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Abstra
t

In this paper we present an e�
ient approa
h for the fault dete
tion of dis
rete event

systems using Petri nets. We assume that some of the transitions of the net are unobservable,

in
luding all those transitions that model faulty behaviors. We prove that the set of all

possible �ring sequen
es 
orresponding to a given observation 
an be des
ribed as follows.

First a set of basis markings 
orresponding to the observation are 
omputed together with the

minimal set of transitions �rings that justify them. Any other marking 
onsistent with the

observation must be rea
hable from a basis marking by �ring only unobservable transitions.

For the 
omputation of the set of basis markings we propose a simple tabular algorithm and

use it to determine a basis rea
hability tree that 
an be used as a diagnoser.

1 Introdu
tion

The diagnosis of dis
rete event systems is a resear
h area that has re
eived a lot of attention

in the last years and has been motivated by the pra
ti
al need of ensuring the 
orre
t and safe

fun
tioning of large 
omplex systems. Several original theoreti
al approa
hes have been proposed

[12, 6, 4, 14, 7, 9℄ to solve this problem.

Petri net models have often been used in this 
ontext: the intrinsi
ally distributed nature of

Petri nets where the notion of state (i.e., marking) and a
tion (i.e., transition) is lo
al has often

been an asset to redu
e the 
omputational 
omplexity involved in solving a diagnosis problem.

Among the di�erent 
ontributions in this area we re
all the work of Ushio et al. [13℄, Benveniste

et al [1, 2℄, Jiroveanu and Boel [3, 8℄

In this paper we deal with the failure diagnosis of dis
rete event systems modelled by pla
e/transition

nets. We assume that faults are modelled by unobservable transitions, but there may also exist

other transitions that represent legal behaviors that are unobservable as well. Thus we assume

that the set of transitions 
an be partitioned as T = To ∪ Tu where To is the set of observable
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Figure 1: A net des
ribing a 
ommuni
ation system.

transitions, and Tu is the set of unobservable transitions. The set of fault transitions is denoted

Tf and it holds Tf ⊆ Tu.

As an example 
onsider the net in Fig. 1. The set of observable transitions is To = {t1, t4, t7}.

The set of unobservable transition is Tu = {t2, t3, t5, t6} and, for a better understanding, an

unobservable transition ti is labelled εi. The only fault transition is t6. This net models a


ommuni
ation system: messages ready to be sent are divided into two pa
kets (transition t1) to

be sent on two separate 
hannels (pla
e p4 and p5). The two pa
kets are �nally 
ombined and an

a
knowledgement is sent to the sender (transition t7). A fault o

urs when a pa
ket that should

be travelling on the se
ond 
hannel is erroneously moved to the �rst 
hannel (transition t6). As


an be seen, the fault transition t6 is not observable but there exist several other unobservable

transitions as well.

This paper builds on the results of [5℄ where an observer for nets with unobservable transitions

was designed. Under two stru
tural assumptions, namely that the unobservable subnet was

a
y
li


1

and ba
kward 
on�i
t-free

2

, it was possible to easily 
hara
terize the set C(w) of markings


onsistent with an observed �ring sequen
e w ∈ T ∗

o . This 
hara
terization takes the following

form: for ea
h observed sequen
e it is possible to determine a basis marking Mb,w while the set of

markings in whi
h the system 
ould a
tually be is C(w) = {M ∈ Nm | Mb,w[σ〉M,σ ∈ T ∗

u}, i.e., it


onsists of all those markings rea
hable from the basis marking �ring a sequen
e of unobservable

transitions.

The assumption that the net is ba
kward 
on�i
t-free is essential to ensure that the basis marking

Mb,w 
orresponding to a given observation w is unique. The assumption that the unobservable

subnet is a
y
li
 allows us to use the state equation to 
hara
terize the markings rea
hable from

the basis marking by �ring a sequen
e of unobservable transitions.

In this paper we extend the previous work as follows.

Firstly we relax the assumption that the unobservable net be ba
kward 
on�i
t-free. In this 
ase

the basis marking asso
iated to a given observation w ∈ T ∗

o is not ne
essarily unique any more,

1

In Fig. 1 the unobservable subnet is a
y
li
 be
ause there exists no oriented 
y
le 
ontaining only unobservable

transitions.

2

A net is ba
kward 
on�i
t-free if all transitions have no output 
ommon pla
e. In Fig. 1 the unobservable

subnet is not ba
kward 
on�i
t-free be
ause pla
e p4 has in input two unobservable transitions, ε2 and ε6.
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and we dis
uss how this set 
an be des
ribed in terms of minimal explanations

3

following also

the approa
h of Jiriveanu and Boel [3, 8℄. A tabular algorithm for the 
omputation of minimal

explanations is also presented in the paper.

Se
ondly, we present an original te
hnique to design an observer for bounded nets. We de�ne for

ea
h observation w a set M(w) 
omposed of pairs (M,y) where M is a basis marking 
orrespond-

ing to w and y, that we 
all its justi�
ation, is the �ring ve
tor of unobservable transitions that

must have �red to rea
h it. We also present an algorithm for 
onstru
ting a basis rea
hability tree

(BRT); this is a deterministi
 automaton whose edges are labelled by the observable transitions,

while a node rea
hable from the root with a �ring sequen
e w is labelled with the set M(w).

The important feature of this approa
h is that the BRT provides an e�
ient 
hara
terization of

the rea
hability set and of the language of the original net: the set of markings 
onsistent with an

observation w 
an be determined 
omputing the markings rea
hable on the unobservable subnet

starting from any of the basis markings in M(w). If we assume that the unobservable subnet

is a
y
li
, this 
an be done solving the state equation while in the 
onstru
tion of the BRT we

only need to enumerate the smaller subset of basis markings.

Finally, we apply the BRT to the problem of failure diagnosis. In parti
ular we use it on-line

to asso
iate a diagnosis to ea
h observation. It may also be possible to use the BRT o�-line

to study the di�erent properties of diagnosability and determine whether in a given system the

o

urren
e of a failure is re
ognizable. This issue is not addressed in the paper.

Our work has several points of 
onta
ts with the work of Jiriveanu and Boel [3, 8℄. The main

di�eren
e is the tabular algorithm for the 
omputation of minimal explanations and the 
hara
-

terization of the rea
hability set in terms of basis markings that we propose.

2 Ba
kground on Petri nets

In this se
tion we re
all the formalism used in the paper. For more details on Petri nets we

address to [11℄.

A Pla
e/Transition net (P/T net) is a stru
ture N = (P, T, Pre, Post), where P is a set of m

pla
es; T is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre� and

post� in
iden
e fun
tions that spe
ify the ar
s; C = Post− Pre is the in
iden
e matrix.

A marking is a ve
tor M : P → N that assigns to ea
h pla
e of a P/T net a non�negative integer

number of tokens, represented by bla
k dots. We denote M(p) the marking of pla
e p. A P/T

system or net system 〈N,M0〉 is a net N with an initial marking M0.

A transition t is enabled at M i� M ≥ Pre(· , t) and may �re yielding the marking M ′ =

3

The term minimal explanation is used in [3, 8℄ to denote the smallest sequen
e of unobservable transitions

that must have �red to explain an observation. As an example, 
onsider in the net in Fig. 1 an initial marking

that assigns to pla
es p2 and p3 a token while all other pla
es are empty. If the �ring of t4 is observed then the

token required to enable this transition may have been put in p4 by the �ring of either ε2 or ε3ε6.
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M +C(· , t). We write M [σ〉 to denote that the sequen
e of transitions σ = tj1 · · · tjk is enabled

at M , and we write M [σ〉 M ′
to denote that the �ring of σ yields M ′

.

Given a sequen
e σ ∈ T ∗
, we 
all π : T ∗ → Nn

the fun
tion that asso
iates to σ a ve
tor y ∈ Nn
,

named the �ring ve
tor of σ. In parti
ular, y = π(σ) is su
h that y(t) = k if the transition t is


ontained k times in σ.

A marking M is rea
hable in 〈N,M0〉 i� there exists a �ring sequen
e σ su
h that M0 [σ〉 M .

The set of all markings rea
hable from M0 de�nes the rea
hability set of 〈N,M0〉 and is denoted

R(N,M0). Finally, we denote PR(N,M0) the potentially rea
hable set, i.e., the set of all markings

M ∈ Nm
for whi
h there exists a ve
tor y ∈ Nn

that satis�es the state equationM = M0+C·y, i.e.,

PR(N,M0) = {M ∈ Nm | ∃ y ∈ Nn : M = M0+C ·y}. It holds that R(N,M0) ⊆ PR(N,M0).

A Petri net having no dire
ted 
ir
uits is 
alled a
y
li
. For this sub
lass the following result

holds.

Theorem 2.1 [5℄ Let N be an a
y
li
 Petri net.

(i) If the ve
tor y ∈ Nn
satis�es the equation M0 + C · y ≥ 0 there exists a �ring sequen
e σ

�rable from M0 and su
h that the �ring ve
tor asso
iated to σ is equal to y.

(ii) A marking M is rea
hable from M0 i� there exists a non negative integer solution y satisfying

the state equation M = M0 + C · y, i.e., R(N,M0) = PR(N,M0). �

A net system 〈N,M0〉 is bounded if there exists a positive 
onstant k su
h that, forM ∈ R(N,M0),

M(p) ≤ k. A net is said stru
turally bounded it is bounded for any initial marking.

A labeling fun
tion L : T → E ∪ {ε} assigns to ea
h transition t ∈ T either a symbol from a

given alphabet E or the empty string ε.

We denote as Tu the set of transitions whose label is ε, i.e., Tu = {t ∈ T | L(t) = ε}. Transitions

in Tu are 
alled unobservable or silent.

In this paper we assume that the same label e ∈ E 
annot be asso
iated to more than one

transition. Thus, being the labeling fun
tion restri
ted to To = T \ Tu an isomorphism, with no

loss of generality we assume E = To. Transitions in To are 
alled observable.

In the following we denote as Cu (Co) the restri
tion of the in
iden
e matrix to Tu (To).

We denote as w the word of events asso
iated to the sequen
e σ, i.e., w = L(σ). Note that the

length of a sequen
e σ (denoted |σ|) is always greater or equal than the length of the 
orresponding

word w (denoted |w|). In fa
t, if σ 
ontains k′ transitions labeled ε then |σ| = k′ + |w|.

Moreover, we denote as σ0 the sequen
e of null length and ε the empty word. We use the notation

wi 4 w to denote the generi
 pre�x of w of length i ≤ k, where k is the length of w.

De�nition 2.2 Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions, we

de�ne the T ′−indu
ed subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′

are the restri
tion of Pre, Post to T ′
. The net N ′


an be thought as obtained from N removing
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all transitions in T \ T ′
. We also write N ′ ≺T ′ N . �

3 Minimal explanations

In this se
tion we provide some basi
 de�nitions that will be useful in the following.

De�nition 3.1 Given a marking M and an observable transition t ∈ To, we de�ne

Σ(M, t) = {σ ∈ T ∗

u | M [σ〉M ′, M ′ ≥ Pre(·, t)}

the set of explanations of t at M , and we denote

Y (M, t) = {y ∈ Nn | ∃σ ∈ Σ(M, t) : π(σ) = y}

the 
orresponding set of �ring ve
tors. �

Thus Σ(M, t) is the set of unobservable sequen
es whose �ring at M is ne
essary to enable t.

Among the above sequen
es we want to sele
t those whose �ring ve
tor is minimal, that we 
all

minimal explanations.

De�nition 3.2 Given a marking M and a transition t ∈ To, we de�ne

Σmin(M, t) = {σ ∈ Σ(M, t) | y = π(σ),

∄ σ′ ∈ Σ(M, t) : π(σ′) � y}

the set of minimal explanations of t at M , and we denote

Ymin(M, t) = {y ∈ Nn | ∃σ ∈ Σmin(M, t) : π(σ) = y}

the 
orresponding set of �ring ve
tors. �

Similar de�nitions have also been given in [3, 8℄.

Example 3.3 Let us 
onsider the net in Fig. 1.

Let M0 be the marking shown in �gure. Then Σ(M0, t1) = {ε}, namely the empty word, and

Ymin(M0, t1) = {~0}. In fa
t, t1 is enabled at M0 and no unobservable transition is ne
essary to

�re to enable t1.

If we 
onsider transition t7, then Σ(M0, t7) = ∅, thus also Ymin(M0, t7) = ∅. In fa
t, t7 is not

enabled at M0, and no sequen
e of unobservable transitions may enable it.

Now, let M1 = [0 1 0 0 0 0 0]T . Then Σ(M1, t4) = Σmin(M1, t4) = {ε2}.

Then, let M2 = [0 1 1 0 0 0 0]T . Then Σ(M2, t4) = Σmin(M2, t4) = {ε2, ε3ε6}.

Finally, let M3 = [0 1 1 0 1 0 0]T . Then Σ(M3, t4) = {ε2, ε6, ε3ε6}, while Σmin(M3, t4) = {ε2, ε6}.

⋄
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In [5℄ we proved the following important result.

Theorem 3.4 [5℄ Let N = (P, T, Pre, Post) be a Petri net with T = To ∪ Tu. If the Tu-indu
ed

subnet is a
y
li
 and ba
kward 
on�i
t-free, then |Ymin(M, t)| = 1. �

Di�erent approa
hes 
an be used to 
ompute Ymin(t,M), e.g., see [3, 8℄.

In this paper we suggest an approa
h that terminates �nding all ve
tors in Ymin(M, t) if applied

to nets whose Tu-indu
ed subnet is a
y
li
. It simply requires algebrai
 manipulations, and is

inspired by the pro
edure proposed by Martinez and Silva [10℄ for the 
omputation of minimal

P-invariants. It 
an be brie�y summarized by the following algorithm.

Note that the proposed approa
h 
an also be applied to Tu-indu
ed subnets that are not a
y
li
.

However, in this 
ase the algorithm may enter a loop: to guarantee to terminate in a �nite

number of steps we need to add suitable termination 
riteria.

Algorithm 3.5 [Computation of Ymin(M, t)℄

1. Let Γ :=
CT
u Inu×nu

A B
where AT := M − Pre(·, t), BT := ~0nu

2. while not A ≥ 0

3. Choose an element A(i∗, j∗) < 0

4. Let I+ = {i | CT
u (i, j

∗) > 0}

5. if I+ 6= ∅ then

6. for i ∈ I+
do

7. add to [A | B] a new row [A(i∗, ·) | B(i∗, ·)] + Γ(i, ·)

end for

end if

8. Delete row [A(i∗, ·) | B(i∗, ·)] from the table

end while

9. Delete from B any dupli
ate row or any row that 
overs other rows

Ea
h row in B is a ve
tor in Ymin(M, t). �

Note that at step 7. it may be possible that the new row [A(i∗, ·) + CT
u (i, ·) | B(i∗, ·) + ~e T

i ] is

identi
al to a row already in the table: if su
h is the 
ase it is not ne
essary to add it.

Example 3.6 Let us 
onsider again the net in Fig. 1.
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Let M = [0 1 1 0 1 0 0]T and t = t4. Being

Cu =

ε2 ε3 ε5 ε6


























0 0 0 0

−1 0 0 0

0 −1 0 0

1 0 0 1

0 1 −1 −1

0 0 0 0

0 0 1 0



























, P re(·, t4) =



























0

0

0

1

0

0

0



























,

we �rst assume

Γ :=

0 −1 0 1 0 0 0

0 0 −1 0 1 0 0

0 0 0 0 −1 0 1

0 0 0 1 −1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 −1 1 0 0 0 0 0 0

thus there is only one element of A, namely A(1, 4), that is negative. Moreover, I+ = {1, 4}.

Using Algorithm 3.5 we add the following two new rows to Γ:

0 0 1 0 1 0 0 1 0 0 0 and

0 1 1 0 0 0 0 0 0 0 1

obtained from the �rst row of A by adding the �rst and the fourth row of Γ, respe
tively. Finally,

we remove the row Γ(5, ·) from the table and we stop be
ause all elements of A are non negative.

Be
ause no line 
overs the other, we 
on
lude that both rows ofB, namely

∣

∣

∣ 1 0 0 0
∣

∣

∣
and

∣

∣

∣ 0 0 0 1
∣

∣

∣

are elements of Ymin(M, t). This result is in a

ordan
e with the previous Example 3.3, being

Σmin(M, t) = {ε2, ε6}. ⋄

4 Basis marking

In [5℄ we introdu
ed the notion of basis marking.

De�nition 4.1 [5℄ Let 〈N,M0〉 be a net system whose unobservable subnet is ba
kward 
on�i
t-

free. Given an observation w, the basis marking Mb,w is the marking rea
hed from M0 by �ring

w and all those unobservable transitions that are stri
tly ne
essary to enable w. �

The ba
kward 
on�i
t-free assumption ensures the uniqueness of Mb,w, for any initial marking

M0 and any observation w [5℄.

7



If the ba
kward 
on�i
t-free assumption is relaxed, the basis marking may be not unique. This

trivially follows from the simple observation that, given a markingM and an observable transition

t, the set of minimal explanations of t at M is generally not a singleton.

Now, in order to generalize the notion of basis marking, we introdu
e the following re
ursive

de�nition.

De�nition 4.2 Let 〈N,M0〉 be a net system where N = (P, T, Pre, Post) and T = To ∪ Tu.

Let M(ε) = {(M0,~0)} and ∀ w ∈ T ∗

o , ∀ t ∈ To, let

M̃(wt) = {(M,y) ∈ Nm × Nnu |

∃ (M ′, y′) ∈ M(w),

∃ y′′ ∈ Ymin(M
′, t) :

y = y′ + y′′, M = M0 + C(·, t) + Cuy}.

Finally, ∀ w ∈ T ∗

o , let M(w) ⊆ M̃(w) su
h that

M(w) = {(M,y) ∈ M̃(w) |

∄ (M ′, y′) ∈ M̃(w) : y′ � y}.

All markings M su
h that (M,y) ∈ M(w) are 
alled basis marking and the ve
tors y are the


orresponding justi�
ations. �

Therefore, for any observation w, (M,y) ∈ M(w) is a 
ouple (marking, �ring ve
tor) su
h that

M 
an be rea
hed from M0 �ring a sequen
e σ su
h that L(σ) = w and π(σ) = π(w)+y. Clearly,

when no observation has o

urred (i.e., w = ε), M(w) is a singleton and M = M0, y = ~0.

Note that ea
h set M(w) only 
ontains 
ouples (M,y) whose justi�
ations are minimal be
ause

M(w) is obtained by M̃(w) removing all 
ouples whose justi�
ations are not minimal.

Example 4.3 Let us 
onsider the net in Fig. 1. Assume that the initial marking is that shown

in �gure.

Let w = t1. Being Ymin(t1,M0) = {~0}, if we denote as

M1 = M0 +Coπ(t1)

=
[

0 1 1 0 0 0 0
]T

,

then M(t1) = M̃(t1) = {(M1,~0)}, and the null ve
tor is the only justi�
ation of w = t1 at the

initial marking.

Now, assume that t4 is observed, thus w = t1t4. In su
h a 
ase Ymin(M1, t4) = {y1, y2} where

y1 = π(ε2) and y2 = π(ε3ε6). Now, if we denote

M2 = M1 +Coπ(t4) + Cuy1 = M0 + Coπ(w) +Cuy1

=
[

0 0 1 0 0 1 0
]T

,

8



M3 = M1 +Coπ(t4) + Cuy2 = M0 + Coπ(w) +Cuy2

=
[

0 1 0 0 0 1 0
]T

,

then

M(t1t4) = M̃(t1t4) = {(M2, y1), (M3, y2)}.

Finally, assume that t7 �res, thus w = t1t4t7. It holds that Ymin(M2, t7) = {π(ε3ε5)} and

Ymin(M3, t7) = ∅. In fa
t, the �ring of ε3ε5 enables t7 at M2, while t7 is not enabled at M3 and

no sequen
e of unobservable transitions may enable it. Therefore,

M(t1t4t7) = M̃(t1t4t7) = {(M4, y1 + y3)},

where

M4 = M2 + Coπ(t7) + Cuy3

= M0 + Coπ(w) + Cu(y1 + y3)

=
[

1 0 0 0 0 0 0
]T

= M0.

⋄

The following theorem proves that our approa
h based on basis markings is able to 
hara
terize


ompletely the rea
hability set under partial observation.

Theorem 4.4 Let us 
onsider a net system 〈N,M0〉 whose unobservable subnet is a
y
li
. The

following two assertions are equivalent.

1. There exists σ̃ ∈ T ∗
su
h that M0[σ̃〉M̃ with L(σ̃) = w and π(σ̃) = ỹ.

2. There exists (M,y) ∈ M(w) and σ′′ ∈ T ∗

u su
h that M [σ′′〉M̃ with ỹ = π(w) + y + π(σ′′).

Proof: We prove this result by indu
tion on the length of the observed string w.

(Basis step) For w = ε the results obviously holds.

(Indu
tive step) Assume the result holds for w. We prove it holds for w = vt.

Firstly, we prove 1) ⇒ 2). In fa
t, if 1) holds then there exist sequen
es σ′
and σ′′

su
h that

M0[σ
′〉M ′[t〉M ′′[σ′′〉M̃

where L(σ′) = v, and σ′′ ∈ T ∗

u . By indu
tion, there exists (M,y) ∈ M(v) su
h that

M0[σ
′

a〉M [σ′

b〉M
′[t〉M ′′[σ′′〉M̃

where L(σ′

a) = v, π(σ′

a) = π(v) + y and σ′

b ∈ T ∗

u . Now there exists a minimal explanation

σ′

c ∈ Σ(M, t) su
h that π(σ′

c) ≤ π(σ′

b) and, being the Tu-indu
ed subnet a
y
li
,

M0[σ
′

a〉M [σ′

c〉M
′

c[t〉M
′

d[σ
′

d〉M
′′[σ′′〉M̃

where π(σ′

c) + π(σ′

d) = π(σ′

b) and (M ′

c, π(σ
′

c)) ∈ M(vt) = M(w). This proves the result.

Se
ondly, we prove 2) ⇒ 1). In fa
t if 2) holds then there exists σ′ ∈ T ∗
su
h thatM0[σ

′〉M [σ′′〉M̃

with L(σ′) = vt = w and hen
e M0[σ〉M̃ with σ = σ′σ′′
.

Note that this impli
ation still holds even if the unobservable subnet is not a
y
li
. �
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5 Observer design based on the basis rea
hability tree

In this se
tion we fo
us our attention on bounded Petri nets and propose an original te
hnique

to design an observer to be used in the 
ontext of failure diagnosis.

The proposed approa
h 
onsists in the design of a deterministi
 graph, that we 
all basis rea
h-

ability tree (BRT).

Let us �rst introdu
e the following de�nitions. Let

Mb(w) = {M ∈ Nm | ∃y ∈ Nnu : (M,y) ∈ M(w)}

be the set of basis markings at w. Then, let

O(N,M0) = {w ∈ T ∗

o | ∃σ ∈ T ∗, M0[σ〉, L(σ) = w}

be the set of observable words of 〈N,M0〉.

We denote

Omin(N,M0) = {w ∈ O(N,M0) | ∄ w′ ∈ O(N,M0) :

w′ ≺ w, Mb(w) = Mb(w
′)}

the set of observable words of minimal length to whi
h it 
orrespond a di�erent set of basis

markings.

The BRT has as many nodes as the 
ardinality of Omin(N,M0). Ea
h node 
oin
ides with a

di�erent set M(w) and ea
h ar
 is labeled with an observable transition. More pre
isely, the

BRT is an automaton on the alphabet To whose initial state is M0 = M(ε), and if δ is its

transition fun
tion, it holds δ(M0, w) = M(w) for any word w ∈ Omin(N,M0). In other words,

if w ∈ Omin(N,M0), then there exists an oriented path labeled w from the root node M0 to the

node M(w).

The BRT of a bounded net system 〈N,M0〉 
an be 
onstru
ted using the following algorithm

where we denote as Mb (resp., M
′

b, M̃b, M̄b) the set of basis markings relative to the set M

(resp., M′
, M̃, M̄).

Algorithm 5.1 [Basis rea
hability tree℄

1. Label the initial node M0 = M(ε) as

the root and assign no tag to it.

2. If nodes with no tag exist,

sele
t a node M with no tag and:

2.1 if ∀ M ∈ Mb and ∀ t ∈ To, Ymin(M, t) = ∅,

tag M �dead� and go to step 2.

2.2 ∀ t ∈ To : {M ∈ Mb | Ymin(M, t) 6= ∅} 6= ∅

2.2.1 let M̃ = ∅

2.2.2 for all (M,y) ∈ M

2.2.2.1 for all ỹ ∈ Ymin(M, t)

10



t1
[10 0 0 0 0 0],0[0 1 1 0 0 0 0],0

t4 [0 0 1 0 0 1 0],y1

t4

t7

dup

dead

[0 1 0 0 0 1 0],y2

[0 0 0 0 0 2 0],y1+ y2

[1 0 0 0 0 0 0],y1+ y3

 y1 = π (ε2)
 y2 = π (ε3ε6)
 y3 = π (ε3ε5)

Figure 2: The basis rea
hability tree of the net in Fig. 1.

2.2.2.2 
ompute M ′ = M +Coπ(t) +Cuỹ,

y′ = y + ỹ

2.2.2.3 let M̃ = M̃ ∪ {(M ′, y′)}

2.3 let M′ = {(M,y) ∈ M̃ |

∄(M ′, y′) ∈ M̃ : y′ � y}

2.4 add a new node M′
to the graph and

an ar
 t from M to M′

2.5 if already ∃ a node M̄ in the graph su
h that

M̄b = M′

b, tag the new node �dup�. �

Example 5.2 The BRT of the net in Fig. 1 is reported in Fig. 2. By looking at this graph we

�nd out all the results already dis
ussed in the Example 4.3. ⋄

One �nal remark about the BRT. In the standard 
onstru
tion of a PN rea
hability/
overability

graph, after a tree has been 
onstru
ted, by merging identi
al nodes one obtains a graph that may

also 
ontain 
y
les. In the 
ase of the BRT the 
onstru
tion of a graph is not meaningful be
ause

two nodes may 
orrespond to the same set of basis marking but have di�erent justi�
ations.

Consider as an example, the net in Fig. 1 and its BRT in Fig. 2. The words ε, t1t4t7, (t1t4t7)
2
,

. . ., all 
orrespond to the same basis marking M0 = [ 1 0 0 0 0 0 ]T but they have di�erent

justi�
ations

~0, y1 + y3, 2y1 +2y3, . . . In fa
t, ea
h time the 
y
le M0[t1t4t7〉M0 the justi�
ation

in
reases of the quantity y1 + y3.

Thus we keep the tree as it is, but to 
ompute the set M(w) for a word w of arbitrary length we

need to keep in mind that whenever a leaf is rea
hed, we need to 
ontinue the produ
tion from

the an
estor node 
orresponding to the same set of basis marking while adding, ea
h time the


y
le is repeated, the 
orresponding justi�
ation.

11



6 Diagnosis

The formalism des
ribed in the previous se
tions for marking estimation 
an be used to design

a diagnoser. Let us �rst de�ne

L(w) = {σ ∈ T ∗ | M0[σ〉, L(σ) = w},

the set of �ring sequen
es 
onsistent with w ∈ T ∗

o .

De�nition 6.1 A diagnoser is a fun
tion ∆ : T ∗

o × Tf → {0, 1, 2, 3} that asso
iates to ea
h

observation w and to ea
h fault transition tf ∈ Tf a diagnosis state.

∆(w, tf ) = 0 if for all σ ∈ L(w) it holds that tf 6∈ σ. In su
h a 
ase the fault 
annot

have o

urred be
ause there exist no �rable sequen
e 
ontaining tf and 
onsistent with the

observation.

∆(w, tf ) = 1 if there exists a σ ∈ L(w) su
h that tf ∈ σ but for all pairs (M,y) ∈ M(w)

it holds that the justi�
ation y of the basis marking M is su
h that y(tf ) = 0. In su
h a


ase the fault may have o

urred but not while rea
hing a basis marking.

∆(w, tf ) = 2 if there exists a pair (M,y) ∈ M(w) su
h that y(tf ) > 0. In su
h a 
ase the

fault may have o

urred while rea
hing a basis marking.

∆(w, tf ) = 3 if for all σ ∈ L(w) it holds that tf ∈ σ. In su
h a 
ase the fault must have

o

urred be
ause all �rable sequen
e 
onsistent with the observation 
ontain tf . �

The diagnosis states 1 and 2 
orrespond both to 
ases in whi
h the fault may have o

urred but

has not ne
essarily o

urred. The main reason to distinguish between them is the following. In

the state 1 the observed behavior does not suggest a fault has o

urred, while in the state 2 at

least one of the justi
ations for the observed behavior implies that the fault has o

urred.

The diagnosis state asso
iated to an observation w 
an be easily 
omputed using the BRT. We

present a series of results whose proofs are rather elementary and are not given here for sake of

brevity.

Let us re
all that the BRT is an automaton on the alphabet To. The initial state is M0 =

{(M0,~0)}, and if δ is its transition fun
tion, it holds δ(M0, w) = M(w).

Proposition 6.2 Consider an observed word w ∈ T ∗

o .

∆(w, tf ) ∈ {0, 1} i� ∀ (M,y) ∈ M(w) it holds y(tf ) = 0.

∆(w, tf ) = 2 i� ∃ (M,y) ∈ M(w) and (M ′, y′) ∈ M(w) su
h that y(tf ) = 0 and y′(tf ) >

0.

∆(w, tf ) = 3 i� ∀ (M,y) ∈ M(w) it holds y(tf ) > 0.

12
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The BRT 
ontains all the information required to assign to an observed sequen
e a diagnosis

state 2 or 3. However, it does not allow one to distinguish immediately between state 0 and 1.

Further analysis is ne
essary, as explained in the following proposition.

Proposition 6.3 Consider an observed word w ∈ T ∗

o su
h that for all (M,y) ∈ M(w) it holds

y(tf ) = 0.

∆(w, tf ) = 0 if ∀ (M,y) ∈ M(w) there does not exists a sequen
e σ ∈ T ∗

u su
h that M [σ〉

and tf ∈ σ.

∆(w, tf ) = 1 if ∃ at least one (M,y) ∈ M(w) and a sequen
e σ ∈ T ∗

u su
h that M [σ〉 and

tf ∈ σ. �

If the un
ontrollable subnet is a
y
li
 the rea
hability of the un
ontrollable subnet 
an be 
har-

a
terized by the state equation and there exists a sequen
e 
ontaining transition tf �rable from

M on the un
ontrollable subnet if and only if the following integer 
onstraint set (ICS) admits

a solution:

M + Cuz ≥ ~0, z(tf ) > 0, z ∈ Nnu . (1)

Thus we have the following result.

Proposition 6.4 For a Petri net whose un
ontrollable subnet is a
y
li
, let w ∈ T ∗

o be an

observed word su
h that for all (M,y) ∈ M(w) it holds y(tf ) = 0.

∆(w, tf ) = 0 if ∀ (M,y) ∈ M(w) ICS (1) does not admit a solution:

∆(w, tf ) = 1 if ∃ a (M,y) ∈ M(w) su
h that (1) admits a solution. �

7 Con
lusions

In this paper we dealt with the problem of fault dete
tion for dis
rete event systems. An original

approa
h is presented using Petri nets with unobservable transitions. In parti
ular, faults are

modeled as unobservable transitions, and legal behaviours as well may be modeled as unobserv-

able transitions. We �rst provide a 
hara
terization of the �ring sequen
es 
orresponding to a

given observation based on the notion of basis markings and justi�
ations. For the 
omputation

of the set of basis markings we propose a simple tabular algorithm and use it to determine a

deterministi
 automaton, that we 
all basis rea
hability tree, that 
an be used as a diagnoser.
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