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Marking Estimation of Petri Nets with Silent Transitions

Daniele Corona, Alessandro Giua, Carla Seatzu

Abstract—In this paper we deal with the problem of For DES modeled as finite automata, the most common
estimating the marking of a labeled Petri net system based on way of solving the problem of partial observation is that of
the observation of transitions labels. In particular, we assume converting, using a standaditerminizatiorprocedure, the
that a certain number of transitions are labeled with the empty LY . "
string e, while a different label taken from a given alphabet nondetgrlm[nls.tl(.: finite automaton (NFA) '”t‘,’ an equivalent
is assigned to all the other transitions. Transitions labeled deterministic finite automon (DFA) where: (i) each state of
with the empty string are called silent because their firing the DFA corresponds to a set of states of the NFA; (i) the
cannot be observed. Under some technical assumptions on the state reached on the DFA after the waidis observed,

structure of the 7 —induced subnet, whereT: denotes the set  yiyeg the se’(w) of states consistent with the observed
of silent transitions, we formally prove that the set of markings word w

consistent with the observed word can be represented by a .
linear system with a fixed structure that does not depend on ~ However, there are some drawbacks in the above pro-

the length of the observed word. cedure. Firstly, each seét(w) must be exhaustively enu-
merated. Then, to computgw) we first need to compute
C(w") for all prefixesw’ < w. Finally, if the NFA hasn

In this paper we address the problem of estimating thetates, the DFA can have up 28 states.
marking of a Petri net (PN) whose set of transitions is In this paper we explore the possibility of using PN as
partitioned in two sets: observable transitions whose firindiscrete event models and address the observer design under
can be detected by an external observer, and unobservatile assumption that some transitions are labeled with the
transitions, i.e., transitions labeled with the empty string empty stringe, i.e., they aresilent while a different label
whose firing cannot be detected. is assigned to all the other transitions. Thus/[ifis the

This is a fundamental issue in theoreticabmputer set of transitions andy is the set of silent transitions, all
sciencewithin the framework of nondeterministic languagetransitions inT" \ 7. are deterministic
generators. In fact, in this context, the behaviour of a We first observe that an analogous determinization pro-
discrete event system (DES) is modeled bgraguage the cedure as that used in the case of automata, cannot be used
event setF is viewed as an alphabet, and a sequence @i the PN framework. In fact, a nondeterministic PN cannot
events from this alphabet forms word (or a string) of be converted into an equivalent deterministic PN, because
events, that describes a particular evolution of the systemtf the strict inclusions [2]Lqet © £ C Ly Where Lyt iS
The state observer of a DES aims to provide an estimatke set of deterministic PN languagésis the set of\-free
of the system state based on the observation of the woRN languages, namely, languages accepted by nets where
of events. The initial state is usually assumed to be knowmo transition is labeled with the empty string: the non-
but, on the contrary, it may be the case that the systedeterminism here is associated to undistinguishable events
dynamics is not perfectly known in the sense that it mapecause two transitions may share the same labeis the

I. INTRODUCTION

be nondeterministic set of arbitrary PN languages where a transition may also
More precisely, the nondeterminism may be due to twbe labeled with the empty string: the nondeterminism here
different facts. is associated both to silent events and to undistinguishable

— Silent eventsThere may be events that cause a changevents.
in the state of the DES but that are not observable by an If one considers the restricted class of bounded PN (i.e.,
outside observer. Events of this kind are labeled with theets with a finite state space), it is possible to use the above
empty stringe. results on automata theory to compute a state observer based

— Undistinguishable event¥here may be events whoseon partial event observation. More precisely, we can first
occurrence from a given state yields two or more new stategonstruct the reachability graph of the Petri net system, that
Such is the case if two or more transitions labeled with thender the assumption of arbitrary labeling is a NGEAThen
same symbol inZ are enabled at a given state. we construct the DFAG’ equivalent to the NFAG. Note

however that the resulting obser@t is an automaton, not
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an original approach to build a state observer that does n@presented by black dots. We dendtep) the marking of
require the construction of the reachability graph, and thyslacep. A P/T systemor net system N, My) is a netN
works for both bounded and unbounded PN. More preciselwith an initial marking M.
we derive an efficient technique for characterizing the set A transition¢ is enabled atM iff M > Pre(-,t) and
of markings that are consistent with the actual observatiamay fire yielding the marking/’ = M + C(-,t). We
w, namelyC(w). write M [o) to denote that the sequence of transitions
In particular, we make the following five assumptionso = t¢;, ---t;, is enabled atM/, and we writeM [o) M’
(A1) the net structure is known, (A2) the initial marking isto denote that the firing of yields M’. We also denote
known, (A3) the labels associated to the firing of transition§ : T — N the firing vectorassociated to a sequence
in T\ T, can be observed, (A4) thH& —induced subnet oV i.e., o(t) = k if the transitiont is containedk times ino.
is acyclic (A5) theT.—induced subnet is backward conflict A marking M is reachablein (N, M) iff there exists
free, i.e., all silent transitions have no common output place. firing sequencer such thatM, [¢) M. The set of all
Under these assumptions, we show that the set of comarkings reachable fromi/, defines thereachability set
sistent markings can be written as the solution of a lineasf (IV, M) and is denoted?(N, My). Finally, we denote
system with a fixed structure that depends on the value @fR(NV, M,) the potentially reachable seti.e., the set of
a vector M, € N™, called thebasis markingthat can be all markings)M € N™ for which there exists a vectqf ¢
recursively computed. The main advantage of the proposeft that satisfies thetate equatiom/ = My + C - ¢, i.e.,
approach is that we need not exhaustively enumerate @lR(N, My) = {M € N™ | 37N : M = My+C-if}.
consistent markings. It holds thatR(N, My) C PR(N, My).
We addressed a similar problem in [4], [5]. Note however A Petri net having no directed circuits is called
that in [4], [5] we dealt with\-free labeled PN, i.e., with acyclicFor this subclass the following result holds.
PN where no transition is labeled with the empty string, and . .
the nondeterminism was due to undistinguishable events€orem 1. Let NV be an acyclic Petri net.
Under the assumption that the nondeterministic transitions () If the vectory € N” satisfies the equatiofly+C'-y >
arecontact-freé, we gave a linear algebraic characterizatioft thére exists a firing sequeneefirable from markingMo
of the set of consistent markings that depends on sond®d such that' = y. _ _
parameters that can be recursively computed. (i) A marking M is reachable fromlf, if and only if
Let us finally observe that a similar approach that usd§i€re exists a non negative integer solutignsatisfying
a logical formalism rather than linear programming wadhe state equation/ = M, + C - &, i.e., R(N, Mo) =
also presented by Benasser [1]. This author has studiéd2 (Y, Mo).
the possibility of defining the set of markings reached  Proof: Note that, obviously, (i) implies (ii). These
firing a “partially specified” step of transitions using log-results follow from Theorem 16 of [10]. In effect, the
ical formulas, without having to enumerate this set. Othe¥tatement of the theorem in [10] is equivalent to (i) but
authors [9] have also discussed the problem of estimatiﬁ%e result is proved with an argument that also show that
the marking of a Petri net using a mix of transition firings(l) holds. 0
and place obse_rvations. Zhang and_ Holloway [11] _used 4 A labeling functionL : T — E U {¢} assigns to each
Controlled_ Petri Net modgl for_forb|dden statg avoidancgansitiont ¢ T either a symbol from a given alphabgt
ypder parugbventobservanpn with the as_sumptlon that they, the empty string:.
initial mark|_ng pe known. Finally, the notion qf unobser\{ed We denote ag. the set of transitions whose labelds
reach function in the work by Heymann and Lin [6], deallnq_e_, T.={teT | L(t) =)
with on-line control of partially observed DES, is related to

. \ X e In this paper we assume that the same labelE' cannot
the basis marking we introduce in this paper.

be associated to more than one transition. Thus, being the
II. BACKGROUND ONPETRI NETS labeling function restricted t@' \ 7. an isomorphism, with
po loss of generality we assunte=T'\ T-.

We denote aav the word of events associated to the

A Place/Transition net(P/T net) is a structurey — Seduences, i.e., w = L(o). Note that the length of a
(P, T, Pre, Post), whereP is a set ofm places:T is a set sequences (denoted|o]) is always greater or equal than

of n transitions:Pre : PxT — NandPost : PxT — N the length of the corresponding wotd (denotedjwl). In
) C . iy
are thepre— andposi— incidence functions that specify the fact: if o containst” transitions labeled thenjo| = &'+ ful.
arcs:C — Post — Pre is the incidence matrix. Moreover, we denote as, the sequence of null length
A markingis a vectorM : P — N that assigns to each &nd ¢ the empty word. We use the notatian, < w 10

place of aP/T net a non-negative integer number of tokensdenote the generic prefix ab of lengthi < k, wherek is
the length ofw.

INondeterministic transitions are contact-free if for any two nondeter-, .. .. .
ministic transitionst and¢’ the set of input and output places iotannot Definition 2. Given a netN = (P, T, Pre, Post), and a

intersect the set of input and output places’of subsetl” C T of its transitions, we define thE'—induced

In this section we recall the formalism used in the pape
For more details on Petri nets we address to [10].



subnet of N as the new netN' = (P,T", Pre’, Post’)
where Pre’, Post’ are the restriction ofPre, Post to T".
The netN’ can be thought as obtained frof removing
all transitions inT'\ T". We also writeN’ <1, N. |

Ill. PRELIMINARY RESULTS

Let (N, M) be a net system with incidence mat(ixe
Z™*™ and letM € N™. We define

SN, Mo, M) = {§ € N | Mo + Cf > 1 }

as the set of firing vectors that potentially correspond to®é.j: Y
sequences that lead froi, to a marking greater or equal
to M. To simplify the notation, when no ambiguity may

result we writeX to denote this set.
The set(X, <) is aposet(partially ordered set) wherg

is the usual relation ofN™ defined as:
y<i’ = (Vj=1,...,n) y <y
Given two elementsg/ ', ¢ 7 € X we denote byd the
componentwisenin operator, i.e.,

j=g'ey" <= (Vi=1,....n) y; =min{y}, yj}.
Theorem 3. If N = (P, T, Pre, Post) is a backward

conflict freenet and ifX # 0, then (X, <) has infimal

2 element
=D
yeD

—* inf

Proof: It is sufficient to show that the sét is closed
under the® operator. To show this, assunge’,y "/ € X.
Then for allp; € P the two vectors satisfy

{ Mo (ps) + C(pi, ) ' = M(pi)

i (1)
Mo(p:) + C(pi, )i " = M (pi).

Note that if V is backward conflict fre¢BFC), each place
p; has at most one input transitiey) as shown in Figure 1.
Thus the rowC'(p;, -) of the incidence matrix associated to

placep; contains at most one positive eleméity;, ¢;,) =
a; 5, > 0, while for all j # j; it holds C(p;, t;) = —a; ; <

0. If no elements ofC(p;,-) is positive, then we define

Ji=n+1 andam-i = 0.

follows:
Oéi,j,;y;'i 2 M(pl) MO pz Z (67} jyj
J=L.j#5:
(2)
ai,jiy;'/i 2 M(pl) MO pz Z aZ,jy;/’
J=1,3#7i

2The infimal element of a posét, <) is an elementi™ € A such
that for any anothern’ € A it holds '™ < o’. If the infimal element
exists it is unique.

Fig. 1. A place of a BFC net.

Let us now consider a vectgr=
it holds:

y'@y”. Forallp; € P

= H}in{aiﬂ'i y;L » i j; y;i}
> M(p;) — Mo(p:)+

. n / n 1
+min {Zj:l,#ﬁ Qi jYj D=1 g, XindYj }

> M( ) MO p7 Z Q4. 5Yj,
J=13#7i
3)
e,y e . O
Remark 4. We want to point out where the assumption
that N be backward conflict free is essential in the previous
proof. Assume that a plagg has two input transitions;,
andt,. Then as we write equation (2) in terms of positive
elements we need to write expressions of the form:

n

>

J=1,9¢{Ji.ki}

Qi j Y, ik Y, > M (p;) — Mo(p;) + i jY;

and now when we consider vectgit holds
Q5 Y5, T Ok Y, <
min{oy j, 45, + ik, Yk, > ¥ Y5, + Qe Vi, Y 2
n
M(pi) — Mo(pi) + Zj:l,jg{ji,ki} Q4,5Yj

i.e., we cannot conclude thagte X. [ ]

IV. PROBLEM STATEMENT

In this paper we deal with the problem of estimating the
marking of a net systeriV, M,) whose marking cannot be
directly observed. The following properties of the system
will be assumed.

(A1) The structure of the ne¥ is known.

Thus for all p; € P we can rewrite equation (1) as(Az) The initial markingMp is known.

(A3) The labels associated to the firing of transitiongik

T. can be observed.

Note that since we assumed that the same label F
cannot be assigned to more than one transition, assumption
(A3) implies that transitions labeled with a symbol i
aredeterministic On the contrary, transitions labeledare
silent because their firing cannot be observed.

After the wordw of symbols inE has been observed,
we define the seC(w) of w-consistent markings as the
set of all markings in which the system may be, given the
observed behaviour.



Definition 5. Given an observed word, the set ofw- an observed word may not be an easy task, because it

consistent markings requires an exhaustive enumeration of the sequences of
C(w) = {M € N™ | 3 a sequence of transitions : transitions that may have actually fired.
Mo[o)M andL(s) = w}. When dealing withboundedPetri nets the most natural

(4) way of solving this problem consists in the computation of
m the deterministic finite state automatqiDFA) equivalent

to the nondeterministic finite state automat@iFA) repre-
senting the reachability graph of the Petri net system under
consideration.

Example 6. Let us consider the Petri net system in Fig
ure 2.a whose initial marking is equal fd, = [1 1 0 0]
and whose alphabet i& = {a,b}. The resulting reach-
ability graph is shown in Figure 2.b where for simplicity Example 8. Let us consider again the bounded Petri net
of notation with have denoted with thick labeled arcs th@ystem in Figure 2.a whose reachability graph is a NFA
arcs corresponding to the firing of transitions labeled witlilue to the presence ef As well known from the literature

a symbol inE, while with thin non-labeled arcs we have[8], there exists a systematic procedure that enables us to

denoted the arcs corresponding to silent transitions. compute the DFA equivalent to a NFA. In particular, in the
Assume that no event is initially observed, i.e.,= case at hand we obtain the DFA reported in Figure 2.c. At

oo and w = . By definition, the set of markings this point it is immediate to compute the set of consistent
that are consistent with the empty word &) = markings and verify tha€(e) = {[11 0 0]", [1010]"},
{l1100]7, [1010]T}. In fact two different cases may C(a) = {[0 2 0 0], [01 1 0]", [0020]"} andC(b) =
have occurred: either no transition has fired or the siledf1 1 00]”, [1010]", [1001]", [2000]"}. L
transitiont; has fired.

Now, let us first assume that transitionfires. Its firing

can be observed being(t4) = a € E. In such a case the
set of markings that is consistent with the observed ewent
isC(a)={[0200]7, 0110]7, [0020]T}. In fact, five
different sequences of transitionig i = 1, - - - , 5, may have
fired, namely,cn = ty, 09 = t4tq, 03 = t1ty, 04 = t4t1tq,
o5 = titat, and for all of themL(o;) = a. Moreover,
Mo[o1) [020 0], Mg[oz) [0110]F, Mylos) [0110]7,
Mo[os) [0020]T and Mylos) [00 2 0]7T.

On the contrary, let us assume that the only ob- VI. AN ALGEBRAIC CHARACTERIZATION OFC(w)

served event ish. In such a case the set of markings \we assume that the following conditions are verified.
that is consistent with the observed evénis C(b) = (A4) The T.—induced subnet ofV is acyclic
1>

{ _1 007, 1 0 1O, [1o017, [20 Q_O]T}j In (A5) TheT.—induced subnet is backward conflict free, i.e.,
particular, four different sequences of transitions i = all silent transitions have no common output place.
{1;;: t’i’;;aéhivz t:;ji’ r;?]rgilcﬁla[;}i‘;’e%(_;)litz Assumption (A4) implies that there cannot be repetitive
Moreover M0[01> o ,O 0T, Mplow) [1 1 6 O]T. sequences of unopservable transitions that may fire indef-
Mo[os) [2’0 0 0], and Mo[os) [1’ 010 .’ initely thus excluding problems related to divergence (or
ot : 04 ' livelock) [7]. We formally prove that under assumptions
Let us finally observe that the cardinality of the set o{Al) to (A5), a fixed number of constraints, not depending
consistent markings may either increase or decrease as tre the length of the observed word, may be used to
length of the observed word increases. describe the set ab consistent markings. In particular, we

Note however, that this procedure is not efficient from a
computational point of view because for all initial markings
we first need to compute the reachability graph of the
Petri net system, i.e., a NFA, and then convert it into a
DFA. Moreover, it can only be applied to bounded Petri
net systems. Finally, even when applicable, it does not
provide an algebraic characterization of the set of consistent
markings, and this may be an essential requirement when
the observer is included in a closed-loop system [3].

Example 7. Let us consider again the Petri net system irﬁormally prove that
Figure 2.a. As already said before, if we only observe them (M, ,,) & {M € N™ | M = My, + C. i, § € N}

eventa, the corresponding set of consistent markings is (5)

Cla) = {[0 200", [01 10", [0020]"}, whose is the set ofw consistent markings, i.eA(M;.,) = C(w),

cardinality is equal to 3. where M, ,, is appropriately computed using the following
If the sequence of observed eventsuis thenC(ab) =  recursive algorithm.

{11007, L0107, 02007, 01107, 00207, .
[0101]7, [0011]7} whose cardinality is equal to 7. gorithm 9 (M, computation).
Finally, if the sequence of observed eventsits, then 1-Letw =e andMp ., = Mo.

C(aba) = C(a), i.e., its cardinality is equal to 3. W 2. Wait until an event is observed.
Let ¢ be the transition such thdi(t) = e.
V. A SOLUTION BASED ONDFA COMPUTATION 3. Setjj i/ = ( € N
The above simple example clearly shows that the problem While there exists @; such that

of determining the set of markings that are consistent with My w(pi) < Pre(p;,t) do



1100
1010
0200
0110
1001
0020
0101
2000
0011
0002

Fig. 2. (a) The Petri net system considered in Example 6. (b) The NFA representing its reachability graph. (c) The DFA associated to the NFA.

Look for the (unique) silent transitiof, ;  Example 10. Let us consider again the Petri net system in

that inputs inp; Figure 2.a. By definition the basis marking when no event
Let o = {Pre(Pz‘af) - Mb,w(pi)-‘ is observed isVl;, . = M.
Post(p;,te,i) Let us first assume that the evemtis observed, i.e.,
Updatey ™ = i "f + gé.; transitiont, has fired. The infimal vectay */ is null, and
wheree. ; is the normal basis according to Algorithm 9, the basis marking is updated to
i — th element ofN"-. My, = M,.+C(,t) =[0200]7T.
endwhile Now, assume that the evehis observed, i.e., transition
Let Mywe = My + Ce 7 + C(-,t) and  t5 has fired. In this casg "/ = [1 0 0]” because we know
w = we. for sure that the silent transition has fired at least once
4. Goto 2. ] to enablets, and the basis marking is updatedtfy, ., =
Mpo+Ce- 7™ +C(,t5)=[0101]T. [ |

Note that the main idea behind the proposed alge-
braic characterization originates from the consideration that, Now, let us prove an important property of acyclic Petri
given the above assumptions (A4) and (A5), we can alwayets that will be useful in the following.
describe the set of markings that are consistent with Te
observed wordw as the set of markings that can be

reached from &asis marking)/, .,, depending onw, by . .
simply firing silent transitions. Using Algorithm 9 the basisena?.lgd at]]l/‘lo, ang assume/ t,t]a"f” 'SdSt'” enNabIel(Ij after
marking M, ,, is computed as the marking that is reache(g—'e, Iring ofo”. T en,,M?[U o")M and Molo")M" =
from the initial one by firing all the observed deterministic\="¢a * Teq = © ) Mocg)M. o
transitions and all those silent transitions whose firing is_  Proof: The first assumptioo[o’s") M implies that
strictly necessary to enable the observed sequence. Th%,: My+C-d' + C- U:: 2 (,), .W'th.U/’JN 2 O,’, while the
when no transition firing is observed, we takg, . = M. Seccjjjd ass“mp/E'OMO[UJM _implies thatM” = Mo +
As formally proved in the following, the existence andC "7 - Thus,M" +C'-¢" = M > 0. o
unicity of the basis markind/, ,, follows from Theorem 3. By Theorem 1, item (i), the above equation implies that
In fact, being theZ.—induced subnet acyclic, if we con- there exists a firing sequeneg, with &’ = o, such that
sider = X(N, My, Pre(-,t)), where M, , is the basis M "[o¢,)M, thus proving the statement. O
marking before the last observed transitiort represents  the ahove lemma ensures thawif is enabled after the
the set of firing vectors that correspond to sequences ﬁfing of o, a sequence’, that is equivalentto o’ — in

silent transitions that lead from/, , to a marking greater iha sense that it is just a permutation ©ff— is enabled
or equal thanPre(-, ), i.e., to a marking that enablesBy  4¢er the firing ofo”".

Theorem 3 we know for sure that the infimal elemgritf
of ¥ exists and is unique. Therefore we update the basideorem 12. Let us consider a Petri net systefiV, M)
marking taking into account that, before the firingtofa andletL : T — E U {e} be its labeling function. Assume
certain number of silent transitions, to whom it correspondthat assumptions (A4) and (A5) are satisfied. Then, for all
the firing vectory ™, have fired to enable. wordsw € (T'\ 1T)* the equalityC(w) = M (M, ,,) holds,
We finally remark that the above Algorithm 9 stops aftewhere M, ., is computed using Algorithm 9.
a finite number of steps that is at most equal to the number  Proof: We prove this by induction on the length of the
m of places. observed word.

mma 11. Let us consider aracyclic Petri net system
(N, Myp). Assume that two firing sequencg'sand ¢’ are



(Basis Step.)f w = € then M, ,, = M, and We finally prove thatM (M ,.) C C(ve). In fact,

M"e M(Myye) < M"=Myye+Cey’
< (by assumption (A4))
Aol € T} : Myyelol)M”
A Mb,v[Uainf>Ml;,v[t>Mb7ve[Ue/:>MNv

M(My) = M(Mo)
={MecN" | M=My+C. ¢y, € N}
>{MeN™ | Mylo.)M, o. € T.*}

B C(E) Mbﬂ, € C(’U)
If N is acyclic we can replac® by = according t0 wheres ™™ is any firing sequence such thar™! = 7 ™.
Theorem 1, item (ii). Therefore by definitionM” € C(ve), thus proving the
(Inductive Step.)Assume thaiC(v) = M(M,,) for a statement. O

generic wordv € E*.
We prove thatC(ve) = M (M ) With e € E.
We first observe that, if = L=1(e) then

Example 13. Let us consider again the Petri net system
in Figure 2.a. In the previous Example 10 we computed
that M, = [0 2 0 0]7. This means thatM (M, ,) =
{M eN"| M= M,,+C. §, 7€ N}isthe setof
o N consistent markings. The above set can be also be rewritten
M[t>M'[Ué>M”, 0; c Ta*} yS] ) [yl Y2 yB} eN }v thuiyl € {0,2},2}, Yz = %3 =0,
MY ENT | M= My 4 C. N and M (My,q) = {[02 0 0,[0 1 1)7,[0 0 2 0]} that
M> P%e(- £), MIt)M [0} M" comude; Wlt.h the set of consistent marklngs computed via
B € " the DFA in Figure 2.c. The same reasoning can be repeated

C(ve) ={M" eN™| M €C(v), M > Pre(-t),

ol eT.*}
S {M" € N™ | My,[o.) M[t)M'[o") M, for any other word of events. [ |
oc,0L €T, "} VIl. CONCLUSIONS AND FUTURE WORK

) ) ) The main contribution of this paper is that of providing a

If N, is a_cycllc__we can replac® by = according to  marking estimation procedure for nondeterministic labeled
Theorem 1, item (ii). Petri nets, where the nondeterminism is due to the presence

Now, let us notice that when a new transitidnis  of transitions labeled with the empty sting Under some
observed, using Algorithm 9, we first update the basifechnical assumptions on the structure of #e-induced
marking M., to My, = M, + C. ™" where g™ pet we formally proved that the set of markings consistent
is the infimal vector ofS(N, M., Pre(-,t)). Moreover, ith an observed word can be described by a constraint set
being by assumption th& —induced net BCF, by virtue of of Jinear inequalities that has a fixed structure that does not
Theorem 3,5 ! is unique for allt € 7'\ 7. and for all change as the length of the observed sequence increases.
My, € N™. Thus by definitionV/;  is the marking thatcan  we plan to extend our results in several ways. Firstly, we
be obtained from\z, , by simply firing those transitions that plan to modify the structure of the constraint set to also take
are strictly necessary to enabieClearly, if M, already into account the case that the initial marking is not known.

enableg, theng »f = 0. Then we want to extend this approach taking simultaneously
Furthermore, beingV. acyclic, into account the case in which the nondeterminism is due to
silent transitions and the case of nondeterministic transitions
M = My, + C. § > Pre(-,t) that share the same label.
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