k)+w(k)T ·R·w(k)+m(k)T ·Z ·m(k)−2·α·m(k)T ·
Z ·m(k)+α2·m(k)T ·Z ·m(k). Moreover, since m(k+1) = (1−α)·m(k) = m(k)+Θ·C ·w(k),

it follows that m(k) = −Θ

α
·Cw(k).

Therefore

J ′′ − J ′ = w(k)T ·R ·w(k)−w(k)T ·
[(

2

α
− 1

)
·Θ2 ·CT ·Z ·C

]
·w(k).

But CT ·Z ·C is always positive definite because Z is positive definite and C is a full rank

matrix by assumption, so if α is small enough J ′′ − J ′ < 0.

Remark 6.3: In general m(0) > 0 is not a strict requirement in the above proposition. It is

sufficient that for any k ≥ 0 the optimization problem (plus terminal constraint) admits α > 0
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as a solution. Physically this means that we can move along the straight line m(0) — mf .

However, in general it is difficult to verify such a condition.

VII. CONCLUSIONS

Different ways of describing the behavior of controlled contPN with infinite server semantics

are presented. The first one uses the “min” operator according to the definition of the semantics

(Eq. (1) and (2)). Later, the “min” operator is substituted by linear inequalities obtaining a

constrained linear form (Eq. (3)). Finally, in order to simplify the application of the MPC the

system is discretized in time, leading to Eq. (4). After that, a Sampling theorem giving an upper

bound on sampling period is provided. The purpose of this bound is to preserve reachability

conditions (in particular non-negativity of markings), not to reconstruct the original signal from

the sampled one. The reachability space of the sampled system is studied later and some relations

between this space and the space of the underlying untimed contPN are provided. Then, optimal

control laws based on both implicit and explicit MPC are investigated. Some aspects regarding

the convergence of MPC are studied, and for a particular control law asymptotic stability is

guaranteed. Our future efforts within this framework will be mainly devoted to the derivation of

more general criteria that guarantee stability.
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