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Abstract

In this paper, we consider a deterministic timed continuous Petri net model where conflicts at places are solved by using
stationary routing parameters. We show how to compute the stationary firing rate for all transitions via linear programming,
so as to determine the optimal routing parameters that maximize user-defined linear functions of the firing rates. Finally, we
discuss the relations with discrete Petri nets.

1 Introduction

This paper deals with the problem of determining an
optimal stationary mode of operation for a system de-
scribed by a continuous timed Petri net.
Petri nets (PN) were firstly introduced, and are still suc-
cessfully used [11], to describe and analyze discrete event
systems and have been applied in several engineering
domains [15]. To the original discrete Petri net model,
David and Alla [1,2] added a continuous model that is
well suited to describe a large class of continuous sys-
tems. Since then, other continuous net models have been
presented.
The model we consider is taken from an article [7] by
Cohen et al. It consists of a place-transition net where
the arc weight, the marking of a place and the firing
counter of a transition are not restricted to integer val-
ues but may take non negative real values, i.e., we have
fluid quantities moving from place to place rather than
discrete tokens. A release delay δi is associated to each
place pi, representing the time that the fluid that enters
will spend in the place before it can be available to fire
the output transitions. On the contrary, no delay is as-
sociated to the transitions. (An equivalent model could
be given associating a release delay to each transition.)
Figure 1(a) displays a very simple continuous timed Petri
net with a delay δ associated with the place p and an
initial marking equal to one: M(0) = 1 which is assumed
to arrive at time τ = 0 in the place.
The evolution equations derived in Section 2 describe
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Fig. 1. A continuous Petri Net and its marking evolution:
(a) and (b) model by Cohen et al.; (a’) and (b’) model by
Recalde and Silva.

all possible evolutions of such a net in terms of firing
counters: a firing counter Zj(τ) expresses the cumulative
quantity of firing of transition tj in the time interval
[0, τ ]. For the single transition of the net in Figure 1(a)
it holds Z(τ) = 0 if τ < δ, and Z(τ) ≤ M(0) = 1 if
τ ≥ δ. The value of the marking in place p can also be
written as M(τ) = M(0)− Z(τ).
Thus, the evolution of the marking in place p after time
0 is not uniquely described in this model. It could follow
any of the dashed lines displayed in Figure 1(b) . The ”as
soon as possible” (asap: denoted by the superscript a)
firing policy requires that Za(δ) = 1, i.e., after a delay δ
the marking in the place is null M(δ) = 0 (bold line). All
other firing policies have longer firing delays (all other
dashed lines).
Assume now that the firing policy u is such that after a
transient the net reaches a periodic mode of operation,
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i.e., for τ sufficiently large there exist a period Υ and a
rate λj such that for all transitions tj it holds Zu

j (τ +
Υ) = Zu

j (τ) + λjΥ. In this case it holds

lim
τ→∞

Zu
j (τ)
τ

= λj ,

and we say that the net asymptotically reaches a weakly
stationary behavior. Generalizing, we define a firing pol-
icy (not necessarily periodic) as weakly stationary if the
previous limit exists and is finite.
While a weakly stationary behavior is characterized by
the existence of finite firing rates λj for all transitions,
the marking Mi(%) of place pi at time % does not neces-
sarily reaches an average constant value: as an example,
it may continually increase. If for all places pi the limit

lim
τ→∞

∫ τ

0
Mi(%)d%

τ

also exists and is finite, then we say that the net reaches
a strongly stationary behavior. When it is not necessary
to distinguish between the two cases, we will briefly use
the adjective stationary without any additional qualifi-
cation.

1.1 A different continuous Petri net model

A rather different continuous Petri net model has been
presented in [12,14] by Recalde and Silva 1 . In the RS
model, as in the model of David and Alla [1], the timing
of the net is given under the form of “speed parameters”
for all transitions. Once again, the infinite server seman-
tics is assumed, which is modeled by an evolution equa-
tion of the marking under the form of differential equa-
tions, where the decrease rate of the marking depends
on its size. Although our paper is dedicated to the study
of the CGQ model, it is useful to introduce at least in-
formally the RS model because, beyond the superficial
differences, there are some similarities that deserve be-
ing commented upon. Let us first give an example of how
the RS model evolves. Consider the net in Figure 1(a’),
where the transition has a speed parameter λ: for this
system the marking evolution is given by the equation
dM(τ)

dτ = −λM(τ) with initial condition M(0) = 1 whose
solution is M(τ) = e−λτ . Note that unlike in the previ-
ous model, it takes an infinite amount of time to empty
place p (see Figure 1(b’)).
In both models an additional assumption (that we call
STAR) was that of solving conflicts at places by assign-
ing a STAtionary Routing (which is described in detail
in the following). Furthermore, two additional restric-
tions of RS were that of considering equal conflict nets

1 In the rest of the paper when comparing the two models
we will denote CGQ model the one of Cohen et al. and RS
model the one of Recalde and Silva.

and of allowing conflicts only at immediate transitions:
such a restriction is not used here.
The evolution equations of the CGQ model (assuming
that each transition fires as soon as it is enabled) can be
written as the coupling of a conventional linear system
with a (min,×) linear system, i.e., it is very easy to im-
plement. The evolution equations of the RS model, on
the contrary, can be written as the coupling of a con-
ventional system of linear differential equations with a
(min,×) linear system, and are more difficult to solve.
On the contrary, when the net is live and bounded, the
RS model leads to an easy computation of a station-
ary behavior by means of a linear programming problem
(LPP), while the CGQ model requires a more complex
procedure based on dynamic programming.

1.2 Results of this paper

The use of linear or integer programming for analysis and
performance evaluation of Petri nets is a rich field that
is known under the name of structural analysis [11]. In
the case of timed discrete nets this approach gives good
bounds on several performance measures for interesting
classes of nets [5]. In the case of continuous nets, this
approach is even more useful, often providing the exact
value of performance measure [12,13].
In this paper we present several original contributions.
The first result of this paper, is showing that the prob-
lem of computing the stationary behavior for the CGQ
model can also be solved by a linear program. The LPP
we write is slightly different from the one used to com-
pute the strongly stationary behavior of the RS model:
the first can in effect be seen as a generalization of the
latter. In fact in our LPP we consider, among others, as
many equations as there are places in the nets, each one
corresponding to Little’s law for the fluid entering the
place (a similar idea in the case of colored nets was used
in [6]). On the contrary, in the LPP of Recalde and Silva
this information is “compacted” in a single Little’s law
associated to each P-invariant.
Secondly, We show that the LPP we write has an im-
portant implication that is developed in the paper: our
approach can also be applied to nets that are not struc-
turally bounded and do not admit T-invariants: in this
sense we can also compute a weak stationary behavior.
Note that in the paper, the stationary behavior is de-
fined as the limit behavior as time goes to infinity and
not as some particular regime that remains steady over
time (there may be several such regimes).
Thirdly, we show how this approach can be used to solve
an important optimization problem, that is find the op-
timal stationary behavior, i.e., behavior that optimizes
some objective function such as maximizing the through-
put of the net. A complete solution to this problem is
still open for discrete nets. Furthermore, this problem
has not been studied so far neither for the CGQ model
nor for the RS model.
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Finally, we show that an optimal stationary behavior
always corresponds to a particular STAR. However, in
general it is not reached from the initial marking using
the same STAR during the transient. The optimal tran-
sient, i.e., the transient that leads as soon as possible to
the optimal stationary behavior can also be easily com-
puted using our approach.

2 Preliminaries

2.1 The untimed model

A continuous Petri net (CPN) is a structure N =
(P, T, Pre, Post), where: P is a set of m places; T is
a set of n transitions; Pre : P × T → R+

0 is the pre
incidence function that specifies the weights of the arcs
from places to transitions; Post : P × T → R+

0 is the
post incidence function that specifies the weighted arcs
from transitions to places. We denote C = Post−Pre
the incidence matrix of a net. The preset and postset of
a node x ∈ P ∪ T are denoted •x and x•, respectively.
A marking is a vector M : P → R+

0 that assigns to
each place a non–negative real quantity called mark; the
marking of place pi is denoted Mi. In discrete Petri nets,
the marking is required to be integer valued. The gen-
eralization to real values yields many simplifications, in
particular concerning the reachability issues which be-
come simple linear algebraic conditions (see Proposi-
tion 1 below). A CPN system 〈N, M(0)〉 is a net N with
an initial marking M(0).
Given a CPN N with incidence matrix C: a P-invariant
is a vector x ∈ Rm such that x 
 0 and xT C = 0; a T-
invariant is a vector y ∈ Rn such that y 
 0 and Cy =
0. The support of a P-invariant x (resp., T-invariant y)
is the set ||x|| = {pi ∈ P | xi > 0} (resp., ||y|| = {tj ∈
T | yj > 0}. A T-increase (resp., T-decrease) as a vector
y ∈ Rn such that y 
 0 and Cy 
 0 (resp., Cy � 0).

2.2 Firing semantics

In this subsection we recall some basic results about au-
tonomous (i.e., untimed) continuous Petri nets following
[13]. These results will be used in the following, especially
those characterizing the marking reachability property.
Note that the CGQ model and the RS model (as well as
the original continuous model presented by David and
Alla [1]) can be seen as different timed extensions of the
same underlying autonomous model.
In a CPN the firing of a transition tj is possible under
marking M if Mi > 0 for all pi ∈ •tj . If this is the case
the transition may fire a quantity z where

z ≤ min
pi∈•tj

Mi/Pre(pi, tj). (1)

This firing yields a new marking M ′ such that

M ′ = M + C(zej) (2)

where ej is a vector whose j-th component is equal to

1 while all other components are null. This is denoted

M
(j,z)−→ M ′.

If a sequence of transitions tj1 · · · tjk
are fired for a quan-

tity z1 · · · zk, then M
(j1,z1)−→ M1

(j2,z2)−→ M2 · · · (jk,zk)−→
Mk. We say that marking Mk is reachable and denote

this by M
(j1,z1)···(jk,zk)−→ Mk. The marking Mk satis-

fies Mk = M + Cz where z =
∑k

i=1 zieji is a vector
whose j-th component is the sum of the firing quantity
associated to transition tj in the sequence.
A CPN is bounded if all markings reachable from M(0)
are bounded. Note that if a net is unbounded it must
have a T-increase.
A CPN is live if from all reachable markings, one can find
a firing sequence containing all the transitions. Liveness
of CPN is remotely related with liveness of discrete nets
(see [13] for more details). Consider the case displayed
in Figure 2.

1/2
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Fig. 2. A live but not lim-live CPN (a), and its reachability
set (b).

In this net, both transitions may fire infinitely often, fir-
ing alternatively a quantity 1

2 , ( 1
2 )2, ( 1

2 )3, . . ., hence the
CPN is live. However the associated discrete net is struc-
turally nonlive.
Proposition 1 ([13]). In a CPN (N, M0), the set of
reachable markings R(M0) is a convex set contained in
(R+

0 )m.
Note that this convex set is not always a closed set even
when the CPN is bounded. The set R(M0) of the CPN
displayed in Figure 2(a) is given in Figure 2(b). It is
made of the gray triangle except the point (0, 0), which
is not reachable (only reachable using an infinite number
of firings).
We extend the definition of reachability by saying that
all markings in the adherence of R(M0) are reachable
and denote this closed set R∞(M0). We will also extend
the definition of liveness saying that a CPN is lim-live if
starting from any marking in R∞(M0), one can fire all
the transitions. The net displayed in Figure 2(a) is live
but not lim-live since marking (0, 0) belongs to R∞(M0)
(see Figure 2(b)).
Unlike in discrete nets, the state equation of a net often
gives necessary and sufficient conditions for reachability
as shown in the following propositions.
Proposition 2 ([13]). If a CPN is such that all transi-
tions can be fired and if the net has a positive T-invariant
then M = M(0) + Cz for z ∈ (R+

0 )n if and only if
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M ∈ R∞(M0).
The main restriction of the previous proposition is given
by the requirement that the net admits a positive T-
invariant. A weaker but more general result is the fol-
lowing.
Proposition 3 ([9]). If a CPN is such that all transitions
can be fired, and if there exists a vector z such that M =
M0 + Cz then a marking M ′ as close to M as desired
can be reached.
Finally we also recall one result that will be used later.
Proposition 4 ([13]). If a CPN is such that all transi-
tions can be fired, then a positive marking can be reached
from which any T-invariant or T-increase can be fired.

2.3 Deterministic timed CPN

A deterministic timed CPN (DTCPN) is a pair (N, δ),
where N is a CPN, and δ : P → N, called release delay 2 ,
assigns a non–negative fixed duration to each place. The
mark that enters place pi at time τ must remain within
the place for a time greater or equal to δi before it become
available for firing an output transition.
Remark 5. In this paper we consider two minor restric-
tions on the class of DTCPN considered.

A1) A place with a release delay equal to 0 is said to be
immediate and we assume there are no cycles in the net
whose places are all immediate. This condition implies
that there won’t be an infinite number of firings within
a finite time interval.

A2) Without loss of generality we assume that all transi-
tions of the net can be fired. If this is not the case, then
the dead transitions can be removed from the net. Note
that checking if all transitions of a continuous net can
be fired is a simple procedure whose complexity is lin-
ear with the number of transitions [13].

The mark Mi(0) assigned by the initial marking, is as-
sumed to enter place pi at time τ = 0, hence it will be
available at time τ = δi. For timed nets, we denote the
marking of place pi at time τ as Mi(τ).
In a DTCPN, a transition tj may fire for a quantity z at
time τ only if

z ≤ min
pi∈•tj

Mi(τ ′)/Pre(pi, tj) ∀τ ′ ∈ [τ − δi, τ ].

Firing tj for a quantity z at time τ modifies the marking
as for the untimed net in Equations (2).
This timed model assumes an infinite server semantics:
in fact the delay is the same no matter how much mark
is actually present in the place. To model finite server
semantics, one needs to add constraints in the net by
allowing a maximal quantity of mark in a place (for ex-
ample, adding complementary places).
The evolution of a timed net is often described in terms
of the firing counters of the transitions. If we assign to

2 If the delays are rational number, everything in this paper
work the same by changing the time unit.

each transition tj a counter Zj(τ) that represents the
cumulative quantity of mark fired by the transition from
time 0 to τ , and if we let Z = [Z1 · · · Zn]T , then the
marking at time τ can be determined by the state equa-
tion

M(τ) = M(0) + CZ(τ). (3)

We are interested in timed nets that reach (after a finite
transient or asymptotically) a final behavior.
Definition 6. Let (N, δ) be a timed net.
• The net reaches a periodic behavior if there exist a

period Υ and a finite rate λj such that for τ sufficiently
large and for all transitions tj it holds

Zj(τ + Υ) = Zj(τ) + λjΥ.

Additionally, if for all places pi it holds

Mi(τ + Υ) = Mi(τ),

then the behavior is called strongly periodic else it is
called weakly periodic.

• The net reaches a stationary behavior if the average
firing rates reach a limit as time goes to infinity, i.e.,
for all transitions tj it holds

lim
τ→∞

Zj(τ)
τ

= λj < +∞.

Additionally, if also the average marking reaches a
limit as time goes to infinity, i.e., for all places pi it
holds

lim
τ→∞

∫ τ

0
Mi(%)d%

τ
< +∞,

then the behavior is called strongly stationary else it
is called weakly stationary.

Note that a stationary behavior is a generalization of a
periodic behavior.
Finally we make the following obvious observation.
Proposition 7. Assume that a timed net (N, δ) reaches
a stationary behavior with

lim
τ→∞

Z(τ)
τ

= λ.

and let C be the incidence matrix of N .
a) The asymptotic firing rate vector is such that Cλ ≥

0.
b) If λ is a T-increase, i.e., if Cλ 
 0, then the behav-

ior is weakly stationary.
c) If the behavior is strongly stationary, then λ is a

T-invariant, i.e., Cλ = 0.

Proof. If the net reaches a stationary behavior, then
from the state equation (3) we have that for all places pi

lim
τ→∞

Mi(τ)
τ

= C(pi, ·) lim
τ→∞

Z(τ)
τ

= C(pi, ·)λ.
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a) Assume, by contradiction, that there exists place pi

such that C(pi, ·)λ < 0. Then limτ→∞Mi(τ) < 0, that
is clearly not possible.
b) Let pi be a place such that C(pi, ·)λ > 0. Then

limτ→∞
Mi(τ)

τ > 0 =⇒ limτ→∞Mi(τ) = +∞
=⇒ limτ→∞

∫ τ

0
Mi(%)d% = +∞

and using the rule of l’Hopital

lim
τ→∞

∫ τ

0
Mi(%)d%

τ
= lim

τ→∞
Mi(τ) = +∞.

c) Follows from b).

2.4 STAR deterministic timed CPN

A stationary routing (STAR) is a function ρ : P ×T −→
[0, 1] such that Pre(p, t) = 0 =⇒ ρ(p, t) = 0 (i.e.,
ρ(p, t) > 0 only if t ∈ p•) and such that for all p ∈ P :∑

t∈T ρ(p, t) = 1. If ρ(pi, tj) = ρi,j > 0, then a fraction
ρi,j of the mark entering place pi is reserved only for the
firing of its output transition tj and cannot be ”used”
to enable and fire any other output transition. Thus, a
STAR solves all conflicts that may arise in the net with
a preassigned fixed policy. In the STAR policy, the frac-
tion of the mark entering a place that is reserved for the
firing of a given output transition does not depend on
the enabling state of the transition. If the transition is
not currently enabled, the mark is reserved all the same
and will be used when eventually the transition becomes
enabled.
In a STAR-CPN (untimed) the firing equation (1) is
modified into z ≤ minpi∈•tj ρi,jMi/Pre(pi, tj). Using
the transition firing counters Zj(τ) described in the pre-
vious subsections and assigning to each place pi a counter
Hi(τ) that represent the quantity of mark that has en-
tered the place from time 0 to τ (including the initial
marking), the evolution of a timed STAR-DTCPN can
be written as:

Zj(τ)≤ min
pi∈•tj

{
ρi,jHi(τ − δi)

Pre(pi, tj)

}
∀tj ∈ T (4)

Hi(τ) = Mi(0) +
∑

tj∈•pi

Post(pi, tj)Zj(τ) ∀pi ∈ P. (5)

As in the general case discussed in the previous subsec-
tion, the marking at time τ can be determined by the
state equation (3).
The evolution that corresponds to choosing the equality
in the Equation (4) will be called asap (as soon as possi-
ble) because it corresponds to firing a transition as soon
as the fluid that has entered the input places becomes
available for the firing. The corresponding counters are
denoted Za = [Za

1 · · · Za
n]T .

The timed version of Proposition 2 is given below.
Proposition 8. Consider a STAR-CPN N which has a
positive T-invariant. Consider a marking M = M(0) +
Cz. For any holding times δ consider the associated
STAR-DTCPN (N, δ). There exists a time τ (possibly
infinite) and an evolution of the counter vector Z(τ) up
to time τ such that M(τ) = M and Z(τ) = z.

Proof. By assumption A1 (see Remark 5) all transi-
tions can be fired. Using Proposition 2, we know that
there exists a sequence (j1, z1), · · · (jk, zk), · · · such that

M(0)
(j1,z1)−→ M1

(j2,z2)−→ M2 · · · (jk,zk)···−→ M .
By waiting long enough (depending on the value of δ),
all mark present at time 0 becomes available, allowing
tj1 to fire a quantity z1. Once marking M1 is reached,
one needs to wait some more time until all mark in M1

become available. Then tj2 may fire a quantity z2 and so
forth. Note that this evolution is not necessarily asap.

We are interested in finding out if a DTCPN reaches a
weak stationary behavior, i.e., a condition in which the
mean number of firings of each transition tj per time unit
reaches asymptotically a constant value. The only known
result concerning the existence of a stationary behavior
for STAR-DTCPN is given in the following theorem.
Theorem 9 ([7]). In a strongly connected STAR-
DTCPN that admits a positive T-invariant and such
that the sum of the delays over each circuit is not null,
the limit limτ→∞ Za

j (τ)/τ exists and is finite.

2.5 Equivalent structurally conflict-free net

Any DTCPN (N, δ) whose conflicts are solved using a
STAR ρ can be transformed into an equivalent struc-
turally conflict-free net ([5]) (N, δ), i.e., a net in which
each place has at most one output transition. Each place
pi in the original net is split into h places p1

i , · · · , ph
i

(where h is the size of p•i ). The number of places in
(N, δ) is denoted m. All the places pk

i have the same
holding time as the original place pi: δ

k

i = δi, for all
1 ≤ k ≤ h. The initial marking in place pk

i is Mi
k
(0) =

ρ(pi, tk)Mi(0). The new preset and postset are such that
Post(pk

i , tu) = Post(pi, tu) × ρ(pi, tk), Pre(pk
i , tk) =

Pre(pi, tk) and Pre(pk
i , tj) = 0 if j 6= k. An example

of such a construction is shown in Figure 3 where the
routing coefficients are displayed between brackets to be
distinguished from the weights of the arcs.
Proposition 10. The STAR-DTCPN 〈N, δ,M(0), ρ〉
and the above defined structurally conflict-free DTCPN
〈N, δ, M(0)〉 are equivalent in the following sense: for all
τ ∈ R+, Z(τ) is a valid counter vector for N if and only
if Z(τ) is a valid counter vector for N .

Proof. The proof is based on the evolution equations
of Z(τ). We denote by Z and H the counter vec-
tors of the net N . Using the previous notations, one
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Fig. 3. (a) A place with conflict; (b) transformation to solve
the conflict using a STAR.

has for all transition tj and all place pi, δi
k

= δi

and Post(pk
i , tj) = Post(pi, tj) × ρ(pi, tk) imply that

Hi
k
(τ − δi) = ρ(pi, tk)Hi(τ − δi). On the other hand,

ρk
i,j = 1. Therefore, Z(τ) = Z(τ).

This means that the properties of liveness, boundedness
are the same for both nets. Moreover, if N is strongly
connected and the STAR coefficients are all positive,
then N is also strongly connected.
In the following, we will mainly use the net N instead
of N since every property of N can be seen on N and
vice-versa.
Let us now consider a structurally conflict-free net. In
the case of discrete nets, it was shown in [5] that if such
a net is live and bounded, then it admits a single T-
invariant whose support contains all the transitions.
A similar result was presented for CPNs.
Proposition 11 ([13]). A structurally conflict-free CPN
is lim-live and bounded if and only if it admits a single
T-invariant whose support contains all the transitions.
We prove three similar results.
Proposition 12. A CPN N that is structurally conflict-
free and strongly connected admits at most one T-
invariant (up to a multiplicative constant). Moreover,
its support contains all the transitions.

Proof. We first show that if a CPN admits two different
T-invariants y and y′, with y 6= βy′ for all β ∈ R+,
then it also admits a T-invariant ỹ with at least a null
component. This is clearly true if either y or y′ admits
a null component. Assume now y, y′ > 0. Then let β =
mini{yi/y′i} = yl/y′l: we have that ỹ = y − βy′ is a T-
invariant whose l−th component is null.
Assume now a CPN admits a T-invariant ỹ whose l−th
component is null. If the net is structurally conflict-free,
for each place p ∈ •tl: C(p, tl) is the only negative el-
ement of C(p, ·). Hence C(p, ·)ỹ = 0 only if all transi-
tions in •p do not belong to the support of ỹ. Since the
net is strongly connected, •p is not empty and we can
repeat this reasoning until we find that ỹ = 0, clearly a
contradiction.

Finally, we present two classical results that apply to
general net structures (not only continuous nets) and
whose proof is omitted.

Proposition 13. A CPN N that is structurally conflict-
free and strongly connected, and that admits a T-
invariant cannot admit a T-increase.
Proposition 14. Consider a CPN N that does not ad-
mit a T-invariant or a T-increase. Then all possible fir-
ing vectors are bounded.

3 Stationary behavior computation of STAR-
DTCPN

In this section we present a linear program based on
Little’s law to compute the stationary transition firing
rates of the model by Cohen et al.
Theorem15. Consider a STAR-DTCPN 〈N, δ,M(0), ρ〉.
The structurally conflict-free net equivalent to it is de-
noted 〈N, δ, M(0)〉 and its incidence matrix is denoted
C. Consider the following linear programming problem
LPP (6)

max 1T y

s.t.





Cy ≥ 0

M i ≥ Pre(pi, tj)yjδi ∀pi ∈ Pand p•i = {tj}
M = M(0) + Cz,

(6)
where the variables are y ∈ (R+

0 )n, M ∈ (R+
0 )m, and

z ∈ (R+
0 )n.

(a) Let (y, M , z) be an admissible solution of (6). Then
there exists a firing policy u and a firing rate vector
y′ def= (1 − ε)y arbitrarily close to y such that the net
reaches a periodic mode of operation with

lim
τ→∞

Zu
j (τ)
τ

= y′j .

(b) Let (y∗, M
∗
, z∗) be an optimal solution of (6), assum-

ing that if the objective function is unbounded, then all
the unbounded components of y are set to +∞. Then

i) y∗ ≤ lim infτ→∞Za(τ)/τ .
ii) limτ→∞Za(τ)/τ = y∗ if this limit exists.
iii) If y∗ = 0 then limτ→∞Za(τ)/τ = 0.

Before proving the theorem, let us informally describe
the constraints in LPP (6). The first constraint gives
the set of all possible repetitive behaviors, y. The sec-
ond constraint is Little’s law for each places and defines
which repetitive behaviors, y are admissible given the
time delays for a given marking. The third constraint
gives a set of markings that are arbitrarily close to the
reachable markings. Thus for each M solution of the
constraint there exists a reachable marking with an ar-
bitrarily close performance.

Proof. First of all, note that the constraint set (6) always
admits a solution: indeed y = 0, M = M(0), z = 0 is
an admissible solution.
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Part (a) Note that if (y, M , z) is a solution (not nec-
essarily optimal), by Proposition 3 there exists a firing
sequence of the timed net such that from M(0) one
reaches a positive marking M

′
such that for all places

pi, |M i − M
′
i| ≤ η for η arbitrarily small. Hence there

also exists an arbitrarily small ε such that y′ = (1− ε)y
satisfies for all i M

′
i ≥ Pre(pi, tj)y′jδi with tj = p•i . The

marking M ′ with all tokens available for firing can be
reached by the timed net in finite time τ0. We now prove
that there exists a periodic mode of operation such that
from M

′
a sequence y′ can be fired every time unit.

We first give the proof when all delays are positive. Since
M
′
i ≥ Pre(pi, tj)y′jδi ≥ Pre(pi, tj)y′j , transition tj can

fire a quantity y′j immediately, at time τ0. At time τ+
0 , the

marking is M
′′
i ≥ Mi

′
because Cy′ ≥ 0. This marking

is divided in two parts; one already present in the places
before the firing which is available (Pre(pi, tj)y′j(δi−1))
and the new arrivals which are not yet available for firing
(this part being larger or equal than Pre(pi, tj)y′j). The
later part will be available at time τ0 + δi. Therefore, we
can continue to fire y′j each time unit between τ0 and
τ0+δi. From that time on, we can continue firing y′j each
time unit because the quantity that entered δi times unit
before has become available.
Now, if some places have null holding times, they can be
ranked topologically since they do not form circuits. For
pi of rank one (immediate places following timed places),
the quantity y′j can be fired at time τ+

0 , and the marking
available for future firings is larger than Mi

′
. The same

reasoning is done for places of rank 2 at time τ++
0 . By

induction on the rank, all transitions j will fire y′j every
time unit.
This timed behavior has an asymptotic firing rate y′.
Part (b) i) In part (a) we have shown that for any
(y, M , z) admissible solution of (6) there exists an ul-
timately periodic timed behavior called u with asymp-
totic firing rate y′ arbitrarily closed to y. On the other
hand, for a STAR-DTCPN, using the fact that the
asap behavior corresponds to choosing the equality in
Equation (4) it is obvious that Za

j (τ) ≥ Zu
j (τ).

Thus, the asap behavior is such that for each component
j, it holds

lim inf
τ→∞

Za
j (τ)/τ ≥ sup

y
yj (7)

where the sup is taken over all possible solutions of the
constraint set (6).
ii) If the net admits stationary rates λ under asap, then
these stationary rates λ must satisfy Cλ ≥ 0.

Let M
∞

= limτ→∞M(τ) under the asap pol-
icy. The rates λ also satisfy the constraint M

∞
i ≥

Pre(pi, tj)λjδi for all pi ∈ P, tj = pi• which comes
from Little’s law giving the relations between the sta-
tionary marking and the stationary rates for all transi-

tions.
As for the last constraint, since M

∞ ∈ R∞(M(0)) then
there exists z∞ such that M

∞
= M(0)+Cz∞. Finally

(λ,M
∞

, z∞) is a possible solution of the program.

An optimal solution of LPP (6) (y∗, M
∗
,z∗) is such

y∗ ≥ λ while item (b).i shows that λ ≥ y∗. This implies
λ = y∗.
iii) If the optimal solution is such that y∗ = 0, then
the net does not have a T-invariant or a T-increase. To
prove this, assume that there exists a vector y′ such that
y′ 
 0 and Cy′ ≥ 0. By Proposition 4, it is possible
with a firing vector z to reach a strictly positive marking
M . From this marking there exists an ε > 0 such that
(εy′, M , z) is a solution of (6) with a better cost, and
thus contradicting the assumption that a solution with
y∗ = 0 is optimal.
From Proposition 11 it follows that the net is either not
lim-live or unbounded. Since the net does not admit a
T-increase it is certainly bounded and can only be not
lim-live. Moreover, by using Proposition 14, all firing
vectors are bounded (by say, B). In particular, for all τ ,
Za

j (τ) is bounded by B for all τ and all j. This means
that limτ→∞ Za

j (τ)/τ = 0 for all j.

This theorem calls for several comments.
1 - The theorem does not make any assumption about
the STAR-CPN, but for those in Remark 5.
2 - The result of Theorem 15 stating that the asap be-
havior is the ”best” for continuous nets is not as obvious
as it may appear. For instance, this result does not hold
for discrete nets, as shown in Section 5.
3 - The most interesting result is item (b).ii which gives
a way to compute the rates of the asap policy if they
exist. However a complete characterization of nets in
which asymptotic firing rates exist is still not known.
The following corollary gives conditions which ensure
their existence.
Corollary 16. In a strongly connected STAR-DTCPN
with an optimal solution of LPP (6) such that Cy∗ = 0,
it holds that y∗ is finite and limτ→∞Za(τ)/τ = y∗.

Proof. If y∗ is finite, then by Proposition 12, y∗ > 0.
In this case, Theorem 9 ensures the existence of asymp-
totic rates and the result follows from point (b).ii of the
previous theorem. It remains to show that y∗ cannot be
unbounded. To prove this assume that y∗ is unbounded,
then there also exists finite solutions with Cy′ = 0.
Again, y′ is a T-invariant and Theorem 9 ensures the
existence of finite asymptotic rates. Clearly a contradic-
tion using point (b).ii of the theorem.

4 - We cannot exclude that the asymptotic regime which
is computed by LPP (6) is only reached asymptotically,
in the sense that it may take an infinite amount of time
for the rates in the net under asap firing to reach y∗.
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max 1T y

s.t.





Cy ≥ 0

Pre(pi, tj)yj ≤ ρ(pi, tj)Post(pi, ·)y for all pi ∈ P : |p•i | > 1, tj ∈ p•i
Mi ≥ Pre(pi, ·)yδi for all pi ∈ P

M = M(0) + Cz,

Pre(pi, tj)zj ≤ ρ(pi, tj)[Post(pi, .)z + Mi(0)] for all pi ∈ P : |p•i | > 1, tj ∈ p•i

(8)

—————————————————————————————————————

5 - The places pi where the equality holds, M
∗
i =

Pre(pi, tj)y∗j δi can be viewed as bottlenecks. Increas-
ing the holding time in any one of these places results
in a decrease of the asymptotic firing rates y∗.
6 - Cohen et al. compute the asymptotic firing rates by
means of a policy iteration over a dynamic programming
problem; the worst case complexity of the algorithm they
use is polynomial because it can be seen as the solution
of a finite linear system. The LPP approach we propose
has also a polynomial worst case complexity. In practice,
both algorithms converge very fast to the solution. The
real advantage of the LPP approach is the fact that it is
more general. In fact, first of all it can be applied to nets
that do not admit T-invariants (e.g., weakly stationary
but not stationary). Secondly, with minor extensions the
LPP approach can also be applied to nets with conflicts,
as shown in the next section.
7 - A linear program similar to LPP (6) can be used to
compute the stationary behavior for the model of Re-
calde and Silva by replacing δi (the holding time of place
pi) by sj (the mean service time of transition tj). This is
rather surprising (at least for us) since the transient be-
havior is very different in both models. The LPP used in
[12] to compute the stationary behavior is similar to ours
but a single Little law is written for each P-invariant (i.e.,
not for each place), and the LP takes the slowest one.
Our method, unlike the approach of Recalde and Silva
does not require that the net is lim-live and bounded. It
does not even require that it has a positive T-invariant.
8 - The solution of LPP (6) can also be used to com-
pute second order asymptotic values (at least partially)
when the solution is not null y∗ > 0, which is the most
interesting case. Indeed, it may be used to partially de-
termine the average stationary marking (i.e., some of
its components). We know that the earliest firing policy
provides an optimal solution of LPP (6) (see the proof
of Theorem 15). However, it could be that many other
transient behaviors (leading to different markings) also
yield the same value for y∗. Since we have no control
on the solution provided by a LPP solver, we may not
know whether the marking provided as a solution is the
marking corresponding to the asap policy. As an imme-
diate consequence of the form of LPP (6), the case where
the net does not contain any synchronization (this class
includes state machines) is a case where the stationary
marking is unique because equality is reached in all con-

straints over M
∗
).

3.1 Equivalent linear program

A linear program equivalent to LPP (6) can also be writ-
ten using the original STAR-DTCPN 〈N, δ,M(0), ρ〉
with incidence matrix C. This LPP is given in Equa-
tion (8); its variables are y ∈ (R+

0 )n, M ∈ (R+
0 )m, and

z ∈ (R+
0 )n.

A formal proof that LPP (6) and LPP (8) are com-
pletely equivalent is not necessary. We simply comment
the main differences.
Firstly we observe that constraints of the form
Pre(pi, tj)yj ≤ ρ(pi, tj)Post(pi, ·)y impose that the
output flow from a conflict place pi due to the firing
of transition tj , i.e., Pre(pi, tj)yj , cannot be greater
than the fraction reserved for tj of the flow entering
place pi, i.e., the fraction ρ(pi, tj) of the total input flow
Post(pi, ·)y. These constraints were implemented in
the structure of the equivalent structurally conflict free
net N .
Secondly, constraints of the form Mi ≥ Pre(pi, ·)yδi are
slightly different from the corresponding ones in LPP (6)
because now each place may have more than one output
transition and we need to use the complete vector y.
Finally, constraints of the form Pre(pi, tj)zj ≤
ρ(pi, tj)[Post(pi, ·)z + Mi(0)] ensure that also during
the transient only the mark reserved for transition tj
may be used to fire tj . Again, these constraints were im-
plemented in the structure of the equivalent structurally
conflict free net N .

3.2 Development of an example

This following example describes a manufacturing sys-
tem where parts that enter may be routed to three differ-
ent processing lines. The first line (path t1−t3) only uses
resources from unit A (place p2), the second line (path
t7 − t9) only uses resources from unit B (place p8), the
last one (path t4− t6) uses resources from unit A and B.
We assume the routing is such that the first line receives
3/8 of the parts, the second lines receives 1/8 and the
third line receives the remaining parts. Correspondingly,
unit A is shared at 3/4 and 1/4 between the first and sec-
ond line, while unit B is shared at 1/5 and 4/5 between
the second and third line.
The vector of place delays is the following: δ =
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t1 t4 t7

t6 t9

t2 t8t5

t3

p1 p4 p7

p9p5p3

p6

[3/8] [1/2]
[1/8]

[3/4] [1/4] [1/5] [4/5]

p2 p8

Fig. 4. A STAR-DTCPN

[2 1 5 20 1 2 7 2 3]T .
If we compute the equivalent conflict-free net and solve
LPP (6) (or equivalently if we solve LPP (8)) we obtain
an optimal solution with y∗ = 1

49 [6 6 6 2 2 2 8 8 8]T . This
vector is a T-invariant. By Corollary 16 the net reaches
under asap a (strongly) stationary behavior with rates
λ = y∗.

4 Optimal routing policy in DTCPN

Here is the main objective of the section: given a deter-
ministic timed continuous Petri net, find the best rout-
ing parameters ρ(p, t) which give the optimal station-
ary firing rates y according to a given objective function
aT y with a ≥ 0. We will show that this problem can be
solved with a slight modification of LPP (8).
In a DTCPN where the routing parameters are not
fixed beforehand, the transformation into a structurally
conflict-free net is not possible because the matrix C
would depend on the routing parameters.
Another approach is to come up with a new linear pro-
gram having additional degrees of freedom where the
routing constraints are removed. This can be done by
using the version LPP (8) of the program where the ob-
jective function is aT y and the routing constraints are
removed. Next theorem shows that this approach is cor-
rect.
Theorem 17. Consider a DTCPN 〈N, δ,M(0)〉 with
incidence matrix C. Consider a LPP

max aT y

s.t.





Cy ≥ 0

Mi ≥ Pre(pi, ·)yδi for all pi ∈ P

M = M(0) + Cz,

(9)

where the variables are y ∈ (R+
0 )n, M ∈ (R+

0 )m, and
z ∈ (R+

0 )n, with optimal solution (y∗,M∗, z∗)

Define a STAR-DTCPN 〈N, δ,M∗, ρ∗〉 with

ρ∗(pi, tj) =
Pre(ti, tj)yj∑

tk∈p•
i
y∗kPre(ti, tk)

∀tj ∈ p•i .

This net has a stationary behavior y∗ such that aT y∗ is
larger than aT y where y is the stationary behavior of a
STAR-DTCPN 〈N, δ,M , ρ〉 where M is any reachable
marking from M(0), and ρ are arbitrary routings.

Proof. Firstly note that if (y∗, M∗,z∗) is a solution of
LPP (9) and ρ∗ is chosen accordingly, then (y∗,M∗, z∗)
is also a solution of LPP (8) with routing ρ∗. By using
the same reasoning as in the proof of Theorem 15 part
(a), we conclude that there exists a stationary behavior
u of the STAR-DTCPN with firing rates λ = y∗.
Secondly, for any other routing ρ, consider the associ-
ated STAR-DTCPN 〈N, δ,M , ρ〉. By using the same ar-
gument as in the proof of Theorem 15 part (b).ii, ev-
ery stationary behavior of this net is an admissible solu-
tion of LPP (8) and a fortiori an admissible solution of
LPP (9) but not necessarily optimal with respect to the
performance index aT y.

The choice of the cost function aT y used to define the
optimal behavior depends on the context. The transfor-
mation of a given objective function into the coefficients
aj may sometimes be tricky. Such problems are detailed
in [4].
One main drawback of Theorem 17 is that it does not
say anything about the behavior of the net under the
asap policy. In particular, it does not prove that the best
routing under asap is ρ∗ because we do not know if asap
reaches asymptotic rates. The possibility shown in the
following diagram cannot be excluded a priori

asap(ρ∗) =⇒ u∗(ρ∗)

↑ ⇓
asap(ρ) −→ u∗(ρ)

where u∗(ρ) is an optimal ultimately periodic behavior
under routing ρ and v → u means that

lim inf
τ→∞

aT Zv(τ)/τ > lim inf
τ→∞

aT Zu(τ)/τ,

while v =⇒ u means that

lim inf
τ→∞

aT Zv(τ)/τ ≥ lim inf
τ→∞

aT Zu(τ)/τ.

However, there are cases where such a situation may be
ruled out.
Theorem 18. If the optimal solution of LPP (9) is such
that aT y∗ = 0 then lim infτ→∞ aT Zasap(ρ)(τ)/τ = 0 for
all routing ρ.
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2

3
t1

t3

t2

[a]

[1− a]

p3

p2

p1

Fig. 5. A CPN where the transient regime should not follow
the optimal routing ρ∗.

Proof. If aT y∗ = 0 then it is easy to show using the
same reasoning as in the proof of part (b).iii of Theo-
rem 15 that the net does not admit any T-increase or
T-invariant whose support intersects the support of a.
It is possible to generalize Proposition 14 and show that
a firing vector z satisfies zj < B if aj > 0. In particular
for all τ and all ρ, Z

asap(ρ)
j (τ) ≤ B.

Theorem 19. If the net N is strongly connected and
bounded, then the optimal behavior under asap is obtained
by choosing ρ∗ as defined in Theorem 17. Furthermore,
limτ→∞ aT Zasap(ρ∗)(τ)/τ = aT y∗.

Proof. If the net N is strongly connected and bounded
then when the STAR is enforced the STAR-DTCPN ad-
mits at most one T-invariant by Proposition 12 and no
T-increase. Now, for all routing ρ, the asap policy un-
der ρ has a stationary behavior (see Corollary 16). This
implies that

asap(ρ∗) = u∗(ρ∗)

⇓ ⇓
asap(ρ) = u∗(ρ).

Remark 20. We conclude this section with an important
observation. Theorem 17 shows that an optimal periodic
mode of operation can always be enforced by a STAR ρ∗.
However, it may well be the case that marking M∗ that
must be reached to start this periodic mode cannot be
reached using STAR ρ∗.
In fact, the reachability condition M = M(0)+Cz does
not take into account the routing parameters (which are
computed a posteriori).
Consider the case of a net displayed in Figure 5 where the
delays for all the places are 1, where the transient does
not follow ρ∗.
The optimal solution with objective function 1T y is
marking is y∗ = 1

2 [1 1 2]T , M∗ = 1
2 [3 1 2]T and

z∗ = 1
2 [1 0 4]T . This yields a routing ρ∗ such that

α = 2/3 and the objective is 1T y∗ = 2.
Since the net does not contain any synchronization, this
is the unique optimal solution. Note that the optimal
marking M∗ is reached from M0 by firing a vector z∗
incompatible with the routing ρ∗.

If the routing ρ∗ is used from the start, the optimal firing
policy leads to a total firing rate of 4/3.

4.1 Development of an example

Let us continue with the example discussed in Subsec-
tion 3.2. Assume that the routing is not fixed as in Fig-
ure 4. We want to maximize the throughput of the net
and choose the objective function aT y = y3 + y6 +
y9. Solving LPP (9) we obtain the optimal rates y∗ =
1
12 [4 4 4 0 0 0 1 1 1]T and the corresponding optimal
routing is ρ∗(6, 1) = 4/5, ρ∗(6, 4) = 0, ρ∗(6, 7) = 1/5,
ρ∗(2, 2) = 1, ρ∗(2, 5) = 0,ρ∗(8, 5) = 0, ρ∗(8, 8) = 1.
Note that this net is strongly connected and bounded
hence by Theorem 19 the optimal behavior under asap is
obtained by choosing ρ∗ and limτ→∞ aT Zasap(ρ∗)(τ)/τ =
aT y∗.

5 Heuristic optimization of discrete nets

One of the major drawbacks of the fluidification of Petri
nets is that the results obtained for the continuous net
do not hold for the discrete one. This is in particular the
case when we are faced with the problem of enforcing the
routing policy found with the optimization of the con-
tinuous model. In this section we show with an example
that the asap behavior is not optimal for discrete nets.
We also discuss an heuristic optimization procedure for
a discrete net that uses the optimal routing proportions
given by its continuous counterpart.
In a discrete net the stationary routing parameters of the
continuous nets are replaced by routing functions: each
token entering a place p is assigned an output transition
according to a routing function rp : N → p•. The link
with the routing parameters of the continuous net is done
by assuming that the function rp sends a proportion of
ρ(p, t) tokens to transition t asymptotically:

lim
N→∞

1
N

N∑
n=1

1{rp(n)=t} = ρ(p, t). (10)

This is done, for example, by choosing a stochastic iid
Bernoulli function rp where Pr(rp(n) = t) = ρ(p, t).
Another (deterministic) possibility is to choose a stair
case routing function rp such that for all K,

K∑

k=1

1{rp(k)=t} = bρ(p, t)Kc.

The evolution equations in the discrete case become

Zj(τ) ≤ min
pi∈•tj

⌊
Ai,j(Hi(τ − δi))

Pre(pi, tj)

⌋
∀tj ∈ T

Hi(τ) = Mi(0) +
∑

tj∈•pi

Post(pi, tj)Zj(τ) ∀pi ∈ P,
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where Ai,j(K) =
∑K

k=1 1{ri(k)=tj}.
When the net is live and bounded, the firing rate of the
transitions, φj = limτ→∞ Za

j (τ)/τ is shown to exist as
soon as the limit limK→∞A(K)/K exists using transi-
tion blocking techniques in [8]. However, the computa-
tion of φj seems to be rather difficult. There are several
reasons for that.
Firstly, the firing rate in the discrete case depends on the
choice of the routing functions. In particular, the stair
case and the Bernoulli routings may not have the same
rates (there are strong evidences to claim that for live
nets, the stair case is always the best routing function
satisfying the asymptotic condition (10)).
Secondly, the reachability condition in the discrete case
is known to be difficult to check (this is the main reason
why LPP (6) does not work here).
Another difficulty comes from the fact that, unlike what
we have proved in this paper for continuous nets, the
optimal stationary regime in the discrete case may not
be reached by the asap firing policy. The example in
Figure 6 is a straightforward translation of a Tetris heap
taken from [10] into a Petri net.

p2

t2

p3

t3

p4

t4

t1

p1

p5

[a] [1− a]

Fig. 6. A Petri net with routing

If the delays in the places are chosen such that δ1 =
8/89, δ2 = 32/89, δ3 = 81/89, δ4 = 8/89, δ5 = 0 then the
stationary optimal routing under asap is periodic with a
period equal to (4, 3, 3, 3) with a total rate of 89/32 while
the optimal routing policy is also periodic, but with a
different period (4, 3, 3), and with a higher rate: 3.
It is not difficult to prove (just looking at the evolu-
tion equations) that the firing rates in the discrete case
are not larger than in the continuous case. Therefore,
LPP (6) provides an upper bound for a discrete net with
a fixed routing policy. It is also easy to construct exam-
ples where the rate in the discrete case is strictly smaller
than in the continuous case.
Finally, one can note that any routing function in the
discrete case can be implemented by using supervisory
control (as it is done in [3]).

6 Conclusion

In this paper we have used structural analysis for deter-
mining optimal stationary control policies for Continu-
ous Petri Nets.
We have shown that for decision-free nets, where the only
control policy consists in determining how fast should a
transition consume the tokens that have been reserved

for its firing, the problem of computing the stationary
behavior can be solved by a linear program.
We have also considered the case in which the decision
policy also requires solving a routing problem and we
have shown how to compute an optimal routing using a
different linear programming problem.
Among all admissible control policies, we have charac-
terized important properties of the ”as soon as possible”
policy that is particularly relevant in many optimization
problems.
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