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Abstract

1 In this paper we consider Hybrid Petri Nets (HPNs), a particular formalism
that combines fluid and discrete event dynamics. We first provide a survey of the
main HPNs models that have been presented in the literature in the last decades.
Then, we focus on a particular HPN model, namely the First-Order Hybrid Petri
Net (FOHPN) model, whose continuous dynamics are piece-wise constant. Here the
problem of designing an optimal controller simply requires solving on-line an appro-
priate linear integer programming problem. In this paper we show how FOHPNs can
efficiently represent the concurrent activities of Distributed Manufacturing Systems
(DMS), and some interesting optimization problems are also solved via numerical
simulation.

Key words: Hybrid Petri nets; first-order hybrid Petri nets; manufacturing
systems; distributed manufacturing systems.

1 Introduction

Petri Nets (PNs) are a discrete event model firstly proposed by Carl Adam
Petri in his PhD thesis in the early sixties (Petri, 1962). The main feature of
a (discrete) PN is that its state is a vector of non-negative integers. This is
a major advantage with respect to other formalisms such as automata, where
the state space is a symbolic unstructured set, and has been exploited to
develop many analysis techniques that do not require to enumerate the state
space (structural analysis) (Colom and Silva, 1990). Another key feature of
PNs is their capacity to graphically represent and visualize primitives such as
parallelism, concurrency, synchronization, mutual exclusion, etc.

1 Published as: M. Dotoli, M.P. Fanti, A. Giua, C. Seatzu, ”First-Order Hybrid
Petri nets. An application to distributed manufacturing systems,” Nonlinear Anal-
ysis: Hybrid Systems, Vol. 2., No. 2, pp. 408-430, June 2008.
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In the related literature various PNs extensions have been proposed. In this
paper we focus on Continuous and Hybrid PNs.

Continuous Petri Nets (CPNs) originate from the requirement of reducing the
computational complexity of the analysis and optimization of realistic scale
problems, that quickly become analytically and computationally intractable
with discrete event models. As an example, this often occurs in many produc-
tion systems where the number of parts in a buffer may be very large, thus it
may be convenient to approximate it with a real number. In effect, the idea of
”fluidification” has been firstly applied to other discrete event models, such as
automata. Later, in 1987 it has also been successfully applied to PNs by David
and Alla (David and Alla, 1987). The main advantages in using fluid approx-
imations for analysis and control of complex systems can be summarized as
follows. First, there is the possibility of considerable increase in computational
efficiency, because the simulation of fluid models can often be performed much
more efficiently than their discrete counterpart. Second, fluid approximations
provide an aggregate formulation to deal with complex systems, thus reducing
the dimension of the state space. The resulting simple structures allow explicit
computation and performance optimization. Third, the design parameters in
fluid models are continuous, hence it is possible to use gradient information
to speed up optimization and to perform sensitivity analysis. Furthermore, in
many cases it has also been shown that fluid approximations do not introduce
significant errors when carrying out performance analysis via simulation.

In general different fluid approximations are necessary to describe the same
system, depending on its discrete state, e.g., in the manufacturing domain,
machines working or down, buffers full or empty, and so on. Thus, the resulting
model can be better described as a hybrid model, where a different continuous
dynamics is associated to each discrete state.

Hybrid Petri Nets (HPNs) keep all those good features that make discrete PNs
a valuable discrete-event model: they do not require the exhaustive enumera-
tion of the state space and can finitely describe systems with an infinite state
space; they allow modular representation where the structure of each module
is kept in the composed model; the discrete state is represented by a vector
and not by a symbolic label, thus linear algebraic techniques may be used for
their analysis.

Different HPN models have been proposed in the literature, but there is so far
no widely accepted classification of such models.

1.1 Structure of the paper

A survey of the the most important HPN models is given in Section 2.

Then, in Section 3 we focus our attention on a particular model of HPNs,
called First–Order Hybrid Petri Nets (FOHPNs) because its continuous dy-
namics are piece-wise constant. FOHPNs were originally proposed in (Balduzzi
et al., 2000), and have been efficiently used in many application domains, such
as manufacturing systems (Balduzzi et al., 2001b; Giua et al., 2001), and in-
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ventory control (Furcas et al., 2001). Interesting optimization problems have
also been studied considering real applications, such as a bottling plant (Giua
et al., 2001) and a cheese factory (Furcas et al., 2001).

Several problems related to the control and analysis of FOHPNs have been
studied (Balduzzi et al., 2000; Balduzzi et al., 2001a); they are briefly sum-
marized in Section 4, where we also underline our future lines of research in
this topic.

In the last part of this paper (see Section 5) we also show how FOHPN
can be efficiently used for modeling and controlling large and complex sys-
tems such as Distributed Manufacturing Systems (DMS). DMS are complex
emerging paradigms whose analysis, design and management is currently an
active area of research (Dotoli et al., 2006a; Viswanadham and Raghavan,
2000; Viswanadham and Gaonkar, 2003). More precisely, a DMS is defined
as a collection of independent companies possessing complementary skills
and integrated with transportation and storage systems, information and
financial flows, with all entities collaborating to meet the market demand
(Viswanadham and Gaonkar, 2003). Appropriate modeling and analysis of
such highly complex systems are crucial for performance evaluation and to
compare competing DMS. However, in the related literature very few contri-
butions deal with the problem of modelling and analyzing the DMS opera-
tional behaviour. Viswanadham and Raghavan (2000) model DMS as Discrete
Event Dynamical Systems in which the evolution depends on the interaction
of discrete events such as the arrival of the components at the facilities, the
departures of the transports, the starts of the operations at the manufactur-
ers and the assemblers. In (Desrochers et al., 2005) a two product DMS is
modelled by complex-valued token PNs and the performance measures are de-
termined by simulation. However, the limit of such formalisms is the modelling
of products or batches of parts by means of discrete quantities (i.e., tokens).
This assumption is not realistic in large DMS with a huge amount of mate-
rial flow. Hence, this paper uses FOHPN to model and manage DMS (Dotoli
et al., 2006b). Using a modular approach based on the idea of the bottom-
up methodology (Zhou and Venkatesh, 1998), the paper develops a modular
FOHPN model of DMS. In particular, transporters and manufacturers are
described by continuous transitions, buffers are continuous places, and prod-
ucts are represented by continuous flows (fluids) routing from manufacturers,
buffers and transporters.

In Section 5 an example of DMS is considered and, applying a Make-To-Stock
management policy and appropriate inventory control rules (Viswanadham
and Raghavan, 2000), the system is analyzed under different operative condi-
tions.

1.2 Main contributions

The original contribution of this paper is threefold.

Firstly, we provide a detailed survey of the different HPN models that have
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been proposed in the literature. The main theoretical results and the main
application areas within each framework are also mentioned.

Secondly, we show how FOHPN can be efficiently used to model DMS.

Finally, we show how the resulting model leads to easy simulation and to easy
performance analysis and optimization via different scenarios.

2 Hybrid Petri nets

A unified classification of all HPN models so far appeared in the literature
is still missing. The goal of this section is that of providing, following (Giua,
2006), a survey of the main references in the field of HPNs. Other interesting
surveys are given in (Antsaklis and Koutsoukos, 1998; David, 1997; David and
Alla, 2005).

The first fluid PN model is the so called ”Continuous and Hybrid Petri
net” model introduced by David and Alla in their seminal paper (David and
Alla, 1987). Based on this first formalism, a family of extended hybrid models
have been proposed, and the main contributions in this area are reported in
Section 2.1.

Different formalism, motivated by particular applications, have also been pre-
sented in the literature. In Section 2.2 we review some of them: Fluid Stochastic
Petri nets, Batch nets, DAE-Petri nets, Hybrid Flow nets, Differential Petri
nets and High-Level Hybrid nets.

There are also other interesting approaches dealing with HPNs that are not
discussed here for sake of brevity; a list of them can be found in the website
(Giua, 2006).

2.1 Continuous and Hybrid Petri nets

All the works collected under this heading are based or directly inspired on the
model presented by R. David and H. Alla in the late eighties (David and Alla,
1987). These authors have obtained a continuous model by fluidification, i.e.,
by relaxing the condition that the marking be an integer vector. Hybrid Petri
nets are then made of a ”continuous part” (continuous places and transitions)
and a ”discrete part” (discrete places and transitions). The continuous part
can model systems with continuous flows and the discrete part models the
logic functioning. In particular, the constant-speed HPN model of David and
Alla (Alla and David, 1998b) derives from deterministic timed PNs.

Several contributions in this framework have been presented in the last decade,
as well as some interesting extensions with respect to the original model. A
discussion on these issues is provided in the rest of the subsection.
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2.1.1 Steady-state, controllability and analysis

The problem of determining an optimal stationary mode of operation for a sys-
tem described by a timed CPN has been studied in (Gaujal and Giua, 2004).
Here the authors solve conflicts at places by using stationary routing parame-
ters, and show how to compute the stationary firing rate for all transitions via
linear programming, so as to determine the optimal routing parameters that
maximize user-defined functions of the firing rates.

Some characterizations of equilibrium points in steady-state are given in (Mahulea
et al., 2006b), where an optimal steady-state control is also studied. In par-
ticular, the authors prove that, under the assumptions that all transitions are
controllable, the control problem can be solved in polynomial time.

An interesting comparison on two different techniques to compute the steady-
state of continuous nets was made in (Demongodin and Giua, 2002): a method
based on linear programming and a method based on graph theory.

Other interesting papers have been devoted to the problem of production fre-
quencies estimation for systems that are modeled by CPNs (Lefebvre, 2000b;
Lefebvre, 2000a), to the design of observers (Júlvez et al., 2004), to the reach-
ability analysis (Júlvez et al., 2003), to the stability analysis (Zerhouni, 2001),
and to the deadlock-freeness analysis (Júlvez et al., 2002).

Less recent results related to modeling, analysis and of CPNs have been pre-
sented in (Ait-Yahia et al., 1995; Alla, 1995; Alla and David, 1998a; Amer-
Yahia et al., 1995; Amer-Yahia et al., 1996; Ait-Yahia et al., 1995; Am-
rah et al., 1996; David and Alla, 1993; Dubois and Alla, 1993; Dubois et
al., 1994; Komenda et al., 1998; Bail et al., 1992; Bail et al., 1993).

2.1.2 Optimal control

The problem of deriving an optimal control law for CPNs under the assump-
tion of finite servers semantics has been studied in (Bemporad et al., 2004).
Here the proposed approach consists in transforming the CPN model into an
equivalent hybrid system whose evolution is described by means of discrete-
event steps (each step coincides with the occurrence of an event in the CPN).
It is shown how to design a mixed integer linear programming problem in order
to compute the optimal control solution of different performance criteria.

In (Mahulea et al., 2006a) the authors considered timed CPNs under infinite
servers semantics that usually provide a much better approximation of the
discrete system than finite servers semantics (Mahulea et al., 2006c). They
dealt with the problem of controlling CPNs in order to reach a final (steady
state) configuration while minimizing a quadratic performance index. In par-
ticular, they considered CPNs subject to external control actions, where the
only admissible control law consists in slowing down the firing speed of tran-
sitions (Silva and Recalde, 2004). The formulation of a discrete-time linear
positive model with dynamic (or state-based) constraints on the control input,
enables one to design both a control law based on implicit model predictive
control, and a state-feedback control law based on explicit model predictive
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control (Bemporad et al., 2002).

2.1.3 Applications

CPNs have been mainly applied in the manufacturing domain, see e.g. (Alla
and David, 1988; Allam and Alla, 1997; Allam and Alla, 1998; Amrah et
al., 1997b; Amrah et al., 1997a; Amrah et al., 1998a; Amrah et al., 1998b; El-
Fouly et al., 1998; Lefebvre, 1999; Zerhouni and Alla, 1990; Zerhouni and
Alla, 1992), even if some other interesting applications have been presented,
like (Amer-Yahia et al., 1997) dealing with biological systems, and (Júlvez and
Boel, 2005) dealing with transportation systems.

2.1.4 First-Order Hybrid Petri nets

First-Order Hybrid Petri Nets (FOHPNs) follow the formalism described by
R. David and H. Alla (Alla and David, 1998b) with the addition of algebraic
analysis techniques, and have been firstly presented by F. Balduzzi, A. Giua
and G. Menga in (Balduzzi et al., 2000).

FOHPNs consist of continuous places holding fluid, discrete places containing
a non-negative integer number of tokens, and transitions, either discrete or
continuous. As in all hybrid models, in FOHPNs the authors distinguish two
behavioral levels: time-driven and event-driven. The continuous time-driven
evolution of the net is described by first-order fluid models, i.e., models in
which the continuous flows have constant rates and the fluid content of each
continuous place varies linearly with time. A discrete-event model describes
the behaviour of the net that, upon the occurrence of macro-events, evolves
through a sequence of macro-states. The authors set up a linear algebraic for-
malism to study the first–order continuous behavior of this model and show
how its control can be framed as a conflict resolution policy that aims to opti-
mize a given objective function. The use of linear algebra leads to sensitivity
analysis that allows one to study of how changes in the structure of the model
influence the optimal behavior.

This model is extensively presented in the rest of this paper.

2.2 Other models

2.2.1 Fluid Stochastic Petri nets

The Fluid Stochastic Petri Net (FSPN) model has been firstly presented by
K.S. Trivedi and V.G. Kulkarni in the early nineties (Trivedi and Kulkarni,
1993) and further elaborated in (Horton et al., 1998). In (Trivedi and Kulka-
rni, 1993) the authors extend the stochastic Petri nets framework (Marsan et
al., 1995a) to FSPNs by introducing places with continuous tokens and arcs
with fluid flow so as to handle stochastic fluid flow systems. No continuous
transitions are present in this model, and the set of transitions is partitioned
in timed transitions and immediate transitions, where timed transitions have
an exponentially distributed firing time. They define hybrid nets in such a way
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that the discrete and continuous portions may affect each other.

A new feature called flush-out arc has been added in (Gribaudo et al., 2001):
a flush-out arc connects a timed transition to a fluid place and has the ef-
fect of ”instantaneously” emptying the fluid place as the transition fires, thus
enabling discrete jumps in the fluid level. In (Gribaudo et al., 2001) it is
clearly shown that flush-out arcs considerably increase the modeling power of
FSPNs. Despite this and the major complexity of the new model, an analyt-
ical description of the stochastic marking process is feasible, and the authors
in (Gribaudo et al., 2001) also indicated a general procedure to automatically
derive the solution equations from the model specification.

Other interesting papers in this framework are (Ciarlo et al., 1999; Horton et
al., 1998; Nicol and Miner, 1995). In particular, in (Ciarlo et al., 1999) the
authors describe a general method for the simulation of FSPNs that results in
a rather complex set of partial differential equations. Wolter and Hommel also
extend the fluid stochastic Petri net model to second order flow approxima-
tions (Wolter, 1997; Wolter and Hommel, 1997; Wolter and Hommel, 1998).

2.2.2 Batch Petri nets

In a batch process, the material is operated by finite quantities (the batches).
At any time, an integer number of batches are in operation at certain locations
in the plant, thus the production process behaves like a discrete manufactur-
ing system where a batch of fluid in a buffer or a machine can be considered
as a part. The characterization of a batch implies real numbers describing
the amount of material, and some operating conditions like temperature or
pressure. The material is continuously transferred from different equipments,
and during the transfer the discrete nature of the batch temporarily disap-
pears. Thus the mathematical model of a batch process has to be hybrid
(Champagnat et al., 2001). An overview of Petri net modeling techniques for
batch systems is given in (Champagnat et al., 2001).

There is however, a formalism called Batch Petri nets (BPN), that has been
derived by I. Demongodin, N. Audry and F. Prunet (Demongodin et al., 1993;
Demongodin et al., 1998) as a modeling tool for this particular class of pro-
cesses. It intends to model variable delays on continuous flows by adding to a
hybrid Petri net special nodes called batch nodes. Batch nodes combine both
a discrete event and a linear continuous dynamic behaviour in a single struc-
ture. Evolution rules are determined in order to do the simulation of systems
based on accumulation phenomena, thus resulting well suited to model high
throughput production lines (Audry et al., 1994; Audry and Prunet, 1995; De-
mongodin, 1999). Extensions of the basic model have been proposed later in
(Demongodin, 2001), where Generalized BPN have been introduced that en-
able to represent phenomena as synchronization, parallelism and proportion
of batches or set of batches, thus enlarging the modeling power of BPN.

2.2.3 DAE-Petri nets

Differential Algebraic Equations-Petri nets (DAE-PNs) are based on the model
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presented by D. Andreu, J.C. Pascal, C. Valentin-Roubinet, and R. Valette
(Andreu et al., n.d.; Andreu et al., 1995; Andreu et al., 1996; Champagnat et
al., 1998; Daubas et al., 1994; Valentin-Roubinet, 1994a; Valentin-Roubinet,
1994b; Valentin-Roubinet, 1998; Vibert et al., 1997). This approach does not
try to represent in a unified way the continuous and discrete aspects, as it
is the case in HPNs in which there are discrete places with an integer token
load and continuous ones with a real token load. On the contrary, the model
focuses on the interaction between a discrete Petri net model that captures
the discrete behaviour of a batch system, and a continuous model which is a
set of differential algebraic equations. DAE-PNs can be seen as an extension of
hybrid automata (Alur et al., 1993; Puri and Varaiya, 1996). This approach is
well suited for modelling batch processes where it is necessary to concurrently
deal with continuous and discrete models. It has also been tested in the food
industry for the validation of scheduling policies and has been developed for
supervisory control and reactive scheduling.

2.2.4 Hybrid Flow nets

Hybrid Flow nets (HFNs) have been proposed by J.-M. Flaus (Flaus, 1996;
Flaus, 1997; Flaus and Ollagnon, 1997; Flaus and Alla, 1997). This approach
is based on the analysis of a system as a set of continuous and discrete flows.
The notion of HFNs can then be seen as an extension of Petri nets for hybrid
systems. This modeling tool is made of a continuous flow net interacting with a
Petri net according to a control interaction, that is to say the Petri net controls
the continuous flow net and vice versa. The overall philosophy of Petri nets
is preserved again. The discrete part is a Petri net while the continuous part
is called continuous flow net whose dynamic evolution has be defined so that
to be similar to the one of Petri nets, with a continuous enabling rule and a
continuous firing rule. HFNs are well suited for the modeling and control of
industrial transformation processes for which the dynamics behavior has an
hybrid nature.

2.2.5 Differential Petri nets

Differential Petri Nets (DPNs) have been firstly presented by I. Demongodin
and N.T. Koussoulas in (Demongodin and Koussoulas, 1998). The main fea-
ture of this class of Petri nets is that it allows us to model continuous-time dy-
namic processes represented by a finite number of linear first-order differential
state equations. The differential Petri net is defined through the introduction
of a new kind of place and transition, namely, the differential place and the
differential transition. The marking of the differential place represents a state
variable of the continuous system that is modeled. To every differential transi-
tion it is associated a firing speed representing either a variable proportional to
a state variable or an independent variable. A differential transition is always
enabled, thus to discretize the continuous system, to any differential transition
is associated a firing frequency representing the integration step that would
be used when carrying out an integration of the differential equation. Evo-
lution rules have been developed to precise the simulation of hybrid systems
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composed by a continuous part cooperating with a discrete event part, i.e.,
the typical paradigm of a supervisory control system. DPNs can integrate all
kinds of discrete Petri nets. In fact, the introduction of the new type of places
and of transitions does not change the description and the evolution of the
discrete part. Thus, it is possible to integrate in DPNs, stochastic, interpreted
and many other kinds and extensions of Petri nets. Through the introduc-
tion of this new formalism it is possible to model concurrently discrete-event
processes and continuous-time dynamic processes, represented by systems of
linear ordinary differential equations. This model can contribute to the per-
formance analysis and design of industrial supervisory control systems and of
hybrid control systems in general.

2.2.6 High-Level Hybrid Petri Nets

The works collected under this heading consider different models presented by
several authors (Chen and Hanisch, 1998; Genrich and Schuart, 1998; Giua
and Usai, 1998). All these models, however, are based on High-Level nets, i.e.,
nets characterized by the use of structured individual tokens. High-Level Hy-
brid Petri Nets (HLHPNs) are a useful model that provides a simple graphical
representation of hybrid systems and takes advantage of the modular struc-
ture of Petri nets in giving a compact description of systems composed of
interacting subsystems, both time-continuous and discrete-event. The use of
colors in the continuous places allows one to model continuous variables that
may take negative values.

3 First-order hybrid Petri nets

In this section we provide a detailed presentation of the FOHPN model (Balduzzi
et al., 2000). For a more comprehensive introduction to place/transition Petri
nets see (Murata, 1989).

3.1 Net structure

A FOHPN is a structure

N = (P, T, Pre, Post,D, C).

The set of places P = Pd ∪ Pc is partitioned into a set of discrete places
Pd (represented as circles) and a set of continuous places Pc (represented as
double circles). The cardinality of P , Pd and Pc is denoted n, nd and nc.
We assume that the place labeling is such that: Pc = {pi | i = 1, . . . , nc},
Pd = {pi | i = nc + 1, . . . , n}.
The set of transitions T = Td ∪ Tc is partitioned into a set of discrete transi-
tions Td and a set of continuous transitions Tc (represented as double boxes).
The set Td = TI ∪ TD ∪ TE is further partitioned into a set of immediate
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transitions TI (represented as bars), a set of deterministic timed transitions
TD (represented as black boxes), and a set of exponentially distributed timed
transitions TE (represented as white boxes). The cardinality of T , Td and
Tc is denoted q, qd and qc. We also denote with qt the cardinality of the
set of timed transitions Tt = TD ∪ TE. We assume that the transition label-
ing is such that: Tc = {tj | j = 1, . . . , qc}, Tt = {tj | j = qc + 1, . . . , qc + qt},
TI = {tj | j = qc + qt + 1, . . . , q}.
The pre- and post-incidence functions that specify the arcs are (here R+

0 =
R+ ∪ {0}):

Pre, Post :





Pc × T → R+
0

Pd × T → N
.

We require (well-formed nets) that for all t ∈ Tc and for all p ∈ Pd, Pre(p, t) =
Post(p, t). This ensures that the firing of continuous transitions does not
change the marking of discrete places.

The function D : Tt → R+ specifies the timing associated to timed discrete
transitions. We associate to a deterministic timed transition tj ∈ TD its (con-
stant) firing delay δj = D(tj). We associate to an exponentially distributed
timed transition tj ∈ TE its average firing rate λj = D(tj), i.e. the average fir-
ing delay is 1/λj, where λj is the parameter of the corresponding exponential
distribution.

The function C : Tc → R+
0 × R+

∞ specifies the firing speeds associated to
continuous transitions (here R+

∞ = R+ ∪ {∞}). For any continuous transition
tj ∈ Tc we let C(tj) = (V ′

j , Vj), with V ′
j ≤ Vj. Here V ′

j represents the minimum
firing speed (mfs) and Vj represents the maximum firing speed (MFS). In the
following, unless explicitly specified, the mfs of a continuous transition tj will
be V ′

j = 0.

We denote the preset (postset) of transition t as •t (t•) and its restriction to
continuous or discrete places as (d)t = •t∩Pd or (c)t = •t∩Pc. Similar notation
may be used for presets and postsets of places. The incidence matrix of the
net is defined as C(p, t) = Post(p, t) − Pre(p, t). The restriction of C to PX

and TY (X,Y ∈ {c, d}) is denoted CXY . Note that by the well-formedness
hypothesis Cdc = 0nd×qc .

Example 3.1 Consider the net in Fig. 1.a. Place p1 is a continuous place.
Places p2, p3, p4, p5 are discrete places. Transitions t1 and t2 are continuous
transitions with MFS V1 and V2; we have not specified the mfs of the continu-
ous transitions because in this case their value is zero. We assume V1 a < V2 b
(here a and b are the arc weights given by Pre and Post). Discrete transi-
tions t3, t4, t5, t6 are exponentially distributed timed transitions whose average
firing rates are λ3, λ4, λ5 and λ6 respectively.

The two continuous transitions represent two unreliable machines; parts pro-
duced by the first machine (t1) are put in a buffer (place p1) before being
processed by the second machine (t2). The weight of the arc a (resp., b) repre-
sents the ratio between the flow worked by the machine and the flow put into
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Fig. 1. A First–Order Hybrid Petri Net (a) and its evolution (b).

(resp., taken from) the buffer.

The incidence matrix of this net is

C =




Ccc Ccd

Cdc Cdd


 =




a −b 0 0 0 0

0 0 −1 1 0 0

0 0 1 −1 0 0

0 0 0 0 −1 1

0 0 0 0 1 −1




.

We have (well-formedness) Cdc = 04×2. In this particular example we also
have Ccd = [0, 0, 0, 0]. ¥

3.2 Marking and enabling

A marking

m :





Pc → R+
0

Pd → N

is a function that assigns to each discrete place a non-negative integer number
of tokens, represented by black dots, and assigns to each continuous place a
fluid volume; mi denotes the marking of place pi. The value of the marking
at time τ is denoted m(τ). The restriction of m to Pd and Pc are denoted
with md and mc, respectively. An FOHPN system 〈N, m(τ0)〉 is an FOHPN
N with an initial marking m(τ0).

The enabling of a discrete transition depends on the marking of all its input
places, both discrete and continuous.
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Definition 3.2 Let 〈N, m〉 be an FOHPN system. A discrete transition t is
enabled at m if for all pi ∈ •t, mi ≥ Pre(pi, t). ¥
A continuous transition is enabled only by the marking of its input discrete
places. The marking of its input continuous places, however, is used to distin-
guish between strongly and weakly enabling.

Definition 3.3 Let 〈N, m〉 be an FOHPN system. A continuous transition t
is enabled at m if for all pi ∈ (d)t, mi ≥ Pre(pi, t).

We say that an enabled transition t ∈ Tc is:

• strongly enabled at m if for all places pi ∈ (c)t, mi > 0;
• weakly enabled at m if for some pi ∈ (c)t, mi = 0. ¥
Example 3.4 In the net in Fig. 1.a the discrete part of the net represents
the failure model of the machines. When place p2 is marked, transition t1 is
enabled, i.e. the first machine is operational; when place p3 is marked, transi-
tion t1 is not enabled, i.e. the first machine is down. A similar interpretation
applies to the second machine. The marking represented in the net shows that
initially both machines are operational and the buffer contains a fluid quantity
m1. Transition t1 is strongly enabled. Transition t2 is strongly (resp., weakly)
enabled if m1 > 0 (resp., m1 = 0). ¥

3.3 Net dynamics

We now describe the dynamics of an FOHPN. First, we consider the behaviour
associated to discrete transitions that combines a continuous dynamics associ-
ated to the timers, and a discrete–event dynamics associated to the transition
firing. Then we consider the time–driven behaviour associated to the firing of
continuous transitions.

Note that the evolution of an FOHPN is characterized by the occurrence
of some events that we call macro-events, while the time interval between
two consecutive macro-events is called a macro-period. As discussed in detail
in the following two paragraphs, macro-events may be either related to the
firing and/or the enabling condition of discrete transitions, or to the enabling
condition and/or the enabling state of a continuous transition.

In the following we will use ei,r to denote the i–th canonical basis vector of
dimension r, i.e. the vector

ei,r = [

i︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

r

]T .

We also define, to simplify the notation, the index %(j) = j − qc that will be
used to define the firing vector associated to a discrete transition.
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Discrete transitions dynamics

We associate to each timed transition tj ∈ Tt a timer νj.

Definition 3.5 (Timers evolution) Let 〈N, m〉 be an FOHPN system and
[τk, τ) be an interval of time in which the enabling state of a transition tj ∈ Tt

does not change. If tj is enabled in this interval then

νj(τ) = νj(τk) + (τ − τk), (1)

while if tj is not enabled in this interval then

νj(τ) = νj(τk) = 0. (2)

Whenever tj is disabled or it fires, its timer is reset to 0. ¥
With the notation of (Marsan et al., 1995b), we are using a single–server
semantics, i.e. only one timer is associated to each timed transition, and an
enabling–memory policy, i.e. each timer is reset to 0 whenever its transition is
disabled.

The vector of timers associated to timed transitions is denoted

ν = [νqc+1, νqc+2, · · · , νqc+qt ]
T ∈ (R+

0 )qt .

Note that the timer evolution is continuous and linear during a macro–period
and may change at the occurrence of the following macro–events:

(a) a discrete transition fires, thus changing the discrete marking and enabling
(or disabling) a timed transition;

(b) a continuous place reaches a fluid level that enables (or disables) a discrete
transition.

An enabled timed transition tj ∈ Tt fires when the value of its timer reaches
a given value νj(τ) = ν̂j: we call the ν̂j’s the timer set points. In the case
of a deterministic transition, ν̂j = δj is the associated delay. In the case of a
stochastic transition, ν̂j is the current sample of the associated random vari-
able: it is drawn each time the transition is newly enabled. An immediate
transition fires as soon as it is enabled, i.e. it can be considered as a deter-
ministic transition with ν̂j = 0.

Definition 3.6 (Discrete transition firing) The firing of a discrete tran-
sition tj at m(τ−) yields the marking m(τ) and for each place p it holds
mp(τ) = mp(τ

−) + Post(p, tj)− Pre(p, tj) = mp(τ
−) + C(p, tj). Thus we can

write 



mc(τ) = mc(τ−) + Ccdσ(τ)

md(τ) = md(τ−) + Cddσ(τ)
(3)

where σ(τ) = e%(j),qd
is the firing count vector associated to the firing of

transition tj. ¥
In the above definition we note that, given the transition labeling defined
in section 3.1, a transition tj is the %(j) − th discrete transition, hence, say,
Ccde%(j),qd

represents the column of matrix Ccd corresponding to transition tj.
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Example 3.7 In the net in Fig. 1.a we assume that the timer vector ν =
[ν3, ν4, ν5, ν6]

T is initially set to zero. Discrete transitions t3 and t5 are
enabled. Let ν̂3 = 3 and ν̂5 = 5 be the timer set points at time τ = 0. Thus,
at time τ = 3 transition t3 fires thus moving the token from place p2 to place
p3, and the timer ν3 is reset to 0, while ν5 = 2. Now, transition t4 is enabled
and if we assume ν4 = 4 then at time τ = 3 the timer vector is equal to
ν = [0, 4, 2, 0]T . ¥

Continuous transitions dynamics

The instantaneous firing speed (IFS) at time τ of a transition tj ∈ Tc is denoted
vj(τ). We can write the equation which governs the evolution in time of the
marking of a place pi ∈ Pc as

ṁi(τ) =
∑

tj∈Tc

C(pi, tj)vj(τ) = eT
i,nc

Cccv(τ) (4)

where v(τ) = [v1(τ), . . . , vnc(τ)]T is the IFS vector at time τ . Indeed Equa-
tion (4) holds assuming that at time τ no discrete transition is fired and that
all speeds vj(τ) are continuous in τ .

The enabling state of a continuous transition tj defines its admissible IFS vj.

• If tj is not enabled then vj = 0.
• If tj is strongly enabled, then it may fire with any firing speed vj ∈ [V ′

j , Vj].

• If tj is weakly enabled, then it may fire with any firing speed vj ∈ [V ′
j , V j],

where the upper bound V j on the firing speed is V j ≤ Vj and depends on
the flow entering the set of input continuous places (c)tj that are empty. In
fact, since tj cannot remove more fluid from any empty input continuous
place p than the quantity entered in p by other transitions.

The computation of the IFS of enabled transitions is not a trivial task. We
will set up in the next section a linear–algebraic formalism to do this. Here
we simply discuss the net evolution assuming that the IFS are given.

We say that a macro–event occurs when:

(a) a discrete transition fires, thus changing the discrete marking and enabling
(or disabling) a continuous transition;

(b) a continuous place becomes empty, thus changing the enabling state of a
continuous transition from strong to weak.

Definition 3.8 (Continuous transition firing) Let τk and τk+1 be the oc-
currence times of two consecutive macro–events as defined above; we assume
that within the interval of time [τk, τk+1) the IFS vector is constant and denoted
v(τk). The continuous behaviour of an FOHPN for τ ∈ [τk, τk+1) is described
by 




mc(τ) = mc(τk) + Cccv(τk)(τ − τk)

md(τ) = md(τk).
(5)

¥
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Example 3.9 In the net in Fig. 1.a we assume that the timer vector ν =
[ν3, ν4, ν5, ν6]

T is initially set to zero. If m1 > 0 at time τ0, transitions t1 and t2
are strongly enabled and may fire at their maximum speeds, i.e. we choose v1 =
V1 and v2 = V2. The continuous marking of the net during this macro–period
is given, as in Equation 5, by mc(τ) = m1(τ) = m1 − (V2 b − V1 a) (τ − τ0),

and the timer vector is ν(τ) = [τ − τ0, 0, τ − τ0, 0]T . ¥

3.4 Admissible IFS vectors

We use linear inequalities to characterize the set of all admissible firing speed
vectors S. Each IFS vector v ∈ S represents a particular mode of operation
of the system described by the net. As discussed in detail in Subsection 4.1,
the system operator may choose among all possible modes of operation, the
best according to a given objective.

The set of admissible IFS vectors form a convex set described by linear equa-
tions.

Definition 3.10 (admissible IFS vectors) Let 〈N, m〉 be an FOHPN sys-
tem with nc continuous transitions and incidence matrix C. Let

• TE(m) ⊂ Tc (TN (m) ⊂ Tc) be the subset of continuous transitions enabled
(not enabled) at m,

• PE = {p ∈ Pc | mp = 0} be the subset of empty continuous places.

Any admissible IFS vector v = [v1, · · · , vnc ]
T at m is a feasible solution of the

following linear set:





(a) Vj − vj ≥ 0 ∀tj ∈ TE(m)

(b) vj − V ′
j ≥ 0 ∀tj ∈ TE(m)

(c) vj = 0 ∀tj ∈ TN (m)

(d)
∑

tj∈TE C(p, tj) · vj ≥ 0 ∀p ∈ PE(m)

(e) vj ≥ 0 ∀tj ∈ Tc

(6)

A part from the non-negativity constraint (e) the total number of constraints
that define this set is: 2 card {TE(m)} + card {TN (m)} + card {PE(m)}. The
set of all feasible solutions is denoted S(N, m). ¥
Constraints of the form (6.a), (6.b), and (6.c) follow from the firing rules of
continuous transitions. Constraints of the form (6.d) follow from (4), because
if a continuous place is empty then its fluid content cannot decrease. Note
that if V ′

i = 0, then the constraint of the form (6.b) associated to ti reduces
to a non–negativity constraint on vi.

Example 3.11 Let 〈N, m(τ0)〉 be the continuous net in Fig. 1.a. If m1 > 0,
according to the previous definition, the set S(N, m(τ0)) is defined by the
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following inequalities: 



V1 − v1 ≥ 0

V2 − v2 ≥ 0

v1, v2 ≥ 0

(7)

If m1 = 0, we add to the constraint set S(N, m(τ0)) the additional constraint
{a v1 − b v2 ≥ 0} associated to the empty place p1. ¥

3.5 Main differences between the FOHPN model and the HPN of David and
Alla

There are two main differences between our model and the one proposed in
(Alla and David, 1998b).

The definition of continuous transitions enabling proposed in (Alla and David,
1998b) requires that a weakly enabled transition be “fed”, i.e. there exists an
upstream transition strongly enabled feeding it. According to this definition,
two transitions in a cycle as depicted in Fig. 2.a are not enabled and the cycle is
blocked, while according to our definition they are both weakly enabled and the
cycle is not blocked. To overcome this limitation, David and Alla introduced
the concept of ε-marking (see (David and Alla, 2005) for more details): if an
arbitrary small marking is initially assigned to any of the two places of the
cycle in Fig. 2.a, then both transitions can be considered weakly enabled.
Thus, in this generalized framework it is possible to assign to empty cycles
two semantics: blocked cycles (those that are empty) and non-blocked cycles
(those ε-marked). We believe that blocked cycles are not a useful modeling
feature for manufacturing systems of practical interest, thus we have chosen
to keep just the second semantics. However, one may also adopt for FOHPNs
the enabling definition used in (David and Alla, 2005).

Another difference with (Alla and David, 1998b) is that we have also intro-
duced minimum firing speeds for continuous transitions. As a consequence of
this, as shown in (Balduzzi et al., 2000), the set S(N, m) defined by (6) may
not admit feasible solutions in some cases. As an example, consider the net in
Fig. 2.b, where transitions t1 and t2 have (V ′

1 , V1) = (0, 2) and (V ′
2 , V2) = (3, 5).

If m1 = 0 and place p2 is marked, then there is no feasible solution to the con-
straint set: 




0 ≤ v1 ≤ 2

3 ≤ v2 ≤ 5

v2 ≤ v1

i.e. no admissible modes of operation is possible. This is a useful indication for
the system designer that the system does not satisfy the requirements. Note
that when place p2 is not marked, transition t2 is disabled, hence its IFS is
v2 = 0 and any v1 ∈ [0, 2] satisfies the constraint set, regardless of the value
of m1.
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Fig. 2. (a) A FOHPN with an empty cycle. (b) A FOHPN which may have no
admissible mode of operation.

4 Analysis and control of FOHPNs

Different analysis and control problems in the framework of FOHPNs have
been investigated in the last years (Balduzzi et al., 2000; Balduzzi et al.,
2001a), that are briefly summarized in this section.

4.1 Control

In the previous section we have shown how appropriate linear inequalities can
be used to define the set of all admissible firing speed vectors S. Each vector
v ∈ S represents a particular mode of operation of the system described by
the net, and among all possible modes of operation, the system operator may
choose the best according to a given objective. Some examples are given in
the following.

• Maximize flows. In an FOHPN we may consider as optimal the solution
v∗ of (6) that maximizes the performance index J = 1T · v which is of
course intended to maximize the sum of all flow rates. In the manufacturing
domain this may correspond to maximizing machines utilization.

• Maximize outflows. In an FOHPN we may want to maximize the perfor-
mance index J = cT · v where

cj =





1 if tj is an exogenous transition,

0 if tj is an endogenous transition.

In the manufacturing domain this may correspond to maximizing through-
put.

• Minimize stored fluid. In an FOHPN we may want to minimize the
derivative of the marking of a place p ∈ Pc. This can be done by minimizing
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the performance index J = cT · v where

cj =





C(p, tj) if tj ∈ p(c) ∪ (c)p,

0 otherwise.

In the manufacturing domain this may correspond to minimizing the work–
in–process (WIP).

Note that this approach has several advantages with respect to other ap-
proaches proposed in the literature, e.g., (Dubois et al., 1994), where an it-
erative algorithm was given to determine one admissible vector. In fact, we
can explicitly define the set of all admissible IFS vectors in a given macro-
state and not just compute a particular vector. Then, we compute a particular
(optimal) IFS vector solving a Linear Programming Problem (LPP), rather
than by means of an iterative algorithm, whose convergence properties may
not be good. Finally, as discussed in the following subsection, linear program-
ming leads to sensitivity analysis, which plays an essential role in performance
evaluation and optimization.

However, the above control procedure still suffers of a serious drawback. In
fact, the set S corresponds to a particular system macro-state. Thus, our
optimization scheme can only be myopic, in the sense that it generates a
piecewise optimal solution, i.e. a solution that is optimal only in a macro-
period.

At present, we are looking for alternative solutions that are not myopic, but
this is still an open issue. We believe that the approach used in (Bemporad et
al., 2004) to optimally control CPNs could be be successfully applied also in
the case of FOHPNs, but we still have to verify this conjecture.

4.2 Reachability analysis

In (Balduzzi et al., 2001a) we considered the untimed version of FOHPNs.
Within this framework, we defined a particular class of nets, called Single–
Rate Hybrid Petri Nets (SRHPNs). In a SRHPN the continuous evolution is
such that the marking of all continuous places increases with a single rate that
depends on the place, i.e., ∀pi ∈ Pc, ṁi = vi. Here in general vi 6= vj for i 6= j,
thus the activity function of a net in this class is equivalent to that of a timed
automaton with skewed clocks (Alur et al., 1993). In (Balduzzi et al., 2001a)
we proved that the reachability problem for this class can be reduced to the
reachability problem of an equivalent discrete net and thus it is decidable.

Example 4.1 The FOHPN in Fig. 3 is a SRHPN. It represents a production
system with two continuous flows of parts (type 1 and type 2) that are put
into two buffers (places p1 and p2). The batch processing of parts, represented
by the cycle of discrete transitions, requires first a unit of part type 1, then a
unit of part type 2 and then again a unit of part type 1. ¥
In (Balduzzi et al., 2001a) we proved the following result.
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Fig. 3. A Single–Rate Hybrid Petri Net.

Corollary 4.2 (Balduzzi et al., 2001a)The reachability problem is decidable
for SRHPN.

In (Balduzzi et al., 2001a) we also shown constructively how the reachability
problem of a SRHPN can be reduced to that of a corresponding discrete Petri
net.

The goal of our future research in this topic consists in investigating if such
result can be extended to more general classes of FOHPNs, and eventually be
disproved for the most general model.

5 Modelling and simulation of distributed manufacturing systems

This section shows the efficiency of FOHPN in the modeling and control of
large and complex systems such as Distributed Manufacturing Systems (DMS).

5.1 The DMS system description

The DMS structure is typically described by a set of facilities with materials
that flow from the sources of raw materials to manufacturers and onwards to
assemblers and consumers of finished products. DMS facilities are connected
by transporters of materials, semi-finished goods and finished products. More
precisely, the DSM entities can be summarized as follows.

(1) Suppliers: a supplier is a facility that provides raw materials, components
and semi-finished products to manufacturers that make use of them.

(2) Manufacturers and assemblers: manufacturers and assemblers are facili-
ties that transform input raw materials/components into desired output
products.

(3) Logistics and transporters: storage systems and transporters play a criti-
cal role in distributed manufacturing. The attributes of logistics facilities
are storage and handling capacities, transportation times, operation and
inventory costs.

(4) Retailers or customers: retailers or customers are sink nodes of material
flows.
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Here, some parts of the logistics, such as storage buffers, are considered per-
taining to manufacturers, suppliers and customers. Moreover, transporters
connect the different stages of the production process.

The dynamics of the distributed production system is traced by the flow of
products between facilities and transporters. Because of the large amount of
material flowing in the system, we model a DMS as a hybrid system: the
continuous dynamics models the flow of products in the DMS, the manufac-
turing and the assembling of different products and its storage in appropriate
buffers. Hence, the levels of buffers accommodating products are represented
by continuous states describing the amount of fluid material that the resources
store. Moreover, we also consider discrete events occurring stochastically in the
system, such as:

(a) the blocking of the raw material supply, e.g. modeling the occurrence of
labor strikes, accidents or stops due to the shifts;

(b) the blocking of transport operations due to the shifts or to unpredictable
events such as jamming of transportation routes, accidents, strikes of trans-
porters etc.;

(c) the beginning and the end of a request from a DMS facility.

5.2 A modular DMS model based on FOHPN

This section proposes a modular approach using FOHPN to model DMS based
on the idea of the bottom-up approach (Zhou and Venkatesh, 1998). Such a
method can be summarized in two main steps: decomposition and composition.
Decomposition involves dividing the system into several subsystems. In DMS
this division can be performed based on the determination of distributed sys-
tem facilities (i.e., suppliers, manufacturers, transporters and customers). All
these subsystems are then modeled by FOHPN. Finally, composition involves
the interacting of these sub-models into a complete model, representing the
whole DMS.

In the following we present the main FOHPN models of the elementary sub-
systems composing a DMS.

5.2.1 The supplier module

The supplier is modeled as a continuous transition and two continuous places
(see places pS, p′S and transition tS in Fig. 4.a). The continuous transition tS
models the arrival of raw material in the system at a bounded rate vS that
belongs to the interval C(tS) = [VS,min, VS,max]. We consider the possibility
that the supply of raw material is blocked for a certain time period. This
situation is modeled by two exponentially distributed transitions (tk and t′k)
and two discrete places (pk and p′k). In particular, place pk represents the
operative state of the supplier, and p′k is the non-operative state (see Fig. 4.a).
The blocking and the restoration of the raw material supply corresponds to
the firing of transitions tk and t′k, respectively.
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Fig. 4. The FOHPN models of a supplier (a); a manufacturer or assembler (b); a
logistics (c), and a transporter (d).

The continuous place pS models the raw material buffer of finite capacity CS,
and p′S represents the corresponding available capacity. Thus, at each time
instant, with no ambiguity in the notation, we can write mS + m′

S = CS.

Note that for sake of clarity, in Fig. 4.a we have also reported the transition tT
that, as discussed later (see Subsection 5.2.3), models the transport operation
that corresponds to the withdrawal of material from the buffer.

5.2.2 The manufacturer and assembler module

Manufacturers and assemblers processing q types of semi-finished products
(or components) to obtain a final product can be modeled by the FOHPN in
Fig.4.b. Two places and one transition are associated to each product type r,
for r = 1, . . . , q. More precisely, place pIr is the input buffer of finite capacity
CIr storing the input goods of type r. The corresponding place p′Ir

models the
available buffer space so that mIr + m′

Ir
= CIr . Moreover, each continuous

transition tTr represents the transport of products of type r.

The output buffer of capacity CO storing the output product is modeled by
place pO representing the occupied buffer level and by place p′O modeling the
corresponding available capacity. Thus at any time instant mO + m′

O = CO.

We assume that the production rate is a function of the level of the output
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buffer. In particular, we assume that the production rate of the facility changes
as a function of the available space in the output buffer. Indeed, we consider
two different ranges of rate for the production: a nominal range C(tn) = [0, Vn]
associated to the continuous transition tn and a high range C(th) = [0, V h],
with Vh > Vn, associated to the continuous transition th. If m′

0(t) < max,
where max is value that is established a priori (i.e., the inventory level is large
enough) the manufacturer works at a rate within the nominal range. When
the buffer level decreases (i.e., the available buffer free is equal to m′

O(t) =
max), the immediate transition t′k fires. After its firing m′

k = 1 so the facility
may work at a higher rate in C(th) and the output buffer is replenished more
rapidly. Analogously, if the level of the buffer reaches an intermediate value
mO(t) = med, then transition tk is enabled and can fire, leading the facility
rate at a value in the nominal range.

Note that, since an assembly operation can be performed by assembling dif-
ferent quantities of each product, different weights have been assigned to the
arcs from pIr to th and tn and from th and tn to pIr , for r = 1, . . . , q.

Finally, transition t′T depicts the transport facility connecting the output buffer
with the other system facilities.

5.2.3 The logistics module

The FOHPN model of logistics is reported in Fig. 4.c. The transporter con-
necting the different facilities is modeled by a continuous transition tT that
describes the flow of material from a facility to a subsequent one at a bounded
rate vT ∈ [0, VT ]. Moreover, the random stop of the material transport is repre-
sented by two places pk, p

′
k ∈ Pd and two exponentially distributed transitions

tk and t′k. If place pk is marked the transport is operative; if p′k is marked the
transportation is no longer enabled.

Note that this model is rather simplified because the delay on transportation is
not taken into account. However, it can be easily considered using appropriate
primitives such as in (Corriga et al., 1997) or (Júlvez and Boel, 2005).

5.2.4 The retailer module

The FOHPN model of a retailer is reported in Fig. 4.d. It is constituted
by a continuous place pR modeling a buffer (for simplicity we consider an
infinite capacity buffer) associated with a final product of a certain type. The
continuous transition tR models the acquisition of the final product by the
retailer. The continuous place pF models the system output and collects all
the products requested by the retailer.

Note that in general place pF has more than one input transition, each one
modeling the acquisition of a different product type. The input arcs have in
general different weights, e.g., depending on the volume of the corresponding
product type.

Finally, since we assume that the request of the products is managed by dis-
crete random events (i.e., by a random demand), as in the previous elementary
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modules, we introduce the cycle given by two discrete timed transitions (tk
and t′k) and two discrete places (pk and p′k).

5.2.5 Remarks

In all the above models we assumed that the discrete state of the system only
depends on the firing of some exponentially distributed transitions. Such an
assumption can be easily removed and more general cases may be consid-
ered, e.g., periodic behaviours in the demand. We do not handle these cases
here for sake of brevity and because we already addressed similar issues in
(Furcas et al., 2001; Balduzzi et al., 2001b) when considering inventory and
manufacturing systems.

Moreover, here we have also omitted the description of the financial transac-
tions and information flows occurring in the DMS. As discussed in (Furcas et
al., 2001) in the case of inventory management, such an information can be
straightforwardly included in the model adding appropriate FOHPN modules.

5.3 An application example of DMS

To illustrate the modeling technique, we consider the DMS depicted in Fig. 5
composed by two suppliers S1 and S2, two subassembly manufacturers M1
and M2, two assemblers A1 and A2, and two retailers R1 and R2. Moreover,
six logistics service providers, T1 to T6, suitably connect the DMS facilities
that are located in different geographical sites. We assume that the system
produces two product brands E and F , ordered by both buyers. Such prod-
ucts are obtained by two assemblers that assemble (in the same proportions)
two types of products (C and D) obtained from two manufacturers. The sub-
assemblies C and D are in turn produced by the manufacturers, which receives
the components of type A and B by the suppliers. Moreover, we assume that
the DMS is managed by the Make To Stock (MTS) policy. This means that
the system is managed by a push strategy, so that end customers are satisfied
from stock of inventory of finished goods.

The whole system is modeled merging all the elementary modules described
in the previous section. The resulting FOHPN is reported in Fig. 6 where each
facility module is depicted within dashed boxes.

5.3.1 Simulation and optimization

The DMS dynamics is analyzed via numerical simulation using the data re-
ported in Table 1, where we can read the manufacturer and assembler produc-
tion ranges of rate, the range of the transportation speeds, and the average
firing delays of discrete stochastic transitions. Table 2 shows further data nec-
essary to completely describe the system, namely the initial marking of con-
tinuous places, the buffer capacities for the inventories of each stage, and the
value of the non-unitary edge weights. The initial marking of discrete places
is shown in Fig. 6.
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Fig. 5. The DMS considered in Subsection 5.3.

In order to analyze the DMS behavior, some basic performance indices can be
considered.

(i) The throughput Ti associated to each retailer Ri, i = 1, 2, i.e., the average
number of products obtained by each buyer in a time unit.

(ii) The system throughput T = T1 + T2.
(iii) The average input inventory in manufacturer Mi with i = 1, 2 (IMi,

i = 1, 2) and in assembler Ai with i = 1, 2 (IAi, i = 1, 2) during the run
time TP .

(iv) The average output inventory in manufacturer Mi with i = 1, 2 (OMi,
i = 1, 2) and in assembler Ai with i = 1, 2 (OAi, i = 1, 2) during the run
time TP.

(v) The average system inventory SI, i.e., the sum of the amount of product
storage in all buffers during the run time TP.

(vi) The lead time LT = SI/T that is a measure of the time spent by the
DMS to convert the raw material in final product (Viswanadham, 2000).

The FOHPN model has been implemented and simulated using Matlab. Such
a matrix-based software appears particularly appropriate for simulating the
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Fig. 6. The FHPN model of the DMS in Fig. 5.

FOHPN dynamics based on the matrix formulation of the marking update
described in Section 3. In particular, the software we have developed is able
to integrate modeling and simulation of hybrid systems with the solution of
constrained optimization problems, i.e., the IFS vector choice within the set
of admissible values by optimizing a particular objective function.

More in detail, after defining the system parameters and the initial marking,
the main simulation program first selects the value of each transition timer
set point, then determines the set of IFS admissible vectors and solves the
optimization program by a suitable Matlab routine; subsequently determines
the next macro-event to occur using an appropriate routine that singles out the
enabled transitions. Hence the simulation determines the next marking with
the matrix formulation of the marking update described in Section 3, and
finally updates the set point of all transitions so that the next macro-period
may be simulated.
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Continuous
transitions

[Vmin,Vmax]
(Units per

hours)

Discrete
Transitions

Average firing
delay (hours)

t1 [0, 8] t27 t29 10
t2 [0, 10] t28 t30 14

t3 t6 t14 t22 [0, 10] t31 t37 t47 9
t4 t7 t13 t17 t19 [0,8] t49 t55 t57 9

t5 t12 t20 [0,9] t32 t38 t48 15
t8 [8,20] t50 t56 t58 15
t9 [0, 12] t33 t35 t43 10
t10 [12,30] t45 t59 t61 10

t11 t21 [0, 11] t34 t36 t44 14
t15 [0, 6] t46 t60 t62 14
t16 [6, 15] t63 t65 10
t17 [0, 8] t64 t66 14
t18 [8, 20] t67 t69 10
t23 [0, 3] t68 t70 14

t24 t25 [0, 4]
t26 [0, 5]

Table 1
Firing speeds of continuous transitions and average firing delay of discrete transi-
tions.

Initial marking (product units) Capacities (product units)
m1, m2=20 C1, C2=200

m3, m5, m9, m11=20 C4, C6, C10, C12=100
m7, m13=20 C8, C14=80

m15, m21, m17, m23=20 C16, C22, C18, C24=100
m19, m25=20 C20, C26=80

m27, m28, m29=0
m30, m31, m32=0

Edge weights (product units)
maxM=190 maxA=190
medM=50 medA=50

Table 2
Initial marking of continuous places, capacities and edge weights.

All the indices have been estimated by simulation runs of a time period
TP = 480 hours (the hour is the considered time unit), and 1000 independent
replications. Three different operative conditions, denoted OCi with i = 1, 2, 3,
have been taken into account, each one corresponding to a different criterion
in the choice of the IFS vector within the set of admissible values.

• First Operative Condition (OC1). At each macro-period the IFS vector v
is taken equal to the intermediate value in the interval of admissible speed
values.

• Second Operative Condition (OC2). At each macro-period the IFS vector
v is selected so as to maximize the sum of all flow rates (see first item in
Subsection 4.1).

• Third Operative Condition (OC3). At each macro-period the IFS vector v
is selected so as to minimize the stored volume (see third item in Subsec-
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Performance index OC1 OC2 OC3
T1 (product units

/hours) 0.59 1.08 0.57
T2 (product units

/hours) 0.71 1.33 0.71
T (product units

/hours) 1.30 2.41 1.29

LT (hours) 209.04 196.85 125.87
SI (product units) 268.51 469.36 159.45

Table 3
Performance indices obtained under the three operative conditions.

tion 4.1).

The main results of the numerical simulations we carried out are summarized
in Fig. 7 to 9. In particular, Fig. 7 clearly shows that OC2 provides the best
performances in terms of system throughput. This result is not surprising
because in such operational condition the goal was exactly that of maximizing
the sum of all flow rates. We can also observe that in this respect OC1 and
OC3 give similar results.

Fig. 8 shows the average inventory in manufacturers and assemblers in all the
operative conditions. The figure shows that, also thanks to the dependence of
the manufacturers and assemblers production rates with their output inven-
tories, the DMS is able to keep stocks at a satisfactorily high level, so that
the demand is satisfied and the inventory is not excessive. In particular, as
expected, OC2 provides the highest inventories and OC3 the lowest stocks,
while OC1 provides intermediate values.

Finally, Fig. 9 shows the value of the lead time in the different considered
cases. In particular, we may observe that the highest value of LT is obtained
in the case of OC1, while the lowest value corresponds to OC3.

Summing up, we conclude that OC2 exhibits the highest throughput value but
also high values of the system inventory and of the lead time; OC3 provides
the lowest inventory levels and also the lowest values of LT . Finally, OC1
leads to the same throughput of OC3 but with higher values of the inventory
levels and of the lead time, thus it is not an appropriate choice.

6 Conclusions

In this paper we considered a particular hybrid formalism, namely HPNs,
that has been obtained as an extension (via fluidification) of the Petri net
model for discrete event systems. The main contribution of this paper can be
summarized as follows.

First, we provided a detailed discussion of the main HPNs models that have
been presented in the literature.

Second, we focused our attention on a particular class, the First-Order Hybrid
Petri nets. We presented it in detail, mentioning the main theoretical results
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that have been solved within this framework, and also mentioning the main
open issues.

Finally, we showed how FOHPNs can be efficiently used to model DMS, and
how interesting optimization problems can be solved via numerical simulation,
by simply solving on-line a certain number of LPPs.
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