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Abstract

In this paper we deal with the problem of failure diagnosis of discrete event systems with decentral-

ized information. The decentralized architecture that we use is composed by a set of sites communicating

their diagnosis information with a coordinator that is responsible of detecting the occurrence of failures

in the system. In particular, we define two protocols that differ for the amount of information exchanged

between the local sites and the coordinator, and the rules adopted by the coordinator to compute the

global diagnosis states.
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I. INTRODUCTION

The problem of failure detection has received a lot of attention in industrial systems in the past

few decades. Solving a problem of diagnosis means that we associate to each observed string

of events a diagnosis state, such as “normal” or “faulty” or “uncertain”. In the literature a lot

of contributes have been presented for discrete event systems in the centralized framework, e.g.,

[1]–[5]. Due to the intrinsic distributed nature of the real systems, a lot of distributed diagnosis

techniques, that take advantage of the natural decompositions of a modular system, have been

studied both dealing with automata [6]–[10] and Petri nets [11]–[13].

In this paper we present an approach for diagnosis of Petri nets with decentralized information

that combines the work of Debouk et al. [8] with the approach presented by some of us in [2],

[14]. In particular, we start from the same decentralized architecture considered in [8] and from a

series of similar assumptions on the considered model. However, here we solve the decentralized

diagnosis problem in the context of Petri nets, while the approach in [8] is in the framework of

automata. This enables us to keep the advantages of the centralized approach we proposed in

[2], [14].

We assume that the system is monitored by a set of sites. Each site knows the structure of the

net and the initial marking but observes the evolution of the system with a different mask, i.e.,

the set of observable transitions is different for each site. Diagnosis is locally performed using

the approach we previously introduced in [2], [14] whose main feature is that of avoiding an

exhaustive enumeration of the set of sequences that may have fired given the actual observation.

It is also based on the definition of four diagnosis states, each of which can be associated with

a number from 0 to 3, depending on the degree of alarm. For instance, 3 is used to capture

the fact that the fault has occurred for sure, whereas 0 captures the fact that the fault has not

occurred for sure.

Using its own observation, each site performs diagnosis and, according to a given protocol,

communicates it, eventually with some other information, to the coordinator who calculates

global diagnosis states. In particular, two different protocols are defined that differ for the amount

of information exchanged between the coordinator and the local sites, and viceversa. In both

cases an important property is proved, namely that the coordinator never produces false alarms.

Finally, the diagnosability property under decentralization is investigated.



II. BACKGROUND ON LABELED PETRI NETS

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is the set of

m places, T is the set of n transitions, Pre : P × T → N and Post : P × T → N are the

pre and post incidence functions that specify the arcs. The function C = Post− Pre is called

incidence matrix.

A marking is a vector M : P → N that assigns to each place a nonnegative integer number

of tokens; the marking of a place p is denoted with M(p). A net system 〈N, M0〉 is a net N

with initial marking M0.

A transition t is enabled at M iff M ≥ Pre(·, t) and may fire yielding the marking M ′ =

M + C(·, t). The notation M [σ〉 is used to denote that the sequence of transitions σ = t1 . . . tk

is enabled at M ; moreover we write M [σ〉M ′ to denote the fact that the firing of σ from M

yields to M ′.

The set of all sequences that are enabled at the initial marking M0 is denoted with L(N, M0).

Given a sequence σ ∈ T ?, we call π : T ? → Nn the function that associates to σ a vector

y ∈ Nn, named firing vector, such that y(t) = k if the transition t is contained k times in σ.

A marking M is said to be reachable in 〈N,M0〉 iff there exists a firing sequence σ such that

M0[σ〉M . The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉
and is denoted with R(N, M0). Finally we define PR(N, M0) the potentially reachable set, i.e.,

the set of all markings M ∈ Nm for which there exists a vector y ∈ Nn that satisfies the state

equation M = M0 + C · y. It holds that R(N, M0) ⊆ PR(N, M0).

A PN having directed circuits is called acyclic. For such nets if the vector y ∈ Nn satisfies the

equation M0 +C ·y ≥ 0, there exists a firing sequence σ firable from M0 and such that the firing

vector associated with σ is equal to y. Moreover for acyclic nets R(N,M0) = PR(N, M0).

A labeling function L : T → L ∪ {ε} assigns to each transition a symbol from a given

alphabet L or the empty string ε. The set of transitions sharing the same label l is denoted as Tl.

Transitions whose label is ε are called silent and are denoted by the set Tu. The set To = T \Tu

is the set of observable transitions, i.e., when an observable transition fires we observe its label.

We denote as Cu (Co) the restriction of the incidence matrix to Tu (To). Moreover, given a

sequence σ ∈ T ?, Pu(σ) (Po(σ)) denotes the projection of σ over Tu (To).



Fig. 1. The decentralized diagnosis architecture.

We denote as w = L(σ) the word of events associated to the sequence σ. We define

S(w) = {σ ∈ L(N,M0) | L(σ) = w}

the set of sequences consistent with w ∈ L?. In plain words, given an observation w, S(w) is

the set of sequences that may have fired.

Finally, given a net N = (P, T, Pre, Post) and a subset T ′ ⊆ T of its transitions, we define

the T ′-induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′), where Pre′ and Post′

are the restrictions of Pre and Post to T ′, i.e., N ′ is the net obtained from N removing all

transitions in T \ T ′. We write that N ′ ≺T ′ N .

III. PROBLEM STATEMENT

We model anomalous or faulty behavior using the set of silent transitions Tf ⊆ Tu. The set

Tf includes all fault transitions and is further decomposed into r different subsets T i
f , where

i ∈ F = {1, . . . , r}, that model different fault classes. The transition set Treg = Tu\Tf represents

the set of unobservable, but regular, transitions.

The problem of fault diagnosis can be seen as the problem of detecting the firing of any fault

transition in Tf , using the knowledge on the firing of observable transitions, or the knowledge

on their labels in the case of labeled Petri nets.

In this work we explore the possibility of performing diagnosis using a decentralized archi-

tecture as depicted in Fig. 1. The system is monitored by a set J = {1, . . . , ν} of sites. Each



site has a complete knowledge of the net structure and of the initial marking, but observes the

evolution of the system using its own observation mask. Obviously, different sites have different

observation masks. In particular, for any site j ∈ J , the set of locally observable transitions

is the set To,j ⊆ To. Any centrally observable transition is observed by at least one site, i.e.,
⋃

j∈J To,j = To. The set of locally unobservable transitions is defined as

Tu,j = Treg ∪ Tf ∪ (To \ To,j). (1)

We denote as Lj ⊆ L (j ∈ J ) the alphabet of the j-th site, i.e., the set of labels observable

by the j-th site. Moreover, we denote as wj = Lj(σ) the word of events in Lj associated to the

sequence σ by the j-th site.

As shown in Fig. 1, on the basis of its own observation wj = Lj(σ) (j ∈ J ) each site performs

a local diagnosis. In particular, for each fault class i ∈ F it computes a different diagnosis state

∆j,i and depending on this, it exchanges information with a coordinator C according to a given

protocol1. The coordinator fuses the information coming from the different sites according to

the considered protocol and infers on the occurrence of faults. More precisely, for each fault

class i ∈ F it computes a diagnosis state ∆̄i.

In this paper we explore the decentralized architecture under the following assumptions.

A1 The same label l ∈ L can be associated to more than one transition, but if a site observes

a transition labeled l, then it observes any transition whose label is l, namely, @ t, t′ such

that L(t) = L(t′) and t ∈ To,j , while t′ /∈ To,j .

A2 The Tu,j-induced subnet Nu,j is acyclic for any j ∈ J .

A3 The coordinator C knows which transitions can be observed by each site, i.e., it knows the

sets To,j for any j ∈ J .

A4 There is reliable communication between the local sites and the coordinator, i.e., all mes-

sages sent from a local site are received by the coordinator, and viceversa, correctly and in

order.

Note that we also investigate an important issue that occurs when performing diagnosis,

regardless of the fact that it is centralized or decentralized, namely that of diagnosability.

1For the sake of simplicity in Fig. 1 we represented the diagnosis states in a vectorial form, thus ∆j,i denotes the ith component

of ∆j . The same notation has been used for the diagnosis state computed by the Coordinator C.



Definition 3.1: Let us consider a Petri net system 〈N, M0〉 having no deadlock after the

occurrence of transition tf ∈ T i
f , for all i ∈ F . Assume that diagnosis is performed according

to a given approach (either centralized or decentralized).

We say that 〈N,M0〉 is diagnosable with respect to (wrt) the fault class T i
f and wrt a given

diagnosis approach iff the occurrence of some fault in T i
f is unambiguosly detected using the

specified diagnosis approach after a finite number of transition firings. ¥
Definition 3.2: A Petri net system 〈N,M0〉 is diagnosable wrt a given diagnosis approach if

it is diagnosable wrt that approach for all fault classes T i
f , i ∈ F . ¥

Note that in the centralized framework, inspired by the definition of diagnosability for lan-

guages introduced in [15], Definition 3.1 can alternatively be formulated as follows.

Definition 3.3: A Petri net system 〈N,M0〉 having no deadlock after the occurrence of tran-

sition tf ∈ T i
f , for i ∈ F , is diagnosable wrt the fault class T i

f if there do not exist two firing

sequences σ1 and σ2 ∈ T ∗ satisfying the following conditions:

• L(σ1) = L(σ2),

• ∀tf ∈ T i
f , σ1 ∈ (T \ T i

f )
∗,

• ∃ at least one tf ∈ T i
f such that tf ∈ σ2,

• σ2 is of “arbitrary length” (see [15]) after fault tf ∈ T i
f .

¥

IV. BASIC DEFINITIONS AND RESULTS ON CENTRALIZED DIAGNOSIS

In this section we briefly recall the diagnosis procedure we defined in [2], [14] in the centralized

framework, that is used by the different sites to perform diagnosis locally. As in the previous

section, T = To ∪ Tu where Tu = Treg ∪ Tf , and the observations coincide with the labels

associated to transitions in To. In particular, we first provide some preliminary definitions.

• Given a word w ∈ L∗, let σo ∈ T ∗
o be a sequence of observable transitions such that

L(σo) = w. We call justification of w the sequence σu of unobservable transitions interleaved

with σo whose firing enables σo and whose firing vector is minimal.

Since in general σo is not unique and more than one σu may be associated to each σo, then

the set of justifications of w is not a singleton.

• We denote as Y (M0, w) the set of firing vectors relative to justifications of w.

The generic element y ∈ Y (M0, w) is called j-vector.
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Fig. 2. The Petri net system considered in Examples 4.1 and 4.3.

• Finally, we denote as

Ĵ (w) = { (σo, σu), σo ∈ T ∗
o , L(σo) = w,

σu ∈ T ∗
u |

[∃σ ∈ S(w) : σo = Po(σ), σu = Pu(σ)]∧
[6 ∃σ′ ∈ S(w) : σo = Po(σ

′), σ′u = Pu(σ
′)∧

π(σ′u) � π(σu)]}
the set of couples (sequence σo ∈ T ∗

o with L(σo) = w - corresponding justification of w).

Example 4.1: Let us consider the PN in Fig. 2, where the set of observable transitions is

To = {t1, t2, t3} and the set of unobservable transitions is Tu = {ε4, ε5, ε6, ε7, ε8}. The labeling

function is L(t1) = a and L(t2) = L(t3) = b.

Let w = ab be the observed word. There exist two sequences that are consistent with the actual

observation and whose firing vector is minimal, namely σ′ = ε4t1t2, σ′′ = ε4t1ε6ε7ε8t3. Thus

σ′u = ε4 and σ′′u = ε4ε6ε7ε8 are the two justifications of w. The set of j-vectors is Ymin(M0, w) =

{[1 0 0 0 0]T , [1 0 1 1 1]T}, where y′ = [1 0 0 0 0]T is relative to σ′u, while y′′ = [1 0 1 1 1]T

is relative to σ′′u. Finally, Ĵ (w) = {(t1t2, ε4), (t1t3, ε4ε6ε7ε8)}. ¥
Let us now recall the notions of diagnoser and diagnosis states.

Definition 4.2: A diagnoser is a function ∆ : L∗ × {T 1
f , T 2

f , . . . , T r
f } → {0, 1, 2, 3} that

associates to each observation w and to each fault class T i
f , i = 1, . . . , r, a diagnosis state.

• ∆(w, T i
f ) = 0 if for all σ ∈ S(w) and for all tf ∈ T i

f it holds tf 6∈ σ.

In such a case the ith fault cannot have occurred, because none of the firing sequences

consistent with the observation contains fault transitions in T i
f .



• ∆(w, T i
f ) = 1 if:

(i) there exist σ ∈ S(w) and tf ∈ T i
f such that tf ∈ σ but

(ii) for all (σo, σu) ∈ Ĵ (w) and for all tf ∈ T i
f it holds that tf 6∈ σu.

In such a case a fault transition of the ith class may have occurred but is not contained in

any justification of w.

• ∆(w, T i
f ) = 2 if there exist (σo, σu), (σ

′
o, σ

′
u) ∈ Ĵ (w) such that

(i) there exists tf ∈ T i
f such that tf ∈ σu;

(ii) for all tf ∈ T i
f , tf 6∈ σ′u.

In such a case a fault transition in the ith class is contained in one (but not in all) justification

of w.

• ∆(w, T i
f ) = 3 if for all σ ∈ S(w) there exists tf ∈ T i

f such that tf ∈ σ.

In such a case the ith fault must have occurred, because all firable sequences consistent with

the observation contain at least one fault transition in the ith class. ¥
A systematic procedure has been given in [2], [14] to compute the above diagnosis states that

is not recalled here for the sake of brevity.

Example 4.3: Let us consider again the PN in Fig. 2, where Tf = {ε5, ε7}.

Let w = ab. In such a case it is ∆(w, Tf ) = 2. In fact, the j-vector y′ = [1 0 0 0 0]T does not

contain fault transitions, while y′′ = [1 0 1 1 1]T contains ε7 ∈ Tf . ¥

V. DECENTRALIZED DIAGNOSIS

In this section we present the main contributions of the paper. In particular, we introduce two

different protocols to solve the decentralized diagnosis problem introduced in Section III.

A. Diagnosis under Protocol 1

Protocol 1 is based on the following very simple rules.

Let σ be the sequence that has occurred and wj = Lj(σ) be the observation of site j ∈ J .

We denote as ∆j,i = ∆(wj, T
i
f ) the diagnosis state of site j wrt T i

f .

1) The diagnosis state ∆̄i of the coordinator relative to each T i
f is initially undefined.

2) If there exists a site j such that ∆j,i = 3 for some i ∈ F , then the site j communicates

this information to the coordinator; otherwise it remains silent.



3) When the coordinator receives some information relative to a fault class i, then it sets

∆̄i = 3. This means that a fault in T i
f has been detected.

A decentralized diagnoser following Protocol 1 satisfies the following important property. Note

that in the following we denote as ∆∗
i the diagnosis state relative to the i-th fault class computed

using the centralized approach with set of observable transitions To summarized in the previous

section, that is assumed as a target.

Proposition 5.1: The coordinator based on Protocol 1 never produces false alarms, namely if

∆̄i = 3, then ∆∗
i = 3 as well.

Proof: If the coordinator diagnosis state is ∆̄i = 3, it means that there exists at least one

site j ∈ J such that ∆j,i = 3. Now, by eq. (1) it is Tu,j ⊇ Tu. As a consequence, all the

justifications that are admissible for the centralized diagnoser are also admissible for the j-th

site. However, there may exist other justifications that are admissible for the j-th site while

they are not admissible for the centralized diagnoser. This implies that if ∆j,i = 3 then all the

justifications computed by the j-th site contain fault transitions in T i
f , then for sure any subset

of such justifications (including the set of justifications computed by the centralized diagnoser)

contains fault transitions in T i
f , thus proving the statement. ¤

It is important to note that it may happen that the centralized diagnosis state is ∆∗
i = 3, while

the coordinator under Protocol 1 is silent because the diagnosis state of all the sites are equal

to 2 wrt fault class T i
f .

Example 5.2: Let us consider the Petri net system in Fig. 3 containing only one fault transition

tf . Assume that the diagnosis is performed according to Protocol 1 by two sites whose sets of

observable labels (alphabets) are equal to L1 = {a, c} and L2 = {b, c}, respectively.

Assume that the sequence tf t3t4t
k
5 fires, where k is an arbitrary integer number.

A centralized diagnoser whose alphabet is L = {a, b, c} observes the word w = back that has

only the justification σu = tf . Thus its diagnosis state is set equal to 3.

The word observed by site 1 is w1 = ack to which correspond two different justifications

σ′u,1 = tf t3 and σ′′u,1 = t2, one containing the fault and the other one not. Thus its diagnosis

state is set equal to 2.

Similarly, the word observed by site 2 is w2 = bck to which correspond two different

justifications, one containing the fault and the other one not, namely, σ′u,2 = tf t4 and σ′′u,2 = t1.

Thus its diagnosis state is set equal to 2.
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Fig. 3. Petri net system considered in Example 5.2.

According to Protocol 1 the two sites remain silent so the coordinator does not detect the

fault. ¥
Let us now discuss diagnosability. The following result obviously holds.

Corollary 5.3: If a system is diagnosable in the decentralized framework, then it is also

diagnosable in the centralized framework. ¥
Clearly, the other sense of the implication does not hold. However, in the case of diagnosis

performed using Protocol 1 the following result can be proved.

Proposition 5.4: The system is diagnosable wrt the decentralized approach based on Proto-

col 1 iff for any fault class i ∈ F there exists at least one site j ∈ J such that the system

is diagnosable wrt the centralized approach with set of observable transitions To,j and wrt that

fault class.

Proof: For simplicity, with no loss of generality we assume that there is only one fault

class. Let us prove separately the if and only if statements.

(If) If there exists one site j ∈ J such that the system is diagnosable wrt the centralized

approach with set of observable transitions To,j , due to Assumptions A1 and A2, this means that

the j-th site reconstructs for sure the occurrence of a fault in a finite number of steps. Therefore

its diagnosis state becomes equal to 3 after a finite number of transitions firings, as well as the

diagnosis state of the coordinator.

(Only if) We prove this by contradiction. Assume that the system is diagnosable wrt the cen-

tralized approach with set of observable transitions To,j , but not wrt the decentralized approach.

This means that even if a fault is contained in all the justifications computed assuming To,j as

the set of observable transitions, then ∆∗ = 3 while ∆̄j 6= 3. But this leads to a contradiction

because, by Assumption A1, being the set of transitions observable to the centralized diagnoser



equal to To,j , the set of justifications is the same in the two cases. ¤

B. Diagnosis under Protocol 2

Protocol 2 is a generalization of Protocol 1. It is still based on the idea that a site communicates

its diagnosis state if and only if it is equal to 3, otherwise it remains silent. However, in this

case it also transmits its set of j-vectors. On the basis of this information, the coordinator polls a

certain number of sites and makes a refinement of the set of j-vectors. Such a refinement is then

used by the local site to recompute its diagnosis states. This in general leads to an improvement

of the performance of the decentralized diagnoser.

To define in a clear and concise way such a protocol, let us introduce some preliminary

definitions.

• Let Jl = {k ∈ J | l ∈ Lk} be the set of sites that are capable of observing label l.

• Given a site j and an observed word wj ,

I(j, wj) = {l ∈ L | ∃y ∈ Ymin(M0, wj),

y(t) > 0 ∧ L(t) = l}
is the set of labels relative to transitions that appear in at least a j-vector of the j − th

module.

• Let |wk|l be the number of occurrences of label l in the observation wk.

• Given an observation wk from site k, a label l, and a j-vector y,

βk(l, y) = |wk|l −
∑

t:L(t)=l

y(t)

is the difference between the number of times the site k has observed l and the number of

times a transition labeled l appears in y.

Based on the above definitions, the main steps of the decentralized procedure based on

Protocol 2 can be summarized as follows.

1) The diagnosis state ∆̄i of the coordinator relative to each T i
f is initially undefined.

2) If ∆j,i = ∆(wj, T
i
f ) = 3 for some j ∈ J and some i ∈ F , then the j-th site transmits to

the coordinator its diagnosis state together with its set of j-vectors.

3) For any label l ∈ I(j, wj) the coordinator polls one site k ∈ Jl \ {j}.

4) The k-th site transmits to the coordinator the value of |wk|l.



5) If βk(l, y) < 0 for a vector y ∈ Ymin(M0, wj), then the coordinator removes the vector y

from the set of j-vectors Ymin(M0, wj) relative to the j-th site.

6) As a result of this process of refinement, the coordinator computes a new set Y ′
min(M0, wj)

that is communicated to the j-th site.

7) The j-th site recomputes its diagnosis states according to the new set Y ′
min(M0, wj) and if

some of them are equal to 3, communicates it to the coordinator, otherwise it keeps silent.

The refinement of Ymin(M0, wj) is based on the following very simple fact. If Ymin(M0, wj)

contains a j-vector that assumes a certain number of occurrences of l, but this number is not

consistent with the observation of a site that is capable of observing l, then for sure such a

justification is unfeasible. Therefore, if βk(l, y) < 0 for a certain label l and a certain j-vector

y ∈ Ymin(M0, wj), then y should be removed from Ymin(M0, wj). In fact, this means that the

justification relative to j-vector y assumes a number of occurrences of l that is greater than the

real number, that is perfectly known by the k-th site. On the contrary, if βk(l, y) ≥ 0 it means

that the j-vector y is feasible. In particular, if βk(l, y) = 0 it means that the justification contains

all the occurrences of label l. The case of βk(l, y) > 0 is relative to a feasible situation as well.

It means that the justification relative to y does not contain all the occurrences of l; thus the rest

of transitions labeled l, up to the value |wk|l, have fired after the justification and the observation

wj .

The refinement process has in general positive effects on diagnosis as shown by the following

example.

Example 5.5: Let us consider the Petri net system in Fig. 4. Assume that there are two fault

classes: T 1
f = {tIf,1, t

II
f,1}, T 2

f = {tf,2}.

Assume that the net is locally diagnosed by two sites whose sets of observable transitions

are To,1 = {t3, t6} and To,2 = {t1, t2, t4, t5, t6}, respectively. This implies that L1 = {a, c},

L2 = {b, c}, Ja = {1}, Jb = {2} and Jc = {1, 2}.

Assume that the sequence σ = tIf,1t1tf,2t2 fires, thus w = L(σ) = bb. The first site observes

the empty string ε, i.e., w1 = ε, while the second site observes the word w2 = bb.

Due to these observations, the diagnosis states of the first site are ∆1,1 = 1 and ∆1,2 = 1,

relative to the first and the second fault class respectively. In fact, transitions from both fault

classes may have fired at the initial marking without the firing of any transition labeled either a

or c.
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Fig. 4. Petri net system considered in Example 5.5.

The diagnosis states of the second site are ∆2,1 = 3 and ∆2,2 = 2, respectively. In fact, the set

of justifications of w2 includes the following sequences: σ′u,2 = tIf,1tf,2, σ′′u,2 = t3t
II
f,1, i.e., both

the justifications contain a transition in T 1
f , while only one of them contains a transition in T 2

f .

Therefore, the second site communicates ∆2,1 = 3 to the coordinator who sets its diagnosis

state relative to T 1
f to ∆̄1 = 3. The firing of one transition in T 1

f is thus detected both using

Protocol 1 and Protocol 2.

However, if we use Protocol 1 the firing of tf,2 is not detected because both sites are silent

wrt the second fault class. On the contrary, if we use Protocol 2 the firing of tf,2 is detected.

In fact, according to Protocol 2, site 2 also communicates its set of j-vectors to the coordinator

that is equal to Ymin(M0, w2) = {y′2, y′′2}, where y′2 is the firing vector relative to σ′u,2 = tIf,1tf,2,

while y′′2 is the firing vector relative to σ′′u,2 = t3t
II
f,1.

Since I(2, w2) = {a} and Ja = {1}, the coordinator polls site 1 to know the number of

symbols a it has observed. Since |w1|a = 0, then β1(a, y′′2) = 0 − 1 < 0. It means that j-

vector y′′2 can be confuted and removed from Ymin(M0, w2). The refined set of j-vectors is

Y ′
min(M0, w2) = {y′2} thus ∆2,2 is updated to 3 and consequently ∆̄2 = 3 allowing also the

detection of tf,2. ¥
Remark 5.6: Since events occur in an asynchronous way, it can obviously happen that the

value of |wk|l transmitted by the polled sites to the coordinator is affected by some delay. As

a result of this the coordinator receives a value |wk|′l > |wk|l because during such a delay other

transitions labeled l may have fired. This implies that the value of βk(l, y) may be greater than

the correct one. In particular, it may occur that a negative value of βk(l, y) becomes null or even

positive, thus certain j-vectors that should be rejected, are considered as feasible. However such

a delay may never cause a feasible j-vector to be rejected. ¤



The following propositions can be stated.

Proposition 5.7: The coordinator based on Protocol 2 never produces false alarms, namely if

∆̄i = 3, then ∆∗
i = 3 as well.

Proof: A formal proof can be obtained using the same arguments of Proposition 5.1. Thus

it is omitted for the sake of brevity. ¤
Proposition 5.8: All sets of j-vectors obtained as the result of a refinement carried out ac-

cording to the rules of Protocol 2, are not empty, i.e., Y ′
min(M0, wj) 6= ∅ for all j ∈ J that

perform a refinement of Ymin(M0, wj).

Proof: Follows from the fact that the set Ymin(M0, wj) contains certainly the j-vector ȳ that

corresponds to the word that has actually fired, plus eventually other vectors. Using the rules

of Protocol 2, some of these j-vectors will be confuted, but certainly it will not be ȳ, therefore

ȳ ∈ Y ′
min(M0, wj), thus proving the statement. ¤

Proposition 5.9: The system is diagnosable wrt the decentralized approach based on Proto-

col 2 if for any fault class i ∈ F there exists at least one site j ∈ J such that the system is

diagnosable wrt the centralized approach with set of observable transitions To,j and wrt that fault

class.

Proof: This result can be proved using the same arguments in the proof of the if statement

of Proposition 5.4 ¤
The above proposition only provides a sufficient condition for diagnosability. In fact let

us consider for the sake of simplicity only one fault class. It may happen that the system

is not diagnosable in a centralized framework wrt all To,j (j ∈ J ), while it is diagnosable

in a decentralized framework using ν sites whose sets of observable transitions are equal to

To,j (j ∈ J ).

This is the case of the Petri net system considered in Example 5.5. In fact, both the centralized

diagnosers observing To,1 = {t3, t6} and To,2 = {t1, t2, t4, t5, t6} are not able to detect the

occurrence of tf,2 if the sequence σ = tIf,1t1tf,2t2t
k
6 fires, where k is an arbitrary integer number.

On the contrary, as shown in Example 5.5, the decentralized diagnoser based on Protocol 2

detects the occurrence of tf,2 after a sequence that is a prefix of σ.

We also observe that, as in the case of Protocol 1, it may happen that the centralized diagnosis

state is ∆∗
i = 3 while the coordinator under Protocol 2 is silent. The following example clarifies

this.
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Fig. 5. Petri net system considered in Example 5.10.

Example 5.10: Let us consider the net system in Fig. 5, having a single fault transition tf . The

net is locally diagnosed by two sites whose alphabets are equal to L1 = {a, c} and L2 = {b, c},

respectively.

Assume that the sequence σ = tf t1t4 fires, thus w1 = a and w2 = b.

The set of j-vectors relative to the first site is Ymin(M0, w1) = {y′1, y′′1} where y′1 is the firing

vector relative to the justification σ′u,1 = tf , while y′′1 is the firing vector relative to σ′′u,1 = ε.

The set of j-vectors relative to the second site is Ymin(M0, w2) = {y′2, y′′2} where y′2 and y′′2

are relative respectively to justifications σ′u,2 = tf t1 and σ′′u,2 = t2t3. Hence both sites have a

diagnosis state equal to 2.

On the contrary, in a centralized framework, being L = {a, b, c} and consequently w = ab,

the diagnosis state is equal to 3 and the firing of tf is detected. In fact the only justification of

w is σu = tf . ¥
We conclude the paper with the following remark.

Remark 5.11: Assume, for simplicity of explanation, that there is only one fault class.

According to the proposed protocols the coordinator may either be in a fault state or it may

be silent. If the coordinator is silent, the fault may either have occurred or not.

If we also want to characterize the situation in which the occurrence of a fault can be excluded

for sure, both protocols can be modified as follows. Three different states are defined for the

coordinator, e.g., F (fault), U (uncertain) and N (no fault). The sites communicate their diagnosis

state to the coordinator even if it is equal to 0. If the coordinator receives one 0, then it sets to

N its fault state; if it receives one 3 then it sets to F its state; otherwise its state is equal to U .

¥



VI. CONCLUSIONS AND FUTURE WORKS

In this paper we addressed the problem of designing a decentralized diagnoser for Petri nets.

We assume that the system is monitored by a set of local sites: each site knows the structure

of the net and the initial marking of the system but observes its evolution with a different

mask. Diagnosis is performed locally using a diagnosis approach we previously introduced in

the centralized framework. Two different protocols are proposed to determine how a central

coordinator elaborates the global diagnosis states. The problem of diagnosability is also addressed

and the advantages/disadvantages of the two protocols are discussed.

Our future work will be that of investigating if the performance of the decentralized diagnoser,

and its diagnosability properties can be improved, if the sites communicate with the coordinator

also in the case of diagnosis state equal to 2, or 1. The problem of determining a technique to

test diagnosability in the case of decentralized systems will also be addressed.

Finally, while in this paper we assumed that the sites and their observation masks are given,

we will also consider the case in which their definition can be seen as the result of an opti-

mization problem, whose main goal is that of obtaining performances in terms of diagnosis (and

diagnosability) that are close as possible to those of the centralized diagnoser.
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