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 

Abstract 
 

A siphon is a structural object in Petri nets that is important both from a theoretical and a practical point of view. 

Particularly, the performance of siphon-based deadlock control policies largely depends on siphon enumeration. This 

work studies complete minimal-siphon enumeration in ordinary Petri nets. A recent approach, called global partitioning 

minimal-siphon enumeration (GPMSE) has been recently proposed by Cordone et al. [1] and provides good performance 

compared with other methods. In this paper we show that further improvements are possible and we propose a novel 

approach, called improved GPMSE, which requires lower computational complexity and memory consumption than the 

original method, especially for nets with large size. Experimental results are presented to validate the above claim. 
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1   Introduction 
A siphon is a set of places in a Petri net (PN) with the following property: once a siphon loses all its tokens, it remains 

permanently unmarked and some transitions thereby are disabled forever. As a result, deadlock arises. For this reason, most 
deadlock control policies are based on siphon control [5]. Unfortunately, the number of siphons in a PN grows exponentially with 
the size of the net, and this may hinder the use of siphon-based deadlock control policies. Hence, the efficient computation of 
siphons is of major importance to guarantee good performance of siphon-based deadlock control policies, and much work has 
been done to decrease the computational complexity of siphon enumeration [1]-[4], [6]-[14].  

Siphon enumeration methods can be divided into two broad classes. The first class includes approaches that apply to PNs 
with specific structures, such as methods based on resource circuits [4], [11], methods based on loop resource subsets [14], 
methods based on the pruning graph [2], parallel algorithms [10], and genetic-algorithm-based methods [8], [9]. The second class 
includes approaches applicable to ordinary PNs, such as the INA-based method [7], linear integer programming methods [3], [6], 
and methods based on problem decomposition [1], [13]. This work proposes an approach that applies to ordinary PNs, and thus 
belongs to the second class.  

Problem decomposition is essentially based on the idea that a problem can be decomposed into several simper sub-problems 
and once the solution to each sub-problem is obtained, the solution to the original problem immediately follows. There are a 
variety of methods based on problem decomposition for minimal siphon enumeration that greatly differ in computational 
complexity and memory consumption. global partitioning minimal-siphon enumeration (GPMSE) and local partitioning 
minimal-siphon enumeration (LPMSE), proposed by Cordone et al. [1], have a very low computational complexity compared 
with other methods for ordinary PNs and are thereby extensively used. In more detail, the algorithms in [1] exploit the 
information conveyed by already-found solutions to progressively narrow the search process: when a minimal siphon is obtained, 
the solution space can be efficiently partitioned, to exclude the already-found siphon and all siphons containing it. The current 
search problem is transformed into a list of suitable simpler sub-problems, by adding specific place constraints, either in the form 
of set of places forced to belong to the solutions of the problem or in the form of set of places required not to belong to the same 
solutions. Two versions of the search technique are proposed in [1], which mainly differ in the application of the partitioning 
procedure.  

In this paper we focus on the GPMSE approach that uses a search technique that partitions all the problems in the unsolved 
problem list and finds exactly the complete set of minimal siphons. We provide a way to further decrease its computational 
complexity and reduce memory requirements. We call the resulting approach improved GPMSE. The basic idea behind 
improved GPMSE can be summarized as follows. The set of places forced to belong to minimal siphons is expanded and two 
conditions are added to restrict the further decomposition of the problem. This allows to reduce the number of sub-problems to be 
considered. Moreover, in improved GPMSE we use depth-first search instead of width-first search as in [1], since experimental 
results show that this leads to lower memory requirements.  

 To evaluate the effectiveness of the proposed approach we developed a tool [12], written in C++, that implements three 
different methods: the GPMSE approach as proposed in [1], the GPMSE approach where depth-first search is used instead of 
width-first search, and the improved GPMSE approach. A series of simulations on nets of different size and Pre and Post 
matrices randomly generated have been carried out. Results are discussed in Section V.  

 

2   Basic Background on Petri Nets and Siphons 
An ordinary Petri net is a 3-tuple N= (P, T, F) where P and T are finite, nonempty, and disjoint sets. P is the set of places, 

and T is the set of transitions. The set F  (P × T)  (T × P) is the flow relation. Given a net N= (P, T, F) and a node xPT, x 
={yP T |(y, x) F} is the preset of x, while x={yP T |(x, y) F} is the post-set of x. X PT, X= x X x

 , and X  =

x X x
 . xPT, x =(x), and x=(x). Note that all the paper deals with ordinary Petri nets. Hence, we call them Petri nets 

for simplification.   

Let N=(P, T, F) be a Petri net with PX  P and TX  T. NX=(PX, TX, FX) is called a subnet generated by PX and TX if FX=F 
[(PX ×TX)  (TX ×PX)]. 

A transition (resp., place) without any input place (resp., transition) is called a source transition (resp., place), and one 
without any output place (resp., transition) is called a sink transition (resp., place). 

A nonempty set S  P is a siphon if S  S. A siphon is called minimal if it does not contain any other siphon.  
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A siphon is called Pin-minimal if it includes all places in a set Pin  P and does not strictly contain any other siphon including 
all places in Pin. Particularly, a Pin-minimal siphon is a minimal siphon if Pin=. Otherwise, a Pin-minimal siphon is not 
necessarily a minimal siphon. 

Definition 1: Let N=(P, T, F) be a Petri net and Pin be a set of places. G= (N, Pin) is defined as the problem of finding the set ΣG 
of all minimal siphons containing Pin of N. 

In particular, G= (N, ) is the problem of finding the set ΣG of all minimal siphons of N. 

 

3   Preliminary Definitions and Results  
In this section we introduce some functions that will be useful in the following, and also provide (without a formal proof) 

some theoretical results related to them. Note that most of these functions are based on well-known siphon properties.  

Function (N', Φ)= DeleteSourcePlace(N) 
Input: A Petri net N=(P, T, F). 
Output: A Petri net N'=(P', T', F') and a set of minimal siphons Φ. 

1)  Φ=; 
2)  P'= P-{pP |p=}; 
3)  T'= T; 
4)  F'= F  ((P'×T')  (T'×P')); 
5)  for p'{pP |p=} do 
6)         Φ=Φ{{ p'}}; 
7)  end for 
8) Output: N' and Φ. 
 

Fact 1: Let N be a Petri net and (N', Φ)= DeleteSourcePlace(N). We have ΣG1=ΣG2  Φ, where G1=(N, ) and G2=(N', ). 

Next function removes source transitions, as well as their output places, sink transitions and sink places. 

Function N'= PreHandle(N) 
Input: A Petri net N=(P, T, F). 
Output: A Petri net N'=(P', T', F'); 

1) N'= N; 
2) while there exists a source transition t in N' do 
3)      T'= T'-{t}; 
4)      P'= P'- t; 
5)      F'= F' ((P'×T')  (T'×P')); 
6) end while 
7) while there exists a sink transition t or a sink place p in N' do 
8)        T'= T'-{t}; or 
9)        P'= P'-{p}; 
10)        F'= F' ((P'×T')  (T'×P')); 
11) end while 
12) Output: N'. 

 

Fact 2: Let G1=(N, Pin) and G2=(N', Pin) be two problems, where N'=PreHandle(N). We have ΣG1=ΣG2. 

Facts 1 and 2 imply that functions DeleteSourcePlace and PreHandle can be used to reduce the size of a net where minimal 
siphon enumeration is performed. 

The following function describes our improved algorithm to expand a given set Pin that must be contained in a minimal 
siphon. 

Function Pin'=ExpandPin (Pin, N) 
Input: A set of places Pin and a Petri net N=(P, T, F) without source places. 
Output: An expanded set of places Pin'. 

1) Pin'= Pin; 
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2) while there exists tPin'- Pin'
 such that t ={p'} or there exists pPin' and p'P-Pin' such that p={p'} do 

3)      Pin'= Pin'{p'}; 
4) end while 
5) Output: Pin'. 
 

Fact 3: Let G1=(N, Pin) and G2=(N, Pin') be two problems, where N is a Petri net without source places and Pin'=ExpandPin(Pin, 
N). We have ΣG1=ΣG2. 

Fact 3 indicates that function ExpandPin can be used to expand Pin when we search for minimal siphons. Note that the bigger 
Pin is, the faster a solution to the corresponding problem can be obtained. 

The following Function PinNotContainSiphon can determine whether Pin contains a siphon. 

Function flag=PinNotContainSiphon (Pin) 
Input: A set of places Pin. 
Output: flag. /* flag=False implies Pin contains a siphon and flag=True implies not.*/ 

1) flag= True;  
2) Obtain the subnet NPin generated by Pin and PinPin

;  
3)  if  PreHandle(NPin) ≠ then 
4)        flag= False; 
5) end if 
6) Output: flag. 

 

Fact 4: Let G=(N, Pin) be a problem, where Pin is not a minimal siphon. If flag=PinNotContainSiphon (Pin)=False, we have 
ΣG=.  

Fact 4 implies that a problem G=(N, Pin) has no solution if Pin strictly contains a siphon. 

The following function FindAPinMiniSiphon allows to compute a Pin-minimal siphon in N given a set of places Pin. Clearly, 
it allows to compute a minimal siphon if we consider Pin =. 

Function S=FindAPinMiniSiphon (N, Pin) 
Input: A Petri net N=(P, T, F) and a set of places PinP. 
Output: A Pin-minimal-siphon S. 

1) while Pin≠ P do 
2)     p=Get(P-Pin); /*Function Get returns an element of a set.*/ 
3)     N'= N; 
4)     N=RemovePlace (N, p); 

/*Function RemovePlace returns a net after deleting a place*/ 
5)     while there exists a source transition t in N do 
6)         T= T-{t}; 
7)         P= P- t; 
8)         F= F  ((P×T) (T×P)); 
9)     end while 
10)     if Pin  P then 
11)         Pin= Pin{p}; 
12)         N = N'; 
13)     end if 
14)     S= Pin; 
15)  end while 
 

Fact 5: Let N=(P, T, F) be a Petri net and PinP. S=FindAPinMiniSiphon (N, Pin) is a Pin-minimal-siphon. 

We want to point out that function FindAPinMiniSiphon has already been introduced by Cordone et al. in [1]. In particular, in 
the GPMSE approach [1] it provides a minimal siphon, not only when Pin=, but also in the nontrivial case of Pin≠. The same 
result holds in the approach proposed in the following section, namely, the improved GPMSE approach.  

We conclude this section, introducing a function that allows to determine whether a given siphon S (|S|≥2) is a minimal 
siphon.  
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Function flag=CheckofMiniSiphon (S) 
Input: A siphon S.                         
Output: flag. /* flag=True implies S is a minimal siphon otherwise is not.*/ 

1) flag=True; 
2) Obtain the subnet Ns generated by S and S  S ;  
3) for pS do 
4)    N'=RemovePlace(Ns, p);  

/*Function RemovePlace returns a net after deleting a place*/ 
5)    N'=PreHandle(N'); 
6)    if N'≠ then  
7)        flag= False; 
8)   end if 
9) end for 
10) Output: flag. 
 

Fact 6: Let S be a siphon such that |S|2. S is a minimal siphon if and only if flag=CheckofMiniSiphon (S)=True. 

 

4  Improved GPMSE Approach  
In this section the improved GPMSE approach is presented. This algorithm is coded in function FindAllMiniSiphon_GP, 

which in turns calls function SonofNode_GP and some other functions defined in Section III. The main idea behind the improved 
GPMSE approach is that we iteratively expand a set Pin which is forced to be contained in minimal siphons. Moreover, a 
condition that Pin is a siphon is added to restrict further decomposing the problem. The expansion of Pin and the added condition 
can both effectively decrease the total number of sub-problems to be solved. Besides, depth-first search is adopted in improved 
GPMSE instead of width-first search. 

Function (Π)= FindAllMiniSiphon_GP (N) 
Input: A Petri net N=(P, T, F). 
Output: The set of all minimal siphons Π. 

1)  Pin=; 
2) Level=1; 
3) (N, Π)=DeleteSourcePlace(N); 
4)  N=PreHandle(N);  
5)  if N≠ then 
6)       Let (N, Pin) be the root node of a tree;  
7)       S=FindAPinMiniSiphon (N, Pin); /*Here S is a minimal siphon since  Pin= */ 
8)       Π=Π{S}; 
9)       [Level]=S; /*  is a linked list for saving minimal siphons that are used for decomposing problems*/ 
10)   [Level+1]=; 
11)   SonofNode_GP (N, Pin, Level); 
12)  end if 
13)  Output: Π; 
14)  End. 

 
Function SonofNode_GP (N, Pin, Level) 
Input: A Petri net N=(P, T, F), a set of places Pin, and Level{1, 2, …}. 

1) S=[Level]; /* a minimal siphon for decomposing*/ 
2) if S= then 
3)    S=FindAPinMiniSiphon (N, Pin); 
4)    [Level]=S; 
5)    [Level+1]= ; 
6)     Π=Π{S}; 
7) end if 
8) Pin'= Pin; 
9) for pS\Pin do 
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10)       N'=RemovePlace(N, p); 
11)     N'=PreHandle(N');  
12)     if N'≠ then 
13)         Pin''=ExpandPin (Pin', N'); 
14)         Create a node (N', Pin''); 
15)         Add an arc labeled by “p” from node (N, Pin) to node (N', Pin''); 
16)         if Pin''  P' then 
17)             if Pin'' is a siphon then 
18)                 if CheckofMiniSiphon (Pin'') then 
19)                       Π=Π{Pin''}; 
20)                 end if 
21)             else 
22)                 SonofNode_GP (N', Pin'', Level+1); 
23)            end if 
24)         end if 
25)    end if 
26)    Pin'= Pin'{p}; 
27)    end for 

 

Based on Facts 1-6, we have the following proposition whose proof is omitted for sake of brevity. 

Proposition 1: Given a Petri net N, Π= FindAllMiniSiphon_GP (N) consists of all minimal siphons in N. 

To make the presentation more clear, we illustrate the proposed procedure via a numerical example.  

 

 
Figure 1. A Petri net N for improved GPMSE 

 

4.1   A Numerical Example to Illustrate the Improved GPMSE 
Consider the net N in Figure 1. 

1) Since the net has no source and sink elements, Π= and N1=N after applying functions DeleteSourcePlace and 
PreHandle. 

2) Let G1=(N1, ) be the root node of the tree, as shown in Figure 3(a). Note that to make the figure more compact, nets are 
denoted simply pointing out the indices of its places. An analogous notation is used for siphons. As an example, in Figure 3, 
P1=p1-11 is used to denote N1 with set of places P1={p1- p11}. 

3) FindAPinMiniSiphon (N1, ) is applied, resulting in a minimal siphon S1={p8- p10}. Accordingly, we have Π={S1} and 
[1]=S1. Function SonofNode_GP is applied to G1 with Level=1. Details are as follows. 

S1 in  is searched for decomposing problem G1. First, we delete p8 from N1 and then function PreHandle is applied.  N2: 
P2={p2-7, p10, p11} is obtained as the output, thus a new node G2=(N2, ) is created. Now, function SonofNode_GP is applied to 
G2 with Level=2. Since no minimal siphon can be found in  while Level=2, a minimal siphon S2={p5- p7} is computed to 
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decomposing problems in the second level of the tree.  Accordingly, we have Π={S1, S2} and [2]=S2. After deleting p5 from N2, 
we create a new node G3=(N3, ). Next, Function SonofNode_GP is applied to G3 with Level=3. S3={p4, p7, p10, p11} is computed 
to decomposing problems in the third level of the tree and we have Π={S1-S3} and [3]=S3. After deleting p4 from N3, we get a 
null net. Hence, we delete p7 from N3, resulting in a new node G4. Note that we have Pin={p2-p4} in G4 after Function ExpandPin 
is applied. Here, G4 is not further decomposed since Pin is a siphon.  

Similarly, nodes G5, G6, …, G17 are created one after another with the recursive call of Function SonofNode_GP. Finally, the 
tree in Figure 3(a) is constructed and we can obtain the set of all minimal siphons Π={S1-S7} as shown in Figure 3(a). 

Note that node  implies Pin is a siphon but not minimal siphon, node  implies Pin is a minimal siphon, and node  
implies Pin  P. Clearly, problems denoted by these nodes do not need to be further decomposed. 

 

5  Numerical Comparisons with the Approach in [1] 

In this section we compare the improved versions of GPMSE with the original versions proposed by Cordone et al. [1]. 

5.1   A Comparison with the PN in Figure 1 
Let us first consider the PN in Figure 1. The tree resulting from the application of the improved GPMSE is reported in 

Figure 3(a). Figure 3(b) shows the tree resulting from the application of the original version of the approach, which is clearly 
much more complex. More details on the comparison between the two approaches are summarized in Table I where: the second 
column shows the number of nodes of the trees; the third column shows the number of nodes that need to be decomposed; the 
fourth column shows the maximum number of nodes that need to be saved in memory.  

Looking at Table I we may conclude that the improved approach provides better performance with respect to the original 
one, both in terms of computational time and memory requirement. In particular, the number of nodes of the tree and the 
number of nodes that need to be decomposed have an impact on the computational time, while the maximum number of nodes 
that need to be saved during computation have an impact on the memory requirement.  

TABLE I.  COMPARISON BETWEEN GPMSE AND IMPROVED GPMSE WHEN THE APPROACHES ARE APPLIED TO THE NET IN FIGURE 1  

 
 

Method 

 
Number of 
nodes in the 

tree 
 

 
Number of 
nodes that 
need to be 

decomposed  

Maximum 
number of 
nodes that 
need to be 
saved in 
memory 

GPMSE 56 26 6 
Improved GPMSE 17 5 3 

 

5.2    A Comparison with PNs Randomly Generated  
To provide a significant validation of the effectiveness of the proposed approach, we considered a series of PNs generated at 

random with an increasing number n of places and transitions, with n =31, 32,…,42. For each value of n we randomly generated 
100 nets, assuming that di is the probability of having an arc going from any place to any transition, and do is the probability of 
having an arc going from any transition to any place. In all the considered cases it was di=do=0.05.  

All the above nets have been analyzed using a tool, written in C++, that we developed to implement the GPMSE approach 
and the improved GPMSE approach. The tool can be downloaded from [12] and also allows the implementation of the GPMSE 
with depth-first search.  

We first observe that for such values of n no results have been obtained using the GPMSE approach in [1] due to memory 
limitations. On the contrary, both the improved GPMSE method and the GPMSE method using depth search provided results for 
all the considered valued of n. Such results are summarized in Figure 2, where the average (over the 100 simulations) CPU time 
versus n is reported. In more detail, Figure 2(a) shows the results of the comparison for all the considered values of n. Figure 2(b) 
provides a zoom of such results for n that goes from 34 to 37. From such figures we argue that advantages of the improved 
method become more evident when the dimension of the net grows.  

All experimental results have been carried out on a 2.53 GHz Intel Core i3 computer with 3 GB of RAM and Windows 7 
operating system. 
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Figure 2. Results of the comparison in Subsection V.B 
 

6  Conclusion and Future Work 

The complete siphon enumeration is a difficult problem in Petri nets. This is because the number of siphons grows 
exponentially with respect to the net size. In this paper we provide an approach that is based on an efficient method proposed by 
Cordone et al. [1]. The novel method guarantees a reduced computational complexity with respect to the original one, even if it is 
still exponential with respect to the net size, and guarantees a reduced memory requirement especially for large nets.  

As a future work, we plan to provide further improvements to the GPMSE approach further expanding the set of places in the 
minimal siphon and adding more constraints to reduce the number of sub-problems to be solved.  
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(a) A tree generated by improved GPMSE for Figure 1 
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(b) A tree generated by GPMSE [1] for Figure 1 
Figure 3. Two trees generated for Figure 1 

 

 

 
 
 

 


