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Abstract

This paper discusses the problem of controlling a timed Petri net whose marking

cannot be measured but is estimated using an observer. The control objective is

that of enforcing a set of generalized mutual exclusion constraints (GMEC) and

all transitions are assumed to be controllable. We show that the use of marking

estimates may significantly reduce the performance of the closed-loop system and

in particular may lead to a deadlock. Firstly, we present a linear algebraic charac-

terization of deadlock markings based on siphon analysis. Secondly, we show how

this characterization may be used to derive a procedure that may be invoked to

recover from a controller induced deadlock. Finally, we assume that the timing de-

lays associated to transitions are known and show how this knowledge can be used

to improve the marking estimate and to recover the net from partial deadlocks.

This procedure is similar to the one used for deadlock recovery and may be invoked

whenever a transition has not fired for a time longer than its expected delay.

Published as: A. Giua, C. Seatzu, F. Basile, ”Observer-based state feedback control

of timed Petri nets with deadlock recovery,” IEEE Trans. on Automatic Control, Vol. 49,

No. 1, pp. 17-29, January 2004.

1



1 Introduction

In this paper we deal with the issue of controlling a Petri net whose marking cannot be

measured. The problem of controlling a discrete event system under incomplete informa-

tion has often been discussed in the literature. As an example, the use of state-feedback

control under partial state observation has been discussed by Li and Wonham [9, 10] and

by Takai et al. [19]. In the work of these authors the partial observation is due to a

static mask, that maps the plant state space into an observation space. In the Petri nets

framework we also mention the work of Zhang and Holloway [21] that used a Controlled

Petri Net model for forbidden state avoidance under partial event observation with the

assumption that the initial marking be known. Moody and Antsaklis have also discussed

the controller design of monitor places for nets with uncontrollable and unobservable

transitions [12].

The approach we develop in this paper is based on the classical system theory notion of

a state-feedback controller that uses an observer to estimate the plant state. In previous

works [7] we have shown how it is possible to estimate the actual marking of the net

based on the observation of a word of events (i.e., transition firings) and an algorithm was

given for computing the marking estimate. The estimate is always a lower bound of the

actual marking. The system that computes the estimate is called an observer. The special

structure of Petri nets allows us to use a simple linear algebraic formalism for estimate

computation. In particular, the set C(w) of markings consistent with an observed word

w, i.e., the set of markings in which the system may actually be given the observed word,

can easily be described in terms of the observer estimate and can be characterized as the

integer solutions of a linear constraint set. Other approaches to the design of Petri net

observers can also be found in [16].

In [7] we have also shown how the estimate generated by the observer may be used

to design a state feedback controller, that ensures that the controlled system never enters

a set of forbidden states. We considered a special class of safety specifications that limit

the weighted sum of markings in subsets of places called generalized mutual exclusion

constraints (GMEC).

Clearly, the use of marking estimates, as opposed to the exact knowledge of the actual

marking of the plant, leads to a worse performance of the closed-loop system. In fact, in

a safety problem the aim of the controller is that of preventing all those transition firings

that lead to a forbidden marking. If the actual marking is not exactly known, but is only

known to belong to a given consistent set C, the controller must forbid all transitions

firing that from ”any” marking in C may lead to a forbidden marking and the controller
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becomes usually more restrictive as the cardinality of this set increases. Because of this it

may be the case that the controlled system reaches a deadlock, i.e., a blocking condition,

even if it is deadlock free when perfect information about the marking is available.

We first show that, using siphon analysis, the set of deadlock markings Mb of a struc-

turally bounded net can be characterized as the integer solution of a linear constraint set.

Siphon analysis has been already used by several authors to derive deadlock avoidance

policies: see [1, 4, 5, 14]. The approach we present here is different from the above men-

tioned approaches in two ways. Firstly, our approach only aims to give a characterization

of deadlock markings. On the contrary, the referenced approaches aim to solve a more

complex problem, namely that of deriving a deadlock avoidance policy: to do this it nec-

essary to also characterize impending deadlock markings, i.e., markings that are not dead

but that will lead to a deadlock in a finite number of steps. Secondly, since we solve a

less complex problem we are able to derive a simpler (in terms of number of constraints

and number of unknowns) characterization that applies to a large class of nets (ordinary

and structurally bounded), while the referenced approaches are only valid for restricted

classes of nets.

Then, we focus our attention to timed Petri nets, i.e., Petri nets where a delay is

associated to each transition. The delay represents the time that must elapse from the

enabling of the transition until it fires.

We initially assume that a very loose information on the timing structure is available.

More precisely, we assume that if no transition firing occurs within a reasonable amount of

time in a controlled system — we say that the net has timed out — one can conclude that a

deadlock has occurred and a recovery procedure should be invoked. The characterization

based on siphon analysis may be used to derive a recovery procedure from deadlocks

induced by the observer.

We also explore the characterization of those cases in which the proposed procedure

works. More precisely, we consider a particular class of macromarkings and derive a

sufficient condition to ensure that the controlled net will never time out. We also give

a sufficient condition to ensure that, in the case that a time-out occurs, the proposed

procedure will always recover the net from a deadlock. Finally, we show how the linear

algebraic characterization of deadlock markings may also be used to improve the marking

estimate, thus providing a better characterization of the set of consistent markings.

In a final part of the paper, we consider the case in which the timing structure is

known and propose a new control algorithm that uses the previous marking estimate

and control approach, but that also takes into account the knowledge of the delays and

of the enabling status of each transition. This algorithm should be invoked whenever a
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transition has not fired for a time larger than its expected delay, i.e., when a transition

has timed out. Thus it not only allows the supervisor to recover from total deadlocks (as

in the previous case) but it allows one to detect partial deadlocks as well, and in general it

improves and accelerates the convergence of the marking estimation procedure. We also

show how the observer can use this information to restrict the set of consistent markings.

2 Background on Petri nets

In this section we recall the formalism used in the paper. For more details on Petri nets

we address to [13].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a

set of m places; T is a set of n transitions; Pre : P × T → N and Post : P × T → N
are the pre– and post– incidence functions that specify the arcs; C = Post − Pre is the

incidence matrix. The preset and postset of a node X ∈ P ∪ T are denoted •X and X•

while •X• =• X ∪X•.

A marking is a vector M : P → N that assigns to each place of a P/T net a non–

negative integer number of tokens, represented by black dots. In the following we denote

M(p) the marking of place p. A P/T system or net system 〈N, M0〉 is a net N with an

initial marking M0.

A transition t is marking enabled at M if M ≥ Pre(·, t). In this paper we also assume

that a supervisor, i.e., an external control agent, may forbid the occurrence of a transition

specifying a marking dependent control pattern f(t,M) : T × Nm → {0, 1} such that

f(t,M) =

{
1 if t is control enabled,

0 if t is control disabled.

A transition t is enabled at M if it is marking enabled and control enabled. A transition

t enabled at M may fire, yielding the marking M ′ = M + C(· , t).
We write M [w〉 M ′ to denote that the enabled sequence of transitions w may fire

at M yielding M ′, or equivalently we use the notation M ′ = w(M) and M = w−1(M ′).

Moreover, we denote w(M0) = Mw. Finally, we denote ε the sequence of null length.

The set of all sequences firable in 〈N,M0〉 is denoted L(N, M0) (this is also called the

prefix-closed free language of the net). If the firing sequence w is enabled at M0, we also

say that w is a word in L(N,M0).

A marking M is reachable in 〈N,M0〉 iff there exists a firing sequence w such that

M0 [w〉 M . The set of all markings reachable from M0 defines the reachability set of

〈N, M0〉 and is denoted R(N,M0).
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A nonnegative integer vector ~x 6= ~0m such that ~x T · C = ~0n
T is called a P–invariant

(here ~0k denotes a k× 1 vector of zeros). A P-invariant is minimal if there does not exist

a P-invariant ~y such that ~y ≤ ~x.

A transition t is said to be live if for any M ∈ R(N,M0), there exists a sequence of

transitions firable from M which contains t. A Petri net is said to be live if all transitions

are live.

A marking M is a deadlock (or dead) marking if no transition t ∈ T may fire at M . A

Petri net is said to be deadlock–free if at least one transition is enabled at every reachable

marking.

A place p is said to be bounded if there exists a constant k such that M(p) ≤ k for all

M ∈ R(N,M0). A net system is bounded if all places are bounded. A net is structurally

bounded if it is bounded for all initial markings.

A P/T net is called ordinary when all of its arc weights are 1’s. A siphon of an ordinary

net is a non–empty set of places S ⊆ P such that:
⋃

p∈S
•p ⊆ ⋃

p∈S p•. A siphon is minimal

if it is not the superset of any other siphon. In the following we denote as ~s ∈ {0, 1}m the

characteristic vector of S, where si = 1 if place pi ∈ S and si = 0 otherwise.

Definition 1. Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions,

we define the T ′−induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where

Pre′, Post′ are the restriction of Pre, Post to T ′. The net N ′ can also be thought as

obtained from N by removing all transitions in T \ T ′. We also write N ′ ≺T ′ N . ¥
A deterministic timed P/T net is a pair (N, δ), where N = (P, T, Pre, Post) is a

standard P/T net, and δ(t) : T → R+
0 , called release delay, assigns a non-negative fixed

firing duration to each transition. A transition with a release delay equal to 0 is said to

be immediate. The value of δ(t) represents the time that must elapse, starting from the

time at which the transition t is enabled, until it fires. We use single server-semantics,

i.e., no concurrent firings of the same transition are possible.

3 Marking estimation with macromarkings

In previous works [7] the authors dealt with the problem of reconstructing the marking

of a P/T net assuming that partial information about the initial marking is available in

the form of a macromarking.

Definition 2 ([7]). Assume that the set of places P can be written as the union of r + 1

subsets: P = P0∪P1∪ · · · ∪Pr such that P0∩Pj = ∅, for all j > 0. The number of tokens

contained in Pj (j > 0) is known to be bj, while the number of tokens in P0 is unknown.

For each Pj, let ~vj be its characteristic vector, i.e., vj(p) = 1 if p ∈ Pj, else vj(p) = 0.
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The macromarking defined by V = [~v1, · · · , ~vr] and ~b = [b1, · · · , br] is the set of markings

V(V,~b) = {M ∈ Nm | V T M = ~b}. ¥
The notion of macromarking occurs frequently when describing systems containing a

known set of resources (e.g., parts, machines) whose actual conditions (e.g., exact location

of parts within the plant, state of a machine) is unknown.

We make the following assumptions.

A1) The structure of the net N = (P, T, Pre, Post) is known, while the initial marking

M0 is not.

A2) The event occurrences (i.e., the transition firings) can be observed.

A3) The initial marking M0 belongs to the macromarking V(V,~b), i.e., it satisfies the

equation V T M0 = ~b.

We also introduce the following notation.

Definition 3 ([7]). After the word w has been observed we define the set of w−consistent

markings as the set of all markings in which the system may be given the observed behavior

and the initial marking, i.e., the set C(w) = {M ∈ Nm | ∃M0 ∈ V(V,~b), M0[w〉M}. ¥
Given an evolution of the net M0[tα1〉M1[tα2〉 · · ·, we use the following algorithm to

compute the estimate µw of each actual marking Mw based on the observation of the word

of events w = tα1tα2 · · · tαk
, and of the knowledge of the initial macromarking V(V,~b). The

same algorithm also enables us to compute the bound Bw, depending on the word w and

on the initial macromarking V(V,~b), used to characterize the set of consistent markings

C(w).

Algorithm 4 ([7]). (Marking Estimation with Event Observation and Initial

Macromarking).

1. Let the current observed word be w = ε (the empty string).

2. Let the initial estimate be µε, with µε(p) = min{M(p) | V T ·M = ~b}.

3. Let the initial bound be Bε = ~b− V T · µε.

4. Wait until a new transition, say t, fires.

5. Update the estimate µw to µ′wt with µ′wt(p) = max{µw(p), P re(p, t)}.

6. Let µwt = µ′wt + C(·, t).

7. Let Bwt = Bw − V T · (µ′wt − µw).
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8. Goto 4. ¥

In simple words, if the currently observed word is w and transition t fires, the algorithm

firstly updates the current estimate from µw to µ′wt adding the minimal number of tokens

required to enable t. Secondly, the algorithm computes µwt as the marking obtained from

µ′wt firing t.

The set of consistent markings can be characterized in terms of the estimate µ and

bound B1 as follows.

Theorem 5 ([7]). Given a net with initial macromarking V(V,~b), an observed word w ∈
L(N, M0), and the corresponding estimated marking µw and bound Bw computed by Al-

gorithm 4, the set of w−consistent markings coincides with the set of (µw, Bw)−consistent

markings, i.e.,

C(w) = M(µw, Bw)
def
={M ∈ Nn | M ≥ µw, V T ·M = V T · µw + Bw}. (1)

¥

4 Control using observers

In this section we show how the marking estimate constructed with the formalism dis-

cussed in the previous section can be used by a control agent to enforce a given specifica-

tion on the plant behavior.

We make several assumptions that are briefly discussed here.

• We assume that the specification on the desired behavior is given as a set of legal

markings L. The use of marking (i.e., state) specifications leads naturally to the

design of a state feedback control law [8] that may be easily adapted to the presence

of an observer in the feedback loop.

• We consider a special type of state specifications called generalized mutual exclusion

constraints (GMEC) that have been considered by various authors [6, 11, 20].

Given an integer matrix L = [~l1 · · ·~lq] with ~lj ∈ Zm and a vector ~k = [k1, · · · , kq] with

kj ∈ Z, a GMEC (L,~k) defines the set of legal markings L = {M ∈ Nm | LT ·M ≤ ~k}.

• The controller may disable transitions to prevent the plant from entering a forbidden

marking, computing a marking dependent control pattern f(t,M) : T × Nm →
1To avoid a heavy notation, we will drop the subscript w from µ and B whenever it is possible without

introducing ambiguity.
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Figure 1: State feedback control loop with observer.

{0, 1}. If f(t,M) = 0 then t is disabled by the controller at M , while if f(t, M) = 1

it is enabled.

• All transitions are controllable, i.e., can be disabled by the controller.

The considered control scheme is shown in Figure 1.

It is well known that under the assumption that: the initial marking M0 is legal, all

transitions are controllable, and the actual marking is known, an optimal (i.e., maximally

permissive) control policy that enforces a given state specification is as follows.

Definition 6 (Optimal state feedback for GMEC). Given a GMEC (L,~k) and a marking

M , the firing of transition t should be prevented from M if and only if leads from a legal

to a forbidden marking, i.e.,

f(t,M) =

{
0 if LT ·M ≤ ~k, M [t〉M ′, (∃j) ~lj ·M ′ > kj

1 otherwise.

¥
When an observer is used in the control loop, the actual marking M is not known and

only the set of consistent markings C ⊆ Nm is available to the controller. The control law

now becomes a function f(t, C) : T × 2N
m → {0, 1} and can be given as follows.

Definition 7 (Optimal state feedback for GMEC with observer). Given a GMEC (L,~k)

and a set of consistent markings C ⊆ Nm, the firing of transition t should be prevented

if and only if there exists a legal consistent marking M such that the firing of t from M

leads to a forbidden marking, i.e.,

f(t, C) =





0 if (∃M) M ∈ C, LT ·M ≤ ~k,

M [t〉M ′, (∃j) ~lj ·M ′ > kj

1 otherwise.

¥
The computation of the control pattern may be carried out solving a number of linear

integer programming problems (IPP) as given in the following algorithm.
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Algorithm 8 (Computation of the optimal state feedback with observer). The control

law in Definition 7 can be computed as follows.

1. For all t ∈ T, let Jt = {j | ~l T
j · C(·, t) > 0} be the set of indices of

those constraints that may potentially be violated by the firing of t.

2. Solve for each j ∈ Jt the IPP





max ~l T
j ·M ′

s.t.

M ∈ C (a)

LT ·M ≤ ~k (b)

M ≥ Pre(·, t) (c)

M ′ = M + C(·, t) (d)

M ′ ∈ Nm (e)

(2)

and let hj(t) be its optimal solution.

3. Define

f(t, C) =

{
0 if (∃j ∈ Jt)hj(t) > kj

1 otherwise.
(3)

¥
Thus a transition t is disabled only if it may fire (constraint (c)) and there exists a

consistent marking M (constraint(a)) that is legal (constraint (b)) and from which the

firing of t leads to a marking M ′ (constraint (d)) that is not legal because for at least one

j it holds hj(t) = ~l T
j ·M ′ > kj. Note that, as a consequence of Equation (1), constraint

(a) is linear with respect to M .

Finally, we state an elementary proposition that will be used in the following.

Proposition 9. Let C ′ and C ′′ be two sets of consistent markings, with C ′ ⊆ C ′′. Then

f ′ = f(·, C ′) is at least as permissive as f ′′ = f(·, C ′′) i.e., for all t it holds f(t, C ′) ≥
f(t, C ′′). We denote this writing f ′ ≥ f ′′.

Proof. For all t and for all j, C ′ ⊆ C ′′ implies h′j(t) ≤ h′′j (t), where h′j(t) and h′′j (t) denote

the solutions of (2) with, resp., C = C ′ and C = C ′′. Thus the result follows from the

definition of f given in (3).

A trivial consequence of this proposition is the following. If the actual marking M is

perfectly known the set of consistent markings is C ′ = {M}. If the actual marking can

only be estimated by an observer, then the set of consistent markings is C ′′ ⊇ C ′. This
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Figure 2: Petri net model of the assembly system.

means that the control pattern computed using an observer may be more restrictive than

the optimal state feedback computed when the actual marking is known. As shown in

the following example this may often lead to a block.

4.1 A manufacturing example

Now, let us apply the above methodology to a manufacturing system whose Petri net

model is shown in Figure 2.

This assembly system, that is similar to the one described in [15], consists of five

machines, M1, M2, M3, M4 and M5 whose operational process is modeled by the

firing of transitions t1, t2, t3, t4 and t5, respectively. Two principal types of operations

are involved in this manufacturing system: regular operations and assembly operations.

Regular operations (modeled by transitions t1, t2 and t5) just transform a component of

the intermediate product. Assembly operations (modeled by transitions t3 and t4) put

components together to obtain a more complex component of a final product or the final

product itself. Note that this model uses transitions (t6 and t7) which do not represent

operations but the beginning of the manufacturing of components which are required to

assemble a more complex component or the final product. In this example there are two

manufacturing levels, the primary one, performed by M3, leads to finite product, the

secondary one, performed by M4, leads to semi–finished (in–working) product.

The markings of places p1 and p2 represent the number of assembly servers for t4 and

t3 respectively. The marking of places p3, p5, and p9 represent the availability of parts to
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be processed (raw materials), while the marking of places p4, p6, p7 and p8 represent the

availability of semi–finished products. Places p11 and p12 ensure that machines M1 and

M2 work alternatively.

The Petri net model in Figure 2 is a strongly connected event graph with m =

|P| = 12 and n = |T| = 7. There exist ten elementary circuits, that correspond to

an equal number of P-invariants. If we assume that the initial marking of the net is

M0 = [3 4 1 0 1 0 0 1 0 0 0 1]T , we have (here to avoid a heavy notation we denote as Mi

the marking of place pi)




M2 + M4 + M5 + M7 + M10 + M12 = 6 (1)

M2 + M3 + M6 + M7 + M10 + M11 = 5 (2)

M2 + M5 + M6 + M7 + M10 = 5 (3)

M2 + M3 + M4 + M7 + M10 = 5 (4)

M2 + M8 + M9 = 5 (5)

M1 + M4 + M5 + M12 = 5 (6)

M1 + M3 + M6 + M11 = 4 (7)

M1 + M5 + M6 = 4 (8)

M1 + M3 + M4 = 4 (9)

M11 + M12 = 1 (10)

(4)

We assume that the above set of P-invariants coincides with the macromarking, thus

Bε = ~b = [6 5 5 5 5 5 4 4 4 1]T .

Moreover, we assume that the controller must enforce two specifications:
{

M3 + M5 ≤ 3 (a)

M9 ≤ 3. (b)
(5)

The first specification requires that at most 3 raw parts may be simultaneously waiting

to be processed by either machine M1 or M2. The second specification requires that at

most 3 raw parts may be waiting to be processed by machine M5.

Finally, we assume that the delay times associated to transitions are those shown in

Figure 2.

If the marking of the net is measurable, then the controlled net is live, as it can be

verified by reachability analysis. On the contrary, if the marking of the plant is not

measurable, an observer must be used in the control loop and this leads to an observer-

induced deadlock. The closed loop behavior is that shown in Figure 3 where each node is

labeled with (M/µ/B) and where for each marking the set Tn = {t ∈ T | f(t, C) = 0} of

transitions disabled by the controller is shown. Finally, variable now denotes the actual

value of time.
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( 3 4 1 0 1 0 0 1 0 0 0 1 / 0 0 0 0 0 0 0 0 0 0 0 0 / 6 5 5 5 5 5 4 4 4 1 )

( 3 4 0 1 1 0 0 1 0 0 1 0 / 0 0 0 1 0 0 0 0 0 0 1 0 / 5 4 5 4 5 4 3 4 3 0 )

t1

t2

( 3 4 0 1 0 1 0 1 0 0 0 1 / 0 0 0 1 0 1 0 0 0 0 0 1 / 4 4 4 4 5 3 3 3 3 0 )

t4

( 4 4 0 0 0 0 1 1 0 0 0 1 / 1 0 0 0 0 0 1 0 0 0 0 1 / 4 4 4 4 5 3 3 3 3 0 )

t3

( 4 5 0 0 0 0 0 0 0 0 0 1 / 1 1 0 0 0 0 0 0 0 0 0 1 / 4 4 4 4 4 3 3 3 3 0 )

now = 2

now = 7

now = 8

now = 11

Tn={t6,t7}

Tn={t6,t7}

Tn={t6,t7}

Tn={t6,t7}

Tn={t6,t7}

Figure 3: The evolution of the net in Figure 2 when no deadlock recovery procedure is applied.

After the sequence w = t1t2t4t3 has fired, only transition t6 is marking enabled. Nev-

ertheless, the controller prevents its firing because there exists at least one marking in

C(t1t2t4t3) from which the firing of t3 would potentially violate specification (b). Note

that the controller also prevents the firing of t7 because its firing would potentially violate

specification (a).

5 A linear characterization of deadlock markings

In this section we present a linear algebraic characterization of deadlock markings based

on siphon analysis that will be used in the next section to derive a procedure for deadlock

recovery. Such a characterization is valid for ordinary and structurally bounded Petri

nets. Siphon based techniques for deadlock analysis and avoidance have also been used

by other authors [1, 4, 5, 14].

We firstly observe that, by definition, the characteristic vector ~s of a siphon S is such

that:

∀ t ∈ T PostT ( · , t) · ~s > 0 ⇒ PreT ( · , t) · ~s > 0. (6)

Condition (6) means that if pi belongs to a siphon S (i.e., si = 1) and t inputs in pi (i.e.,

Post(pi, t) > 0), then there must exist at least one place pj in the siphon (i.e., sj = 1)

inputting in t (i.e., Pre(pj, t) > 0).

Condition (6) can also be rewritten as a nonlinear inequality:

∀ t ∈ T sign(PreT ( · , t) · ~s) ≥ sign(PostT ( · , t) · ~s) (7)
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where sign(~x) is a vector whose i–th component is 1 (resp., 0, −1) if the i–th component

of ~x is positive (resp., null, negative).

Since the above inequality holds for all t, we can write

sign(PreT · ~s) ≥ sign(PostT · ~s). (8)

We can finally state the following result.

Lemma 10. A set of places S ⊆ P is a siphon of the net N = (P, T, Pre, Post) if and

only if its characteristic vector ~s is such that

K1 · PreT · ~s ≥ PostT · ~s, (9)

where K1 = maxt∈T PostT ( · , t) ·~1.

Proof. We observe that PostT ( · , t) · ~s ≤ PostT ( · , t) ·~1 ≤ K1. Thus a vector ~s ∈ {0, 1}m

is a solution of (9) if and only if it is a solution (8).

Secondly, let M ∈ Nm be a generic marking of N . If M corresponds to a reachable

marking of the net such that the siphon S with characteristic vector ~s is empty, then

MT · ~s = 0. (10)

For structurally bounded Petri nets, equation (10) can be easily converted into a linear

equivalent equation.

Lemma 11. Given a structurally bounded net N = (P, T, Pre, Post), a siphon S with

characteristic vector ~s is empty at marking M if and only if

K2 · ~s + M ≤ K2 ·~1m, (11)

where K2 is a positive integer. More precisely, K2 should be chosen greater or equal to

the maximum structural bound of p, for p ∈ P [18], where structural bounds can be

determined by using any LP software.

Proof. Equation (11) implies that if for a given j, sj = 0 (i.e., place pj does not belong to

the siphon) then no constraint exists on the marking of pj, since the equation M(pj) ≤ K2

is satisfied for all reachable markings. On the contrary, if sj = 1 (i.e., place pj belongs to

the siphon) then pj must be empty.

An analogous linear characterization of siphons has been already proposed by Chu

and Xie in [4].

Thirdly and finally, to completely characterize the set of deadlock markings we use

the following results that apply to autonomous, i.e., uncontrolled, nets.
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Lemma 12 ([17]). Let N be an ordinary marked net. If M ∈ Nm is a dead marking then

the set of empty places S∅ = {p ∈ P |M(p) = 0} is an unmarked siphon of N .

We restate the previous result in a slightly different form.

Lemma 13. Let N be an ordinary marked net. A marking M ∈ Nm is a dead marking

iff the two statements hold:

(i) S∅ = {p ∈ P |M(p) = 0} is an unmarked siphon of N;

(ii) ∀ t ∈ T , •t ∩ S∅ 6= ∅.
Proof. (if) It immediately follows from (ii) and the definition of enabled transitions. Con-

dition (i) and (ii) together imply that every transition has at least one empty input place,

thus no transition is enabled.

(only if) Condition (i) follows from Lemma 12 while condition (ii) follows from the fact

that dead transitions must have in M at least an empty input place, that by definition

belongs to S∅.

On the basis of the above lemmas, we can finally state the main result.

Theorem 14. Given a structurally bounded net N = (P, T, Pre, Post) with m places, a

marking M ∈ Nm is a deadlock marking if and only if there exists a vector ~s ∈ {0, 1}m

such that the following set of linear equations is satisfied:

D(N) :=





K1 · PreT · ~s ≥ PostT · ~s (a)

K2 · ~s + M ≤ K2 ·~1m (b)

~s + M ≥ ~1m (c)

PreT · ~s ≥ ~1 (d)

M ∈ Nm (e)

~s ∈ {0, 1}m (f)

(12)

Proof. A marking M is dead if and only if there exists a siphon S∅ as defined in Lemma 13.

The characteristic vector ~s must satisfy (a) by Lemma 10 and (b) by Lemma 11.

Furthermore, by definition of S∅, if a place p is empty at marking M then it must belong

to the siphon, and this is imposed by (c). Finally, (d) states that for any transition t

there exists at least one input place that is empty at M , and that consequently belongs

to siphon S∅.

By virtue of the linear characterization above, we define the set of blocking markings

of net N as:

Mb(N) = {M | ∃ ~s ∈ {0, 1}m : (M,~s) is a solution of D(N)}. (13)

Finally, we present a technical result that will be used in the following.
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Proposition 15. Given a net N = (P, T, Pre, Post), and a subset of transitions T ′ ( T ,

let N ′ ≺T ′ N be the T ′−induced subnet of N . Then D(N) ⊆ D(N ′), or equivalently

Mb(N) ⊆Mb(N
′).

Proof. Let us define n′ = |T ′| and n = |T| > n′. Then it is easy to see that constraints

(12).a and (12).d in D(N) are each composed by n inequalities, i.e., the corresponding n′

inequalities in D(N ′) plus additional ones. This proves the statement.

6 Recovery and estimate update after net time-out

Let us suppose that, although we have no exact information on the timing structure of the

net, we can be sure that the net is blocked if a sufficiently long time has elapsed without

observing any event occurrence. Such is the case if we know that all transition delays are

such that δ(t) ≤ ∆max, ∀t ∈ T . If a time greater than ∆max elapses without observing

any firing, we say that the net has timed out.

Proposition 16. Assume that the net N = (P, T, Pre, Post) controlled with the control

pattern f(·, C) has timed out. Let us define T ′ = {t ∈ T | f(t, C) = 1} as the subset of T

containing the transitions enabled by the controller, and let N ′ ≺T ′ N be the T ′−induced

subnet of N . Then the actual (unknown) marking M of the controlled net N is a deadlock

marking for the uncontrolled net N ′, i.e., it belongs to C ′ = C ∩Mb(N
′).

Proof. The transitions blocked from the controller can be removed from the net N without

changing its behavior. The resulting net N ′ is an autonomous net for which the results

of Lemma 13 and Theorem 14 apply.

We now propose an automatic approach that tries to exploit the information that the

net has timed out to recover from this blocking condition and improve the estimate. Of

course this procedure may be effective only if the deadlock has been caused by the incom-

plete information about the actual marking originated by the presence of the observer in

the closed loop.

6.1 Deadlock recovery

The deadlock recovery procedure we propose consists in recomputing the control pattern

using a new IPP that adds to the constraints in (2) some additional constraint to capture

the fact that the actual (unknown) marking M belongs to Mb(N
′) for the net N ′ defined

in Proposition 16.
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Algorithm 17 (Control Pattern Updating After Net Time-Out). Given a net N = (P ,

T, Pre, Post) controlled using an observer, let µ and B be the current value of estimate

and bound, and define C = M(µ,B). Assume that the computed control pattern f(·, C)

has led the net to a time-out. We can update the control pattern using the following

procedure.

1. Let i = 0 and define f0(·)def
=f(·, C) as the initial control pattern.

2. Let Ti = {t ∈ T | fi(t) = 1} be the set of transitions enabled by the

current control pattern, and let Ni ≺Ti
N be the net obtained by N

removing all transitions not in Ti.

3. Update the control pattern to fi+1 = g(fi), where

g(fi)
def
=f(·, C ∩Mb(Ni)). (14)

4. If fi+1 = fi THEN exit: the deadlock recovery procedure has failed.

5. Wait until

(a) EITHER a transition fires and THEN exit: the net has recovered

from the deadlock

(b) OR a new net time-out occurs and THEN let i = i+1 and go to 2. ¥

Note that the operator g : {0, 1}n → {0, 1}n defined by (14) is a function of fi because

Ni is defined using fi.

In this algorithm the knowledge that a time-out has occurred is used to restrict the

set of consistent markings and construct a new control pattern (step 3) that, as the next

proposition shows, is at least as permissive as the previous one. If the new control pattern

is still blocking and a new time-out occurs the procedure is repeated until either the net

recovers from deadlock, or until we cannot update the control pattern any more and the

procedure fails.

We now present some elementary results concerning this algorithm.

Proposition 18. Algorithm 17 has the following properties:

• for all i, the updated control pattern computed at step 3 is at least as permissive

as the previous one, i.e., fi+1 ≥ fi;

• the algorithm terminates in a finite number of steps;
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• if the algorithm terminates at step 4 with i = ı̄, the final control pattern fı̄ is a fixed

point of the operator g.

Proof. The first statement can be proved by induction. In fact we observe (base step) that,

by Proposition 9, C ∩Mb(N0) ⊆ C implies f1 = f(·, C ∩Mb(N0)) ≥ f(·, C) = f0. Assume

now that fi ≥ fi−1 for a given i: we prove (induction step) that the same inequality also

holds for i+1. In fact, fi ≥ fi−1 implies Ni−1 ≺Ti−1
Ni. Thus C∩Mb(Ni) ⊆ C∩Mb(Ni−1)

by Lemma 15 and this implies, by Proposition 9, that

fi+1 = f(·, C ∩Mb(Ni)) ≥ f(·, C ∩Mb(Ni−1)) = fi.

The second statement follows from the fact that each time the loop in the algorithm is

repeated, either fi+1 = fi (and in this case the algorithm terminates), or, by the previous

statement, fi+1 
 fi and eventually the maximally permissive control that enables all

transitions is reached in a number of steps less or equal to |T|.
The third statement follows trivially from the fact that if the algorithm terminates at

step 4, then fı̄ = fı̄+1 = g(fı̄).

6.2 A sufficient condition for deadlock freedom

It is important to characterize those cases in which the procedure outlined in Algorithm 17

is able to recover from a net time-out. Here we consider a particular class of macromark-

ings, such that the vectors ~vj are P−invariants. In this case, it is possible to show that

the set of consistent markings at each step is a subset of the initial macromarking.

Proposition 19. Let the initial macromarking V(V,~b) be such that V T C = ~0, i.e., each

column ~vj of V is a P-invariant. Then, for all observed words w, C(w) ⊆ C(ε) ≡ V(V,~b).

Proof. First note that for all observed words w, V T µw + Bw = ~b, whenever V is a matrix

of P-invariants. In fact, by Algorithm 4, each time a new transition fires we have V T µwt +

Bwt = V T [µ′wt + C(·, t)]+ [
Bw − V T (µ′wt − µw)

]
= V T µw +Bw +V T C(·, t) = V T µw +Bw,

while initially, V T µε + Bε = ~b. Furthermore, µw ≥ ~0 = µε, thus for all observed words w,

the set of w–consistent markings is C(w) = {M ∈ Nn | M ≥ µw, V T M = ~b} ⊆ {M ∈
Nn | V T M = ~b} = C(ε).

We use the previous result to give a sufficient condition to ensure that the controlled

net will never time out.

Theorem 20. Consider a net N with initial macromarking V(V,~b) such that V T C = 0,

and controlled using Algorithm 8. Let T0 = {t ∈ T | f(t, C(ε)) = 1} be the set of
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transitions enabled by the initial control pattern and let N0 ≺T0 N be the T0−induced

subnet of N .

Then the closed loop system will never reach a blocking state, i.e., the net will never

time out, if the following constraint set

{
V T M = ~b

M ∈Mb(N0)
(15)

is not admissible, i.e., if it does not admit any solution for M ∈ Nm.

Proof. First note that when the net is initialized, the set of consistent markings coincides

with the initial macromarking, i.e., C(ε) = V(V,~b) = {M ∈ Nm | V T M = ~b}. If the

constraint set (15) does not admit a feasible solution, the net is never blocked when the

control pattern f(·, C(ε)) is applied, regardless of the initial marking M ∈ V(V,~b).

After a word w has been observed, the set of consistent marking is C(w) ⊆ C(ε) (by

Proposition 19) while the actual marking still belongs to V(V,~b), being V a matrix of

P-invariants. Thus by Proposition 9 it holds that f(·, C(w)) ≥ f(·, C(ε)), and regardless

of the current marking the controlled net is not blocked.

We finally extend the previous result, giving a sufficient condition to ensure that, even

if a time-out may occur, Algorithm 17 will always successfully recover the net from a

deadlock.

Consider a net N with set of consistent markings C. Assume that Algorithm 17 is

invoked but at step 5 we always execute step 5.b, until the algorithm stops at step 4 with

fi+1 = fi: this is the maximally permissive control pattern that could be applied if the

net always times out when the set of consistent markings is C. A formal definition is the

following.

Definition 21. Given a net N controlled with an observer, and a set of consistent states

C, let us define f0
def
=f(·, C) the initial control vector and let fi+1 = g(fi) for i ≥ 0.

The maximal control pattern associated to C is fmax(·, C)
def
= limi→∞ fi, i.e., it is the

fixed point of g reached iterating from f0. Note that by Proposition 18 part 2, this fixed

point is reached in a finite number of steps (less or equal to the cardinality of the set of

transitions T ). ¥
Theorem 22. Consider a net N with initial macromarking V(V,~b) such that V T C = 0,

and controlled with Algorithm 8. Let Tmax = {t ∈ T | fmax(t,V(V,~b)) = 1} be the set

of transitions enabled by the maximal control pattern associated to the initial consistent

set C(ε) = V(V,~b), as defined in the previous proposition. Let Nmax ≺Tmax N be the

Tmax−induced subnet of N .
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1. If a net time-out occurs and the procedure given in Algorithm 17 is applied, the net

will always recover from a deadlock if the following constraint set

{
V T M = ~b

M ∈Mb(Nmax)
(16)

does not admit any admissible solution for M ∈ Nm.

2. If Nmax = N and the controlled net times-out, Algorithm 17 will recover from the

deadlock if and only if the current marking M is not a deadlock marking for the

open loop net.

Proof. 1) Firstly, observe that if the constraint set (16) does not admit a feasible solution,

the time-out procedure is always capable of recovering from an initial deadlock, because

eventually the control pattern fmax(t,V(V,~b)) will be reached and there exists at least

an enabled transition regardless of the initial unknown marking M ∈ V(V,~b). Secondly,

observe that by induction on the iteration step in Algorithm 17, it is immediate to show

that C ′ ⊆ C ′′ implies fmax(t, C ′) ≥ fmax(t, C ′′). Finally, as in the proof of Theorem 20, the

result follows from the fact that after a word w has been observed, the set of consistent

markings is C(w) ⊆ C(ε) (by Proposition 19) while the actual marking still belongs to

V(V,~b), being V a matrix of P-invariants.

2) If Nmax = N , then fmax enables all transitions. Assume that the deadlock recovery

procedure fails: eventually the control pattern fmax is reached and the controlled net

coincides with the open loop net.

The second part of the theorem is useful to recognize those cases where no block may

be ascribed to the controller-observer: in this case, in fact, the time-out procedure will

eventually control enable all transitions. Such a case is discussed in Section 6.4.

6.3 Improving the marking estimate

In this subsection, we discuss the possibility of using the linear algebraic characterization

above not only to recover from a block, but to improve the marking estimate as well.

Assume that given an observed word w, a current estimate µw and bound Bw, a

blocking condition occurs, and that after ı̄ iterations of Algorithm 17 a newly enabled

transition t fires. At this point, before the firing of t, the set of consistent markings is

M(µw, Bw) ∩Mb(Nı̄), using the notation defined in the previous subsection. This set

corresponds to the dark area in Figure 4.
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M(��; B�)

C�{+1 =M(�w; Bw) \Mb(N�{)

Mb(N�{)
M(�w; Bw)

Figure 4: Generic inclusion relationship among sets M(µw, Bw), M(µ∗, B∗) and Mb(Nı̄).

We should keep this information when computing the new set of consistent markings

C(wt) after the firing of t. Nevertheless, this would destroy the framework that inspired

Algorithm 4, in the sense that the set of consistent markings would loose the structure

given in Equation (1).

Thus, we propose the following alternative solution. For each place pi ∈ P we solve

an IPP of the form: 



min M(pi)

s.t.

M ∈M(µw, Bw)

M ∈Mb(Nı̄)

(17)

Now, we define µ∗ = [µ∗1 · · · µ∗m]T where µ∗i is the solution of the i–th IPP and let

B∗ = Bw − V T (µ∗ − µw) be the corresponding bound. We use µ∗ and B∗ as new current

values of the estimate µw and bound Bw, and continue from step 5 of Algorithm 4,

computing the updated estimate µ′wt.

This is equivalent to approximate the set of w−consistent markings after recovery,

with the set

M(µ∗, B∗) = {M ∈ Nm | M ≥ µ∗, V T ·M = V T · µ∗ + B∗}. (18)

This set is also shown in Figure 4: being M(µw, Bw) ∩ Mb(Nı̄) ⊆ M(µ∗, B∗) ⊆
M(µw, Bw) we may be losing information, but nevertheless we can keep on with a linear

algebraic characterization of the set of consistent markings in the simple form specified

by Equation (1).
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6.4 Numerical example

Let us consider again the manufacturing system in Subsection 4.1, where the use of an

observer may lead the closed loop system to a blocking condition.

In this subsection we show how the above deadlock recovery procedure may be effi-

ciently applied to the net in Figure 2. Here we assume that although the exact timing

structure of the net is unknown to the controller, an upper bound on the transition firing

delay ∆max ≥ maxt∈T δ(t) is known.

In Figure 5 the top five nodes repeat the net evolution shown in Figure 3.

As already seen in Subsection 4.1 a blocking condition is reached after the firing of the

sequence w = t1t2t4t3 at time now = 11. When a time ∆max has elapsed the net times

out and we apply Algorithm 17 to update the control pattern. In particular, we have

that the set of transitions enabled by the initial control pattern is T0 = T \ Tn = {t6, t7},
while after the time-out procedure all Tn = ∅, i.e., all transitions are control enabled. The

marking estimate is updated as shown in Figure 5 where the thick arrow has been used

to denote that the net has timed out.

When 20 more units of time have elapsed, at time now = 31+ ∆max, another blocking

condition is reached. Thus the net times out at time now = 31 + 2 ∆max and we apply

again Algorithm 17. The set of transitions enabled by the controller is now T0 = T \ {t6}.
In such a case the marking is completely reconstructed as shown in Figure 5, and the net

recovers from deadlock.

Finally, let us observe that the initial macromarking considered is such that V T C = 0,

thus the assumptions of Theorems 20 and 22 are fulfilled. Therefore, for this net IPP (15)

admits feasible solutions and this is in accordance with the fact that the net has timed

out.

Moreover, if we compute the maximal control pattern as defined in Definition 21, we

find out that fmax(·,V(V,~b)) = ~1, that implies Nmax = N according to the notation of

Theorem 22. Now, if we consider the set {M ∈ Nm | V T ·M = ~b, M ∈ Mb(N)}, we

find out that it does not admit any admissible solution for M ∈ Nm. By Theorem 22 this

implies that if a net time-out occurs and we apply the procedure given in Algorithm 17,

then the net will always recover from deadlock.

7 Using timing information for state estimation

We now propose a general approach to incorporate available information on the timing

structure of the net into the state estimation process. The approach has been firstly pro-
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t2
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t4
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t3

( 4 5 0 0 0 0 0 0 0 0 0 1 / 1 1 0 0 0 0 0 0 0 0 0 1 / 4 4 4 4 4 3 3 3 3 0 )

now = 2

now = 7

now = 8

now = 11

now = 11  + ∆max

( 4 5 0 0 0 0 0 0 0 0 0 1 / 4 1 0 0 0 0 0 0 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0 )

Tn={t6,t7}

Tn={t6,t7}

Tn={t6,t7}

Tn={t6,t7}

Tn=∅

Tn={t6,t7}

t6 now = 17  + ∆max

( 4 4 0 0 0 0 0 0 1 1 0 1 / 4 0 0 0 0 0 0 0 1 1 0 1 / 4 4 4 4 4 0 0 0 0 0 ) Tn={t6}

t5 now = 19  + ∆max

( 4 4 0 0 0 0 0 1 0 1 0 1 / 4 0 0 0 0 0 0 1 0 1 0 1 / 4 4 4 4 4 0 0 0 0 0 ) Tn={t6}

t7 now = 20  + ∆max

( 3 4 1 0 1 0 0 1 0 0 0 1 / 3 0 1 0 1 0 0 1 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0 ) Tn={t6}

t1 now = 22  + ∆max

( 3 4 0 1 1 0 0 1 0 0 1 0 / 3 0 0 1 1 0 0 1 0 0 1 0 / 4 4 4 4 4 0 0 0 0 0 ) Tn={t6}

t2 now = 27  + ∆max

( 3 4 0 1 0 1 0 1 0 0 0 1 / 3 0 0 1 0 1 0 1 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0 ) Tn={t6}

t4 now = 28  + ∆max

( 4 4 0 0 0 0 1 1 0 0 0 1 / 4 0 0 0 0 0 1 1 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0 ) Tn={t6}

t3 now = 31  + ∆max

( 4 5 0 0 0 0 0 0 0 0 0 1 / 4 1 0 0 0 0 0 0 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0 ) Tn={t6}

now = 31  + 2 ∆max

( 4 5 0 0 0 0 0 0 0 0 0 1 / 4 5 0 0 0 0 0 0 0 0 0 1 / 0 0 0 0 0 0 0 0 0 0 ) Tn=∅

Figure 5: The evolution of the net in Figure 2 under control when the deadlock recovery procedure

proposed in Subsection 6.1 is applied.
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posed by the authors in [3] and is essentially based on the linear algebraic characterization

of deadlock markings given by the system of inequalities (12). In particular, the above

linear characterization is used to restrict the set of w−consistent markings.

7.1 Proposed algorithm

Let us assume that a known delay δ(t) : T → R is associated to each transition; δ(t)

represents the time that must elapse, starting from the time at which the transition

t is enabled, until it fires. Assume that we start observing the net at time τ and that

transition t is control enabled during the time interval [τ, τ +δ(t)]. Moreover, assume that

the marking of the input places of t does not increase during the time interval [τ, τ +δ(t)].

If at time now = τ +δ(t) transition t does not fire, we can be sure that the actual marking

M is such that ¬M [t〉, or equivalently t is not marking enabled: we say that t has timed

out at time now. Note that if the marking of some places in •t has increased during

the time interval [τ, τ + δ(t)], we can only conclude that the transition was not marking

enabled at time τ , but no conclusion can be drawn on the marking enabling condition of

t at time τ + δ(t).

The set of timed out transitions is denoted Tto.

The procedure that we describe in Algorithm 23 combines the marking estimation al-

gorithm with the deadlock recovery procedure defined in the previous section. It considers

two types of events that modify the marking estimate.

• The first type of events occurs when the firing of a transition t̂ is detected. In this

case the marking estimate µ and bound B are updated following Algorithm 4. In

this step the set of timed out transitions Tto may eventually be updated, removing

from this set all those transitions t such that •t∩ t̂ • 6= ∅, i.e., those transitions that

may have been enabled by the firing of t̂.

• The second type of events occurs when a new transition times out. In this case the

set of timed out transitions is increased and we know that the actual marking must

be such that the net Nto ≺Tto N is deadlocked, where Nto is the subnet of N induced

by the set of the timed out transitions. We use this information to compute a new

control pattern at least as permissive as the current one. We also update µ and B

solving for each place an IPP of the form given by (17).

Algorithm 23 (Control and Estimate Updating After Transition Time-Out). In this

algorithm the variable now represents the current value of the time. At each instant of

time it is possible to partition the set of transitions T into three subsets:

23



Tn = {t ∈ T | f(t, C) = 0} is the set of transitions that are not control enabled given the

current set of consistent markings.

Tto is the set of control enabled transitions that have timed out. A transition t belongs to

this set if during the time interval [now − δ(t), now] has continuously been control

enabled and the marking of all its input places •t has not increased during this same

interval.

Te is the set of those control enabled transitions that do not belong to Tto.

These are the steps of the algorithm.

1. Let µ = µw0 and B = Bw0 be the initial estimate and bound, and let

C = M(µw0, Bw0) be the initial set of consistent markings.

2. Compute for all transitions t ∈ T the control pattern f(t, C) and let

Tn = {t ∈ T | f(t, C) = 0}, Tto = ∅, Te = T \ Tn.

3. Set for all transitions t ∈ Te the current clock value to ω(t) = δ(t).

4. Let δ = min{ω(t) | t ∈ Te} the time-out to wait in step 6.

5. Let τ = now and fold(t) = f(t, C) (keeps track of the previous pattern).

6. Wait until

(a) EITHER a transition t̂ fires and THEN go to 7

(b) OR now = τ + δ and THEN go to 8.

Note that if one event of type (a) and one event of type (b) occur

simultaneously, then condition 6.a takes priority and the next

active step will be 7.

7. Activate the observer update procedure after the firing of t̂.

(a) Update the estimate to µ′ with µ′(p) = max{µ(p), P re(p, t̂)}.
(b) Let the current estimate and bound be µ = µ′ + C(·, t̂) and

B = B − V T · (µ′ − µ).

(c) Let the current set of consistent markings be C = M(µ,B).
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(d) Compute for all t ∈ T the control pattern f(t, C) and let

Tn = {t ∈ T | f(t, C) = 0},
Tto = Tto \ {t ∈ Tto | •t ∩ t̂ • 6= ∅},
Te = {t ∈ T | f(t, C) = 1, t 6∈ Tto}.

(e) Update the clocks of enabled transitions.

IF a transition t ∈ Te satisfies at least one of the following three

conditions

i. fold(t) = 0 {newly control enabled}
ii. •t ∩ t̂• 6= ∅ {may have become marking enabled by the firing of t̂}

iii. t = t̂ {it is the transition that has just fired}
THEN ω(t) = δ(t) {reset the clock}
ELSE ω(t) = ω(t)− (now − τ).

(f) Go to 4.

8. Activate the time-out procedure.

(a) Let Tto = Tto ∪ {t ∈ Te | ω(t) = δ}.
(b) Let Nto ≺Tto N be the Tto−induced subnet N.

(c) Compute for all transitions t ∈ T the control pattern f(t, C∩Mb(Nto)

and let
Tn = {t ∈ T | f(t, C) = 0},
Te = {t ∈ T | f(t, C) = 1, t 6∈ Tto}.

(d) Improve the previous estimate µ. This simply requires the solution

of m linear integer programming problems (IPP), one for each place

pi ∈ P: 



min M(pi)

s.t.

M ∈M(µ,B)

M ∈Mb(Nto)

(19)

Now, let µ∗ = [µ∗1 · · · µ∗m]T, where µ∗i is the solution of the i--th

IPP, and let B∗ = B − V T (µ∗ − µ).

(e) Update the estimate and bound to µ = µ∗ and B = B∗, and compute

the new set of consistent markings C = M(µ,B).

(f) If Te = ∅ exit (the net is deadlocked and the time-out procedure

fails to recover), else go to 4. ¥
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7.2 Numerical example

Let us consider again the manufacturing system in Subsection 4.1 and let us apply Algo-

rithm 23 to compute the closed loop behavior of the net system in Figure 2. The resulting

evolution is represented in the reachability graph in Figure 6 where the thick arrow now

denotes a time-out and is labeled by the corresponding set Tto.

At step 1 we define the initial estimate and bound. At step 2 we compute for all

transitions t ∈ T the control pattern f(t, C) and set Tn = {t6, t7}, Tto = ∅ and Te = T \Tn.

In fact, the firing of t6 may potentially violate specification (b), while the firing of t7 may

potentially violate specification (a). Then, we set up the clock value of each transition in

Te to its time delay. Given the actual delays, the time-out to wait before either applying

the observer update procedure or the deadlock recovery procedure, is δ = 1.

At time now = 1, no transition fires and t4 times out. Thus the time-out procedure

is activated (step 8). This first implies the updating of Tto = ∅ to Tto = {t4}. Then, we

define the net Nto obtained from N removing all transitions not in Tto. For all t ∈ T

we compute the new control pattern f(t, C) according to step 8.c and we update the

transition partitioning. In particular, we find out that both t6 and t7 are still disabled by

the controller, thus Tn = {t6, t7}, while Te = T \ (Tn ∪ Tto). Now, by solving m = 12 IPP

we compute the new marking estimate and bound and go back to step 4 of the algorithm.

In such a case, we find out that the updated marking estimate and bound are coincident

with the previous ones. We compute the new value δ and, as in the previous step, it holds

that δ = 1.

At time now = 2, when one more time unit has elapsed, both conditions 6.a and

6.b are simultaneously satisfied because t1 fires and t5 times out. Condition 6.a takes

priority and transition t1 fires. The observer update procedure is applied. We update the

estimate and bound as shown in Figure 6, while the control pattern keeps the same for all

transitions t ∈ T . Note that the firing of t1 increases the token content of place p4 that

is an input place for t4: thus t4 is removed from the set Tto at step 7.d. We compute the

new value δ and it holds that δ = 0 because t5 is ready to time out.

Then, always at time now = 2, the time-out procedure is activated for t5. This enables

us to improve the marking estimate as shown in Figure 6 and also to make transition t6

control enabled. More precisely, at time now = 2, after the TTO procedure has been

applied, it holds that Tn = {t7}, Tto = {t5} and Te = T \ (Tn∪Tto). Once again, at step 4,

we find out that δ = 1.

At time now = 2, after one more time unit has elapsed, no transition fires. Therefore,

the time-out procedure is invoked with Tto = {t3, t4, t5}, and so on.

As it can be seen in Figure 6, at the end of this evolution path, at time now = 14, the
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marking is completely reconstructed and no further deadlock may occur.

To conclude we may observe that when Algorithm 23 is applied, the closed loop net

recovers from the deadlock after 14 time units. On the contrary, when we apply the

procedure presented in the previous section, that is invoked only when the net has timed

out, the net recovers from the deadlock after more that 43 units of time.

7.3 Linear relaxation of integer programming

A drawback of the proposed procedure is that it requires to solve at each step an integer

programming problem to compute the control pattern: in some cases this may hinder the

implementation of the approach on on-line controllers. This problem may be partially

solved by simply relaxing the integer programming problems we consider into linear ones.

Assume that in IPP (2) the constraints M,M ′ ∈ Nm are relaxed into M, M ′ ∈ (R+
0 )m.

This yields a larger set of consistent markings CR(w) ⊇ C(w), i.e., we have a relaxed

observer (R-observer) that is possibly less accurate than the previously defined observer.

By Proposition 9, the control pattern computed using the R-observer is possibly subop-

timal, in the sense that it is less permissive than or at most as permissive as the one

computed using the observer. Note, however, that the control pattern computed using

the R-observer is certainly safe, i.e., it ensures that the control specifications are never

violated.

Similarly, if in IPP (12) the constraints M ∈ Nm and ~s ∈ {0, 1}m are relaxed into

M ∈ (R+
0 )m and ~s ∈ [0, 1]m, this yields a larger set of deadlock markings. In this case

the recovery procedures of Algorithm 17 and Algorithm 23 can still be applied but the

computed control patterns are, again, possibly suboptimal.

Thus, whenever necessary the control designer may take advantage of the linear re-

laxation trade-off that allows one to obtain a possibly suboptimal but computationally

efficient solution technique.

As a final remark, it may also be possible to combine these techniques using linear

programming for the on-line computation of the control patterns, and using integer pro-

gramming only when applying the net time-out procedure.

As an example, in the case of the Petri net system already considered in Subsec-

tions 4.1, 6.4 and 7.2, one may verify that the on-line computation of the control patterns

using the linear relaxation of IPP (2) always yield optimal solutions. However, when a

net time-out occurs, the linear relaxation is not optimal: the maximal permissive control

pattern computed using the linear relaxation of IPP (12) disables {t7} and because of this

the deadlock recovery procedure may not work.
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( 3 4 1 0 1 0 0 1 0 0 0 1 / 0 0 0 0 0 0 0 0 0 0 0 0 / 6 5 5 5 5 5 4 4 4 1 )

( 3 4 1 0 1 0 0 1 0 0 0 1 / 0 0 0 0 0 0 0 0 0 0 0 0 / 6 5 5 5 5 5 4 4 4 1 )

( 3 4 0 1 1 0 0 1 0 0 1 0 / 0 0 0 1 0 0 0 0 0 0 1 0 / 5 4 5 4 5 4 3 4 3 0 )

( 3 4 0 1 1 0 0 1 0 0 1 0 / 0 0 0 1 1 0 0 1 0 0 1 0 / 4 4 4 4 4 3 3 3 3 0 )

t1

( 3 4 0 1 1 0 0 1 0 0 1 0 / 0 0 0 1 1 0 0 1 0 0 1 0 / 4 4 4 4 4 3 3 3 3 0 )

( 3 4 0 1 1 0 0 1 0 0 1 0 / 0 0 0 1 1 0 0 1 0 0 1 0 / 4 4 4 4 4 3 3 3 3 0 )

t2

( 3 4 0 1 0 1 0 1 0 0 0 1 / 0 0 0 1 0 1 0 1 0 0 0 1 / 4 4 4 4 4 3 3 3 3 0 )

t4

( 4 4 0 0 0 0 1 1 0 0 0 1 / 1 0 0 0 0 0 1 1 0 0 0 1 / 4 4 4 4 4 3 3 3 3 0 )

( 4 4 0 0 0 0 1 1 0 0 0 1 / 4 0 0 0 0 0 1 1 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0 )

t3

( 4 5 0 0 0 0 0 0 0 0 0 1 / 4 1 0 0 0 0 0 0 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0 )

( 4 5 0 0 0 0 0 0 0 0 0 1 / 4 1 0 0 0 0 0 0 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0 )

( 4 5 0 0 0 0 0 0 0 0 0 1 / 4 5 0 0 0 0 0 0 0 0 0 1 / 0 0 0 0 0 0 0 0 0 0 )

now = 1

now = 2

now = 2

now = 3

now = 4

now = 7

now = 8

now = 9

now = 11

now = 12

Tto={ t4 }

Tto={ t5 }

Tto={ t3, t4, t5 }

Tto={ t1, t3, t4, t5 }

Tto={ t1, t4, t5 }

Tto={ t1, t2, t4, t5, t7 }

Tn={ t6, t7 }

Tn={ t6, t7 }

Tn={ t6, t7 }

Tn={ t7 }

Tn={ t7 }

Tn={ t7 }

Tn={ t6, t7 }

Tn={ t6, t7 }

Tn= ∅

Tn={ t6 }

Tn= ∅
now = 14 Tto={ t1, t2, t3, t4, t5, t7 }

Tn= ∅

Tto= ∅

Tto={ t3, t5 }

Tto={ t5 }

Tto={ t1, t4, t5 }

Figure 6: The evolution of the net in Figure 2 under control when the deadlock recovery procedure

using timing information is applied.
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Figure 7: An example showing how the knowledge of the timing structure may be used to solve

partial deadlocks.

7.4 Properties of the algorithm with transition time-out

The knowledge of the timing structure of a net leads to the possibility of using Algo-

rithm 23 for marking estimate and control. In the following we will call this procedure

TTO (transition time-out). Next example shows that the TTO procedure may be able to

recover from partial deadlocks: in such a case the NTO procedure (i.e., Algorithm 17) is

useless because it is never invoked.

Example 24. Let us consider the net system in Figure 7 with m = 5 places and n = 4

transitions. There exist 3 circuits, each one corresponding to a P-invariant. If the initial

marking is that shown in Figure 7 we have: V(V,~b) = {M ∈ N5 | M1+M2 = 2; M3+M4 =

2; M2 + M4 + M5 = 3}. Moreover, we assume that the controller must enforce one

specification: M1 ≤ 1.

Let us first consider the case in which no information on the timing structure is

available. In such a case the net never times out and the behavior is that shown in

Figure 8.a where we can observe that a partial deadlock occurs. In fact, transition t2 may

initially fire, but in the sequel only t3 and t4 may alternately fire. On the contrary, t1 is

always disabled by the controller because the marking of p1 has not been reconstructed

and its firing may potentially violate the specification.

Now, let us assume that the timing structure is known and the TTO procedure is

applied. In such a case the partial deadlock can be solved and the net evolution is that

shown in Figure 8.b. At first transition t1 is disabled by the controller, i.e., Tn = {t1},
and δ = δ(t4) = 1. Thus, at time now = 1 since no transition fires, the TTO procedure is

invoked. The set Tn keeps the same but the marking estimate is improved. In particular,

we reconstruct the marking of places p3 and p4. After one more unit of time transition

t2 fires: once again we improve the marking estimate but we still have that Tn = {t1}.
On the contrary, at time now = 4 the TTO procedure is applied and all transitions

become control enabled. Note that at this step, when we update the marking estimate,
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( 0 2 2 0 1 \ 0 1 0 0 0 \ 1 2 2 )

( 1 1 2 0 2 \  0 0 0 0 0 \  2 2 3 )

now=7

( 0 2 1 1 0 \  0 1 0 1 0 \  1 1 1 )

( 0 2 2 0 1 \  0 1 1 0 1 \  1 1 1)

now=6

now=2t2

t3

t4

t3 now=13

………

( 1 1 2 0 2 \ 0 0 0 0 0 \  2 2 3 )

now=4

( 1 1 2 0 2 \ 0 0 2 0 1 \ 2 0 2 )

( 0 2 2 0 1 \  0 2 2 0 1 \  1 0 2 )

( 0 2 2 0 1 \  0 2 2 0 1\  0 0 0 )

now=2

now=1

t2

t1 now=5

………

(a) (b)

Tto={ t4 }

Tto={ t2, t4 }

Tn={ t1 }

Tn={ t1 }

Tn={ t1 }

Tn={ t1 }

Tn={ t1 }

Tn={ t1 }

Tn={ t1 }

Tn= ∅

Tto={ t4 }

Tto={ t2, t4 }

Figure 8: The behavior of the controlled net in Figure 7: (a) no information on the timing

structure is available, (b) the timing structure is known and the TTO procedure is used.

we completely reconstruct the actual marking of the net. ¥
As a final remark, we present a result showing that with respect to total deadlocks

the two procedure have the same power.

Theorem 25. Let us consider a net system 〈N,M〉 controlled with observer with current

set of consistent markings C. The net system is deadlocked when controlled with the TTO

procedure if and only if it is deadlocked when controlled with the NTO.

Proof. (if) First we show that if the net deadlocks using the NTO procedure it also

deadlocks using the TTO procedure.

It the net deadlocks using the NTO procedure, Algorithm 17 is invoked but we always

execute step 5.b, until the algorithm stops at step 4 with the maximal control pattern

fmax = fmax(·, C) and no transition enabled by it may fire.

Now, let us assume that 〈N,M〉 is controlled using Algorithm 23 and let f̄0 ≤ f̄1 ≤
f̄2 ≤ · · · be the series of control patterns computed by repeatedly iterating on step 8. To

prove the statement of the theorem, we have to demonstrate that for all k ≥ 0

f̄k ≤ fmax. (20)

To prove this, we first observe that the function g(f) is monotone. In fact, given two

control patterns f ′ and f ′′ with f ′ ≤ f ′′, then Nf ′ ¹ Nf ′′ . This implies that Mb(Nf ′) ⊇
Mb(Nf ′′) ⇒ g(f ′) ≤ g(f ′′).

Let us define T̄i as the set of transitions control enabled by f̄i and N̄i the corresponding

induced subnet. When the updated control vector f̄i+1 is computed, only a subset Tto,i ⊆
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Figure 9: An example showing that the TTO procedure may fail to recover from a marking

induced deadlock.

T̄i of these transitions has timed out and, if we define Nto,i the corresponding induced

subnet, by Proposition 9 we have that

f̄i+1 = f(·, C ∩Mb(Nto,i)) ≤ f(·, C ∩Mb(N̄i)) = g(f̄i). (21)

We now prove by induction that equation (20) holds for all values of k. In fact

f̄0 = f(·, C) ≤ fmax. Assume now f̄k ≤ fmax. Then by (21) and by the monotonicity

property, we also have that f̄k+1 ≤ g(f̄k) ≤ g(fmax) = fmax.

(only if) We show that if the net does not deadlock using the NTO procedure then it

also does not deadlock using the TTO procedure. This result trivially follows from the

fact that if we wait a sufficiently long time, then all transitions eventually time out and

limi→∞ f̄i = fmax.

To conclude, we present a very simple example showing that in some cases the TTO

procedure does not preserve the liveness of the system.

Example 26. Let us consider the Petri net system in Figure 9 whose unknown initial

marking is M0 = [1 0 1]T . The initial macromarking is V(V,~b) = {M ∈ N3 | M1 +M2 =

1, M3 = 1} and let us assume that the controller must enforce the specifications: M1 ≤ 1

and M2 ≤ 1.

The controlled net is live if the controller exactly knows the actual marking. As an

example, given the marking in figure, the controller disables t1 and enables transition t2.

On the contrary, regardless of the timing structure, the controlled net is dead if the

observer is included in the closed loop. In fact, from the macromarking equation M1 +

M2 = 1 it is impossible to know whether p1 or p2 is initially marked, hence both t1 and t2

must be control disabled. When transition t3 times out, no additional information on the

location of the token in the set {p1, p2} can be inferred and the recovery procedure fails.

¥
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8 Conclusions

In this paper we have dealt with the problem of enforcing a set of GMEC on a timed

Petri net by a state feedback control under the assumption that the system state is not

measurable but can only be estimated. We showed by means of an example that the use

of an estimate instead of the actual marking, may lead to a deadlock even if the controlled

system is live. In the case that the net system is structurally bounded, we propose an

algorithm that accelerates the state estimation and helps us to detect the observer induced

deadlock. We first consider the case in which no information on the timing structure is

known, then we show how the procedure may be modified when the delays associated to

transitions are known. We also prove that this information may also be used to improve

the marking estimate and to recover the net from partial deadlocks.
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