
1



Abstract

A siphon is a structural object in Petri nets that is important both from a theoretical and a practical point of view.

Particularly, the performance of siphon-based deadlock control policies largely depends on siphon enumeration. This

work studies complete minimal-siphon enumeration in ordinary Petri nets. A recent approach, called global partitioning

minimal-siphon enumeration (GPMSE) has been recently proposed by Cordone et al. [1] and provides good performance

compared with other methods. In this paper we show that further improvements are possible and we propose a novel

approach, called improved GPMSE, which requires lower computational complexity and memory consumption than the

original method, especially for nets with large size. Experimental results are presented to validate the above claim.

Accepted as:
S.G. Wang, D. You, C. Seatzu, A. Giua, "Complete Enumeration of Minimal Siphons in General Petri Nets Based on Problem
Partitioning," 54nd IEEE Conf. on Decision and Control (Osaka, Japan), Dec. 15-18, 2015.

*Research supported by National Natural Science Foundation of China under Grant 61472361, Zhejiang Provincial Natural Science Foundation for
Distinguished Young Scholars (No. LR14F020001), Zhejiang Sci. & Tech. Project under Grant 2013C31111, Zhejiang NNST Key Laboratory under Grant
2013E10012, and Zhejiang Gongshang University Innovation Project under Grant CX201411010.

S. G. Wang is with School of Information & Electronic Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China (corresponding author:
0571-28877734; e-mail: wsg5000@hotmail.com).

D. You is with School of Information & Electronic Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China (e-mail:
youdan000@hotmail.com).

C. Seatzu is with the Dep. of Electrical and Electronic Engineering, University of Cagliari, Cagliari, 09124, Italy (e-mail: seatzu@diee.unica.it).
A. Giua is with Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296, Marseille 13397, France, and also with the Dep. of

Electrical and Electronic Engineering, University of Cagliari, Cagliari, 09124, Italy (e-mail: alessandro.giua@lsis.org; giua@diee.unica.it).

Complete enumeration of minimal siphons in ordinary Petri nets
based on problem partitioning

ShouGuang Wang*, Dan You, Carla Seatzu, and Alessandro Giua

2

1 Introduction
A siphon is a set of places in a Petri net (PN) with the following property: once a siphon loses all its tokens, it remains

permanently unmarked and some transitions thereby are disabled forever. As a result, deadlock arises. For this reason, most
deadlock control policies are based on siphon control [5]. Unfortunately, the number of siphons in a PN grows exponentially with
the size of the net, and this may hinder the use of siphon-based deadlock control policies. Hence, the efficient computation of
siphons is of major importance to guarantee good performance of siphon-based deadlock control policies, and much work has
been done to decrease the computational complexity of siphon enumeration [1]-[4], [6]-[14].

Siphon enumeration methods can be divided into two broad classes. The first class includes approaches that apply to PNs
with specific structures, such as methods based on resource circuits [4], [11], methods based on loop resource subsets [14],
methods based on the pruning graph [2], parallel algorithms [10], and genetic-algorithm-based methods [8], [9]. The second class
includes approaches applicable to ordinary PNs, such as the INA-based method [7], linear integer programming methods [3], [6],
and methods based on problem decomposition [1], [13]. This work proposes an approach that applies to ordinary PNs, and thus
belongs to the second class.

Problem decomposition is essentially based on the idea that a problem can be decomposed into several simper sub-problems
and once the solution to each sub-problem is obtained, the solution to the original problem immediately follows. There are a
variety of methods based on problem decomposition for minimal siphon enumeration that greatly differ in computational
complexity and memory consumption. global partitioning minimal-siphon enumeration (GPMSE) and local partitioning
minimal-siphon enumeration (LPMSE), proposed by Cordone et al. [1], have a very low computational complexity compared
with other methods for ordinary PNs and are thereby extensively used. In more detail, the algorithms in [1] exploit the
information conveyed by already-found solutions to progressively narrow the search process: when a minimal siphon is obtained,
the solution space can be efficiently partitioned, to exclude the already-found siphon and all siphons containing it. The current
search problem is transformed into a list of suitable simpler sub-problems, by adding specific place constraints, either in the form
of set of places forced to belong to the solutions of the problem or in the form of set of places required not to belong to the same
solutions. Two versions of the search technique are proposed in [1], which mainly differ in the application of the partitioning
procedure.

In this paper we focus on the GPMSE approach that uses a search technique that partitions all the problems in the unsolved
problem list and finds exactly the complete set of minimal siphons. We provide a way to further decrease its computational
complexity and reduce memory requirements. We call the resulting approach improved GPMSE. The basic idea behind
improved GPMSE can be summarized as follows. The set of places forced to belong to minimal siphons is expanded and two
conditions are added to restrict the further decomposition of the problem. This allows to reduce the number of sub-problems to be
considered. Moreover, in improved GPMSE we use depth-first search instead of width-first search as in [1], since experimental
results show that this leads to lower memory requirements.

 To evaluate the effectiveness of the proposed approach we developed a tool [12], written in C++, that implements three
different methods: the GPMSE approach as proposed in [1], the GPMSE approach where depth-first search is used instead of
width-first search, and the improved GPMSE approach. A series of simulations on nets of different size and Pre and Post
matrices randomly generated have been carried out. Results are discussed in Section V.

2 Basic Background on Petri Nets and Siphons
An ordinary Petri net is a 3-tuple N= (P, T, F) where P and T are finite, nonempty, and disjoint sets. P is the set of places,

and T is the set of transitions. The set F  (P × T)  (T × P) is the flow relation. Given a net N= (P, T, F) and a node xPT, x
={yP T |(y, x) F} is the preset of x, while x={yP T |(x, y) F} is the post-set of x. X PT, X= x X x

 , and X =

x X x
 . xPT, x =(x), and x=(x). Note that all the paper deals with ordinary Petri nets. Hence, we call them Petri nets

for simplification.

Let N=(P, T, F) be a Petri net with PX  P and TX  T. NX=(PX, TX, FX) is called a subnet generated by PX and TX if FX=F
[(PX ×TX)  (TX ×PX)].

A transition (resp., place) without any input place (resp., transition) is called a source transition (resp., place), and one
without any output place (resp., transition) is called a sink transition (resp., place).

A nonempty set S  P is a siphon if S  S. A siphon is called minimal if it does not contain any other siphon.

3

A siphon is called Pin-minimal if it includes all places in a set Pin  P and does not strictly contain any other siphon including
all places in Pin. Particularly, a Pin-minimal siphon is a minimal siphon if Pin=. Otherwise, a Pin-minimal siphon is not
necessarily a minimal siphon.

Definition 1: Let N=(P, T, F) be a Petri net and Pin be a set of places. G= (N, Pin) is defined as the problem of finding the set ΣG
of all minimal siphons containing Pin of N.

In particular, G= (N, ) is the problem of finding the set ΣG of all minimal siphons of N.

3 Preliminary Definitions and Results
In this section we introduce some functions that will be useful in the following, and also provide (without a formal proof)

some theoretical results related to them. Note that most of these functions are based on well-known siphon properties.

Function (N', Φ)= DeleteSourcePlace(N)
Input: A Petri net N=(P, T, F).
Output: A Petri net N'=(P', T', F') and a set of minimal siphons Φ.

1) Φ=;
2) P'= P-{pP |p=};
3) T'= T;
4) F'= F  ((P'×T')  (T'×P'));
5) for p'{pP |p=} do
6) Φ=Φ{{ p'}};
7) end for
8) Output: N' and Φ.

Fact 1: Let N be a Petri net and (N', Φ)= DeleteSourcePlace(N). We have ΣG1=ΣG2  Φ, where G1=(N, ) and G2=(N', ).

Next function removes source transitions, as well as their output places, sink transitions and sink places.

Function N'= PreHandle(N)
Input: A Petri net N=(P, T, F).
Output: A Petri net N'=(P', T', F');

1) N'= N;
2) while there exists a source transition t in N' do
3) T'= T'-{t};
4) P'= P'- t;
5) F'= F' ((P'×T')  (T'×P'));
6) end while
7) while there exists a sink transition t or a sink place p in N' do
8) T'= T'-{t}; or
9) P'= P'-{p};
10) F'= F' ((P'×T')  (T'×P'));
11) end while
12) Output: N'.

Fact 2: Let G1=(N, Pin) and G2=(N', Pin) be two problems, where N'=PreHandle(N). We have ΣG1=ΣG2.

Facts 1 and 2 imply that functions DeleteSourcePlace and PreHandle can be used to reduce the size of a net where minimal
siphon enumeration is performed.

The following function describes our improved algorithm to expand a given set Pin that must be contained in a minimal
siphon.

Function Pin'=ExpandPin (Pin, N)
Input: A set of places Pin and a Petri net N=(P, T, F) without source places.
Output: An expanded set of places Pin'.

1) Pin'= Pin;

4

2) while there exists tPin'- Pin'
 such that t ={p'} or there exists pPin' and p'P-Pin' such that p={p'} do

3) Pin'= Pin'{p'};
4) end while
5) Output: Pin'.

Fact 3: Let G1=(N, Pin) and G2=(N, Pin') be two problems, where N is a Petri net without source places and Pin'=ExpandPin(Pin,
N). We have ΣG1=ΣG2.

Fact 3 indicates that function ExpandPin can be used to expand Pin when we search for minimal siphons. Note that the bigger
Pin is, the faster a solution to the corresponding problem can be obtained.

The following Function PinNotContainSiphon can determine whether Pin contains a siphon.

Function flag=PinNotContainSiphon (Pin)
Input: A set of places Pin.
Output: flag. /* flag=False implies Pin contains a siphon and flag=True implies not.*/

1) flag= True;
2) Obtain the subnet NPin generated by Pin and PinPin

;
3) if PreHandle(NPin) ≠ then
4) flag= False;
5) end if
6) Output: flag.

Fact 4: Let G=(N, Pin) be a problem, where Pin is not a minimal siphon. If flag=PinNotContainSiphon (Pin)=False, we have
ΣG=.

Fact 4 implies that a problem G=(N, Pin) has no solution if Pin strictly contains a siphon.

The following function FindAPinMiniSiphon allows to compute a Pin-minimal siphon in N given a set of places Pin. Clearly,
it allows to compute a minimal siphon if we consider Pin =.

Function S=FindAPinMiniSiphon (N, Pin)
Input: A Petri net N=(P, T, F) and a set of places PinP.
Output: A Pin-minimal-siphon S.

1) while Pin≠ P do
2) p=Get(P-Pin); /*Function Get returns an element of a set.*/
3) N'= N;
4) N=RemovePlace (N, p);

/*Function RemovePlace returns a net after deleting a place*/
5) while there exists a source transition t in N do
6) T= T-{t};
7) P= P- t;
8) F= F  ((P×T) (T×P));
9) end while
10) if Pin  P then
11) Pin= Pin{p};
12) N = N';
13) end if
14) S= Pin;
15) end while

Fact 5: Let N=(P, T, F) be a Petri net and PinP. S=FindAPinMiniSiphon (N, Pin) is a Pin-minimal-siphon.

We want to point out that function FindAPinMiniSiphon has already been introduced by Cordone et al. in [1]. In particular, in
the GPMSE approach [1] it provides a minimal siphon, not only when Pin=, but also in the nontrivial case of Pin≠. The same
result holds in the approach proposed in the following section, namely, the improved GPMSE approach.

We conclude this section, introducing a function that allows to determine whether a given siphon S (|S|≥2) is a minimal
siphon.

5

Function flag=CheckofMiniSiphon (S)
Input: A siphon S.
Output: flag. /* flag=True implies S is a minimal siphon otherwise is not.*/

1) flag=True;
2) Obtain the subnet Ns generated by S and S  S ;
3) for pS do
4) N'=RemovePlace(Ns, p);

/*Function RemovePlace returns a net after deleting a place*/
5) N'=PreHandle(N');
6) if N'≠ then
7) flag= False;
8) end if
9) end for
10) Output: flag.

Fact 6: Let S be a siphon such that |S|2. S is a minimal siphon if and only if flag=CheckofMiniSiphon (S)=True.

4 Improved GPMSE Approach
In this section the improved GPMSE approach is presented. This algorithm is coded in function FindAllMiniSiphon_GP,

which in turns calls function SonofNode_GP and some other functions defined in Section III. The main idea behind the improved
GPMSE approach is that we iteratively expand a set Pin which is forced to be contained in minimal siphons. Moreover, a
condition that Pin is a siphon is added to restrict further decomposing the problem. The expansion of Pin and the added condition
can both effectively decrease the total number of sub-problems to be solved. Besides, depth-first search is adopted in improved
GPMSE instead of width-first search.

Function (Π)= FindAllMiniSiphon_GP (N)
Input: A Petri net N=(P, T, F).
Output: The set of all minimal siphons Π.

1) Pin=;
2) Level=1;
3) (N, Π)=DeleteSourcePlace(N);
4) N=PreHandle(N);
5) if N≠ then
6) Let (N, Pin) be the root node of a tree;
7) S=FindAPinMiniSiphon (N, Pin); /*Here S is a minimal siphon since Pin= */
8) Π=Π{S};
9) [Level]=S; /*  is a linked list for saving minimal siphons that are used for decomposing problems*/
10) [Level+1]=;
11) SonofNode_GP (N, Pin, Level);
12) end if
13) Output: Π;
14) End.

Function SonofNode_GP (N, Pin, Level)
Input: A Petri net N=(P, T, F), a set of places Pin, and Level{1, 2, …}.

1) S=[Level]; /* a minimal siphon for decomposing*/
2) if S= then
3) S=FindAPinMiniSiphon (N, Pin);
4) [Level]=S;
5) [Level+1]= ;
6) Π=Π{S};
7) end if
8) Pin'= Pin;
9) for pS\Pin do

6

10) N'=RemovePlace(N, p);
11) N'=PreHandle(N');
12) if N'≠ then
13) Pin''=ExpandPin (Pin', N');
14) Create a node (N', Pin'');
15) Add an arc labeled by “p” from node (N, Pin) to node (N', Pin'');
16) if Pin''  P' then
17) if Pin'' is a siphon then
18) if CheckofMiniSiphon (Pin'') then
19) Π=Π{Pin''};
20) end if
21) else
22) SonofNode_GP (N', Pin'', Level+1);
23) end if
24) end if
25) end if
26) Pin'= Pin'{p};
27) end for

Based on Facts 1-6, we have the following proposition whose proof is omitted for sake of brevity.

Proposition 1: Given a Petri net N, Π= FindAllMiniSiphon_GP (N) consists of all minimal siphons in N.

To make the presentation more clear, we illustrate the proposed procedure via a numerical example.

Figure 1. A Petri net N for improved GPMSE

4.1 A Numerical Example to Illustrate the Improved GPMSE
Consider the net N in Figure 1.

1) Since the net has no source and sink elements, Π= and N1=N after applying functions DeleteSourcePlace and
PreHandle.

2) Let G1=(N1, ) be the root node of the tree, as shown in Figure 3(a). Note that to make the figure more compact, nets are
denoted simply pointing out the indices of its places. An analogous notation is used for siphons. As an example, in Figure 3,
P1=p1-11 is used to denote N1 with set of places P1={p1- p11}.

3) FindAPinMiniSiphon (N1, ) is applied, resulting in a minimal siphon S1={p8- p10}. Accordingly, we have Π={S1} and
[1]=S1. Function SonofNode_GP is applied to G1 with Level=1. Details are as follows.

S1 in  is searched for decomposing problem G1. First, we delete p8 from N1 and then function PreHandle is applied. N2:
P2={p2-7, p10, p11} is obtained as the output, thus a new node G2=(N2, ) is created. Now, function SonofNode_GP is applied to
G2 with Level=2. Since no minimal siphon can be found in  while Level=2, a minimal siphon S2={p5- p7} is computed to

7

decomposing problems in the second level of the tree. Accordingly, we have Π={S1, S2} and [2]=S2. After deleting p5 from N2,
we create a new node G3=(N3, ). Next, Function SonofNode_GP is applied to G3 with Level=3. S3={p4, p7, p10, p11} is computed
to decomposing problems in the third level of the tree and we have Π={S1-S3} and [3]=S3. After deleting p4 from N3, we get a
null net. Hence, we delete p7 from N3, resulting in a new node G4. Note that we have Pin={p2-p4} in G4 after Function ExpandPin
is applied. Here, G4 is not further decomposed since Pin is a siphon.

Similarly, nodes G5, G6, …, G17 are created one after another with the recursive call of Function SonofNode_GP. Finally, the
tree in Figure 3(a) is constructed and we can obtain the set of all minimal siphons Π={S1-S7} as shown in Figure 3(a).

Note that node implies Pin is a siphon but not minimal siphon, node implies Pin is a minimal siphon, and node
implies Pin  P. Clearly, problems denoted by these nodes do not need to be further decomposed.

5 Numerical Comparisons with the Approach in [1]

In this section we compare the improved versions of GPMSE with the original versions proposed by Cordone et al. [1].

5.1 A Comparison with the PN in Figure 1
Let us first consider the PN in Figure 1. The tree resulting from the application of the improved GPMSE is reported in

Figure 3(a). Figure 3(b) shows the tree resulting from the application of the original version of the approach, which is clearly
much more complex. More details on the comparison between the two approaches are summarized in Table I where: the second
column shows the number of nodes of the trees; the third column shows the number of nodes that need to be decomposed; the
fourth column shows the maximum number of nodes that need to be saved in memory.

Looking at Table I we may conclude that the improved approach provides better performance with respect to the original
one, both in terms of computational time and memory requirement. In particular, the number of nodes of the tree and the
number of nodes that need to be decomposed have an impact on the computational time, while the maximum number of nodes
that need to be saved during computation have an impact on the memory requirement.

TABLE I. COMPARISON BETWEEN GPMSE AND IMPROVED GPMSE WHEN THE APPROACHES ARE APPLIED TO THE NET IN FIGURE 1

Method

Number of
nodes in the

tree

Number of
nodes that
need to be

decomposed

Maximum
number of
nodes that
need to be
saved in
memory

GPMSE 56 26 6
Improved GPMSE 17 5 3

5.2 A Comparison with PNs Randomly Generated
To provide a significant validation of the effectiveness of the proposed approach, we considered a series of PNs generated at

random with an increasing number n of places and transitions, with n =31, 32,…,42. For each value of n we randomly generated
100 nets, assuming that di is the probability of having an arc going from any place to any transition, and do is the probability of
having an arc going from any transition to any place. In all the considered cases it was di=do=0.05.

All the above nets have been analyzed using a tool, written in C++, that we developed to implement the GPMSE approach
and the improved GPMSE approach. The tool can be downloaded from [12] and also allows the implementation of the GPMSE
with depth-first search.

We first observe that for such values of n no results have been obtained using the GPMSE approach in [1] due to memory
limitations. On the contrary, both the improved GPMSE method and the GPMSE method using depth search provided results for
all the considered valued of n. Such results are summarized in Figure 2, where the average (over the 100 simulations) CPU time
versus n is reported. In more detail, Figure 2(a) shows the results of the comparison for all the considered values of n. Figure 2(b)
provides a zoom of such results for n that goes from 34 to 37. From such figures we argue that advantages of the improved
method become more evident when the dimension of the net grows.

All experimental results have been carried out on a 2.53 GHz Intel Core i3 computer with 3 GB of RAM and Windows 7
operating system.

8

Figure 2. Results of the comparison in Subsection V.B

6 Conclusion and Future Work

The complete siphon enumeration is a difficult problem in Petri nets. This is because the number of siphons grows
exponentially with respect to the net size. In this paper we provide an approach that is based on an efficient method proposed by
Cordone et al. [1]. The novel method guarantees a reduced computational complexity with respect to the original one, even if it is
still exponential with respect to the net size, and guarantees a reduced memory requirement especially for large nets.

As a future work, we plan to provide further improvements to the GPMSE approach further expanding the set of places in the
minimal siphon and adding more constraints to reduce the number of sub-problems to be solved.

References

[1] R. Cordone, L. Ferrarini, and L. Piroddi, “Enumeration algorithms for minimal siphons in Petri nets based on place constraints,” IEEE Trans. Syst., Man,
Cybern., A, Syst., Humans, vol. 35, no. 6, pp. 844-854, Nov. 2005.

[2] E. E. Cano, C. A. Rovetto, J. M. Colom, “An algorithm to compute the minimal siphons in S4PR nets,” Discrete Event Dynamic Systems, vol. 22, no. 4,
pp, 403–428, 2012.

[3] A. Giua and C. Seatzu, “Modeling and supervisory control of railway networks using Petri nets,” IEEE Trans. Autom. Sci. Eng., vol. 5, no. 3, pp. 431-476,
2008.

[4] Z. W. Li and M. C. Zhou, “On siphon computation for deadlock control in a class of Petri nets,” IEEE Trans. Syst., Man, Cybern., A, Syst., Humans, vol.
38, no. 3, pp. 667-679, 2008.

[5] Z. Li, N. Wu, and M. Zhou, “Deadlock control of automated manufacturing systems based on Petri nets—A literature review,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 42, no. 4, pp. 437–462, 2012.

[6] L. Piroddi, R. Cordone, and I. Fumagalli, “Combined siphon and marking generation for deadlock prevention in Petri nets,” IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans, vol.39, no.3, pp. 650-661, 2009.

[7] P. H. Starke, INA: Integrated Net Analyzer, 1992. [Online]. Available: http://www2.info-rmatik.huberlin.de/~starke/ina.html.

[8] F. Tricas, J. M. Colom, and J. J. Merelo, “Computing minimal siphons in Petri net models of resource allocation systems: An evolutionary approach,”
International Workshop on Petri Nets and Software Engineering (PNSE’14), Tunis, Tunisia, 2014: 307–322.

[9] F. Tricas, J. M. Colom, and J. J. Merelo, “Using the incidence matrix in an evolutionary algorithm for computing minimal siphons in Petri net models,”
Proceedings of the 18th International Conference on System Theory, Control and Computing, Sinaia, Romania, 2014.

[10] F. Tricas and J. Ezpeleta, “Computing minimal siphons in Petri net models of resource allocation systems: A parallel solution,” IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans, vol.36, no.3, pp. 532-539, 2006.

[11] A. R. Wang, Z. W. Li, J. Y. Jia, and M. C. Zhou, “An effective algorithm to find elementary siphons in a class of Petri nets,” IEEE Transactions on
Systems, Man and Cybernetics, Part A, vol. 39, no. 4, pp. 912-923, Jul. 2009.

[12] S. G. Wang, the tools for GPMSE, improved GPMSE, and GPMSE with depth-first search, 2015. [Online]. Available:
https://www.dropbox.com/sh/4buj8gw1n1s8doy/AADa_xaBnB738s1LzXvYC0ZTa?dl=0.

[13] S. G. Wang, Y. Li, C. Y. Wang, and M. C. Zhou, “Computation of all minimal siphons in Petri nets,” in 2012 Proceedings of 9th IEEE International
Conference on Networking, Sensing and Control, pp. 46-51.

[14] S. G. Wang, C. Y. Wang, M. C. Zhou, and Z. W. Li, “A method to compute strict minimal siphons in S3PR based on loop resource subsets,” IEEE Trans.
Syst., Man, Cybern., A, Syst., Humans, vol. 42, no. 1, pp. 226-237, 2012.

31 32 33 34 35 36 37 38 39 40 41 42
0

50

100

150

n

C
P

U
 ti

m
e

 [s
ec

]

34 35 36 37
0

0.05

0.1

0.15

0.2

n
C

P
U

 ti
m

e
[s

e
c]

GPMSE with depth search
improved GPMSE

GPMSE with depth search
improved GPMSE

(b)

(a)

9













inP

pP
G

1111
1

8p 9p 10p












inP

pP
G

11,10,722
2

5p

4p


7p 10p














7,4

425
5 pP

pP
G

in

11p














10,7,4

426
6 pP

pP
G

in

6p














5

11,10,7,427
7 pP

pP
G

in

7p














9,8,6

9110
10 pP

pP
G

in

5p

7p














9,8,6

96,4111
11 pP

pP
G

in













9,8,63

9,8,6117
17 pP

pP
G

in

4p

7p 10p

11p













96,4,3

96,4114
14 pP

pP
G

in













106,4,3

96,4115
15 pP

pP
G

in

PPin 

1081  pS

752  pS














inP

pP
G

11,10,7,423
3

11,10,7,43 pS 













42

424
4 pP

pP
G

in













63

628
8 pP

pP
G

in

634  pS














8,52,1

11,10,819
9

，pP

pP
G

in

8,5,2,15 pS 













96

9612
12 pP

pP
G

in

966  pS














9,8,6,4,3

9,8,6,4113
13 pP

pP
G

in

9,8,6,4,37 pS 














9,8,6,5,2,1

8,5116
16 pP

pP
G

in

6p

(a) A tree generated by improved GPMSE for Figure 1





















108

111

pS

Pin

pP

8p 9p
10p





















75

11,10,72

pS

Pin

pP

5p




















11,10,7,4

11,10,7,42

pS

Pin

pP

4p


7p






















42

42

42

pS

pPin

pP


 

2p
3p

4p

10p












7,4

42

pPin

pP

11p












10,7,4

42

pPin

pP

6p












5

11,10,7,42

pPin

pP 7p











63

62

pPin

pP












8,52,1

11,10,81

，pPin

pP

5p

6p 7p













8,5,2,1

11,10,8,7,51

pPin

pP












8,61

8,61

pPin

pP












9,8,6

91

pPin

pP

5p 6p

7p

















9,8,6

96,41
^

pP

pP












9,8,6,5,2,1

8,51

pPin

pP











9,8,63

9,8,61

pPin

pP



4p
7p












63

62

pPin

pP

10p












73

62

pPin

pP

11p 










10,63

62

pPin

pP

2p
3p

4p





















63

63

63

pS

pPin

pP

   

 

3p 4p 5p 6p

4p












8,5,2,1

8,5,2,1

pPin

pP

7p












8,51

8,51

pPin

pP

10p












8,7,51

8,51

pPin

pP

11p












10,8,7,51

8,51

pPin

pP

4p 7p
10p

11p












96

96

pPin

pP












9,8,6,4,3

9,8,6,41

pPin

pP

2p 3p
4p












9,8,6,4,3

9,8,6,4,3

pPin

pP 













96,4,3

9,8,6,41

pPin

pP












106,4,3

9,8,6,41

pPin

pP

4p 7p

10p

11p












9,8,63

8,5,12

pPin

pP












9,8,63

9,8,61

pPin

pP











93

9,8,61

pPin

pP












103

9,8,61

pPin

pP

2p

3p 4p










9,8,63

9,8,63

pPin

pP












9,8,62

8,5,2,1

pPin

pP












9,8,62

8,5,2,1

pPin

pP

7p
10p

11p














10,81

8,61

pPin

pP












81

8,61

pPin

pP

3p
4p












8,5,2,1

8,5,2,1

pPin

pP 










8,5,31

8,5,2,1

pPin

pP

3p 4p 6p






















8,5,2,1

8,5,2,1

8,5,2,1

pS

pPin

pP












8,5,3,2,1

8,5,2,1

pPin

pP












8,51

8,5,2,1

pPin

pP

1p
2p 5p

8p   

5p












96

96

pPin

pP

2p
3p

4p












96,2

96

pPin

pP











96,3,2

96

pPin

pP

3p 4p 5p












96,3

96

pPin

pP











96,4,3

96

pPin

pP










96

96

pPin

pP

1p 2p 5p












96,2,1

96

pPin

pP












96,1

96

pPin

pP




















96

96

96

pS

pPin

pP

7p 8p
6p

9p
   












9,8,6,4,3

9,8,6,4,3

pPin

pP

1p 2p
5p












9,8,6,4,3,1

9,8,6,4,3

pPin

pP












9,8,6,41

9,8,6,4,3

pPin

pP












9,8,6,4,3

9,8,6,4,3

pPin

pP

7p






















9,8,6,4,3

9,8,6,4,3

9,8,6,4,3

pS

pPin

pP

3p 4p 6p 8p

9p




PPin 

(b) A tree generated by GPMSE [1] for Figure 1
Figure 3. Two trees generated for Figure 1

