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Abstract. In this paper we show how First—Order Hybrid Petri nets, an hybrid
positive model that combines fluid and discrete event dynamics, may be efficiently
used to simulate the dynamic concurrent activities of manufacturing systems. In
particular we deal with the performance analysis via simulation of a mineral water
bottling plant according to the variations of the production controlling input pa-
rameters. The model allows a simulation of the productive line behavior through
changes in the production capacity of the producing bottles and PET prototype
machines, of the filling machines, of the volume and type of the bottles, of the silos
dimensions, and so on.

1 Introduction

In this paper we show how hybrid Petri nets [5], a model for positive systems
[3] that combines fluid and discrete event dynamics, may be efficiently used
to simulate the concurrent activities of high-speed manufacturing systems.
The considered application. Problems related to production manage-
ment and optimization become particularly critical in high-speed production
plants, a particular example of which are mineral water bottling plants. Diffi-
culties in production management arise, as a matter of fact, from two conflict-
ing requirements: on one side we have the market, usually characterized by a
very variable demand as far as formats and quantity outputs are concerned;
on the other one we have the production system, whose best performances are
obtained in stable conditions characterized by a constant output production.
Simulation techniques represent an important and valid support for cop-
ing with these problems, as they allow to estimate plant behavior and perfor-
mances resulting from different market scenarios, in which variations in the
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number and size of PET units produced or of bottles filled may occur. Simu-
lation is useful both in the design phase, providing important information for
the subsequent decision choices, and in the management phase.

In the present work, a production line of an existing plant was simulated.
The plant under study is the Sarda Acque Minerali (SAM) unit, a mineral
water bottling plant located in southern Sardinia, at about 20 km from the city
of Cagliari. The company production [6] achieves about 110 millions of bottles
per year; several formats (0.251, 0.51, 11, 1.51, 21) of bottles are produced, filled
and finally sold, both with still mineral and sparkling water. Moreover four
different mineral water brands are produced.

Petri nets as positive systems. Discrete Petri nets [7] are a discrete
event model whose state space belongs to the set of non-negative integers.
This is a major advantage with respect to other formalisms such as automata,
where the state space is a symbolic unstructured set, and has been exploited
to develop many analysis techniques that do not require to enumerate the
state space (structural analysis [4]).

Recently, much work has been devoted to the extension of the classical
discrete Petri net formalism to continuous Petri nets obtained by fluidification
[8]. In fact, in many applications dealing with complex systems it happens
that the model of the plant has a discrete event dynamics whose number
of reachable states is typically very large. The analysis and optimization of
these systems require large amount of computational efforts, and problems of
realistic scale quickly become analytically and computationally untractable.
To cope with this problem it is often possible to give a fluid (i.e., continuous)
approximation of the “fast” discrete event dynamics [9].

Note that the discrete event dynamics that can be represented by a fluid
model are usually related to the flow of materials, thus making fluid models
essentially a type of compartmental models [3], a sub-class of positive systems.

In general different fluid approximations are necessary to describe the same
system, depending on its discrete state. Thus, the resulting model can be
better described as an hybrid model, where different dynamics are associated
to each discrete state. This has recently lead to the definition of a new family
of Petri net models that combine discrete and continuous subsystems into a so
called hybrid Petri net [1, 5]. Note that the area of hybrid systems has received
a lot of attention in the automatic control community, lately: we believe that in
the next years much attention will also be devoted to hybrid positive systems,
i.e., positive systems combining both discrete event and continuous dynamics,
and hybrid Petri nets are a good example of these class of systems.

The hybrid Petri net model considered in this paper is called First—Order
Hybrid Petri nets (FOHPN) because its continuous behavior is piece-wise
constant. FOHPN were originally presented in [2].

2 First—Order Hybrid Petri Nets

In this paper we use the Petri net formalism firstly presented in [2].
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Net structure. An (untimed) FOHPN is a structure N = (P, T, Pre,
Post,D,C). The set of places P = P; U P, is partitioned into a set of discrete
places P; (represented as circles) and a set of continuous places P. (repre-
sented as double circles). The cardinality of P, Py and P, is denoted n, ng
and n.. The set of transitions T = Ty U T, is partitioned into a set of discrete
transitions Ty and a set of continuous transitions 7, (represented as double
boxes). The cardinality of T', T; and T, is denoted ¢, g4 and g.. The pre-
and post-incidence functions that specify the arcs are (here RT = RTU{0}):
Pre,Post : P. xT — R(J{, P; x T — N. We require that V¢ € T. and
Vp € Py, Pre(p,t) = Post(p,t), so that the firing of continuous transitions
does not change the marking of discrete places. The function D : Ty — ]Rar
specifies the timing associated to timed discrete transitions. The function
C:T. — RS’ x RE specifies the firing speeds associated to continuous tran-
sitions (here R}, = R* U {oo}). For any continuous transition ¢; € T, we let
C(t;) = (V],V;), with V] < V. Here V/ represents the minimum firing speed
(mfs) and V; represents the mazimum firing speed (MFS).

The incidence matriz of the net is defined as C(p,t) = Post(p,t) —
Pre(p,t). The restriction of C to Px and Ty is denoted Cxy.

A marking is a function that assigns to each discrete place a non-negative
number of tokens, represented by black dots and assigns to each continuous
place a fluid volume. A continuous place can be seen as a tank that can fill
up with fluid (marking). However, we also consider some connecting elements
(such as a pipe) with a zero capacity where fluid can flow but not accumulate.
Thus we partition the set of continuous places P, = Py U Py into a set of
places Py (represented as full dark circles) whose marking is always equal
to zero (connecting elements), and a set of places Py (represented as double
circles) whose marking may assume any nonnegative real number (tanks).
Therefore m : P, — RS‘ , Ph — 0, P; — N. The marking of place p; is
denoted m;, while the value of the marking at time 7 is denoted m (7). The
restriction of m to Py and P, are denoted with m? and m¢, respectively. An
FOHPN system (N,m(7p)) is an FOHPN N with an initial marking m(7).

Net dynamics. The enabling of a discrete transition depends on the
marking of all its input places, both discrete and continuous. More precisely,
a discrete transition ¢ is enabled at m if for all p; € *t, m; > Pre(p;,t), where
*t denotes the preset of transition t.

If a discrete transition ¢; fires at a certain time instant 77, then its firing
at m(77) yields a new marking m(7) such that m¢(7) = m°(r~) + C.40,
and m?(7) = m4(r7) + C 440, where o is the firing count vector associated
to the firing of transition ;.

To every continuous transition ¢; is associated an instantaneous firing
speed (IFS) v;(7). For all 7 it should be V] < v;(r) <V}, and the IFS of
each continuous transition is piecewise constant between events.

An empty continuous place p; can be fed, i.e., supplied, by an input transi-
tion, which is enabled. Thus, as a flow can pass through an unmarked continu-
ous place, this place can deliver a flow to its output transitions. Consequently,
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a continuous transition ¢; is enabled at time 7 if and only if all its input dis-
crete places py € Py have a marking my(7) at least equal to Pre(pg,t;), and
all its input continuous places are either marked or fed. If all input continuous
places of t; have a not null marking, then t; is called strongly enabled, else
t; is called weakly enabled. Finally, transition ¢; is not enabled if one of its
empty input places is not fed.

We can write the equation which governs the evolution in time of the
marking of a place p; € P, as m;(7) = Zt,-ETc C(pi,tj)v; (1) where v(r) =
[v1(7), ..., vn.(7)]T is the IFS vector at time 7.

The enabling state of a continuous transition ¢; defines its admissible IF'S
vj. If ¢; is not enabled then v; = 0. If ¢; is strongly enabled, then it may fire
with any firing speed v; € [Vj’, V;]. If t; is weakly enabled, then it may fire
with any firing speed v; € [V/, V], where V; < Vj; since t; cannot remove
more fluid from any empty input continuous place p than the quantity entered
in p by other transitions.

We say that a macro—event occurs when: (a) a discrete transition fires, thus
changing the discrete marking and enabling/disabling a continuous transition;
(b) a continuous place becomes empty, thus changing the enabling state of a
continuous transition from strong to weak.

Let 75 and 7,41 be the occurrence times of two consecutive macro—events
as defined above; we assume that within the interval of time [7y, 7511 ), denoted
as a macro—period, the IFS vector is constant and we denote it v (7). Then the
continuous behavior of an FOHPN for 7 € [7y, 7+1) is described by m*(7) =
me() + Coev() (T — 1), m?(7) = mi(r).

3 Modeling plant subsystems with FOHPN

In this section we briefly describe some components of the considered plant
and the corresponding net models.

Transportation lines and switches. Transportation lines consist of
pipes of appropriate diameter, depending on the bottle sizes, where bottles
are conveyed at high speed thanks to the force produced by the compressed
air. Due to the high speed, the main feature of these elements is that there
is no accumulation of bottles in their inside. Therefore, transportation lines
may be seen as connecting elements and the corresponding places in the Petri
net model are zero capacity places, i.e., places in Py.

The connections among different lines may vary and this can be modeled by
a MIMO (multi input - multi output) switch. In figure 1 a switch is represented
in the case of two input and two output lines, where place p. has been denoted
as a dark circle because it is a zero capacity place. The discrete marking is
such that one possible path at a time is enabled.

The delay times associated to discrete transitions determine the the paths
that bottles follow at the different time intervals: thus they are design param-
eters to be optimized.
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Fig. 1. A MIMO switch with 2 input and 2 output lines.

Machines. In this plant we have two different types of machines. The
first type is involved in bottles production, while the second one is involved
in bottles filling and corking.

Machines of the first type are equipped so as to produce bottles of different
sizes. In the following, we consider the case of a machine that can be used to
produce 1.5 1t bottles and 2 1t bottles. The Petri net model for such a machine
is shown in figure 2.a. In particular, the firing of ¢, ; denotes the production of
1.5 1t bottles, whereas the firing of t. » denotes the production of 2 It bottles.
Clearly, the productivity of the machine is not the same in the two cases, thus
the weights of the input arcs to p. are different.
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Fig. 2. A machine that produces bottles (a). A machine that fills bottles (b).

A dual scheme may be used to describe the functioning of those machines
that are involved in the bottle filling and corking. An example in the case of
bottles of two different sizes is reported in figure 2.b.

The delay times associated to discrete transitions determine the machine
production cycle and are the design parameters to be optimized.

4 A real bottling plant
Plant description. The production cycle considered in this paper consists

of several stages [6]. The first stage consists in the creation of the PET bot-
tles and the last stage consists in self-filling and corking. More precisely, the
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first operational machine is M that produces PET bottles starting from raw-
material of PET granules (PET chips). Thanks to an appropriate equipment,
this machine may be extremely versatile and may produce different bottle
sizes, e.g., 1.5 1t and 2 It. Then, the produced bottles are directed to appro-
priate lines of different diameter, depending on their size. The flow of bottles
through the conveyor lines occurs at a high speed and is induced by a jet of
compressed air. Bottles may follow different paths and may be assigned to
different buffers. Path assignment may be seen as a decision problem whose
solution aims to optimize the production process. In particular, in the case
we are dealing with, there are 7 buffers (S7, S, - -+, S7) and the partitioning
is established so as to compensate as much as possible the delay due to the
reduced productivity of the machines that fill bottles of mineral water with
respect to those that produce them.

Finally, from buffers bottles are conveyed to the zone of self-filling through
other appropriate flow lines. Even in this case, bottles may follow different
paths so as to better exploit the filling machines. In particular, there are 3
filling machines that can be used to fill bottles of all sizes.

The FOHPN model. The FOHPN model of the above production pro-
cess can be obtained by simply putting together all the elementary modules
previously defined. The resulting Petri net model has not been reported here
for brevity’s sake but it can be seen by looking at [6].

5 A numerical optimization problem

In this section we present the results of several numerical simulations whose
main goal is that of determining the operational configuration of the produc-
tion process that enables us to optimize the efficiency of the bottling plant
with respect to a given performance index. All simulations have been carried
out using Simulink, a Toolbox of Matlab.

The design parameters are the following: the initial configuration of the
plant, i.e., the initial marking of the net; the paths that bottles should follow
at the different time intervals, i.e., the timing delays associated to discrete
transitions in the Petri net model of switches; the time intervals at which
machines should produce (fill) bottles of different formats, i.e., the timing
delays associated to discrete transitions in the Petri net model of machines
producing (filling) bottles.

Different numerical simulations have been carried out using the real data
of the machines (namely, their productivity) and the buffers (namely, their
maximum capacity). In the following we focus our attention to 1.5 and 2 It
bottles. A time period of 48 hours has been considered during simulation (the
behavior of the plant is periodic with a period of 48 hours).

The main goal of the company is that of maximizing the net profit resulting
from selling its end items. We first assume that all the produced bottles are
sold. In such a case the net profit is
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P=(SPy5—UCys5)  Nis+ (SPy —UCs) - Ny

where SPy 5 (SP,) is the selling price of 1.5 (2) 1t bottles, while UC, 5 (UC5)
is the unitary cost associated to 1.5 (2) It bottles. The selling price is the price
at which the end item is sold to the customer. In all numerical simulations
we assumed SP; 5 = 18 ¢ and SP, = 22 ¢, where ¢ denotes a cent of Euro.
The unitary cost is the cost that the company pays for one unit of end item.
It includes the cost that the company pays for the PET and the water, plus
an additional term taking into account the production costs pertaining to one
bottle. In particular, we assumed UCy 5 =5 ¢ and UC5 = 6 c.

The resulting net profit, computed under the assumption that all the pro-
duced bottles are sold, is that shown by the thin curve in figure 3. Thus we
can conclude that the fifth simulation corresponds to the best configuration
of the plant with respect to the considered performance index P. Note that
it is possible to prove that the fifth simulation corresponds to the maximal
productivity of no format. This means that the maximum profit is guaran-
teed by appropriately partitioning the production resources among bottles of
different sizes.

Euro

1 2 3 4 5 6 7 8
simulation

Fig. 3. The net profit P under the assumption that all bottles are sold and the net
profit P taking into account some constraints in the sale.

Finally, we compute the net profit under the following two realistic as-
sumptions. Firstly, we assume that there is an upper bound on the demand
of bottles of each format: if the number of produced bottles is greater than
such a limit, then there is a certain number of bottles that are not sold, thus
producing no profit. Secondly, we assume that if the number of bottles is less
than a given lower bound then the whole demand cannot be met. This pro-
duces a shortage which usually has many associated costs. Apart from the loss
of profit, the effects of shortage include loss of goodwill, loss of future sales,
and so on. In particular, in all numerical simulations we assumed that within
the considered time period of simulation, the maximum number of bottles of
each format that can be sold is Nyax = 7-10°, while the number of produced
bottles under which there is shortage is Ny, = 10°. Finally, we evaluated
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that shortage cost is equal to SC = 2 ¢ for unit of end item for both formats.
In such a case the net profit is equal to

P = SP1.5 . maX{N1_5,Nmax} — UC1_5 . N1.5 - SC . max{(), Nmin — vas}
+SP2 . IIIE),X{ZVQ7 Nrnax} — U02 . N2 - SC- max{O,Nmin — NQ}

When the performance index to be maximized it P the resulting curve is the
thick one in figure 3. Thus we can conclude that even in this case the best
configuration of the plant is the fifth one.

6 Conclusions

An analysis of the operating conditions of a mineral water bottling plant
was performed by means of a simulation model based on first order hybrid
Petri nets and Simulink. The tests accomplished demonstrate the ability of
the model to correctly describe the behavior of the single machines and of the
global plant; it also allows to foresee the main plant performances for different
operating plant conditions, so representing a valid instrument to cope with
complex production optimization problems.
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